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Optimal Differentially Private Mechanisms for

Randomised Response

Naoise Holohan, Douglas J. Leith, Oliver Mason

Abstract

We examine a generalised Randomised Response (RR) technique in the context of differential

privacy and examine the optimality of such mechanisms. Strict and relaxed differential privacy are

considered for binary outputs. By examining the error of a statistical estimator, we present closed

solutions for the optimal mechanism(s) in both cases. The optimal mechanism is also given for the

specific case of the original RR technique as introduced by Warner in 1965.

Index Terms

Randomised response, randomized response, differential privacy, optimality

I. INTRODUCTION

A. Background

Stanley L. Warner first proposed the Randomised Response (RR) technique as a means to

eliminate bias in surveying in 1965 [31]. Respondents would be handed a spinner by the surveyor

to decide which of two questions the respondent would answer, for example,

1) Have you ever cheated on your spouse/partner?

2) Have you always been faithful to your spouse/partner?

Respondents would spin the spinner in private and answer the given question truthfully with

a ‘yes’ or ‘no’. Respondents would be afforded plausible deniability as the surveyor would not
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know the question to which the answer refers. This would encourage respondents to engage with

the survey and answer the question truthfully. The spinner can be replaced by any appropriate

randomisation device, such as coin flips, dice or drawing from a pack of cards.

A rich body of literature now exists on RR. The inefficiencies of Warner’s original RR model

have been examined by a number of authors and many new RR models have been proposed. These

include the unrelated question model [13], the forced response model [2], Moor’s procedure [26]

and two-stage RR models [25], [24]. More comprehensive lists of RR models can be found in

[21], [1].

RR is actively used in surveying when asking questions of a sensitive nature. Examples include

surveys on doping and drug use in elite athletes [27], cognitive-enhancing drug use among

university students [5], faking on a CV [6], corruption [11], sexual behaviour [3], and child

molestation [8].

Researchers remain divided on the effectiveness of RR. While some works have shown RR

to be an improvement on different survey techniques, including direct questioning (where no

randomisation is involved), [29], [12], [22], [20], [28], others remain sceptical on its advantage

[32], [33], [23]. Public trust in RR has also been shown to be lacking [4].

Separately, differential privacy has emerged as a model of interest in privacy-preserving

data publishing since being presented in 2006 [7]. Differential privacy gives a quantitative

mathematical definition to measure the level of privacy achieved in a given data release. This

definition determines the amount of manipulation that needs to be applied to the data to achieve

the desired level of privacy. Under differential privacy, privacy is quantified by how statistically

indistinguishable the privacy-preserved outputs from two similar datasets are.

When applied to randomised response, where the output from a single individual is binary, dif-

ferential privacy requires the output from any two individuals to be statistically indistinguishable,

to a specified degree.

B. Our Results

In this paper we examine a generalisation of Warner’s original RR technique, and establish

conditions under which such a model satisfies differential privacy. By calculating the estimator

of minimal variance, we determine the optimal differentially private RR mechanism. We examine

strict ε-differential privacy and relaxed (ε,δ)-differential privacy. Complete solutions for the
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optimal mechanisms are presented for both cases. The optimal mechanism is also given for

Warner’s RR model satisfying (ε, δ)-differential privacy.

C. Related Work

The application of differential privacy to randomised response has been limited to date.

[30] examined using randomised response to differentially privately collect data, although their

analysis only considered strict ε-differential privacy and a comparison of its efficiency with

respect to the Laplace mechanism, a mechanism popular in the differential privacy literature.

Randomised response has been used in conjunction with differential privacy in a more general

context in the form of local privacy, also known as input perturbation. For example, extreme

mechanisms for local differential privacy have been studied in [18], [16], while differential

privacy was applied to social network data in the form of graphs with randomised response in

[19]. Outside randomised response and local privacy, optimal mechanisms in differential privacy

have received some attention, including work on strict differential privacy [10] and relaxed

differential privacy [9].

D. Structure of Paper

We begin in Section II with an introduction to the Randomised Response (RR) technique, and

derive the statistical estimator and associated bias and error; we also present Warner’s original

RR model. We introduce differential privacy in Section III and present a number of preliminary

results for later use in Section IV.

The main results are given in Sections V, VI and VII, relating to strict differential privacy,

relaxed differential privacy and Warner’s model respectively. Concluding remarks are given in

Section VIII.

II. RANDOMISED RESPONSE

A. Introduction

We are looking to determine the proportion π of people in the population possessing a

particular sensitive attribute, where possession of the attribute is binary. We conduct a survey

on n individuals of the population by uniform random sampling with replacement.
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A single respondent’s answer Xi ∈ {0, 1} is a randomised version of their truthful answer xi ∈

{0, 1}, in order to protect their privacy. The randomised response will therefore not definitively

reveal a respondent’s truthful answer. By convention, a value of 1 denotes possession of the

sensitive attribute, while 0 denotes that the respondent does not possess the attribute. We denote

by N the number of randomised responses that return 1, hence N =
∑

i∈[n] Xi where [n] =

[1, n] ∩ Z. We are therefore looking to estimate π from N
n

.

B. Generalised RR Model

In keeping with standard notation, (Ω,F ,P) denotes a probability space. Xi : Ω → {0, 1}

is then a random variable for each i ∈ [n], dependent on the truthful value xi. We define the

randomised response mechanism by

P(Xi = k | xi = j) = pjk, (1)

which leads us to defining the design matrix of the mechanism as follows.

Definition 1 (Design Matrix). A randomised response mechanism as defined in (1) is uniquely

determined by its design matrix,

P =

 p00 p01

p10 p11

 .

For the probability mass functions of each Xi to sum to 1, we require p00 + p01 = 1 and

p10 + p11 = 1. The design matrix therefore simplifies to

P =

 p00 1− p00

1− p11 p11

 , (2)

where p00, p11 ∈ [0, 1].

As π is the true proportion of individuals in the population possessing the sensitive attribute,

we can calculate the probability mass function of each Xi:

P(Xi = 0) = (1− π)p00 + π(1− p11)

= p00 − π(p00 + p11 − 1),
(3a)

P(Xi = 1) = πp11 + (1− π)(1− p00)

= 1− p00 + π(p00 + p11 − 1).
(3b)

Remark: Direct questioning corresponds to the case where p00 = p11 = 1.
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C. Estimator, Bias and Error

Having presented the RR mechanism previously, we now need to establish an estimator of π

from the parameters of the mechanism, p00 and p11, and from the distribution of randomised re-

sponses, namely N
n

. We first establish a maximum likelihood estimator (MLE) for the mechanism

and then examine its bias and error.

Theorem 1. Let p00 + p11 6= 1. Then the MLE for π of the randomised response mechanism

given by (2) is

Π̂(p00, p11) =
p00 − 1

p00 + p11 − 1
+

N

(p00 + p11 − 1)n
. (4)

Proof: Let us first index the sample so that Xi = 1 for each i ≤ N , and Xi = 0 for each

i > N . Then the likelihood L of the sample is

L = P(Xi = 1)NP(Xi = 0)n−N .

The log-likelihood is

log(L) = N logP(Xi = 1) + (n−N) logP(Xi = 0),

whose derivatives are

∂ log(L)

∂π
=

N

P(Xi = 1)

∂P(Xi = 1)

∂π
+

n−N
P(Xi = 0)

∂P(Xi = 0)

∂π
,

∂2 log(L)

∂π2
= − N

P(Xi = 1)2

(
∂P(Xi = 1)

∂π

)2

− n−N
P(Xi = 0)2

(
∂P(Xi = 0)

∂π

)2

.

We note that ∂2 log(L)
∂π2 < 0, hence the maximum of log(L) occurs when ∂ log(L)

∂π
= 0. Solving for

π completes the proof.

We note the following standard identity in probability and statistics,

Var(Y ) = E[Y 2]− E[Y ]2, (5)

for any random variable Y . We now calculate the bias and error of Π̂. We use the variance of the

estimator to characterise error in line with conventional practice. Similarly by convention, we

characterise the bias of an estimator as its expected deviation from the quantity it is estimating

(i. e. E[Π̂− π]). We remind the reader of the dependence of Var(π̂) on π by writing Var(Π̂|π).
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Corollary 1. The MLE Π̂ constructed in Theorem 1 is unbiased and has error

Var(Π̂(p00, p11)|π) =
1
4
−
(
p00 − 1

2
− π(p00 + p11 − 1)

)2

(p00 + p11 − 1)2n
. (6)

Proof: Since the survey we are conducting is by uniform random sampling with replacement,

N is a sum of independent and identically distributed random variables. Therefore, E[N ] =

nE[Xi] and Var(N) = nVar(Xi).

Since Xi ∈ {0, 1}, it can be shown that E[Xi] = E[X2
i ] = P(Xi = 1) = 1 − p00 + π(p00 +

p11 − 1). Hence,

E[Π̂] =
p00 − 1

p00 + p11 − 1
+

E[N ]

(p00 + p11 − 1)n

=
p00 − 1

p00 + p11 − 1
+

E[Xi]

p00 + p11 − 1

= π,

and so Π̂ is unbiased as claimed.

Secondly,

Var(Π̂|π) =
Var(N)

(p00 + p11 − 1)2n2

=
Var(Xi)

(p00 + p11 − 1)2n

=
E[X2

i ]− E[Xi]
2

(p00 + p11 − 1)2n

=
P(Xi = 1)P(Xi = 0)

(p00 + p11 − 1)2n
,

which can be simplified to (6).

When conducting a survey on a population, it is often useful and necessary to estimate the

margin of error of the estimate on a sample. For a confidence level c ∈ [0, 1], the margin of

error of a sample is given by ω ≥ 0, where

P(|Π̂− π| ≤ ω) ≥ c. (7a)

In practical applications, a 95% confidence interval is typically used [17]. In the absence of any

additional information on the distribution of Π̂, Chebyshev’s inequality can be used to derive a

general, but conservative, margin of error, assuming Π̂ has finite variance. In such a scenario,
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the margin of error of a sample is given to be 4.5σ, where the standard deviation σ is given by√
Var(Π̂|π), since

P
(
|Π̂− π| ≤ 4.5

√
Var(Π̂|π)

)
≥ 0.95. (7b)

In many practical situations, the central limit theorem is invoked to determine heuristically a

margin of error. For a random variable G that is normally distributed with mean µ and variance

σ2, we have

P(|G− µ| ≤ 1.96σ) ≥ 0.95, (7c)

hence 1.96σ is typically taken as the margin of error in such scenarios [17]. However, this

non-rigorous approach only gives a loose representation of the margin of error, given that the

guarantee of the central limit theorem only applies in the limit as the sample size n approaches

infinity.

Due to this variability in defining the margin of error of a sample, we only focus on determining

the error of the estimator, Var(Π̂|π), in this paper. This error can be used to calculate the margin

of error for a particular application, as outlined above.

D. Warner’s RR model

Warner’s model [31] is a specific case of the generalised model introduced in Section II-B.

Warner proposed that surveyors would present respondents with a spinner which they would

spin in private to decide which one of two questions to answer. The spinner would point to a

question (e. g. “Have you ever cheated on your spouse/partner?”) with probability pw, and to the

complement of that question (e. g. “Have you always been faithful to your spouse/partner?”) with

probability 1− pw. Respondents would then be asked to answer the chosen question truthfully,

but without revealing which question they were answering. As before, xi denotes the truthful

response of respondent i, while Xi denotes the randomised response, as determined by the

process outlined above.

Warner’s model corresponds to the case where p00 = p11 = pw. We denote by Pw the design

matrix of Warner’s model, which is given by

Pw =

 pw 1− pw
1− pw pw

 ,
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while the probability mass function of each Xi is defined as

P(Xi = 0) = pw − π(2pw − 1),

P(Xi = 1) = 1− pw + π(2pw − 1).

Using the same unbiased MLE in (4), we denote by Π̂w the estimator for Warner’s model

and, by (6), find its error to be

Var(Π̂w(pw)|π) =
1
4
−
(
pw − 1

2
− π(2pw − 1)

)2

(2pw − 1)2n
. (8)

III. DIFFERENTIAL PRIVACY

Differential privacy was first proposed by Dwork in 2006 [7] as a way to measure the level of

privacy achieved when publishing data. Using the same notation as in [14], we denote by Dm

the space of all m-row datasets (let D be the space of each row) and by d ∈ Dm a dataset in

this space. We then denote by Xd : Ω→ Dn a randomised version of d.

If D is assumed to be discrete, the mechanism Xd is said to satisfy (ε,δ)-differential privacy

if

P(Xd ∈ A) ≤ eεP(Xd′ ∈ A) + δ, (9)

for each d,d′ ∈ Dm that differ in exactly one row (i. e. there exists exactly one j ∈ [m] such

that dj 6= d′j) and for each subset A ⊂ Dm.

This set-up simplifies in the case of randomised response introduced in Section II. Firstly,

the datasets contain only one row (m = 1), and the row-space is {0, 1}. We are therefore

only required to show that (9) holds for d 6= d′ ∈ {0, 1} and for A = {0}, {1}. Formally,

(ε,δ)-differential privacy is satisfied if

P(Xi = j) ≤ eεP(Xk = j) + δ, (10)

for any i, k ∈ [n] and j ∈ {0, 1}.

For the RR mechanism given by (2) to satisfy (ε, δ)-differential privacy, we require the
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following to hold:

p11 ≤ eε(1− p00) + δ, (11a)

p00 ≤ eε(1− p11) + δ, (11b)

1− p00 ≤ eεp11 + δ,

1− p11 ≤ eεp00 + δ.

We can now define the set of pairs (p00, p11) that correspond to a RR mechanism which

satisfies (ε, δ)-differential privacy.

Definition 2 (Region of Feasibility). A RR mechanism, given by (2), satisfies (ε, δ)-differential

privacy if (p00, p11) ∈ R, where R ⊂ R2 is defined as

R =


(p00, p11) ∈ R2 :

p00, p11 ∈ [0, 1],

p00 ≤ eε(1− p11) + δ,

p11 ≤ eε(1− p00) + δ,

1− p11 ≤ eεp00 + δ,

1− p00 ≤ eεp11 + δ.


. (12)

We consider the case where p00 +p11 > 1. Note that the estimator error, and hence the optimal

mechanism, is undefined when p00 + p11 = 1. If p00 + p11 < 1, we permute all responses such

that X ′i = 1−Xi. This corresponds to the columns of the design matrix being swapped, giving

p′00 = 1− p00 and p′11 = 1− p11, hence p′00 + p′11 = 2− p00 − p11 > 1. We can therefore assume

p00 + p11 > 1 without loss of generality.

When p00 + p11 > 1, we note that (i) 1 − p11 < p00 ≤ eε(1 − p11) + δ < eεp00 + δ and (ii)

1− p00 < p11 ≤ eε(1− p00) + δ < eεp11 + δ. Hence, the region of feasibility simplifies to R′ as

follows:

R′ = {(p00, p11) ∈ R : p00 + p11 > 1}

=


(p00, p11) ∈ R :

p00, p11 ≤ 1,

p00 + p11 > 1,

p00 ≤ eε(1− p11) + δ,

p11 ≤ eε(1− p00) + δ.


.
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Furthermore, we denote by R′′ the boundary of R′ which satisfies at least one of inequalities

(11):

R′′ = R′ \

(p00, p11) ∈ R :
p00 < eε(1− p11) + δ,

p11 < eε(1− p00) + δ.

 .

The set R′′ therefore consists of the union of two line segments in the unit square, where (11a)

and (11b) are tight.

We are therefore looking to find the RR mechanism which minimises estimator error, while

still being (ε, δ)-differentially private. Hence, we seek to find

arg min
(p00,p11)∈R′

Var
(

Π̂(p00, p11)
∣∣∣ π) . (13)

IV. PRELIMINARY RESULTS

We begin by presenting two results which will be of use later in the paper. The first result

concerns the non-negativity of a non-linear function on the unit square.

Lemma 1. Let f : R× R→ R be defined by

f(x, y) = 2xy − x− y + 1.

Then, f(x, y) ≥ 0 for all x, y ∈ [0, 1].

Furthermore,

arg min
x,y∈[0,1]

f(x, y) = {(0, 1), (1, 0)}.

Proof: Let’s first consider minx∈[0,1] f(x, y):

min
x∈[0,1]

f(x, y) = min
x∈[0,1]

(2xy − x)− y + 1

= min
x∈[0,1]

((2y − 1)x)− y + 1

=

y if y ≤ 1
2
,

1− y if y > 1
2
.

(14)

It follows that

min
y∈[0,1]

(
min
x∈[0,1]

f(x, y)

)
= 0.
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By symmetry of f , it also follows that

min
x∈[0,1]

(
min
y∈[0,1]

f(x, y)

)
= 0,

hence f(x, y) ≥ 0 for all x, y ∈ [0, 1].

We note that f(1, 0) = f(0, 1) = 0, and by (14) we see that these values uniquely minimise

f(x, y) for all x, y ∈ [0, 1].

In the second result of this section we prove that an optimal mechanism exists on R′′ (i. e. on

the boundary of R′ where at least one of inequalities (11) is tight), and additionally that when

π ∈ (0, 1), optimal mechanisms only occur on R′′.

Lemma 2. Let p00 + p11 > 1. Then there exists (p∗00, p
∗
11) ∈ arg minR′ Var(Π̂|π) such that

(p∗00, p
∗
11) ∈ R′′.

Furthermore, when 0 < π < 1, arg minR′ Var(Π̂|π) ⊆ R′′.

Proof: Let’s consider ∂Var(Π̂|π)
∂p00

and ∂Var(Π̂|π)
∂p11

.

Firstly, after some rearranging/manipulation,

∂ Var(Π̂|π)

∂p11

= −2p00(1− p00)(1− π) + π(2p00p11 − p00 − p11 + 1)

(p00 + p11 − 1)3n
.

By Lemma 1, we know that 2p00p11 − p00 − p11 + 1 ≥ 0, and since p00 + p11 − 1 > 0 by

hypothesis, we conclude that ∂Var(Π̂|π)
∂p11

≤ 0.

We further note that 2p00p11 − p00 − p11 + 1 > 0 by Lemma 1, since the assumption that

p00 + p11 > 1 means p00, p11 > 0. Hence ∂Var(Π̂|π)
∂p11

= 0 only when π = 0 and p00 = 1.

Equivalently,
∂ Var(Π̂|π)

∂p11

< 0 when π > 0 or p00 < 1. (15)

Secondly, after some rearranging/manipulation,

∂ Var(Π̂|π)

∂p00

= −(2p00p11 − p00 − p11 + 1)(1− π) + 2p11π(1− p11)

(p00 + p11 − 1)3n
.

Since, by assumption, we have 2p00p11 − p00 − p11 + 1 ≥ 0 and since p11 ∈ [0, 1], we see that
∂Var(Π̂|π)

∂p00
≤ 0.

Similar to the reasoning above, since 2p00p11 − p00 − p11 + 1 > 0 and p11 > 0, ∂Var(Π̂|π)
∂p00

= 0

only when π = 1 and p11 = 1. Equivalently,

∂ Var(Π̂|π)

∂p00

< 0 when π < 1 or p11 < 1. (16)
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Since ∂Var(Π̂|π)
∂p00

≤ 0 and ∂Var(Π̂|π)
∂p11

≤ 0, there exists a mechanism on the boundary of R′ which

minimises the estimator error, i. e.

∂R′ ∩

(
arg min

(p00,p11)∈R′
Var(Π̂(p00, p11)|π)

)
6= ∅. (17)

However, if 0 < π < 1, we see from (15) and (16) that ∂Var(Π̂|π)
∂p00

< 0 and ∂Var(Π̂|π)
∂p11

< 0.

Hence,

arg min
(p00,p11)∈R′

Var(Π̂(p00, p11)|π) ⊆ ∂R′, (18)

i. e. the optimal mechanisms only occur on the boundary of R′.

Finally, suppose (p00, p11) ∈ ∂R′, but neither of the inequalities in (11) are tight. Then there

exist ∆0,∆1 ≥ 0, ∆0 + ∆1 > 0 where (p00 + ∆0, p11 + ∆1) ∈ ∂R′, but because ∂Var(Π̂|π)
∂p00

≤ 0

and ∂Var(Π̂|π)
∂p11

≤ 0, then Var(Π̂(p00, p11)|π) ≥ Var(Π̂(p00 + ∆0, p11 + ∆1)|π). Hence minimal

error is achieved when at least one of the inequalities (11) is tight, i. e.

arg min
(p00,p11)∈R′

Var(Π̂(p00, p11)|π) ⊆ R′′.

For the remainder of this paper, we assume π ∈ (0, 1). Note that the results on optimal

mechanisms still hold for π ∈ [0, 1], however these optima may not be unique.

V. OPTIMAL MECHANISM FOR ε-DIFFERENTIAL PRIVACY

We have already established that the parameters for the optimal (ε, δ)-differentially private

mechanism lie on R′′. We now examine the case of ε-differential privacy, where δ = 0, with the

additional assumption that ε > 0.

Theorem 2. Let π ∈ (0, 1), p00 + p11 > 1 and ε > 0. The ε-differentially private RR mechanism

which minimises estimator error is given by the design matrix

Pε =

 eε

eε+1
1

eε+1

1
eε+1

eε

eε+1

 .

Proof: By Lemma 2, we know that the parameters (p00, p11) of the optimal mechanism

exist on the boundary of R′, with at least one of the inequalities (11) tight. We now separately

consider the cases where (11a) and (11b) are tight. By hypothesis, δ = 0 and ε 6= 0.
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1) (11a) tight: p11 = eε(1− p00), constrained by p11 ≥ 0 and p00 ≤ eε(1− p11). By (11b) and

since p00 = 1− e−εp11, we have

eεp11 ≤ eε − p00

= eε − (1− e−εp11)

= eε − 1 + e−εp11,

which we rewrite as

p11(eε − e−ε) ≤ eε − 1,

and noting that e2ε − 1 = (eε − 1)(eε + 1), we see that

p11 ≤
eε − 1

e−ε(e2ε − 1)

=
eε

eε + 1
.

We are therefore considering Var(Π̂(p00, p11)|π) on the line p00 = 1−e−εp11 for 0 ≤ p11 ≤
eε

eε+1
. We parametrise this line as follows, where 0 < t ≤ 1, p00 = r(t) and p11 = s(t) (we

require t > 0 since p00 + p11 > 1):

r(t) = (1− t) +
eε

1 + eε
t = 1− e−εs(t),

s(t) =
eε

1 + eε
t.

(19)

For simplicity, we let Π̂(r(t), s(t)) = Π̂1(t). After some manipulation, we see that

∂ Var(Π̂1(t)|π)

∂t
= −(1 + eε)(1 + π(eε − 1))

(eε − 1)2t2n
,

and noting that eε > 1, we see that ∂Var(Π̂1(t)|π)
∂t

< 0. Hence,

arg min
t∈(0,1]

Var(Π̂1(t)|π) = {1}. (20)

2) (11b) tight: By symmetry of the equations (11), we simply let p00 = s(t) and p11 = r(t).

By examining (3) and (6), we see that

Var(Π̂(p00, p11)|1− π) = Var(Π̂(p11, p00)|π),

and by letting Π̂(s(t), r(t)) = Π̂2(t), we get

∂ Var(Π̂2(t)|π)

∂t
= −(1 + eε)(1 + (1− π)(eε − 1)

(eε − 1)2t2n
.
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Again it follows that ∂Var(Π̂2(t)|π)
∂t

< 0, and so

arg min
t∈(0,1]

Var(Π̂2(t)|π) = {1}. (21)

By (18), (20) and (21), we can now conclude that

arg min
(p00,p11)∈R′

Var(Π̂(p00, p11)|π) =

{(
eε

eε + 1
,

eε

eε + 1

)}
,

and so the result follows.

Remark: When ε = 0, all rows of the design matrix must be identical, i. e. p00 = 1− p11 and

p11 = 1−p00. This gives p00 +p11 = 1, leading to an unbounded estimator error (6). In practical

terms, 0-differential privacy enforces the same output distribution for every respondent, hence

nothing meaningful can be learned.

VI. OPTIMAL MECHANISM FOR (ε, δ)-DIFFERENTIAL PRIVACY

Let’s now consider the optimal mechanism for (ε, δ)-differential privacy. We parametrise R′′

as follows. If we let
rδ(t) =

(
1 + e−εδ

)
(1− t) +

eε + δ

eε + 1
t,

= 1− e−ε(sδ(t)− δ),

sδ(t) =
eε + δ

eε + 1
t,

(22)

for t ∈ [0, 1], then the boundary where (11a) holds is parametrised by p00 = rδ(t) and p11 = sδ(t);

by symmetry, the boundary where (11b) holds is parametrised by p00 = sδ(t) and p11 = rδ(t).

We note that t = 1 denotes an extreme point of R′ (and R′′), the point at which both

inequalities (11) are tight. Here p00 = p11 = rδ(1) = sδ(1) = eε+δ
eε+1

.

A. Preliminary Lemmas

Before proceeding to the main result of this section, we first present a collection of lemmas

for later use. The first result states that the minimal variance of Π̂ on R′′ will occur at one of

its extreme points (i. e. at one of the endpoints of the two line segments which comprise R′′).

Lemma 3. Let rδ and sδ be given by (22), let δ > 0 and let a ≤ b ∈ [0, 1]. Then,

arg min
t∈[a,b]

Var(Π̂(rδ(t), sδ(t))|π) ⊆ {a, b}.
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Proof: For simplicity, we denote Π̂(rδ(t), sδ(t)) by Π̂1,δ(t).

By some manipulation, it can be shown that the numerator of ∂Var(Π̂1,δ(t)|π)

∂t
is linear in t,

hence it has at most one root at

t =
δ(1 + eε)(2eε + 2δ − 1− π(eε + 2δ − 1))

(eε + δ)(eε + 2δ − 1)(1 + (eε − 1)π)
.

By substitution, we find that

∂2 Var(Π̂1,δ(t)|π)

∂t2
= −(eε + δ)2(eε + 2δ − 1)4(1 + (eε − 1)π)4

8e2εδ3(eε + δ − 1)3(1 + eε)2n
,

when ∂Var(Π̂1,δ(t)|π)

∂t
= 0. By inspection, and since δ > 0, we see that ∂2 Var(Π̂1,δ(t)|π)

∂t2
< 0 when

∂Var(Π̂1,δ(t)|π)

∂t
= 0, and so this point is the maximum of Var(Π̂1,δ(t)|π). Hence, the minimum of

Var(Π̂1,δ(t)|π) cannot occur at a mid-point of an interval. The result follows.

We next show that the error of Π̂ along the boundary constrained by (11a) is uniformly greater

than along the boundary constrained by (11b) when π ≤ 1
2
.

Lemma 4. Let rδ and sδ be given by (22) and let δ > 0. Then, when π ≤ 1
2
,

Var(Π̂(rδ(t), sδ(t))|π) ≤ Var(Π̂(sδ(t), rδ(t))|π),

for t ∈ [0, 1].

Conversely, if π ≥ 1
2
, then

Var(Π̂(rδ(t), sδ(t))|π) ≥ Var(Π̂(sδ(t), rδ(t))|π),

for t ∈ [0, 1].

Proof: After manipulation of the terms, we can show that

Var(Π̂(rδ(t), sδ(t))|π)− Var(Π̂(sδ(t), rδ(t))|π) = − (eε + 1)(eε + δ)(1− 2π)(1− t)
(eε(eε − 1)t+ δ(1− t+ eε(1 + t)))n

.

We see that 1 − 2π ≥ 0 when π ≤ 1
2
, and 1 − 2π ≤ 0 when π ≥ 1

2
, and, since t ∈ [0, 1] and

δ > 0, the result follows.

Finally, we present t0(ε, δ) as the t-value which gives the endpoints of the line segments of

R′′ at the boundary of the unit square.

Lemma 5. Define t0 : R× R→ [0, 1] by

t0(ε, δ) =
δ(eε + 1)

eε + δ
,
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then,

(rδ(t0(ε, δ)), sδ(t0(ε, δ))) ∈ ∂R′.

Proof: By explicit calculation,

rδ(t0(ε, δ)) = 1,

sδ(t0(ε, δ)) = δ.

By definition, it follows that (1, δ) ∈ R′∪∂R′, and since p00 ≤ 1 is a boundary of {(p00, p11) ∈

R′}, it follows that (1, δ) ∈ ∂R′.

Remark: When δ = 0, (rδ(t0(ε, δ)), sδ(t0(ε, δ))) /∈ R′, since we require rδ + sδ > 1.

Remark: By linearity, it follows that (rδ(t), sδ(t)) ∈ R′ for all t0(ε, δ) < t ≤ 1, and that

(rδ(t), sδ(t)) /∈ R′ when t < t0(ε, δ).

B. Main Result

We now present the main results of this paper, which establish the optimal (ε, δ)-differentially

private RR mechanism(s). The following results assume δ > 0; the optimal mechanism when

δ = 0 was presented in Theorem 2. Note that we continue to assume π ∈ (0, 1) to ensure

uniqueness of the optima.

The following theorem establishes the optimal RR mechanism(s) when π ≤ 1
2
.

Theorem 3. Let δ > 0 and 0 < π ≤ 1
2
, and define g : R× R→ R by

g(ε, δ) =
δ(eε + δ)

(eε + 2δ − 1)2
. (23)

Then, for rδ and sδ given by (22),

arg min
(p00,p11)∈R′

Var(Π̂(p00, p11)|π) =


{(rδ(t0), sδ(t0))}, if g(ε, δ) > π,

{(rδ(1), sδ(1))}, if g(ε, δ) < π,

{(rδ(t0), sδ(t0)), (rδ(1), sδ(1))}, if g(ε, δ) = π.

where t0 = t0(ε, δ).

Proof: By Lemmas 2, 3 and 4, we know that when 0 < π ≤ 1
2

and δ > 0,

arg min
(p00,p11)∈R′

Var(Π̂(p00, p11)|π) ⊆ {(rδ(t0), sδ(t0)), (rδ(1), sδ(1))}.
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We are therefore considering two candidate points, which can be shown to resolve to

rδ(t0) = 1, sδ(t0) = δ,

rδ(1) =
eε + δ

eε + 1
, sδ(1) =

eε + δ

eε + 1
.

We are therefore seeking to determine the sign of

Var(Π̂(1, δ)|π)− Var

(
Π̂

(
eε + δ

eε + 1
,
eε + δ

eε + 1

)∣∣∣∣ π) . (24)

After some manipulation, we can show that (24) simplifies to

(1− δ)(π(eε + 2δ − 1)− δ(eε + δ))

δ(eε + 2δ − 1)2n
,

and we note that its denominator is strictly positive since δ > 0. Note additionally that (24)

simplifies to zero when δ = 1, which is trivial since r1(t0) = s1(t0) = r1(1) = s1(1) = 1.

The sign of (24) is therefore determined by the sign of π(eε + 2δ − 1) − δ(eε + δ), which

gives g(ε, δ) when solved for π. Hence, Var(Π̂(rδ(t0), sδ(t0))|π) < Var(Π̂(rδ(1), sδ(1))|π) when

g(ε, δ) > π. The other results follow similarly.

Remark: When g(ε, δ) ≤ π, the optimal mechanism corresponds with that established for ε-

differential privacy on RR (with an added dependence for δ) and also with the optimal mechanism

established in Theorem 10 of [15] for mechanisms on categorical data. However, when g(ε, δ) >

π, the optimal mechanism is one which we have not encountered previously.

The next corollary establishes the optimal mechanism(s) when π ≥ 1
2
, and follows from

Theorem 3 by the symmetry of Var(Π̂(p00, p11)|π) in p00 and p11.

Corollary 2. Let δ > 0 and 1
2
≤ π < 1. Then, for rδ and sδ given by (22) and g given by (23),

arg min
(p00,p11)∈R′

Var(Π̂(p00, p11)|π) =


{(sδ(t0), rδ(t0))}, if g(ε, δ) > 1− π,

{(sδ(1), rδ(1))}, if g(ε, δ) < 1− π,

{(sδ(t0), rδ(t0)), (sδ(1), rδ(1))}, if g(ε, δ) = 1− π,

where t0 = t0(ε, δ).

Proof: The result follows from Theorem 3 since

Var(Π̂(p00, p11)|π) = Var(Π̂(p11, p00)|1− π).
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Example 1 and Figure 1 illustrate the conclusion of Theorem 3.

Example 1. Consider Theorem 3 and Corollary 2 for various values of ε, δ and π. For simplicity,

in each of these examples we set n = 1.

1) ε = 1
2
, δ = 1

10
, π = 1

4
: In this case, we have g(ε, δ) = 0.243 < π. Hence, the design matrix

of the optimal mechanism is denoted by eε+δ
eε+1

1−δ
eε+1

1−δ
eε+1

eε+δ
eε+1

 .

This can be verified by noting that Var(Π̂(rδ(1), sδ(1))|π) = 2.372 and Var(Π̂(rδ(t0), sδ(t0))|π) =

2.438.

2) ε = 1, δ = 2
5
, π = 1

10
: In this case, g(ε, δ) = 0.197 > π. Hence, the design matrix of the

optimal mechanism is denoted by  1 0

1− δ δ

 .

Again, this can be verified by noting that Var(Π̂(rδ(1), sδ(1))|π) = 0.385 and Var(Π̂(rδ(t0), sδ(t0))|π) =

0.24.

3) ε = 1
2
, δ = 1

3
, π = 9

10
: Since π ≥ 1

2
, we use Corollary 2 for this example. We note that

g(ε, δ) = 0.382 > 1 − π. Hence, the design matrix of the optimal mechanism is denoted

by  δ 1− δ

0 1

 .

We see that Var(Π̂(sδ(1), rδ(1))|π) = 0.854 and Var(Π̂(sδ(t0), rδ(t0))|π) = 0.143. Note

also that Var(Π̂(rδ(0), sδ(0))|π) = 1.911, corresponding with the conclusion of Lemma 4

4) ε = ln(2), δ = 1
4
, π = 1

4
: In this case, we have g(ε, δ) = 1

4
= π, hence there are two

optimal mechanisms,  eε+δ
eε+1

1−δ
eε+1

1−δ
eε+1

eε+δ
eε+1

 ,

 1 0

1− δ δ

 .

This can be verified by noting that Var(Π̂(rδ(1), sδ(1))|π) = Var(Π̂(rδ(t0), sδ(t0))|π) = 15
16

.
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Fig. 1. A contour plot of various level sets of g(ε, δ). Given π, ε and δ, these level sets can be used to determine the optimal

(ε, δ)-differentially private RR mechanism.

VII. OPTIMAL WARNER MECHANISM FOR (ε, δ)-DIFFERENTIAL PRIVACY

In the final result of this paper, we examine the optimal mechanism for Warner’s RR mecha-

nism. We recall that Warner’s mechanism imposed the additional constraint that p00 = p11 = pw,

so the design matrix becomes  pw 1− pw
1− pw pw

 .

The error of such a mechanism is only a function of pw and the population proportion π, as

shown in (8).

As before, we require 2pw > 1. Our region of feasibility is therefore

Rw =

(
1

2
,
eε + δ

eε + 1

]
.

Theorem 4. Consider Warner’s RR mechanism as presented in Section II-D. Then,

arg min
pw∈Rw

Var(Π̂w(pw)|π) =

{
eε + δ

eε + 1

}
.
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Proof: By (8), we note that

∂ Var(Π̂w(pw)|π)

∂pw
=

1

(1− 2pw)3n
,

hence ∂Var(Π̂w(pw)|π)
∂pw

< 0 when pw > 1
2
. Therefore,

arg min
pw∈Rw

Var(Π̂w(pw)|π) = max(Rw),

and the result follows.

VIII. CONCLUSIONS

We have presented the optimal differentially private RR mechanisms with respect to a max-

imum likelihood estimator, where both strict and relaxed differential privacy were considered.

For a given desired level of privacy, as determined by ε and δ, we presented a method to quickly

determine the optimal mechanism. This will allow for the optimal implementation of differential

privacy in any randomised response survey.
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