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a b s t r a c t

In this paper, we study a formation control scheme for a 1-D string of vehicles. Each member tracks the
movement of its immediate predecessor but also the first vehicle tracks the position of the last member
of the string. We discuss conditions for the stability of the full interconnected system and show that if a
constant spacing policy is used, the stability of the system is lost after the string size exceeds a certain

a constant time headway spacing policy. If the associated time headway parameter is greater than a
critical value, the interconnected system is stable and string stable for any string size. Finally, we show
that if an independent leader vehicle is added to the formation and every follower has access to this
leader position, the cyclic formation with a constant spacing policy can be made stable and string stable
by appropriately selecting a design parameter.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Formation control of autonomous vehicles has received great
attention in recent decades [11,3,2,21,15]. Due to its importance in
applications to automated highway systems, the simple case of a
1-D platoon of linear vehicles has been studied extensively and
researchers have considered diverse alternatives to achieve coor-
dinated movement of the string (see [19,12,5] and the references
therein).

A simple control strategy is to equip every member of the
formation with a compensator that stabilizes its position in closed
loop, using as a reference the position of its predecessor on the
string and a desired inter-vehicle spacing. This approach achieves
a tight formation in steady state for a constant speed of the leader
vehicle. More elaborate approaches consider also using the states
of the lead vehicle and/or the states of other members of the
formation (see for example [8,6,12] and the references therein).

The first element of interest when studying such architectures
is the stability of the full interconnected system. The authors of Fax
and Murray [4] discuss the effect of the information flow in vehicle
formations and how the eigenvalues of the graph Laplacian matrix
play an important role when determining stability. Other aspects
lished by Elsevier Ltd. All rights re

þ353 1 7086269.
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),
of importance in the architecture are those of performance and
safety. Works such as Seiler et al. [19], Middleton and Braslavsky
[15], Barooah and Hespanha [1] describe how in interconnections
that are stable, disturbances may be amplified along the formation
resulting in poor performance or even collisions (string
instability).

The present work studies a particular interconnection where
the first vehicle in the formation tracks the position of the last
member, while the rest of the members track the position of their
immediate predecessors. This interconnection is cyclic and allows
the members of the formation to compensate disturbances at any
location of the string of vehicles. This is in contrast to unidirec-
tional architectures where the leader moves independently; in
such scenarios a follower does not detect or manoeuvre in
response to disturbances that affect members behind it. There are
a few interesting applications for such models. In particular, this
can correspond to an idealized ring road in large cities (where the
physical curvature of the road can be considered negligible for the
effects of the vehicle's trajectories). This interconnection can also
be a model for subway or railway/tram lines with a circular layout.
Moreover, in some cities, bus routes of public transport are nor-
mally composed of bus lanes, where particular vehicles are not
allowed to circulate. The buses travel from point A to B but they
normally return from B to A, essentially becoming a cyclic flow of
vehicles. Although these trajectories are performed in a 2-D space,
overtaking in such scenario is not a common practice and turns in
road junctions could be considered as disturbances. In such a
served.
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setting, every vehicle travels almost exclusively in a straight line,
similar to travelling on tracks. Nevertheless, the vehicles need not
be necessarily arranged in a 2-D ring, they can be moving along a
straight road and at the same time have a cyclic interconnection.

Recent works have investigated a similar setting. In Marshall
et al. [13] the authors study formations of vehicles in cyclic pur-
suit. In Lafferriere et al. [10] several formation control archi-
tectures using a graph theoretic approach are studied, focusing on
stability. The authors of Roberson and Stilwell [17] discuss the use
of a circulant communication network to simplify the estimation
and design of a state feedback to control a vehicle platoon. In Park
and Ahn [16] the authors discuss stabilization of directed cycle
formations of agents moving in the plane.

The results reported in Rogge and Aeyels [18] motivate much of
our work. We consider the same basic interconnection structure as
this earlier paper. In particular, the authors considered a specific
and simple model for every vehicle. Moreover, they selected
constant controller gains and obtained conditions on the para-
meters in order to achieve stability and string stability of the
interconnection. We consider extensions to this results, allowing
more general vehicle models and controllers by using a frequency
domain approach. We will show that if the spacing policy is con-
stant, the interconnection is unstable after the formation size
exceeds a certain critical number. Additionally, we show that if a
time headway spacing policy is used, stability for any size of the
formation and string stability can be achieved by choosing an
appropriate value for the time headway parameter.

This paper also provides results for the addition of an inde-
pendent leader vehicle which sends its location to every follower.
In this case, the stability and string stability of the interconnection
is related to the selection of the weight parameter that every fol-
lower uses to track its predecessor and the leader simultaneously.
Similar results for non-cyclic cases are reported in Seiler et al. [19]
and Shaw and Hedrick [20]. One simple practical example of the
use of a leader corresponds to subway lines. The trains could
receive the position of a fictitious leader in addition to using the
position of its predecessor to control their trajectories. In other
circumstances, the cyclic interconnection might be able to alle-
viate the relaying of the leader state to every member. In this case
the largest distance to relay the state to every member would be
half the distance of a unidirectional scheme (the centremost
member would be the farthest in a communication sense from a
leader that stays in front of the platoon).

The remainder of this paper is organized as follows. Section 2
gives some preliminary assumptions on the problem to be studied.
Section 3 presents the cyclic control strategy and the associated
dynamics. The main contributions of the paper are contained in
Sections 4 and 5. Section 4 shows stability results for the two
inter-vehicle spacing policies and Section 5 contains analogous
results for the use of an independent leader vehicle. Some
numerical examples and comments on the main results are given
in Section 6. Section 7 contains some final remarks and possible
lines of future work.
2. Framework and problem formulation

2.1. Notation

The notation used in this paper follows much of the standard
systems and control literature. Lowercase is used for real scalar
signals, x : R-R with specific values of the signal denoted by x(t).
Uppercase is used for scalar complex-valued Laplace transforms of
signals and transfer functions, X : C-C with specific values
denoted by X(s). For the sake of brevity in the notation, where
there is no confusion, the argument ðsÞ will be omitted. Vectors
will be denoted as xðtÞARn and XACn, while xðtÞ> and X > denote
their transposes. Moreover, the all zeros and all ones vector will be
denoted as 0 and 1 respectively. The imaginary unit is denoted by
j, with j2 ¼ �1. Boldface will be used for matrices GACn�m and the
(i,k)th entry of G is denoted by Gi;k. The magnitude of X when
s¼ jω, ωAR, is denoted by jX j and its magnitude peak over all
possible values of ω is denoted as j jX j j 1 : ¼ supω jXðjωÞj . The
derivative of X(s) with respect to s will be denoted as X0ðsÞ. For
zAC, RðzÞ and IðzÞ denote the real and imaginary parts of z
respectively.

2.2. Vehicle model, control strategy and initial conditions

We consider a platoon of NAN identical vehicles, with posi-
tions zi(0t), initial positions zið0Þ and initial velocities _zið0Þ for
1r irN, modeled by linear time invariant systems. In the fre-
quency domain, the models of each member of the platoon are
given by

Zi ¼ PðUiþDiÞþ
zið0Þ
s

þ _zið0Þ
s2

for 1r irN; ð1Þ

where Zi denotes the Laplace transform of zi(t), Ui is the control
action and Di is an input disturbance, both acting on the ith
member. The transfer function for the vehicle P has a single pole at
the origin and is strictly proper (this is a more general vehicle
description that the one used in Rogge and Aeyels [18] and a
commonly used assumption Jovanovic and Bamieh [8]).

Now, we define the separation errors as

eiðtÞ ¼ zi�1ðtÞ�ziðtÞ�ðεiþh_ziðtÞÞ; for i¼ 2;…;N;

e1ðtÞ ¼ zNðtÞ�z1ðtÞ�ðε1þh_z1ðtÞÞ; ð2Þ
where εiAR, and hZ0 is the time headway parameter.

The control objective is to maintain the errors ei(t) defined in
(2) equal to zero whenever possible, which would imply that the
vehicles retain a desired formation. We will study the control
strategy given by

Ui ¼ KEi; for i¼ 1;…;N; ð3Þ
where K is a strictly proper controller assumed to have a single
pole at the origin and Ei are the Laplace transforms of the signals
ei(t).

In steady state, that is for t-1, we aim to have eiðtÞ ¼ 0 and
also _ziðtÞ ¼ vpAR for all i¼1,…,N. Here we follow a similar
approach to the one used in Rogge and Aeyels [18] and we add all
the right hand sides of (2) and substituting yields

vp ¼ � 1
hN

XN
i ¼ 1

εi: ð4Þ

For simplicity, we will set εi ¼ εAR for i¼2,…,N and therefore
ε1 ¼ �hNvp�ðN�1Þε. With this, we take initial conditions such
that the formation is initially in steady state, that is zi�1ð0Þ�zið0Þ
¼ εþh_zið0Þ for i¼2,…,N, zNð0Þ�z1ð0Þ ¼ ε1þh_z1ð0Þ and _zið0Þ ¼ vp
for i¼1,…,N. Finally, we define the change of coordinates

xiðtÞ ¼ ziðtÞ�zið0Þ�vpt; for i¼ 1;…;N; ð5Þ
and substituting in (2) yields

eiðtÞ ¼ xi�1ðtÞ�xiðtÞ�h _xiðtÞ; for i¼ 2;…;N;

e1ðtÞ ¼ xNðtÞ�x1ðtÞ�h _x1ðtÞ; ð6Þ
With this, we will focus on the effect of the disturbances Di on

the separation errors Ei when the initial conditions and εi are set
to zero. In the following sections we will have

Ei ¼ Xi�1�Xi�shXi; for i¼ 2;…;N;

E1 ¼ XN�X1�shX1: ð7Þ
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The main difference with the basic approach Seiler et al. [19],
where the leader moves independently, is that the first vehicle
now tries to maintain a predefined spacing with respect to the last
member of the platoon. Applications of such a configuration may
include subway systems that run on circuits and ring roads around
major cities. Nevertheless, the vehicles need not be necessarily
arranged in a 2D ring, they can be moving along a straight road
and at the same time have a cyclic interconnection.

One potential advantage of such a strategy is the fact that a
disturbance at any vehicle will be detected and compensated by
every member of the formation. This could provide an extra level
of safety when compared to unidirectional strategies where a
disturbance at any vehicle is not detected by its predecessors
(which could possibly lead to collisions).
3. Dynamics of the interconnected system

With the control strategy defined in the previous section, the
vehicle dynamics are given by

X ¼ ðI�PKGÞ�1PD; ð8Þ

where X ¼ X1 ⋯ XN½ �> , I is the N�N identity matrix, D ¼
D1 ⋯ DN½ �> and GACN�N is the interconnection matrix:

G¼

�Q 1
1 ⋱

⋱ ⋱
1 �Q

2
6664

3
7775; ð9Þ

with Q ¼ 1þhs.
We aim to obtain explicit formulae for the vehicle positions. To

do so, we must invert the matrix I�PKG in (8). In unidirectional
control strategies with a free leader Seiler et al. [19], Klinge and
Middleton [9] the matrix to invert is lower triangular and normally
has a straightforward inverse, yielding dynamics for the vehicle
positions that are easy to study. In the present case I�PKG is
circulant and the resulting dynamics will not be straightforward to
analyze as will be seen below.

In the following, to simplify the presentation, we will consider
strictly proper controllers K that satisfy K ¼ ~K=Q , with ~K having no
zero at s¼ �1=h. Let T ¼ PKQ=ð1þPKQ Þ ¼ P ~K=ð1þP ~K Þ ¼ 1�S, and
also Γ ¼ T=Q . Then, we have

I�PKG¼ KP

Γ�1 �1
�1 ⋱

⋱ ⋱
�1 Γ�1

2
66664

3
77775; ð10Þ

and the corresponding inverse (which can be checked by multi-
plying) is given by

ðI�PKGÞ�1 ¼ S

1�ΓN

1 ΓN�1 ⋯ Γ2 Γ
Γ 1 ⋱ Γ2

⋮ ⋱ ⋱ ⋱ ⋮
ΓN�2 ⋱ 1 ΓN�1

ΓN�1 ΓN�2 ⋯ Γ 1

2
6666664

3
7777775
: ð11Þ

By the structure of the interconnection, this matrix is also cir-
culant and therefore the response of the nth vehicle to a single
disturbance on the kth vehicle is the same as the response of the
nþ lth vehicle to a single disturbance on the kþ lth vehicle (there is
no leader). Moreover, as a consequence of the chosen inter-
connection, a single disturbance affects every vehicle in the string.

In particular we have that the inter-vehicle spacings when D1

a0 and Di¼0 for i¼2,…,N are given by Ei ¼ Xi�1�QXi ¼ F ðNÞi D1,
with

FðNÞi ¼ SPð1�TÞΓi�2

1�ΓN ; for i¼ 2;…;N ð12Þ

E1 ¼ XN�QX1 ¼
SP ΓN�1�Q

� �
1�ΓN D1 ¼ F ðNÞ1 D1: ð13Þ

It is important to note that the dynamics of the inter-vehicle
spacings have a factor ð1�ΓNÞ�1. The poles of this transfer func-
tion increase in number and change in location with an increase of
the string size N. This is in great contrast with other unidirectional
architectures where the pole locations are unaffected by N. In
those cases the dynamics are usually powers of the com-
plementary sensitivity function T [19].
4. Properties of the interconnected system

In this section, we state the main results of the paper. In par-
ticular we analyze the roots of the equation 1�ΓN ¼ 0 and its role
in the stability of the interconnection. The following result [14,19]
plays an important role in the study of several formation control
strategies and it also does in the present case.

Lemma 1. Let T be a real rational scalar function of the complex
variable s. Suppose that Tð0Þ ¼ 1 and also that T is stable (analytic in
the closed right half complex plane) and strictly proper. ThenZ 1

0
lnjTðjωÞjdω

ω2Z
π
2
T 0ð0Þ: ð14Þ

In this particular setting, since P and K both possess a single
pole at the origin, the transfer function T satisfies Tð0Þ ¼ 1 and
T 0ð0Þ ¼ 0. Lemma 1 then implies that jTðjωÞj41 for some ω40.

We will consider two of the most common spacing policies and
will obtain stability conditions of the interconnection for both. The
following result, taken from Klinge and Middleton [9], shows how
the use of a time headway policy can impact the frequency
response of the interconnection.

Proposition 1. Let T ¼ P ~K=ð1þP ~K Þ, with P being strictly proper and
having a pole at the origin and ~K is a proper controller with a single
pole at the origin and no zero at s¼ �1=h. Then, T is a stable and
strictly proper transfer function such that Tð0Þ ¼ 1, T 0ð0Þ ¼ 0 and
j jT j j141. Moreover, there exists h040 such that j jT=ð1þhsÞj j1
41 for 0rhoh0 and jTðjωÞ=ð1þ jhωÞjo1 for ω40, whenever
h4h0. A formula for h0 is given by

h0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sup
ω

P ~K
1þP ~K

��� ���2�1

ω2

0
B@

1
CA

vuuuut ð15Þ

We also have the following result for h0 to be used in.

Lemma 2. The value h0 defined in (15) satisfies

2h2
0Z

d2

dω2

P ~K

1þP ~K

�����
�����
2

0
@

1
A
������
ω ¼ 0

: ð16Þ

Proof. This follows directly by using L'Hôpital's rule to compute
the limit of the right hand side of (15) when ω-0.□

The final preliminary result needed for the derivation of the
main results is given in the following lemma.

Lemma 3. Let Γ be a stable and strictly proper transfer function such
that j jΓ j j141. Then, there exists an interval ½θ1;θ2� � ½0;2π� with
θ1rθ2 such that 1�ejθΓ ¼ 0 has solutions in the open right half



A.A. Peters et al. / European Journal of Control 27 (2016) 36–44 39
plane when θAðθ1;θ2Þ. Moreover, if there exists ωc such that jΓðj
ωcÞj ¼ 1 and jΓðjωcÞj 0a0, we have θ1oθ2.

Proof. See Appendix A.

Remark 1. In the following we will consider Γ that satisfies: if
there exists ωc40 such that jΓðjωcÞj ¼ 1, then jΓðjωcÞj 0a0.

4.1. Stability analysis

To check the stability of the transfer functions Fi in (12) we note
that SP and Γ ¼ T=Q are stable provided that the controller K is
properly designed. We will now focus on the behavior of ð1�TÞ=ð
1�ΓNÞ which appears in Fi for i¼2,…,N. The results are analogous
for F1 and we omit the details for the sake of simplicity in the
exposition. We have that

ΓN�1¼ ∏
N�1

k ¼ 0
Γ�ej2kπ=N

� �
: ð17Þ

Note that this echoes the results derived in Fax and Murray [4],
where the term ej2kπ=N is directly connected to the eigenvalues of
the graph Laplacian matrix for this interconnection. We have the
following stability result.

Theorem 1. Let T and Q ¼ 1þhs be defined as in Proposition 1, and
let Γ ¼ T=Q. Then, there exists h040 such that the following holds:

1. if h4h0, then ð1�TÞ=ð1�ΓNÞ has all of its poles in the open left
half plane;

2. if hoh0 then there exists NcAN such that for all N4Nc , ð1�TÞ=
ð1�ΓNÞ has poles in the right half plane.

Proof. (1) If h4h0, Proposition 1 states that jΓ jo1 for all ω40.
We will show that ð1�TÞ=ð1�ΓÞ is stable. First we study the
possible poles at the origin. If we recall that Tð0Þ ¼ 1 and T 0ð0Þ ¼ 0
we have that 1�T has two zeros at s¼0. Since Γ is stable, Γð0Þ ¼ 1
and jΓ jo1 for all ω40, we have that for all cA ð0;1Þ, j cΓ jo1 for
all ωZ0. This in turn implies that j1�ð1�cΓÞjo1 for ωAR.
Rouche's Theorem ensures that 1�cΓ and 1 have the same
number of zeros in the closed right half plane. By continuity of the
roots, 1�Γ only has unstable roots at the stability boundary and
given that jΓ jo1 for all ω40 this root can only be located at
s¼0. Computing Γ0 ¼ T 0=Q�TQ 0=Q2 implies that Γ0ð0Þ ¼ �h and
therefore 1�Γ has only one root at s¼0 if h40. Consequently
ð1�TÞ=ð1�ΓÞ is stable. It remains to show that 1=∏N�1

k ¼ 1
Γ�ej2kπ=N
� �

has poles only in the left half plane. For this, we note
that the Nyquist plot of �ej2kπ=NΓ does not encircle the point s¼
�1 for any value of 2kπ=N with k¼ 1;…;N�1. Given that Γ is
open loop stable ð1�ej2kπ=NΓÞ�1 is also stable for k¼ 1;…;N�1.

2. If hoh0, Proposition 1 states that j jΓ j j141. We write

1�T

1�ΓN ¼ 1�T
1�Γ

∏
N�1

k ¼ 1
1�ej2kπ=NΓ

� ��1
ð18Þ

where 2kπ
N Að0;2πÞ when k¼ 1;…;N�1. According to Lemma 3,

given that in this case j jΓ j j141, there exists an interval ðθ1;θ2Þ
such that 1�ejθΓ has zeros in the right half plane when
θA ðθ1;θ2Þ. Now, if 2π

N oθ2 �θ1
2 there is at least one point of the

sequence 2kπ
N

� 	
for k¼ 1;…;N�1 that belongs to ðθ1;θ2Þ. There-

fore, for all N4Nc ¼ 4π
θ2 �θ1

j k
þ1 the transfer function ð1�TÞ=ð1�

ΓNÞ has poles in the right half plane.□

Part (1) of the last theorem implies that the condition jΓ jo1
for all ω40 is sufficient for stability of the transfer functions Fi in
(12). Part (2) states that if the time headway parameter satisfies
0rhoh0, there exists a critical number Nc for which any inter-
connection with a string size greater than Nc will be unstable.
Remark 2. If either P or K have a pole at s¼p with RðpÞZ0 we
have TðpÞ ¼ 1 and SðpÞ ¼ 1�TðpÞ ¼ 0 (since T is stable). Now, for all
h we have 1�ΓðpÞN ¼ 1�ðTðpÞ=ð1þhpÞÞN ¼ 1�1=ð1þhpÞN . This
expression only vanishes for hp¼0 (and this case is already cov-
ered in the proof). Therefore, there are no cancellations of the zero
at s¼p of S¼ 1�T with possible right half plane zeros of ð1�ΓNÞ.

Remark 3. If h¼ h0 it is possible to have ΓðjωcÞ ¼ ejθ for some
ωc40. If this is the case, there could be a value of k and n such
that ΓðjωcÞ�ej2kπ=n ¼ 0, or equivalently θ¼ 2kπ=N implying that
there is a pair of pure imaginary complex poles at 7 jωc.

4.2. String stability analysis

Now we show that the interconnection can also be made string
stable. We understand string stability as having certain sequences
of transfer functions from disturbances to errors with a uniform
bound on their magnitude peak; this bound is also independent of
the string length (see for example [15]). We have the following
result.

Theorem 2. Let Γ ¼ T=Q with T defined as in Lemma 1 with T 0ð0Þ
¼ 0 and Q ¼ 1þhs, with h4h0 (with h0 defined in Proposition 1).
Consider FðNÞi defined in (12) for all i;N with irN. Then the following
hold:

1. F ðNÞi ð0Þ ¼ 0; 8NAN and i¼ 1;…;N:;
2. There exists c40 such that j jF ðNÞi j j1rc for all i;N, irN.

Proof. 1. For iZ2 we have

F ðNÞi ð0Þ ¼ lim
s-0

SPð1�TÞΓi�2

1�ΓN ¼Γð0Þi�2lim
s-0

SP lim
s-0

1�T

1�ΓN ð19Þ

Given that Q ð0Þ ¼ 1, Tð0Þ ¼ 1, we have that Γð0Þ ¼ 1. Also, we have
Sð0Þ ¼ 1�Tð0Þ ¼ 0 and S0ð0Þ ¼ T 0ð0Þ, and therefore S has two zeros
at s¼0. Since P has a single pole at s¼0 we have that lims-0SP ¼ 0.
Now, ð1�TÞ=ð1�ΓNÞ is of the form 0=0 when s-0 and the fol-
lowing limit can be computed using L'Hôpital's rule

lim
s-0

1�T

1�ΓN ¼ lim
s-0

T 0

NΓN�1Γ0: ð20Þ

Since T 0ð0Þ ¼ 0 and Q 0 ¼ h it follows that Γ0 ¼ T 0=Q�TQ 0=Q2 and
Γ0ð0Þ ¼ �h. With this, evaluating the last limit yields F ðNÞi ð0Þ ¼ 0 for
iZ2. For F ðNÞ1 defined in (13) we have

F ðNÞ1 ð0Þ ¼ lim
s-0

SPðΓN�1�Q Þ
1�ΓN ¼ lim

s-0
SP lim

s-0

ΓN�1�Q

1�ΓN ð21Þ

The second limit is again of the form 0=0 and using L'Hôpital's rule

lim
s-0

ΓN�1�Q

1�ΓN ¼ lim
s-0

ðN�1ÞΓN�2Γ0 �h

�NΓN�1Γ0 ¼ �Nh
Nh

¼ �1: ð22Þ

Since lims-0SP ¼ 0, we have that F ðNÞ1 ð0Þ ¼ 0.
2. First we consider iZ2 fixed. From (1) we have that

F ðNÞi ð0Þ ¼ 0. From Proposition 1, we have j jΓ j j1r1, and for ω40

SPð1�TÞΓi�2

1�ΓN

�����
�����r j SP j 1�T

1�ΓN

����
����: ð23Þ

The product SP is stable and proper by design, therefore j jSP j j1
rc1 with c140. Since lims-0

1�T
1�ΓN ¼ 0, as seen in the previous

point, and jΓ jo1 for all ω40, we have that 1�T
1�ΓN

��� ��� is well defined

for every ωZ0. Now, since jΓ jo1 for ω40

1�T

1�ΓN

����
����r j1�T j

1�jΓ jNr
j1�T j
1�jΓ j 2; ð24Þ

for all ωZ0. Since Tð0Þ ¼ 1 and T 0ð0Þ ¼ 0, the factor j1�T j has at
least two zeros at ω¼ 0. We will show that 1�jΓ j 2 does not have
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more than two zeros at ω¼ 0, given that h4h0. In particular, since
Γð0Þ ¼ 1, 1�jΓ j 2 has at least one zero at ω¼ 0. We will show that

d2

dω2 ð1�jΓ j Þ2
���
ω ¼ 0

a0: ð25Þ

Let g1ðωÞ ¼ j1=Q j 2 and g2ðωÞ ¼ jT j 2 which yields

1�jΓ j 2 ¼ 1�g1ðωÞg2ðωÞ. We have that g1ðωÞ ¼ 1=ð1þω2h2Þ and
consequently g01ð0Þ ¼ 0. Assuming that g02ð0Þ ¼ 0 (otherwise would
imply that 1�jΓ j 2 has only one zero at ω¼ 0, and therefore there
is nothing to prove), and given that g1ð0Þ ¼ g2ð0Þ ¼ 1 we have that

d2

dω2 ð1�jΓ j Þ2
���
ω ¼ 0

¼ �g1″ð0Þ�g2″ð0Þ: ð26Þ

In particular g1″ð0Þ ¼ �2h2 and Lemma 2 states that

2h20Z
d2

dω2 jT j 2ω ¼ 0 ¼ g2″ð0Þ: ð27Þ

By hypothesis h4h0, and we have that 2h24g2″ð0Þ. This implies
that 1�jΓ j 2 has at most two zeros at ω¼ 0. Consequently there
exists c240 independent of n such that

j1�T j
j1�ΓN j

r j1�T j
1�jΓ j 2oc2 for all ωZ0: ð28Þ

It follows that j jF ðNÞi j j1rc1c2 for all nAN and iZ2.
Following a similar approach for F ðNÞ1 defined in (13) we have

jF ðNÞ1 j ¼
SP Γn�1�Q

� �
1�ΓN

������
������¼

SP Γn�1�1þ1�Q
� �

1�ΓN

������
������: ð29Þ

By the triangle inequality

jF ðNÞ1 jr
SP ΓN�1�1

� �
1�ΓN

������
������þ

SPð1�Q Þ
1�ΓN

����
����: ð30Þ

The second term in the right hand side of (30) satisfies for allωZ0

SPð1�Q Þ
1�ΓN

����
����r j shSP j

1�jΓ j 2; ð31Þ

where we used the fact 1�Q ¼ �sh. The factor shSP is proper and
has two zeros at s¼0 (since SP is strictly proper and already has
one zero at s¼0). From the discussion for iZ2 we have that 1�j
Γ j 2 has at most two zeros at ω¼ 0, therefore we have that there
exists c3140 independent of N such that

SPð1�Q Þ
1�ΓN

����
����rc31 for all ωZ0: ð32Þ

For the first term in (30) we have

SP ΓN�1�1
� �
1�ΓN

������
������r

jSPðΓ�1Þj
1�jΓ j

j1þΓþ⋯þΓN�2 j
1þjΓ j þ⋯þjΓ jN�1

r jSPðΓ�1Þð1þjΓ j Þj
1�jΓ j 2

1þjΓ j þ⋯þjΓ jN�2

1þjΓ j þ⋯þjΓ jN�1: ð33Þ

and using a similar reasoning to previous cases we have that jSP
ðΓ�1Þj has at least two zeros at ω¼ 0 and 1�jΓ j 2 has at most
two zeros at ω¼ 0. Hence, there exists c3240 independent of n
such that

jSPðΓ�1Þð1þjΓ j Þj
1�jΓ j 2 oc32 for all ωZ0: ð34Þ

Finally, using the fact

1þjΓ j þ⋯þjΓ j n�2

1þjΓ j þ⋯þjΓ j n�1r1 for all ωZ0; ð35Þ

we can conclude that there exists c¼ c31þc3240 independent of
n; i such that

jF ðNÞ1 jrc3 for all ωZ0: ð36Þ

Part (1) of the previous theorem shows that the transfer
functions F ðNÞi

n o
have 0 DC-gain independent of the size of the

string and the dynamics of the vehicles and controllers (besides
the poles at the origin). Part (2) shows that the sequences F ðNÞi

n o
are string stable. In other words, the effect of a disturbance on the
first vehicle D1 on the inter-vehicle spacing of the ith vehicle Ei ¼
Xi�1�Xi does not grow with an increase of the string size. Finally,
Part (3) can be interpreted as the effect that a single disturbance to
the first vehicle has on the inter-vehicle spacings of every vehicle
is bounded independent of the string size.
5. Cyclic interconnection with a leader

In this section we consider the addition of an extra (possibly
fictitious) vehicle, with position z0ðtÞ, that moves independently
and such that every other member of the formation also tracks its
position. We also consider a constant inter-vehicle spacing policy,
that is h¼0. If we let ε0i ¼ iε be a fixed desired constant spacing
from the ith follower to the leader, then we define

e0i ðtÞ ¼ z0ðtÞ�ziðtÞ� iε; for i¼ 1;…;N; ð37Þ

eiðtÞ ¼ zi�1ðtÞ�ziðtÞ�ε; for i¼ 2;…;N; ð38Þ

e1ðtÞ ¼ zNðtÞ�z1ðtÞþðN�1Þε: ð39Þ
We consider initial positions such that the platoon starts at the
desired formation, that is

zið0Þ ¼ � iε; for i¼ 0;…;N; ð40Þ
and we also consider the platoon to be initially at rest, i.e. _zið0Þ ¼ 0
for all i¼ 0;…;N:. Now, we use the change of coordinates

xiðtÞ ¼ ziðtÞ�zið0Þ; for i¼ 1;…;N; ð41Þ
which yields

Xi ¼ PðUiþDiÞ; for i¼ 0;…;N; ð42Þ

Ei ¼ Xi�1�Xi; for i¼ 2;…;N; ð43Þ

E1 ¼ XN�X1; ð44Þ

E0i ¼ X0�Xi; for i¼ 1;…;N: ð45Þ
The control strategy is now given by

Ui ¼ KðηEiþð1�ηÞE0i Þ; for 2r irN; ð46Þ

U1 ¼ KðηXNþð1�ηÞE01�ηX1Þ; ð47Þ

U0 ¼ 0; ð48Þ
where ηAð0;1Þ.

Remark 4. Note that the selection U0 ¼ 0 implies that the leader
vehicle moves independently and its position is completely
determined by its initial condition and the input signal D0 as
X0 ¼ PD0. Moreover, the control strategy is such that every fol-
lower aims to maintain a constant inter-vehicle spacings with
respect to its immediate predecessor and with the leader.

Now we proceed in a similar fashion as in Section 3. With this
control strategy, the vehicle dynamics are given by

X ¼ ðI�PKG0Þ�1PD; ð49Þ
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with X ¼ X0 X1 ⋯ XN½ �> ACNþ1 and G0ACNþ1�Nþ1 being the new
interconnection matrix:

G0 ¼
0 0>

ð1�ηÞ1 Θ

" #
; ð50Þ

where 0ARN is the all zeros vector, 1ARN is the all ones vector,
and

Θ¼

�1 η
η ⋱

⋱ ⋱
η �1

2
66664

3
77775: ð51Þ

Now we compute

ðI�PKG0Þ�1 ¼
1 0>

�ð1�ηÞPK1 Θ0

" #�1

¼
1 0>

ð1�ηÞPKΘ�1
0 1 Θ�1

0

2
4

3
5

ð52Þ
with

Θ�1
0 ¼

S�1 �ηPK
�ηPK ⋱

⋱ ⋱
�ηPK S�1

2
66664

3
77775

�1

¼ S

1�ðηTÞN

1 ðηTÞN�1 ⋯ ðηTÞ2 ηT
ηT 1 ⋱ ðηTÞ2
⋮ ⋱ ⋱ ⋱ ⋮

ðηTÞN�2 ⋱ 1 ðηTÞN�1

ðηTÞN�1 ðηTÞN�2 ⋯ ηT 1

2
6666664

3
7777775
; ð53Þ

for S¼ 1=ð1þPKÞ and T ¼ 1�S.

Remark 5. Note that in the following ~K ¼ K since h¼0 and hence
T ¼ PK=ð1þPKÞ.

Now, we define F ðNÞ
i;k as the transfer function from a disturbance

Dk at the kth vehicle to the ith inter-vehicle spacing Ei, which can
be written as Ei ¼ Xi�1�Xi ¼F ðNÞ

i;k Dk. We have the following result.

Proposition 2. The transfer functions F i;k satisfy

F ðNÞ
1;0 ¼

SP
1�ηT

ð54Þ

F ðNÞ
i;0 ¼ 0; for i41: ð55Þ

Proof. Since the sum of every row of Θ�1
0 in (53) is equal to

S
1�ðηTÞN

PN�1
i ¼ 0 ðηTÞi, we have that

Θ�1
0 1 ¼ S

1�ðηTÞN
XN�1

i ¼ 0

ðηTÞi1 ¼ S
1�ηT

1: ð56Þ

This implies that for D ¼ ½D0 0 ⋯ 0�> ,

E1 ¼ X0�X1 ¼ 1�ð1�ηÞPK S
1�ηT


 �
PD0 ¼

SP
1�ηT

D0; ð57Þ

and Ei ¼ Xi�1�Xi ¼ 0; for i41.□

Remark 6. If we recall that X0 ¼ PD0 is the trajectory of the leader,
we see that the every follower has the same transient when there
are no other disturbances in the platoon. This can also be seen as
all the followers moving as a unit when the only disturbance in the
system is one at the leader. This is an interesting feature when
using this interconnection.

The effect of a disturbance on the first follower, D1, is given by

E1 ¼F ðNÞ
1;1D1 ¼

�SP

1�ðηTÞN
D1;
Ei ¼F ðNÞ
i;1 D1 ¼

SPð1�ηTÞðηTÞi�1

1�ðηTÞN
D1; for i41: ð58Þ

By the symmetry of the interconnection, the effect of Dk with
k41 is the effect for D1 shifted accordingly. Therefore, in the
following we only study the transfer functions FðNÞi;1 .

5.1. Stability analysis

In a similar way as in the leaderless cyclic case, the stability of
the interconnection is determined by the stability of the transfer
function 1�T

1�ðηTÞN . We have the following result.

Theorem 3. Let T ¼ PK=ð1þPKÞ and ηAð0;1Þ. The following holds:

1. if jηjo j jT j j �1
1 then ð1�TÞ=ð1�ðηTÞNÞ has all of its poles in the

open left half plane;
2. if jηj4 j jT j j �1

1 then there exists NcAN such that for all N4Nc ,
ð1�TÞ=ð1�ðηTÞNÞ has poles in the right half plane.

Proof. 1. The condition jηjo j jT j j �1
1 implies that j jηT j j 1o1

and moreover j j ðηTÞN j j1o1. Hence, we have that j1�ð1�ηTÞN j
o1 for all ωAR and Rouche's Theorem ensures that ð1�ðηTÞNÞ�1

is stable. Since 1�T is stable, we have that ð1�TÞ=ð1�ðηTÞNÞ has
all of its poles in the open left half plane.

2. The condition jηj4 j jT j j �1
1 implies that j jηT j j 141 and

the proof of Part (2) of Theorem 1 applies directly substituting Γ
for ηT .□

This result coincides with the sufficient conditions on η for
string stability in a unidirectional leader following scheme (See for
example [19]). The case η¼ j jT j j �1

1 will yield instability for the
particular values of NAN which satisfy the equation 1�ðηTðjωcÞNÞ
¼ 0 with ωc being the frequency where jTðjωcÞj ¼ j jT j j1.

5.2. String stability analysis

Following similar steps as in the analysis for string stability in
the leaderless cyclic case, we obtain the following result for dis-
turbances at the first follower ðD1a0Þ:

Theorem 4. Let T ¼ PK=ð1þPKÞ and ηAð0;1Þ. Consider F ðNÞ
i;1 defined

in (58) for all i;N with irN. Then the following hold:

1. F ðNÞ
i;1 ð0Þ ¼ 0; 8 i¼ 1;…;N:;

2. if jηjo j jT j j �1
1 , then there exists c40 such that j jF ðNÞ

i;1 j j1oc
for all i;NAN, irN.

Proof. 1. Since ηo1 and Tð0Þ ¼ 1, and recalling from Part (1) of
Theorem 1 that SP has one zero at s¼0, direct substitution of s¼0
into (58) implies that F ðNÞ

i;1 ð0Þ ¼ 0; 8 i¼ 1;…;N:
2. From (1) we have that F ðNÞ

i;1 ð0Þ ¼ 0. The condition jηjo j jT j j
�1
1 implies that j j ðηTÞk j j1o1 for all kZ1. Moreover, j jSP j j1o
c1 (see Part (2) of Theorem 2) and j j ð1�ηTÞj j1 ¼ c2. Therefore

SPð1�ηTÞðηTÞi�1

1�ðηTÞN

�����
�����r c1c2

j1�ðηTÞN j
: ð59Þ

Given that j jηT j j1o1, we have that 1�ðηTðjωÞÞN ¼ 0 has no
solutions for ωAR and therefore

c1c2
j1�ðηTÞN j

o c1c2
minω j1�ðηTðjωÞÞN j

o c1c2
1�j ðηTðjωcÞÞj

; ð60Þ

where ωc satisfies jTðjωcÞj ¼ j jT j j1. It follows that there exists
c40 such that

j jF ðNÞ
i;1 j j1oc; ð61Þ
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for all i;N with

c¼ c1c2
1�j ðηTðjωcÞÞj

:□ ð62Þ

Part (1) of the last result is analogous to Theorem 2 for the
leaderless cyclic case. Part (2) shows that the interconnection is
string stable for disturbances in any follower and also gives a
bound for the maximum disturbance amplification. The case j jηT
j j1 ¼ 1 is not considered since it may yield instability for some
values of n. In particular, if ηT ¼ ejϕ for some ωc , the factor

1�ηT
1�ðηTÞN

; ð63Þ

in (58) may have an unstable pole at ω¼ωc if ejnϕ ¼ 1 and ejϕa1.

Re(s) Re(s)

Fig. 2. Pole locations for 1�T
1�ΓN with h¼ 0 ðsÞ. Dashed line: stability boundary. Left:

N¼3. Right N¼9.
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Fig. 3. Pole locations for 1�T
1�ΓN with h¼ 2 ðsÞ. Dashed line: stability boundary. Cir-

cles: N¼20. Squares: N¼50. Dots: N¼100.
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6. Numerical examples

In this section we present numerical examples and simulations
that illustrate the results of the paper. We consider the vehicle
dynamics and local controllers

P ¼ 1
sð0:1sþ1Þ;

~K ¼ 2sþ1
sð0:05sþ1Þ: ð64Þ

In Fig. 1 we have the magnitude plots of Γ ¼ PK=ð1þPKQ Þ for
different values of h. It can be noted that for increasing values of
the time headway constant h, the magnitude peak decreases from
j jΓ j j1 ¼ 1:2103 for h¼0 to j jΓ j j1 ¼ 1 after some value of h40.
In particular we can compute h0 defined in Proposition 1 as

h0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sup
ω

jPK=ð1þPKÞj 2�1
ω2


 �s
¼

ffiffiffi
2

p
� 1:4142: ð65Þ

This value is in agreement with Fig. 1 from where it can be esti-
mated h0o2. Now, according to Proposition 1 for h4

ffiffiffi
2

p
we will

have jΓ jo1 for ω40.

6.1. Stability analysis

Leaderless case: In Fig. 2 the pole locations of the transfer
function 1�T

1�TN , with h¼0, are plotted for N¼3 and N¼9. For N¼3
all the poles are in the open left half plane, however, for N¼9
there is a pair of complex poles with positive real part. Part (2) of
Theorem 1 predicts that instability occurs for large enough string
size when h¼0. For h¼2, Fig. 3 shows a zoom into the locations of
some of the poles of the transfer function 1�T

1�ΓN . It can be seen that
the poles remain to the left of the stability boundary for
N¼ 20;50;100. It can also be noted that for N¼100 there exist two
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|

h=0(sec)

h=2(sec)

Fig. 1. Magnitude plots of Γ ¼ T=ð1þshÞ for different values of h. Solid line h¼ 0 ðsÞ.
Lightest gray and dashed line h¼ 2ðsÞ.

−6 −4 −2 0
−5

Re(s)
−6 −4 −2 0

−5

Re(s)

Fig. 4. Pole locations for 1�T
1�ðηTÞN with η¼ 0:9. Dashed line: stability boundary. Left:

N¼3. Right N¼9.
poles that are closer to the boundary than the poles for N¼20, 50.
It can be inferred that slower dynamics will occur with an increase
of the string size. This can be predicted if we note that a factor
ejð2kπ=NÞ �Γ tends to 1�Γ when N grows large and k¼1. Since 1�
Γ has a zero at s¼0, slow poles for increasing N should be
expected.

Leader case: According to Theorem 3 the stability of the inter-
connection is ensured for jηjo j jT j j �1

1 . In this particular case
j jT j j1 � 1:2. Fig. 4 shows the pole locations of the transfer
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100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Gain plot for F2
(N)

ω (rad/sec)

|F
2(N

) |

N=45
N=15
N=5
N=3

Fig. 6. Magnitude plots of F ðNÞ2 , when h¼ 2 ðsecÞ, for an increasing number of
vehicles.

10−1 100 101
0

0.05

0.1

0.15

0.2

0.25

0.3

Gain plots for F2,1
(N)

ω (rad/sec)

|F
2,

1
(N

) |

N=45
N=15
N=5
N=3

Fig. 7. Magnitude plots of F ðNÞ
2;1 , when η¼ 0:5, for an increasing number of vehicles.

A.A. Peters et al. / European Journal of Control 27 (2016) 36–44 43
function 1�T
1�ðηTÞN , with η¼ 0:9, for N¼3 and N¼9. As predicted,

since η41=1:2� 0:83, the system is unstable after the string size
increases over a critical value. On the other hand, Fig. 5 shows the
pole locations of 1�T

1�ðηTÞN when η¼ 0:5 for N¼ 20;50;100. It can be
seen that the system remains stable even for a string size as large
as N¼100. Moreover, the poles of the transfer function do not
approach the stability boundary as the size of the string increases.

6.2. String stability

Leaderless case: The transfer functions F ðNÞ2 reflect the effect of
disturbances on the inter-vehicle spacing of the second member of
the string with respect to its immediate predecessor, for different
string sizes. For h¼2, we obtain the corresponding magnitude
plots, which are shown in Fig. 6. We can see that they are all
bounded as predicted by Theorem 2.

Leader case: The transfer functions F ðNÞ
2;1 reflect the effect of

disturbances on the inter-vehicle spacing of the second follower of
the leader of the string with respect to its immediate predecessor,
for different string sizes. For η¼ 0:5, the corresponding magnitude
plots are shown in Fig. 7. We can see that they are all bounded as
predicted by Theorem 4.
7. Conclusions

In this paper we provided stability and string stability results
for a cyclic interconnection of vehicles. In particular we showed
that if the spacing policy is constant, the formation becomes
unstable for any string size greater than a critical value Nc. For the
time headway spacing policy we show that it is possible to achieve
stability and string stability of the interconnection, provided that
the time headway constant is chosen appropriately.

Numerical examples illustrated these results and some of the
drawbacks of the interconnection such as slower dynamics when
the string size increases.

The use of an independent leader who is tracked by the
remaining members of the vehicle string was also studied. We
showed that similar results to the leaderless case apply, obtaining
ensured stability for any string size and string stability when the
design parameter ηo j jT j j �1

1 . The added benefits are a simpler
trajectory of the vehicles when the leader starts a manoeuvre and
the dynamics do not become slower as the string size increases.

An immediate extension to this work is to study a cyclic and
bidirectional interconnection with and without a leader. Other
lines of work may include non-homogeneity of the vehicle models
and controllers or the inclusion of time delays in the measure-
ments. Moreover it would be of interest to study the effect of
model uncertainty in all of this results.
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Appendix A. Proof of Lemma 3

We write ΓðsÞ ¼ rðsÞ=mðsÞ where r(s) and m(s) are two poly-
nomials without common factors and m(s) is Hurwitz. Then, the
solutions of 1�ejθΓ ¼ 0 are the roots of the polynomial
pðsÞ ¼mðsÞ�ejθrðsÞ. According to Proposition 3.4.5 in Hinrichsen
and Pritchard [7], if a polynomial, p(s), with complex coefficients is
Hurwitz then

d
dω

arg ðpðjωÞÞ40; 8ωAR: ðA:1Þ

We will show, given that Γ is stable, strictly proper and
j jΓ j j141, that there exists an interval θA ðθ1;θ2Þ with θ24θ1
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where condition (A.1) is violated. First, we write pðjωÞ as

pðjωÞ ¼ jmðjωÞjejψmðωÞ 1þjΓðjωÞjejϕðωÞ
� �

ðA:2Þ

where we factor mðjωÞ ¼ jmðjωÞjejψmðωÞ and add the arguments as
ϕðωÞ ¼ψ rðωÞ�ψmðωÞþπþθ. The argument of pðjωÞ is

arg ðpðjωÞÞ ¼ψmðωÞþarg 1þjΓðjωÞjejϕðωÞ
� �

:

¼ψmðωÞþargð1þjΓðjωÞj ð cos ðϕðωÞÞþ j sin ðϕðωÞÞÞÞ: ðA:3Þ
Computing the derivative using the formula of Proposition 3.4.5 in
Hinrichsen and Pritchard [7] (we omit the arguments ðωÞ for
clarity)

d
dω

arg ðpðjωÞÞ ¼R
p0ðjωÞ
pðjωÞ

� 

¼ψ 0

mþjΓ j 0 sin ðϕÞþ jΓ jϕ0ð cos ðϕÞþ jΓ j Þ
ð1þjΓ j cos ðϕÞÞ2þjΓ j 2 sin 2ðϕÞ

:

ðA:4Þ
Since ΓðsÞ is strictly proper and j jΓ j j 141, there exists ωc such
that jΓ j ðωcÞ ¼ 1. If jΓ j 0ðωcÞa0 we compute the limit

lim
ω-ωc

d
dω

arg ðpðjωÞÞ ¼ψ 0
mðωcÞþ

jΓ j 0ðωcÞ sin ðϕcÞþϕ0ðωcÞð cos ðϕcÞþ1Þ
2ð1þ cos ðϕcÞÞ

¼ψ 0
mðωcÞþ

ϕ0ðωcÞ
2

þjΓ j 0ðωcÞ
sin ðϕcÞ

2ð1þ cos ðϕcÞÞ
;

ðA:5Þ
where ϕc ¼ limω-ωcϕðωÞ. In particular, the values ψ 0

mðωcÞ, ϕ0ðωcÞ
and jΓ j 0ðωcÞ do not depend on the parameter θ and are bounded.
However, the expression

sin ðϕcÞ
2ð1þ cos ðϕcÞÞ

¼ sin ðψ rðωcÞ�ψmðωcÞþπþθÞ
2ð1þ cos ðψ rðωcÞ�ψmðωcÞþπþθÞÞ; ðA:6Þ

takes every possible value of the real numbers as θ varies.
Therefore, there exists an interval ðθ1;θ2Þ with θ1oθ2 such that
d
dω arg ðpðjωÞÞ is negative, when ω¼ωc and θA ðθ1;θ2Þ, which
yields the desired result. If jΓ j 0ðωcÞ ¼ 0, we can only claim the
existence of θ1 such that 1�ejθ1Γ ¼ 0 when ω¼ωc . Hence, the
result follows with θ2 ¼ θ1.□
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