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In this paper, we study a formation control scheme for a 1-D string of vehicles. Each member tracks the
movement of its immediate predecessor but also the first vehicle tracks the position of the last member
of the string. We discuss conditions for the stability of the full interconnected system and show that if a
constant spacing policy is used, the stability of the system is lost after the string size exceeds a certain
number depending on the model parameters (vehicles and controllers). Additionally, we study the use of
a constant time headway spacing policy. If the associated time headway parameter is greater than a
critical value, the interconnected system is stable and string stable for any string size. Finally, we show
that if an independent leader vehicle is added to the formation and every follower has access to this
leader position, the cyclic formation with a constant spacing policy can be made stable and string stable
by appropriately selecting a design parameter.

© 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Formation control of autonomous vehicles has received great
attention in recent decades [11,3,2,21,15]. Due to its importance in
applications to automated highway systems, the simple case of a
1-D platoon of linear vehicles has been studied extensively and
researchers have considered diverse alternatives to achieve coor-
dinated movement of the string (see [19,12,5] and the references
therein).

A simple control strategy is to equip every member of the
formation with a compensator that stabilizes its position in closed
loop, using as a reference the position of its predecessor on the
string and a desired inter-vehicle spacing. This approach achieves
a tight formation in steady state for a constant speed of the leader
vehicle. More elaborate approaches consider also using the states
of the lead vehicle and/or the states of other members of the
formation (see for example [8,6,12] and the references therein).

The first element of interest when studying such architectures
is the stability of the full interconnected system. The authors of Fax
and Murray [4] discuss the effect of the information flow in vehicle
formations and how the eigenvalues of the graph Laplacian matrix
play an important role when determining stability. Other aspects
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of importance in the architecture are those of performance and
safety. Works such as Seiler et al. [19], Middleton and Braslavsky
[15], Barooah and Hespanha [1] describe how in interconnections
that are stable, disturbances may be amplified along the formation
resulting in poor performance or even collisions (string
instability).

The present work studies a particular interconnection where
the first vehicle in the formation tracks the position of the last
member, while the rest of the members track the position of their
immediate predecessors. This interconnection is cyclic and allows
the members of the formation to compensate disturbances at any
location of the string of vehicles. This is in contrast to unidirec-
tional architectures where the leader moves independently; in
such scenarios a follower does not detect or manoeuvre in
response to disturbances that affect members behind it. There are
a few interesting applications for such models. In particular, this
can correspond to an idealized ring road in large cities (where the
physical curvature of the road can be considered negligible for the
effects of the vehicle's trajectories). This interconnection can also
be a model for subway or railway/tram lines with a circular layout.
Moreover, in some cities, bus routes of public transport are nor-
mally composed of bus lanes, where particular vehicles are not
allowed to circulate. The buses travel from point A to B but they
normally return from B to A, essentially becoming a cyclic flow of
vehicles. Although these trajectories are performed in a 2-D space,
overtaking in such scenario is not a common practice and turns in
road junctions could be considered as disturbances. In such a
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setting, every vehicle travels almost exclusively in a straight line,
similar to travelling on tracks. Nevertheless, the vehicles need not
be necessarily arranged in a 2-D ring, they can be moving along a
straight road and at the same time have a cyclic interconnection.

Recent works have investigated a similar setting. In Marshall
et al. [13] the authors study formations of vehicles in cyclic pur-
suit. In Lafferriere et al. [10] several formation control archi-
tectures using a graph theoretic approach are studied, focusing on
stability. The authors of Roberson and Stilwell [17] discuss the use
of a circulant communication network to simplify the estimation
and design of a state feedback to control a vehicle platoon. In Park
and Ahn [16] the authors discuss stabilization of directed cycle
formations of agents moving in the plane.

The results reported in Rogge and Aeyels [ 18] motivate much of
our work. We consider the same basic interconnection structure as
this earlier paper. In particular, the authors considered a specific
and simple model for every vehicle. Moreover, they selected
constant controller gains and obtained conditions on the para-
meters in order to achieve stability and string stability of the
interconnection. We consider extensions to this results, allowing
more general vehicle models and controllers by using a frequency
domain approach. We will show that if the spacing policy is con-
stant, the interconnection is unstable after the formation size
exceeds a certain critical number. Additionally, we show that if a
time headway spacing policy is used, stability for any size of the
formation and string stability can be achieved by choosing an
appropriate value for the time headway parameter.

This paper also provides results for the addition of an inde-
pendent leader vehicle which sends its location to every follower.
In this case, the stability and string stability of the interconnection
is related to the selection of the weight parameter that every fol-
lower uses to track its predecessor and the leader simultaneously.
Similar results for non-cyclic cases are reported in Seiler et al. [19]
and Shaw and Hedrick [20]. One simple practical example of the
use of a leader corresponds to subway lines. The trains could
receive the position of a fictitious leader in addition to using the
position of its predecessor to control their trajectories. In other
circumstances, the cyclic interconnection might be able to alle-
viate the relaying of the leader state to every member. In this case
the largest distance to relay the state to every member would be
half the distance of a unidirectional scheme (the centremost
member would be the farthest in a communication sense from a
leader that stays in front of the platoon).

The remainder of this paper is organized as follows. Section 2
gives some preliminary assumptions on the problem to be studied.
Section 3 presents the cyclic control strategy and the associated
dynamics. The main contributions of the paper are contained in
Sections 4 and 5. Section 4 shows stability results for the two
inter-vehicle spacing policies and Section 5 contains analogous
results for the use of an independent leader vehicle. Some
numerical examples and comments on the main results are given
in Section 6. Section 7 contains some final remarks and possible
lines of future work.

2. Framework and problem formulation
2.1. Notation

The notation used in this paper follows much of the standard
systems and control literature. Lowercase is used for real scalar
signals, x : R— R with specific values of the signal denoted by x(t).
Uppercase is used for scalar complex-valued Laplace transforms of
signals and transfer functions, X : C—C with specific values
denoted by X(s). For the sake of brevity in the notation, where
there is no confusion, the argument (s) will be omitted. Vectors

will be denoted as x(t) e R" and X e C", while x(t)T and X " denote
their transposes. Moreover, the all zeros and all ones vector will be
denoted as 0 and 1 respectively. The imaginary unit is denoted by
j, with j2 = — 1. Boldface will be used for matrices G e C™™ and the
(i,k)th entry of G is denoted by Gj;. The magnitude of X when
s=jw, w e R, is denoted by |X| and its magnitude peak over all
possible values of w is denoted as ||X||« : =sup,|X(jo)|. The
derivative of X(s) with respect to s will be denoted as X'(s). For
zeC, R and 3(z) denote the real and imaginary parts of z
respectively.

2.2. Vehicle model, control strategy and initial conditions

We consider a platoon of N e N identical vehicles, with posi-
tions z;(0t), initial positions z;(0) and initial velocities z;(0) for
1<i<N, modeled by linear time invariant systems. In the fre-
quency domain, the models of each member of the platoon are
given by
Z; :P(U,-+D,-)+Z'%O)+%ZO) for1<i<N, M
where Z; denotes the Laplace transform of z(t), U; is the control
action and D; is an input disturbance, both acting on the ith
member. The transfer function for the vehicle P has a single pole at
the origin and is strictly proper (this is a more general vehicle
description that the one used in Rogge and Aeyels [18] and a
commonly used assumption Jovanovic and Bamieh [8]).

Now, we define the separation errors as
ei(t) =z;_1(t)—zi(t)— (g;+hzy(t)), fori=2,...,N,
eq(t) = zn(t) —z1(t) — (€1 +hz, (1)), (2)

where ¢; e R, and h >0 is the time headway parameter.

The control objective is to maintain the errors e;(t) defined in
(2) equal to zero whenever possible, which would imply that the
vehicles retain a desired formation. We will study the control
strategy given by

UiZKEi, fOI'iZ],...,N, (3)

where K is a strictly proper controller assumed to have a single
pole at the origin and E; are the Laplace transforms of the signals
ei(t).

In steady state, that is for t — oo, we aim to have e;(t)=0 and
also zi(t)=vpeR for all i=1,..,N. Here we follow a similar
approach to the one used in Rogge and Aeyels [18] and we add all
the right hand sides of (2) and substituting yields

1 N
Vp = _h_Nl;??i- 4
For simplicity, we will set &;=¢eeR for i=2,...,N and therefore
&1 = —hNv, —(N—1)e. With this, we take initial conditions such

that the formation is initially in steady state, that is z;_1(0)—z;(0)

=e&e+hz;(0) for i=2,...,N, zy(0)—z1(0) = &1 +hz;1(0) and z;(0)=v,

for i=1,...,N. Finally, we define the change of coordinates

Xi(t) =zi(t)—z;(0)—vpt, fori=1,...,N, (5)

and substituting in (2) yields

ei(t) =x;_1(t) —x;(t) —hx;(t), fori=2,...,N,

eq(t) = Xxn(t) —x1(t) —hx1(t), (6)
With this, we will focus on the effect of the disturbances D; on

the separation errors E; when the initial conditions and &; are set
to zero. In the following sections we will have

E,‘=X,‘,17X,‘7$hxi, fOl'i=2,...,N,
E; =Xy —X; —shX;. @)
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The main difference with the basic approach Seiler et al. [19],
where the leader moves independently, is that the first vehicle
now tries to maintain a predefined spacing with respect to the last
member of the platoon. Applications of such a configuration may
include subway systems that run on circuits and ring roads around
major cities. Nevertheless, the vehicles need not be necessarily
arranged in a 2D ring, they can be moving along a straight road
and at the same time have a cyclic interconnection.

One potential advantage of such a strategy is the fact that a
disturbance at any vehicle will be detected and compensated by
every member of the formation. This could provide an extra level
of safety when compared to unidirectional strategies where a
disturbance at any vehicle is not detected by its predecessors
(which could possibly lead to collisions).

3. Dynamics of the interconnected system

With the control strategy defined in the previous section, the
vehicle dynamics are given by

X =(I-PKG)~'PD, 3

where X =[X; - Xy]', I is the NxN identity matrix, D=
[D; - Dy]T and G e V"V is the interconnection matrix:

-Q 1
1
1 -Q

with Q =1+hs.

We aim to obtain explicit formulae for the vehicle positions. To
do so, we must invert the matrix I —PKG in (8). In unidirectional
control strategies with a free leader Seiler et al. [19], Klinge and
Middleton [9] the matrix to invert is lower triangular and normally
has a straightforward inverse, yielding dynamics for the vehicle
positions that are easy to study. In the present case I—PKG is
circulant and the resulting dynamics will not be straightforward to
analyze as will be seen below.

In the following, to simplify the presentation, we will consider
strictly proper controllers K that satisfy K = K /Q, with K having no
zero at s = —1/h. Let T=PKQ/(14+PKQ) = PK /(1+PK)=1-5, and
also I'=T/Q. Then, we have

r- -1
1-pkG=kp| ~' , (10)
-1 r!

and the corresponding inverse (which can be checked by multi-
plying) is given by

1 rN' ..o

r 1 - I
(I—PI(G)’1:]_FN : : 11

FN—Z .. 1 1—~N—1

rN-torNr oo

By the structure of the interconnection, this matrix is also cir-
culant and therefore the response of the nth vehicle to a single
disturbance on the kth vehicle is the same as the response of the
n+Ith vehicle to a single disturbance on the k+Ith vehicle (there is
no leader). Moreover, as a consequence of the chosen inter-
connection, a single disturbance affects every vehicle in the string.

In particular we have that the inter-vehicle spacings when D,
#0 and D;=0 for i=2,...,N are given by E;=X;_; —QX; =F""Dy,

with
i—2

F§N>=%, fori=2,..,N (12)
sp(rh"-'-q

E; =Xn—0QX; = (1 i >D1=F§N>D1. (13)

It is important to note that the dynamics of the inter-vehicle
spacings have a factor (1—I™)~ . The poles of this transfer func-
tion increase in number and change in location with an increase of
the string size N. This is in great contrast with other unidirectional
architectures where the pole locations are unaffected by N. In
those cases the dynamics are usually powers of the com-
plementary sensitivity function T [19].

4. Properties of the interconnected system

In this section, we state the main results of the paper. In par-
ticular we analyze the roots of the equation 1—7™" = 0 and its role
in the stability of the interconnection. The following result [14,19]
plays an important role in the study of several formation control
strategies and it also does in the present case.

Lemma 1. Let T be a real rational scalar function of the complex
variable s. Suppose that T(0) =1 and also that T is stable (analytic in
the closed right half complex plane) and strictly proper. Then

* . dw_ 7w,
/0 lan(]a))\inT(O). 14)

In this particular setting, since P and K both possess a single
pole at the origin, the transfer function T satisfies T(0)=1 and
T'(0)=0. Lemma 1 then implies that |T(jw)| > 1 for some @ > 0.

We will consider two of the most common spacing policies and
will obtain stability conditions of the interconnection for both. The
following result, taken from Klinge and Middleton [9], shows how
the use of a time headway policy can impact the frequency
response of the interconnection.

Proposition 1. Let T = PK /(1+ PK), with P being strictly proper and
having a pole at the origin and K is a proper controller with a single
pole at the origin and no zero at s= —1/h. Then, T is a stable and
strictly proper transfer function such that T(0)=1, T'(0)=0 and
|1T| | > 1. Moreover, there exists hy > 0 such that | |T/(1+hs)||
>1 for 0<h<hg and |T(jw)/(1+jhw)| <1 for @ >0, whenever
h > hg. A formula for hy is given by

‘1 il;gk ‘2 -1
ho = Sl{;llp P (15)
We also have the following result for hy to be used in.
Lemma 2. The value hy defined in (15) satisfies
. & (| Pk [
2h0>W<m )w O (16)

Proof. This follows directly by using L'Hopital's rule to compute
the limit of the right hand side of (15) when w— 0.0

The final preliminary result needed for the derivation of the
main results is given in the following lemma.

Lemma 3. Let I" be a stable and strictly proper transfer function such
that | |I'| |« > 1. Then, there exists an interval [01, 0] C [0, 2x] with
61 <6, such that 1—e®T" =0 has solutions in the open right half
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plane when 6 e (64, 0,). Moreover, if there exists w, such that |I'(j
)| =1 and | I'(jw)|” #0, we have 6, < 0,.

Proof. See Appendix A.

Remark 1. In the following we will consider I that satisfies: if
there exists w. > 0 such that | I'(jw.)| =1, then |I'(jw.)|’ # 0.

4.1. Stability analysis

To check the stability of the transfer functions F; in (12) we note
that SP and I"'=T/Q are stable provided that the controller K is
properly designed. We will now focus on the behavior of (1-T)/(
1— 1INy which appears in F; for i=2,...,N. The results are analogous
for F; and we omit the details for the sake of simplicity in the
exposition. We have that

A (r

7ei2k7r/N)_ 17)
k=0

Note that this echoes the results derived in Fax and Murray [4],
where the term e2k7/N is directly connected to the eigenvalues of
the graph Laplacian matrix for this interconnection. We have the
following stability result.

Theorem 1. Let T and Q =1+ hs be defined as in Proposition 1, and
let I'=T/Q. Then, there exists hy > 0 such that the following holds:

1. if h> hg, then 1-T)/(1 —I'™) has all of its poles in the open left
half plane;

2. if h < hg then there exists N. e N such that for all N > N, (1-T)/
(1—=I") has poles in the right half plane.

Proof. (1) If h > hg, Proposition 1 states that |I'| <1 for all @ > 0.
We will show that (1-T)/(1-1") is stable. First we study the
possible poles at the origin. If we recall that T(0)=1 and T'(0) =0
we have that 1—T has two zeros at s=0. Since /" is stable, I'(0)=1
and |I'| <1 for all @ > 0, we have that for all ce (0, 1), |cI'| <1 for
all @>0. This in turn implies that |1—-(1—cl")| <1 for weR.
Rouche's Theorem ensures that 1—c/” and 1 have the same
number of zeros in the closed right half plane. By continuity of the
roots, 1—17" only has unstable roots at the stability boundary and
given that |I'| <1 for all w > 0 this root can only be located at
s=0. Computing I =T'/Q —TQ’/Q? implies that I"(0)= —h and
therefore 1—17" has only one root at s=0 if h > 0. Consequently
(1-T)/(1-T) is stable. It remains to show that 1/J]N_1
(I"—e%k7/N) has poles only in the left half plane. For this, we note
that the Nyquist plot of —e2k*/NI" does not encircle the point s =
—1 for any value of 2kz/N with k=1,...,N—1. Given that I is
open loop stable (1—e27/N[")~1 js also stable for k=1,...,N—1.
2. If h < hg, Proposition 1 states that | || |, > 1. We write

1-T
1-rV

where ”‘T”e(o, 27) when k=1,...,N—1. According to Lemma 3,
given that in this case | | ]| | . > 1, there exists an interval (6, 6,)
such that 1—e?I" has zeros in the right half plane when
0 (0:,0,). Now, if ZW”<% there is at least one point of the
sequence {2k} for k_l .,N—1 that belongs to (6’1,6’2) There-
fore, for all N> N, =
I'™) has poles in the rlght half plane.c

_ 1T 2k /N ) !
_ﬁkgl (1—e’ r) (18)

Part (1) of the last theorem implies that the condition |I'| <1
for all w > 0 is sufficient for stability of the transfer functions F; in
(12). Part (2) states that if the time headway parameter satisfies
0 < h < hg, there exists a critical number N, for which any inter-
connection with a string size greater than N, will be unstable.

Remark 2. If either P or K have a pole at s=p with R(p) >0 we
have T(p) =1 and S(p) =1—T(p) = 0 (since T is stable). Now, for all
h we have 1-I'(pN =1—(T(p)/(A+hp)Y =1—1/(1+hp)". This
expression only vanishes for hp=0 (and this case is already cov-
ered in the proof). Therefore, there are no cancellations of the zero
at s=p of S = 1—T with possible right half plane zeros of (1—I").

Remark 3. If h=hy it is possible to have I'(jw.)=e? for some
w. > 0. If this is the case, there could be a value of k and n such
that I'(jwc)—e2k7/n =0, or equivalently 6 = 2kz/N implying that
there is a pair of pure imaginary complex poles at + jaw..

4.2. String stability analysis

Now we show that the interconnection can also be made string
stable. We understand string stability as having certain sequences
of transfer functions from disturbances to errors with a uniform
bound on their magnitude peak; this bound is also independent of
the string length (see for example [15]). We have the following
result.

Theorem 2. Let I'=T/Q with T defined as in Lemma 1 with T'(0)
=0 and Q =1+hs, with h > hy (with hy defined in Proposition 1).
Consider F?N) defined in (12) for all i, N with i < N. Then the following
hold:

1. FY©0)=0, VNeNandi=1,...,N;
2. There exists ¢ > 0 such that | |F(N>| ls < forall i,N, i<N.

Proof. 1. For i > 2 we have

i—2
mspa1 T)r

FV©0)=1i I"(O)"*zlin?)SPlim 1-
S—

lim (19)

Given that Q(0) =1, T(0) =1, we have that 7'(0) = 1. Also, we have
S(0)=1-T(0)=0 and S'(0) =T'(0), and therefore S has two zeros
at s=0. Since P has a single pole at s=0 we have that lim;_,¢SP = 0.
Now, (1-T)/(1 —I'") is of the form 0/0 when s—0 and the fol-
lowing limit can be computed using L'Hopital's rule

1-T T
?331 I l—'ONFN’]I"" 0
Since T'(0)=0 and Q' =h it follows that I" =T'/Q —TQ’/Q? and

I’ (0) = — h. With this, evaluating the last limit yields F(N)(O) 0 for
i> 2. For F{V defined in (13) we have

sp(r” —Q .. " l_q
X

=1lim SP lim N 21

F(N)(O) lim ———

7F -0
The second limit is again of the form 0/0 and using L'Hopital's rule

N-1 N—2
limr Q_h N-DI r_h:_th—l, (22)
s50 1N T ss0 NN Nh
Since lim,_,oSP =0, we have that F{(0)=0
2. First we consider i>2 fixed. From (1) we have that

F"(0) = 0. From Proposition 1, we have | |I'| | <1, and for @ > 0

SP(1—TH[? ' 1-T

——| < |SP 23
< 1P| 23)

The product SP is stable and proper by design, therefore | |SP| |«
< ¢y with ¢; > 0. Since 11msa0 0, as seen in the previous

r”_
point, and | I"| <1 for all @ > 0, we have that )—‘ is well defined
for every @ > 0. Now, since |I'| <1 for @ >0
[ 1=T|_11=-T| _ |1-T|

- " 1=V =11

for all w > 0. Since T(0)=1 and T'(0)=0, the factor |1—T| has at
least two zeros at @ = 0. We will show that 1—|7I"|2 does not have

24
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more than two zeros at w = 0, given that h > hy. In particular, since
I'(0)=1,1—|I|2 has at least one zero at @ = 0. We will show that
d2
daw?
Let gy (@)=11/Q|> and gw)=|T|> which yields
1-|T12=1-g,(w)g,(w). We have that g,(w)=1/(1+w?h*) and
consequently g} (0) = 0. Assuming that g5 (0) =0 (otherwise would

imply that 1—|I"|2 has only one zero at @ = 0, and therefore there
is nothing to prove), and given that g;(0) = g,(0) =1 we have that

A=1ry?| _ #0. (25)

@ 2 , ,

W(l—lrl) weo = 81 (0)-g,"(0). (26)

In particular g,”(0) = —2h? and Lemma 2 states that

2h2>d2 T2 _,=8"(0 27
o—w| lo—0=282"(0). 27)

By hypothesis h > hg, and we have that 2h* > g,”(0). This implies
that 1—|77|2 has at most two zeros at @ = 0. Consequently there
exists ¢, > 0 independent of n such that
[1-T]| [1-T]|
NS 2
[1-rN = 1=

<c, forall w=>0. (28)

It follows that | |F§N)| oo <Cicy forallneN and i > 2.
Following a similar approach for F({‘” defined in (13) we have

sp(r*—'-q SP(I"'-1+1-Q
|F(1N)| — ( o ) — ( 5 ) . (29)
1-I 1-I
By the triangle inequality
sp(rN-1-1 _
IFVI < ( . )‘+‘5P(1 ) (30)
1-I ‘ 1-I

The second term in the right hand side of (30) satisfies for all @ > 0

SP(1~Q)| _ IshSP|
| 1-rN | "1

where we used the fact 1—Q = —sh. The factor shSP is proper and
has two zeros at s=0 (since SP is strictly proper and already has
one zero at s=0). From the discussion for i > 2 we have that 1—|
I'|2 has at most two zeros at @ = 0, therefore we have that there
exists c31 > 0 independent of N such that

(€3]

&_NQ)SC?,] for all w > 0. 32)
1-I
For the first term in (30) we have
sp(r'='-1) _ISPC—1)| 14T+t T2
1-r" 1T 1+ +-+ N1

ISP~ DA+ L) 14+ ||+ 4 | N2

a 1-1I2 1+ ||+ + [ N-T (33)

and using a similar reasoning to previous cases we have that |SP
(I'=1)| has at least two zeros at @ =0 and 1—|I"|2 has at most
two zeros at w =0. Hence, there exists c3; > 0 independent of n
such that

ISP —1)(A+ 1))

112 <c3p forall w=>0. (34)
Finally, using the fact
“es n72

LI L4+ | T <1 forallw=>0, 35)

T+ L)+ L1

we can conclude that there exists ¢ = c31 +c3> > 0 independent of

n,i such that

IFV| <¢;3 forallw=>0. (36)

Part (1) of the previous theorem shows that the transfer
functions FI(.N’ have 0 DC-gain independent of the size of the
string and the dynamics of the vehicles and controllers (besides
the poles at the origin). Part (2) shows that the sequences {F}N)}
are string stable. In other words, the effect of a disturbance on the
first vehicle D; on the inter-vehicle spacing of the ith vehicle E; =
Xi_1—X; does not grow with an increase of the string size. Finally,
Part (3) can be interpreted as the effect that a single disturbance to
the first vehicle has on the inter-vehicle spacings of every vehicle
is bounded independent of the string size.

5. Cyclic interconnection with a leader

In this section we consider the addition of an extra (possibly
fictitious) vehicle, with position zy(t), that moves independently
and such that every other member of the formation also tracks its
position. We also consider a constant inter-vehicle spacing policy,
that is h=0. If we let €? = ie be a fixed desired constant spacing
from the ith follower to the leader, then we define

e9(t) = zo(t) — zi(t)—ie, fori=1,...,N, 37
ei(t)y=zi_1(t)—zi(t)—e, fori=2,...,N, 38)
e1(t) =zn() —z1()+(N-1e. (39

We consider initial positions such that the platoon starts at the
desired formation, that is

zi(0)= —ie, fori=0,...,N, (40)

and we also consider the platoon to be initially at rest, i.e. z;(0) =0
foralli=0,...,N.. Now, we use the change of coordinates

xi(t) =zi(t)—zi(0), fori=1,...,N, 41
which yields

X;=PU;+D;), fori=0,...,N, (42)
Ei:Xi—l_Xis fori:2,.,.,N, (43)
Ey =Xn—X1, (44)
E?=Xo—X;, fori=1,...,N. (45)

The control strategy is now given by

Ui=K®nE+(1—-nEY), for2<i<N, (46)
Uy = KXy +(1 —)ES —nXy), (47)
Up =0, (48)

where 77 € (0, 1).

Remark 4. Note that the selection Uy =0 implies that the leader
vehicle moves independently and its position is completely
determined by its initial condition and the input signal Dy as
Xo = PDy. Moreover, the control strategy is such that every fol-
lower aims to maintain a constant inter-vehicle spacings with
respect to its immediate predecessor and with the leader.

Now we proceed in a similar fashion as in Section 3. With this
control strategy, the vehicle dynamics are given by

X =(1-PKGo)~'PD, (49)
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with X =[Xg X; - Xy]" e CN*1 and G e CV*1*N+1 being the new

interconnection matrix:

G 0 QT 50
0= (1 7’7)1 G) 5 ( )

where 0 € RN is the all zeros vector, 1le RY is the all ones vector,
and

o= o . 51)

Now we compute

§ 1 0" 1 1 07

(52)
with
s1 —nPK
o0 _ —nPK
0o — ..
—npPK  S7!
1 DN @ T
S nT 1 Ty
T -2 “~ 1 @DV
(DA A ¥ 1

for S=1/(1+PK)and T=1-S.

Remark 5. Note that in the following K = K since h=0 and hence

T =PK/(1+PK).

Now, we define F f k) as the transfer function from a disturbance
D, at the kth vehicle to the ith inter-vehicle spacing E;, which can
be written as E; = X;_; —X; = 7{)'Dy. We have the following result.

Proposition 2. The transfer functions F;, satisfy

SP

(N) _

=120 (54)
Fy =0, fori>1 (55)

Proof Smce the sum of every row of @, "in (53) is equal to

,_ o (17T) we have that

1- (nT)N
0,1 56
o,l(T)NZ(n) (56)
This implies that for D=[Dy 0 - 0]T,
S N
E]:xo_x1:<1 A=Ky~ )PDO TP (57)
and E;=X;_1—X;=0, fori>1.0

Remark 6. If we recall that X, = PDy is the trajectory of the leader,
we see that the every follower has the same transient when there
are no other disturbances in the platoon. This can also be seen as
all the followers moving as a unit when the only disturbance in the
system is one at the leader. This is an interesting feature when
using this interconnection.

The effect of a disturbance on the first follower, D, is given by

—SP

Eq =]:(N)D1 =———=D1,
R U

SP(1 —nT)(nT) " i
%Dl, fori>1. (58)

By the symmetry of the interconnection, the effect of D, with
k>1 is the effect for D; shifted accordingly. Therefore, in the
following we only study the transfer functions Fﬁf‘l’).

Ei=7F{{D; =

5.1. Stability analysis

In a similar way as in the leaderless cyclic case, the stability of
the interconnection is determined by the stability of the transfer
function We have the following result.

1— ( T)”
Theorem 3. Let T =PK/(1+PK) and n € (0, 1). The following holds:

1Lif |n <|IT|IZ! then 1-T)/(1 —®T)N) has all of its poles in the
open left half plane;

2.if Inl > |IT|| ! then there exists Nc e N such that for all N > N,
(1=T)/(1—@T)N) has poles in the right half plane.

Proof. 1. The condition |7| < ||T||z! implies that ||7T| | <1
and moreover | |(#T)V||« < 1. Hence, we have that |1—(1—#T)"|
<1 for all w € R and Rouche's Theorem ensures that (1—#T)V) ™!
is stable. Since 1—T is stable, we have that (1-T)/(1—#T)") has
all of its poles in the open left half plane.

2. The condition |7| > ||T||2" implies that ||#T||~ >1 and
the proof of Part (2) of Theorem 1 applies directly substituting I”
for nT.o

This result coincides with the sufficient conditions on # for
string stability in a unidirectional leader following scheme (See for
example [19]). The case #=|T||! will yield instability for the
particular values of N e N which satisfy the equation 1—#T(jwo)")
=0 with o, being the frequency where |T(jwc)| = || T|| co-

5.2. String stability analysis

Following similar steps as in the analysis for string stability in
the leaderless cyclic case, we obtain the following result for dis-
turbances at the first follower (D; # 0):

Theorem 4. Let T = PK /(1+PK) and n € (0,1). Consider F{}’ defined
in (58) for all i, N with i < N. Then the following hold:

1L FYO=0, vi=1,..,N;
2.if Il <|IT|1Z", then there exists ¢ >0 such that | |f§ﬁ”| [0 <C
foralli,NeN,i<N.

Proof. 1. Since #<1 and T(0)=1, and recalling from Part (1) of
Theorem 1 that SP has one zero at s=0, direct substitution of s=0
into (58) implies that F{}(0) = vi=1,...,N.

2. From (1) we have that }‘(N)(O) —0. The condition 7l <|IT|]
! implies that | |(;7T) |leo <1 for all k> 1. Moreover, | |SP| | <
c1 (see Part (2) of Theorem 2) and | |(1—#T)| |« = C3. Therefore

SPA—nDaD Y|~ ac

< X 59
1 1T 69

Given that ||7T||. <1, we have that 1—#T(jw))" =0 has no
solutions for @w € R and therefore

C1Cy - C1C3 < C1C2
[1—@DN|  ming|1-@TGo)N| 1-10T(o)|

where w, satisfies |T(jw¢)| =||T||. It follows that there exists
¢ > 0 such that

(60)

HFM e <, 61)
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for all i, N with
C1Cy

= - 62
1T oo 62)

Part (1) of the last result is analogous to Theorem 2 for the
leaderless cyclic case. Part (2) shows that the interconnection is
string stable for disturbances in any follower and also gives a
bound for the maximum disturbance amplification. The case | |#T
|10 =1 is not considered since it may yield instability for some
values of n. In particular, if #T = e/ for some ., the factor

1-9T
1-D"

in (58) may have an unstable pole at w = @, if @ =1 and e/ 1.

(63)

6. Numerical examples

In this section we present numerical examples and simulations
that illustrate the results of the paper. We consider the vehicle
dynamics and local controllers

p_ 1 2541
T s(0.1s+1) " 5(0.055+1)
In Fig. 1 we have the magnitude plots of I" = PK/(1+PKQ) for
different values of h. It can be noted that for increasing values of
the time headway constant h, the magnitude peak decreases from

[1I' | =1.2103 for h=0to | | ]| | =1 after some value of h > 0.
In particular we can compute hg defined in Proposition 1 as

2_
o= ¢sup(|”</<l+g"0ll> _Va~14142
@

()

=

(64)

(65)

This value is in agreement with Fig. 1 from where it can be esti-
mated hy < 2. Now, according to Proposition 1 for h > +/2 we will
have |I'| <1 for w > 0.

6.1. Stability analysis

Leaderless case: In Fig. 2 the pole locations of the transfer
function 11:TT,V, with h=0, are plotted for N=3 and N=9. For N=3
all the poles are in the open left half plane, however, for N=9
there is a pair of complex poles with positive real part. Part (2) of
Theorem 1 predicts that instability occurs for large enough string
size when h=0. For h=2, Fig. 3 shows a zoom into the locations of
some of the poles of the transfer function =L It can be seen that
the poles remain to the left of the stability boundary for
N = 20,50, 100. It can also be noted that for N=100 there exist two

Gain plot for I'(s) for varying h

o (rad/sec)

Fig. 1. Magnitude plots of I = T /(1 +sh) for different values of h. Solid line h =0 (s).
Lightest gray and dashed line h = 2(s).

Pole locations of (1-T)/(1-T"V)
5

° * ! * * |
4 [ 4 * [
* | * * |
3 \ 3 |
*
2 | 2 |
| "
1 [ 1 [
0 [ [
z *

EO [ 0 t\
-1 | -1 |
\ *

-2 -2
I !
-3 I -3 I
* *
-4 | —4f* . |

* * *
-5 1 -5 l
-8 -6 -4 -2 0 -8 -6 -4 -2 0
Re(s) Re(s)

Fig. 2. Pole locations for H’V with h =0 (s). Dashed line: stability boundary. Left:
N=3. Right N=9.

Pole locations of (1-T)/(1 —FN)

0.5 : : : :
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b e N=100
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[ . |
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Re(s)
Fig. 3. Pole locations for 11:FTN with h =2 (s). Dashed line: stability boundary. Cir-
cles: N=20. Squares: N=50. Dots: N=100.

Pole locations of (1-T)/(1-(n T)N)
5 -

5 T T
* | * * |
. | * |
| *
I * |
| N
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| N
I I
I * |
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Fig. 4. Pole locations for 11(‘”;),,
N=3. Right N=9.

with = 0.9. Dashed line: stability boundary. Left:
poles that are closer to the boundary than the poles for N=20, 50.
It can be inferred that slower dynamics will occur with an increase
of the string size. This can be predicted if we note that a factor
e/@kz/N) _I" tends to 1—1" when N grows large and k=1. Since 1—
I’ has a zero at s=0, slow poles for increasing N should be
expected.

Leader case: According to Theorem 3 the stability of the inter-
connection is ensured for || <||T||2". In this particular case
[IT||s ~1.2. Fig. 4 shows the pole locations of the transfer
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Pole locations of (1-T)/(1-(n T))

2 : ‘
O N=10
15f O N=50 [q
e N=100
1+ T
|
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-05f A
“1b (.
|
-1.5} : 1
-2 L |
-0.2 0

Re(s)

Fig. 5. Pole locations for 127%” with # = 0.5. Dashed line: stability boundary. Cir-
cles: N=10. Squares: N=50. Dots: N=100.

Gain plot for F(ZN)

0.7f N=45

o (rad/sec)

Fig. 6. Magnitude plots of F‘ZN’, when h=2 (sec), for an increasing number of
vehicles.

function % with #=0.9, for N=3 and N=9. As predicted,
since 7 > 1/1.2~0.83, the system is unstable after the string size
increases over a critical value. On the other hand, Fig. 5 shows the
pole locations of ; j(ﬂ%,v when 7 =0.5 for N = 20,50, 100. It can be
seen that the system remains stable even for a string size as large
as N=100. Moreover, the poles of the transfer function do not
approach the stability boundary as the size of the string increases.

6.2. String stability

Leaderless case: The transfer functions F(zN) reflect the effect of
disturbances on the inter-vehicle spacing of the second member of
the string with respect to its immediate predecessor, for different
string sizes. For h=2, we obtain the corresponding magnitude
plots, which are shown in Fig. 6. We can see that they are all
bounded as predicted by Theorem 2.

Leader case: The transfer functions }“2'\’1) reflect the effect of
disturbances on the inter-vehicle spacing of the second follower of
the leader of the string with respect to its immediate predecessor,
for different string sizes. For 7 = 0.5, the corresponding magnitude
plots are shown in Fig. 7. We can see that they are all bounded as
predicted by Theorem 4.

7. Conclusions
In this paper we provided stability and string stability results

for a cyclic interconnection of vehicles. In particular we showed
that if the spacing policy is constant, the formation becomes

(N)

Gain plots for F2,1

N=45

 (rad/sec)

Fig. 7. Magnitude plots off‘z’ﬂ) , when 5 = 0.5, for an increasing number of vehicles.

unstable for any string size greater than a critical value N.. For the
time headway spacing policy we show that it is possible to achieve
stability and string stability of the interconnection, provided that
the time headway constant is chosen appropriately.

Numerical examples illustrated these results and some of the
drawbacks of the interconnection such as slower dynamics when
the string size increases.

The use of an independent leader who is tracked by the
remaining members of the vehicle string was also studied. We
showed that similar results to the leaderless case apply, obtaining
ensured stability for any string size and string stability when the
design parameter # < ||T||3!. The added benefits are a simpler
trajectory of the vehicles when the leader starts a manoeuvre and
the dynamics do not become slower as the string size increases.

An immediate extension to this work is to study a cyclic and
bidirectional interconnection with and without a leader. Other
lines of work may include non-homogeneity of the vehicle models
and controllers or the inclusion of time delays in the measure-
ments. Moreover it would be of interest to study the effect of
model uncertainty in all of this results.
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Appendix A. Proof of Lemma 3

We write I'(s)=r(s)/m(s) where r(s) and m(s) are two poly-
nomials without common factors and m(s) is Hurwitz. Then, the
solutions of 1—e®I"=0 are the roots of the polynomial
p(s) = m(s)—er(s). According to Proposition 3.4.5 in Hinrichsen
and Pritchard [7], if a polynomial, p(s), with complex coefficients is
Hurwitz then

d arg (p(jw)) >0, VYweR.

dw A1

We will show, given that I" is stable, strictly proper and
11| | > 1, that there exists an interval € e (61, 0,) with 6, > 6,
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where condition (A.1) is violated. First, we write p(jw) as
p(j) = |m(j)| v (1-+ | I ()| ) (A2)

where we factor m(jw) = | m(jw)| €¥=@ and add the arguments as
P () =y . (0)—y,(0)+7+6. The argument of p(jw) is
arg (p(jw)) = y/m(a))+arg<1 + 1 (o) ei¢(“’)).

=yp(w)+arg(1+ |1 (jw)| (cos (P(w))+j sin (H(w)))). (A3)

Computing the derivative using the formula of Proposition 3.4.5 in
Hinrichsen and Pritchard [7] (we omit the arguments (w) for

clarity)

ATV sin@)+ 1 LI (cos(@)+1T1)

M (14T cos(@))2+|T|2 sin’(¢)
(A4)

Since I°(s) is strictly proper and || /"] | > 1, there exists w. such

that | I'|(wc) = 1. If | I'|"(w¢) # 0 we compute the limit

|T|"(wc) sin () + ¢ (we)(cos (P +1)

d - [0))
s 00 = {3}

. d ) ,
J‘ELC ——arg (p(w)) =y (W) +

1o 2(1+ cos(¢,)
s P @O singg)
=y (0)+ 5T || (wc)m’

(A.5)

where ¢, = lim,,_ ».¢(w). In particular, the values y/, (@), ¢'(@c)
and |I"|’(w¢) do not depend on the parameter # and are bounded.
However, the expression

sin(p,)  sin(y (@) -y (0)+7m+60)
2(1+ cos(¢.)~ 2(1+ cos (W (@) — W (@) + 7+ 0)y

(A.6)

takes every possible value of the real numbers as @ varies.
Therefore, there exists an interval (61, 6,) with 6; <8, such that
diwarg (p(jw)) is negative, when w=w, and 6 e (6;,0,), which
yields the desired result. If |I"|’(w:) =0, we can only claim the
existence of 8, such that 1—e/'I"=0 when w = w.. Hence, the

result follows with 6, = 6,.0
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