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Abstract

We derive conditions for the existence of Lyapunov–Krasovskii functionals for a number of classes of
nonlinear switched systems with time-delay. In particular, we first give conditions for systems of retarded
type that relax those recently described in Sun and Wang (2013) [18]. Using similar techniques, related
results are then derived for coupled differential-difference systems and for systems of neutral type. Finally,
we briefly note some corresponding results for discrete-time systems.
& 2014 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Lyapunov–Krasovskii (L–K) functionals are a key tool in the stability theory of time-delayed
dynamical systems [1]. In the search for L–K functionals, researchers typically focus on a
particular form and then seek conditions for the existence of functionals of this form [2,3]. Over
recent years, there has been considerable interest in the analysis of the so-called positive systems
[4,5]; the defining characteristic of such systems being that the nonnegative orthant is invariant
under the dynamics of the system. The interest in positive systems stems from their appealing
theoretical properties coupled with their practical importance in fields such as Economics,
rg/10.1016/j.jfranklin.2014.05.013
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Demography and Biology. Their defining property allows the use of linear Lyapunov functions
and functionals [6–8] as the functional need only be positive definite on the nonnegative orthant.
Moreover, using comparison theorems, stability conditions derived for positive systems can be
used to establish conditions for related systems that are not necessarily positive. This last remark
applies to the results of this paper.
Our primary goal in this paper is to build on the previous work on linear Lyapunov functions

and functionals [9,6,13,14] for positive systems and to derive conditions for the existence of such
functionals for classes of nonlinear time-delay systems. Many of our results pertain to switched
systems and there is an extensive literature on the stability of such systems [9,13,6,10–12].
In broad terms, we give results for three classes of systems. We first consider switched nonlinear
positive systems of the form recently studied in [18]; we give a condition for absolute stability
and the existence of linear L–K functionals for this class that relaxes the result in [18]. Building
on this, we show that similar techniques can be deployed to derive conditions for linear L–K
functional existence for switched coupled differential-difference equations [21] and switched
neutral systems. Systems described by coupled differential and difference equations arise in
applications such as hydraulics, circuit theory, and the analysis of partial differential equations.
They can also be used to reduce the dimensionality of a large-scale delayed system, by suitably
exploiting the fact that, while an overall system may be high-dimensional, delays often occur in
scalar or low-dimensional parts of the system [20]. Neutral systems in which delays appear in the
derivative of the state vector as well as in state itself arise in a number of applications and have
been widely studied [1]. These results underline the broad applicability of linear L–K
functionals.
The layout of the paper is as follows. In the next section, we define the main notation used

throughout the paper and provide the mathematical background and context for our results. In
Section 3, we present our result for switched nonlinear systems that relaxes the conditions given
in [18]. In Section 4, we turn our attention to coupled differential-difference equations, while the
absolute stability of neutral systems is considered in Section 5. Finally, in Sections 6 and 7 we
note that similar results naturally hold for discrete time systems and present our conclusions.
2. Context and background

We denote the space of continuous functions from ½�τ; 0� to Rn by Cð½�τ; 0�;RnÞ. A matrix
AARn�n is Hurwitz if all of its eigenvalues have negative real part. A is said to be Schur–Cohn if
all of its eigenvalues have modules less than one. We use e to denote the vector all of whose
entries are equal to one, e¼ ð1;…; 1ÞT . For a vector vARn, vZ0 means that viZ0 for 1r irn.
Similarly, v40 means that vZ0, va0, while vb0 means that vi40 for all i. For a vector
xARn, the notation jxj denotes the vector ðjx1j;…; jxnjÞT . For a functional V defined on
Cð½�τ; 0�;RnÞ, ∂þV denotes the upper-right Dini derivative of V [1].
The use of linear Lyapunov functions to study positive and related systems stretches back

beyond the interest of the last decade. We here recall various system classes to which these have
been applied, with the complexity increasing as we proceed. In [15], the system

_xðtÞ ¼ Af ðxðtÞÞ ð1Þ
is considered. The nonlinearity f : Rn-Rn is continuous, diagonal

f ðx1;…; xnÞ ¼ ðf 1ðx1Þ; f 2ðx2Þ;…; f nðxnÞÞT
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and assumed to satisfy

xif iðxiÞ40 for xia0: ð2Þ
Note that this implies that f iðxiÞo0 for xio0, f iðxiÞ40 for xi40; it now follows immediately
from continuity that f ið0Þ ¼ 0 for 1r irn. Such a nonlinearity is said to be admissible.

The matrix A is assumed to be Metzler, meaning that its off-diagonal elements aij, ia j are
nonnegative. Note that, if the nonlinearity satisfies an appropriate Lipschitz condition so that
solutions of Eq. (1) are unique, then these conditions mean that Eq. (1) is a positive system with
an equilibrium at the origin, see [15].

It is established in [15] that if A is a Hurwitz matrix then the zero solution of Eq. (1) is
asymptotically stable for any admissible nonlinearity f(x), and a Lyapunov function can be
chosen in the form

VðxÞ ¼ νT jxj ¼ ∑
n

i ¼ 1
νijxij

where the positive vector ν¼ ðν1;…; νnÞT is a solution of the system ATν50.
Moving to delayed systems, in [16] linear L–K functionals were used to analyse

_xðtÞ ¼ AxðtÞ þ Bxðt�τÞ:
where A is Metzler and B is nonnegative. This guarantees that the system is positive. In [16] it is
shown that the zero solution of this system is asymptotically stable for all τZ0 if and only if
there is some vector νb0 with ðAþ BÞTν50. In this case, a L–K functional of the form

VðxtÞ ¼ νT jxðtÞj þ
Z t

t� τ
νTBjxðθÞj dθ

exists. As usual xt denotes the continuous function on ½�τ; 0� given by xtðθÞ ¼ xðt þ θÞ for
θA ½�τ; 0�. Where there is no risk of confusion, we shall refer to the stability of the system rather
than of the zero solution.

An extension of the core result of [15] to switched systems was given in [9] (related results can
be found in [17]). This paper considers a switched system _xðtÞ ¼ AðsÞf ðxðtÞÞ with a corresponding
family of constituent systems _xðtÞ ¼ AðsÞf ðxðtÞÞ; s¼ 1;…;N where AðsÞ are Metzler and Hurwitz
matrices, and the diagonal nonlinearity f : Rn-Rn satisfies the condition (2). Extending the
result of [15], it is shown that if there exists a positive vector νb0 satisfying
AðsÞTν50; s¼ 1;…;N, then the nonlinear switched system is asymptotically stable for any
admissible nonlinearity f(x) and for arbitrary switching signals. Moreover, a common Lyapunov
function can be chosen in the form νT jxj. In the next section, we consider a class of switched
nonlinear system with time-delay.

3. Switched nonlinear differential systems with time-delay

The system

_xðtÞ ¼ AðsÞf ðxðtÞÞ þ BðsÞf ðxðt�τÞÞ ð3Þ
is considered in [18]. The corresponding family of subsystems is given by

_xðtÞ ¼ AðsÞf ðxðtÞÞ þ BðsÞf ðxðt�τÞÞ; s¼ 1;…;N: ð4Þ
Here AðsÞ are Metzler and Hurwitz matrices, BðsÞ are nonnegative matrices, and the diagonal
nonlinearity f : Rn-Rn is continuous and satisfies Eq. (2).
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Throughout the paper, an admissible switching signal is a piecewise constant function
s : ½0;1Þ-f1;…;Ng, which is right continuous and has only finitely many discontinuities on
every bounded interval.
We say that Eq. (3) is absolutely stable if the origin is a globally asymptotically stable

equilibrium for every admissible switching signal s, every continuous diagonal nonlinearity
satisfying Eq. (2) and every nonnegative delay τ. For a non-switched system, absolute stability is
defined with respect to the family of nonlinearities and all nonnegative delays only.
Let bðsÞij denote the entries of BðsÞ, and write B ¼ fbijg, where

bij ¼ max
s ¼ 1;…;N

bðsÞij :

In [18], it was proved that if there exists a positive vector ν¼ ðν1;…; νnÞT such that
ðAðsÞ þ BÞTν50 for s¼1,…,N, then the switched system (3) is absolutely stable, and a common
L–K functional can be chosen in the form

VðxtÞ ¼ ∑
n

i ¼ 1
νijxiðtÞj þ ∑

n

i ¼ 1
νi

Z t

t� τ
∑
n

j ¼ 1
bijjf jðxjðθÞÞj dθ:

Our goal is to obtain less restrictive stability conditions for Eq. (3) than those in [18].
To begin, we consider the single delay case in the interest of notational simplicity and clarity;

the arguments for the several delay cases are identical.

3.1. A single delay
Theorem 3.1. Consider the system (3). Assume that AðsÞ is Metzler and BðsÞ is nonnegative for
s¼ 1;…;N. Assume that there exists a vector νb0 satisfying the inequalities

ðAðsÞ þ BðrÞÞTν50; s; r¼ 1;…;N: ð5Þ
Then, the switched system (3) is absolutely stable; in fact, there exist positive constants μ1;…; μn
such that

V ¼ ∑
n

i ¼ 1
νijxiðtÞj þ ∑

n

i ¼ 1
μi

Z t

t� τ
jf iðxiðzÞÞj dz ð6Þ

defines a L–K functional for the family (3).

Proof. By assumption, there exists some vector νb0 with ðAðsÞ þ BðrÞÞTν50 for all s; r. Choose
some positive vector qb0 such that

ðAðsÞ þ BðrÞÞTνr�q: ð7Þ
Next set w¼maxfðBðsÞÞTνg, where the maximum is taken elementwise. Clearly wZ0. Now
choose μ¼ wþ q=2. It follows readily from Eq. (7) that for all sAf1;…;Ng,

ðAðsÞÞTνþ wr�q

so that

ðAðsÞÞTνr�q�w5�μ: ð8Þ
On the other hand, it is immediate from the definition of w that for all sAf1;…;Ng,

ðBðsÞÞTν5μ: ð9Þ
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If we differentiate Eq. (6) along any of the systems (4) we find that the derivative satisfies

∂þVr jf ðxðtÞÞjT ðAðsÞTνþ μÞ þ jf ðxðt�τÞÞjT ðBðsÞTν�μÞr�β ∑
n

j ¼ 1
jf jðxjðtÞÞj;

where β is a positive constant. Thus V defines a L–K functional for Eq. (3) as claimed. As this is
true for any choice of f and τ, it follows that Eq. (3) is absolutely stable as claimed. □

Remarks.
(i)
 The results of [18] can be applied to Eq. (3) to provide a closely related set of conditions for
absolute stability. While this previous paper does not restrict the system matrices to be
Metzler and nonnegative, the authors provide stability conditions in terms of comparison
matrices that are Metzler and nonnegative. Our above result can be applied to more general
systems in the same way via comparison theorems.
(ii)
 It is important to note some key distinctions between our work and the result in [18]. First of
all, the L–K functional that we use is diagonal in contrast to those in [18] and [16], where
the upper bound matrix B and the full delay matrix B are used in the integral term. As
discussed extensively in [22], diagonal type functions and functionals have many appealing
properties in addition to their simplicity. It is more important to note that our result gives
less restrictive conditions than those in [18]. The intuitive reason for this is that the B matrix
describes an upper bound or a worst case scenario that does not necessarily correspond to
the dynamics of any of the constituent systems. Essentially, by using B to provide a stability
condition, we sacrifice system information; our approach uses only the matrices defining the
dynamics of the system to construct the L–K functional and for this reason provides less
conservative conditions. The numerical example given below illustrates this last point.
(iii)
 While our result provides a less restrictive condition for stability, it does come with a higher
computational cost. The condition in [18] requires the checking of N linear inequalities,
while ours involves N2. The generalisation to multiple delays is given in Theorem 3.2 and
the computational burden increases with the number of delays and constituent systems. In
general, if we have N constituent systems and l delays, the number of inequalities to be
checked is Nlþ1. It is worth pointing out however that with modern software for linear
programming, a problem involving several thousand inequalities is very tractable.
Example 3.1. Consider an example of the system (3) with n¼2, N¼2 and

A¼ A1 ¼ A2 ¼
�2 0

0 �2

� �
;

B1 ¼
1 1

1 0

� �
; B2 ¼

0 1

3 0

� �
:

On the one hand, if we apply the approach from [18], we would first construct the matrix

B ¼ 1 1

3 0

� �
;

which is the entrywise maximum of B1 and B2. In this case, it can be easily verified that there is
no νb0 such that ðAþ BÞTν50. Hence, we cannot apply Theorem 2 of [18] in this case.
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On the other hand, applying Theorem 3.1, we can check that

ðAþ BðsÞÞTν50; s¼ 1; 2;

with ν¼ ð7; 4ÞT for example.

Remark. It is worth mentioning that the existence of a common Lyapunov function in the form

VðxÞ ¼ νT jxj
for the corresponding delay free system does not necessarily imply the existence of a common
L–K functional in the form (6) for the system (3).

Example 3.2. Consider the simple 1-dimensional systems

_xðtÞ ¼ �0:2xðtÞ þ 0:1xðt�τÞ;

_xðtÞ ¼ �0:9xðtÞ þ 0:8xðt�τÞ:
As the undelayed systems obtained by setting the delay to zero are identical, they clearly have a
common Lyapunov function of the required form. However, it can be easily verified that no
common L–K functional in the form (6) exists for the switched system. In fact, for such a
functional to exist, we would require that 0:1νoμo0:2ν and 0:8νoμo0:9ν, which is clearly
impossible.

3.2. Several delays

Finally, for this section, consider the switched system with several delays

_xðtÞ ¼ AðsÞf ðxðtÞÞ þ BðsÞ
1 f ðxðt�τ1ÞÞ þ⋯þ BðsÞ

l f ðxðt�τlÞÞ ð10Þ
and the corresponding family of subsystems

_xðtÞ ¼ AðsÞf ðxðtÞÞ þ BðsÞ
1 f ðxðt�τ1ÞÞ þ⋯þ BðsÞ

l f ðxðt�τlÞÞ; s¼ 1;…;N; ð11Þ
where AðsÞ are Metzler matrices, and BðsÞ

1 ;…;BðsÞ
l are nonnegative matrices for 1rsrN, and the

nonlinearities f ðxÞ ¼ ðf 1ðx1Þ;…; f nðxnÞÞT are continuous and satisfy the condition (2). The real
numbers τ1;…; τl are nonnegative delays.
It is relatively straightforward to adapt the argument used in the proof of Theorem 2.1 to

obtain the following result for systems with several delays.

Theorem 3.2. Assume that there exists a positive vector νb0 satisfying the inequalities

ðAðsÞ þ Bðp1Þ
1 þ⋯þ BðplÞ

l ÞTν50; ð12Þ
for s; p1;…; plAf1;…;Ng. Then the switched system (10) is absolutely stable, and for the family
(11) there exist positive constants μrj for r¼ 1;…; l, j¼ 1;…; n such that

V ¼ ∑
n

i ¼ 1
νijxiðtÞj þ ∑

n

i ¼ 1
∑
l

r ¼ 1

Z t

t� τr

μrijf iðxiðzÞÞj dz ð13Þ

is a common L–K functional for the system (10).

Remark. To check for the existence of a positive vector νb0 satisfying the inequalities (12) and
to find this vector, one can apply approaches proposed in [6,17,19].
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4. Coupled nonlinear differential and difference systems

In this section, we present sufficient conditions for absolute stability of a class of nonlinear
coupled differential-difference systems using a L–K functional of linear form.

4.1. Nonswitched systems

To begin, consider the system

_xðtÞ ¼ Af ðxðtÞÞ þ Byðt�τÞ; ð14Þ
yðtÞ ¼ Cf ðxðtÞÞ þ Dyðt�τÞ: ð15Þ

Here xðtÞARn, yðtÞARm, AARn�n, BARn�m, CARm�n, DARm�m. The vector field f :
Rn-Rn is assumed to be an admissible nonlinearity.

Initial conditions for Eqs. (14) and (15) are specified by a vector xð0ÞARn together with a
function y0 in Cð½�τ; 0�;RnÞ. We write Jxð0Þ; y0 J for maxð‖xð0Þ‖2; ‖y0‖1Þ where ‖ � ‖2 is the
usual Euclidean norm on Rn and ‖ � ‖1 is the l1 norm on Cð½�τ; 0�;RnÞ. Under our assumptions
on the vector field f, the origin is always an equilibrium point of Eqs. (14) and (15). We recall the
following stability definitions from [20].

Definition 4.1. The origin is a stable equilibrium of Eqs. (14) and (15) if for any e40, there
exists some δ40 such that Jxð0Þ; y0 Joδ implies that JxðtÞ; yt Joe for all tZ0. It is said to be
asymptotically stable if it is stable and, in addition, JxðtÞ; yt J-0 as t-1 for all initial
conditions xð0Þ; y0.

Our primary concern throughout is with asymptotic stability. In an abuse of notation, we shall
refer to the stability of the system (14) and (15) rather than the stability of the equilibrium at the
origin.

The system (14) and (15) is said to be absolutely stable if its zero solution is asymptotically
stable for every admissible nonlinearity and every τZ0.

Remark. As noted in [20], the second equation (15) can be viewed as a separate system in
which yt is the state and x(t) acts as an input. Moreover, it is clear that for the overall system (14)
and (15) to be asymptotically stable, the system described by Eq. (15) must be input-to-state
stable. This immediately implies that Schur-stability of the matrix D is a necessary condition for
asymptotic stability of Eqs. (14) and (15).

Furthermore, if Eqs. (14) and (15) are absolutely stable, then they are asymptotically stable
when f iðxiÞ ¼ xi for all i and τ¼ 0. It follows immediately that the matrix

Aþ BðI�DÞ�1C ð16Þ
must be Hurwitz.

Our next result considers a coupled differential-difference system with Metzler and
nonnegative system matrices and shows that in this case the last condition above is sufficient
for the existence of a linear L–K functional.

Theorem 4.1. Consider the system (14) and (15). Assume that A is a Metzler matrix and that B,
C, D are nonnegative matrices. Furthermore, assume that D is Schur–Cohn stable and that
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Eq. (16) is Hurwitz stable. Then there exist positive constants μi, νi, 1r irn, such that

V ¼ ∑
n

i ¼ 1
νijxiðtÞj þ ∑

n

i ¼ 1
μi

Z t

t� τ
jyiðzÞj dz ð17Þ

is a L–K functional for the system defined by Eqs. (14) and (15).

Proof. As D is a Schur–Cohn matrix, there exists some vector vb0 with ðD� IÞTv50.
Furthermore, it follows that I�D is an M-matrix and hence has a non-negative inverse.
Therefore, the matrix BðI�DÞ�1C is also non-negative and Aþ BðI�DÞ�1C is Metzler. By
assumption, this last matrix is also Hurwitz and thus we can choose some νb0 such that

ðAþ BðI�DÞ�1CÞTν50: ð18Þ
Next set

μ¼ ðI�DT Þ�1BTνþ εv ð19Þ
where ε is a positive constant. It follows readily from Eq. (19) that

BTνþ ðD� IÞTμ¼ εðD� IÞTv50 ð20Þ
for any ε40. It also follows from Eq. (19) that

ATνþ CTμ¼ ðAþ BðI�DÞ�1CÞTνþ εCTv:

From Eq. (18), we see that we can choose ε40 small enough to ensure that

ATνþ CTμ50: ð21Þ
Next note that the Dini upper-right derivative of the functional (17) satisfies the inequality

∂þVr ∑
n

j ¼ 1
jf jðxjðtÞÞj ∑

n

i ¼ 1
νiaij þ ∑

n

i ¼ 1
μicij

� �
þ ∑

n

j ¼ 1
jyjðt�τÞj ∑

n

i ¼ 1
νibij þ ∑

n

i ¼ 1
μidij�μj

� �
:

ð22Þ
We can write the right-hand side of Eq. (22) as

jf ðxÞjT ðATνþ CTμÞ þ jyðt�τÞjT ðBTνþ ðD� IÞTμÞ: ð23Þ
From Eq. (21), it follows that we can find some β40 such that ATνþ CTμr�βe where
e¼ ð1; 1;…; 1ÞT . Combining this with Eqs. (20) and (23) yields

∂þVr�β ∑
n

j ¼ 1
jf jðxjðtÞÞj:

It now follows immediately from Theorem 3 of [20] that Eq. (17) is a L–K functional for the
system (14) and (15), and that the system is absolutely stable as claimed. □

Example 4.1. Consider the system (14) and (15) with matrices given by

A¼ �4 1

1 �2

� �
; D¼

1=2 0

0 3=4

 !
;

B¼ C¼
1=2 1=4

1=4 1=3

 !
:
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Clearly, D is Schur–Cohn; moreover, it can be easily verified that Aþ BðI�DÞ�1C is Hurwitz.
Thus Theorem 4.1 implies that Eqs. (14) and (15) are absolutely stable and admit an L–K
functional of the form (17).

If we combine Theorem 4.1 with the remark preceding it, we obtain the following result.

Corollary 4.1. Consider the system described by Eqs. (14) and (15). Assume that A is a Metzler
matrix, B, C, D are non-negative matrices, and D is Schur–Cohn stable. The system (14) and
(15) is absolutely stable if and only if the matrix (16) is Hurwitz stable.

4.2. Switched systems

We next consider the switched coupled system

_x ¼ AðsÞf ðxðtÞÞ þ BðsÞyðt�τÞ;
yðtÞ ¼ CðsÞf ðxðtÞÞ þ DðsÞyðt�τÞ ð24Þ

and the corresponding family of subsystems

_x ¼ AðsÞf ðxðtÞÞ þ BðsÞyðt�τÞ;
yðtÞ ¼ CðsÞf ðxðtÞÞ þ DðsÞyðt�τÞ; s¼ 1;…;N: ð25Þ

It is not too difficult to adapt the argument of Theorem 4.1 to derive the following result.

Theorem 4.2. Consider the switched coupled system (24). Assume that AðsÞ is a Metzler matrix,
and that BðsÞ;CðsÞ;DðsÞ are nonnegative matrices for sAf1;…;Ng. Further assume that there
exists a vector vb0 such that

DðsÞT v5v for s¼ 1;…;N: ð26Þ
If there exists a vector νb0 satisfying

ðAðsÞ þ BðrÞðI�DðrÞÞ�1CðsÞÞTν50; s; r ¼ 1;…;N; ð27Þ
then we can choose positive real numbers μ1;…; μn such that Eq. (17) is a common L–K
functional for the family (25) and the system (24) is absolutely stable.

Proof. For ε40, define

μ¼maxrfðI�DðrÞÞ�TBðrÞTνg þ εv;

where the maximum is again taken componentwise. It can be immediately verified by direct
calculation that

BðrÞTνþ ðDðrÞ� IÞTμrεðDðrÞ� IÞTv50 ð28Þ
for r ¼ 1;…;N. On the other hand, it follows from our choice of ν that for s; r ¼ 1;…;N,

AðsÞTνþ CðsÞT ðI�DðrÞÞ�TBðrÞTν50:

Taking the elementwise maximum over r, it now follows that we can choose ε40 sufficiently
small to ensure that

AðsÞTνþ CðsÞTμr�βe ð29Þ
for some β40.
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If we differentiate the functional (17) with respect to the sth subsystem from the family (25),
we obtain

∂þVr jf ðxðtÞÞjT ðAðsÞTνþ CðsÞTμÞ þ jyðt�τÞjT ðBðsÞTνþ ðDðsÞ � IÞTμÞ:
It follows from Eqs. (28) and (29) that

∂þVr�β ∑
n

i ¼ 1
jf iðxiÞj:

The result now follows immediately.
In the case where the switching only occurs in the state x(t), so that both B and D are fixed, the

conditions of the previous result can be relaxed somewhat. □

Corollary 4.2. Consider the system (24) and assume that BðsÞ ¼ B, DðsÞ ¼D, where B, D are
nonnnegative and D is Schur–Cohn for s¼ 1;…;N. Furthermore, suppose that AðsÞ is a Metzler
matrix, and that CðsÞ is nonnegative. If there exists a positive vector ν satisfying

ðAðsÞ þ BðI�DÞ�1CðsÞÞTν50; s¼ 1;…;N;

the system (24) is absolutely stable, and there exists a common L–K functional of the form (17)
for the family (25).

Remark. As in Section 3, the results of this section can be extended to coupled systems with
several delays.

5. Neutral type systems

In this section, we present a preliminary result on the stability of neutral systems derived using
the techniques of the previous sections.
Consider the switched linear neutral delay system

_xðtÞ�D_xðt�τÞ ¼ AðsÞxðtÞ þ GðsÞxðt�τÞ ð30Þ
and the corresponding family of subsystems

_xðtÞ�D_xðt�τÞ ¼ AðsÞxðtÞ þ GðsÞxðt�τÞ; s¼ 1;…;N: ð31Þ
Here xARn, AðsÞ;GðsÞ;D are constant matrices in Rn�n and τ is a constant nonnegative delay.

In the stability analysis of neutral systems, it is usual to assume that the operator on the derivative
is stable. In our context, this amounts to assuming that the matrix D is Schur–Cohn stable. We
make this assumption from here on.
It is known, see for example [21], that the systems in the family (31) can be transformed into

the family of coupled delay differential and continuous time difference systems:

_yðtÞ ¼ AðsÞyðtÞ þ BðsÞxðt�τÞ; xðtÞ ¼ yðtÞ þ Dxðt�τÞ;
where BðsÞ ¼ AðsÞDþ GðsÞ.
With this in mind, it is possible to analyse the stability of the system (30) using the results of

the previous section. However, we shall use results presented in [1] to provide a sufficient
condition for the systems (31) to have a common L–K functional. Note that, in keeping with a
standard approach to neutral systems, the systems in the family (31) can be rewritten as follows:

_xðtÞ�D_xðt�τÞ ¼ AðsÞðxðtÞ�Dxðt�τÞÞ þ BðsÞxðt�τÞ; ð32Þ
for s¼1,…,N. Here BðsÞ ¼ AðsÞDþ GðsÞ.
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In contrast to the previous sections, we will not assume that the above systems are positive.
In fact, characterising a positive neutral system is not straightforward, and even if we assume that
the matrices AðsÞ are Metzler, and D;GðsÞ are nonnegative, then it does not necessarily follow that
BðsÞ is nonnegative.

Instead, we use properties of Metzler and nonnegative matrices in an indirect way.
We construct the auxiliary matrices ~A

ðsÞ
; ~B

ðsÞ
; ~D whose entries are given by

~aðsÞii ¼ aðsÞii ; ~aðsÞij ¼ jaðsÞij j for ia j;

~b
ðsÞ
ij ¼ jbðsÞij j; ~dij ¼ jdijj:

With this notation, we have the following result.

Theorem 5.1. Consider the system (30). Suppose that ~D is a Schur–Cohn stable matrix, and
that there exists a positive vector ν¼ ðν1;…; νnÞT satisfying

ð ~AðsÞ þ ~B
ðrÞðI� ~DÞ�1ÞTν50; s; r ¼ 1;…;N:

Then the switched system (30) is asymptotically stable for arbitrary admissible switching law
and for any τZ0.

Proof. Choose some vector vb0 such that ð ~D� IÞv50 and for ε40, define

μ¼maxsfð ~BðsÞðI� ~DÞ�1ÞTνg þ εv:

As in the proofs in the last two sections, it can be readily checked that

ð ~BðsÞÞTνþ ð ~D� IÞTμ50

for all s and that by choosing ε40 sufficiently small, we can ensure that

ð ~AðsÞÞTνþ μr�βe

for some β40.
Now consider a L–K functional in the form

V ¼ ∑
n

i ¼ 1
νi
���xiðtÞ� ∑

n

k ¼ 1
dikxkðt�τÞ

���þ ∑
n

j ¼ 1
μj

Z t

t� τ
jxjðzÞj dz:

The Dini upper-right derivative along the sth subsystem of Eq. (30) of this functional satisfies

∂þVr ∑
n

j ¼ 1

���xjðtÞ� ∑
n

k ¼ 1
djkxkðt�τÞ

��� ∑
n

i ¼ 1
νi ~a

ðsÞ
ij þ μj

� �

þ ∑
n

j ¼ 1
jxjðt�τÞj ∑

n

i ¼ 1
νi ~b

ðsÞ
ij þ ∑

n

i ¼ 1
μi ~dij�μj

� �
:

It follows from the first part of the proof that

∂þVr�β ∑
n

j ¼ 1

���xjðtÞ� ∑
n

k ¼ 1
djkxkðt�τÞ

���:
The result now follows from Theorem 9.8.4 of [1]. □



A.Yu. Aleksandrov, O. Mason / Journal of the Franklin Institute 351 (2014) 4381–43944392
6. Switched nonlinear difference systems with time-delay

In this section, we briefly note that results on linear functionals similar to those given in
Section 3 can also be derived for discrete-time systems. As noted in [22], the systems we
consider here arise in applications such as digital filtering.
As in Section 3, we first consider the single delay case in the interest of notational simplicity and

clarity.
6.1. A single delay

Consider a switched system of the form

xðk þ 1Þ ¼ AðsÞf ðxðkÞÞ þ BðsÞf ðxðk�mÞÞ; ð33Þ
and the corresponding family of subsystems

xðk þ 1Þ ¼ AðsÞf ðxðkÞÞ þ BðsÞf ðxðk�mÞÞ; ð34Þ
for s¼1,…,N. Here, AðsÞ;BðsÞ are nonnegative matrices and m is a nonnegative integer delay. The
nonlinearities f ðxÞ ¼ ðf 1ðx1Þ;…; f nðxnÞÞT are continuous for xARn and satisfy Eq. (2). In
addition, in this section we will assume that

jf iðxiÞjr jxij; i¼ 1;…; n: ð35Þ
We denote by xk the state of the delayed system given by xk ¼ ðxðkÞ; xðk�1Þ;…; xðk�mÞÞT .

Theorem 6.1. Let AðsÞ, BðsÞ be nonnegative matrices for s¼ 1;…;N. Assume that there exists a
vector νb0 satisfying the inequalities

ðAðsÞ þ BðrÞ � IÞTν50; s; r¼ 1;…;N: ð36Þ
Then there exist positive numbers μ1;…; μn such that

V ¼ ∑
n

i ¼ 1
νijxiðkÞj þ ∑

n

i ¼ 1
μi ∑

m

l ¼ 1
jf iðxiðk� lÞÞj ð37Þ

defines a common L–K functional for the systems (34).

Proof. As our system is discrete-time, we consider the difference ΔV ¼ Vðxkþ1Þ�VðxkÞ of the
functional (37) with respect to the system (34) for some sAf1;…;Ng. Using Eqs. (34) and (35),
we can show by direct calculation that

ΔVr ∑
n

j ¼ 1
jf jðxjðkÞÞj ∑

n

i ¼ 1
νia

ðsÞ
ij �νj þ μj

� �
∑
n

j ¼ 1
jf jðxjðk�mÞÞj ∑

n

i ¼ 1
νib

ðsÞ
ij �μj

� �
: ð38Þ

It is clear from Eq. (38) that if we can find a positive vector μb0 such that

ðAðsÞ� IÞTνþ μ50; BðsÞTν�μ50; s¼ 1;…;N; ð39Þ
then Eq. (37) will define a common L–K functional for the family of systems (34).
To see that such a vector μ must exist, note that as there are only finitely many inequalities in

Eq. (36), there exists some positive vector wb0 with

ðAðsÞ� IÞTνþ ðBðrÞÞTν5�w
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for s; r in f1;…;Ng. Define d¼maxrfðBðrÞÞTνg as the componentwise maximum of the vectors
ðBðrÞÞTν. It is now easy to verify that μ¼ d þ w=2 satisfies Eq. (39) and hence for this choice of
μ, Eq. (37) defines a L–K functional for Eq. (33) as claimed. □

Example 6.1. Consider the system (33) with two constituent systems whose matrices are given
by

Að1Þ ¼
1=2 0

1=4 1=4

 !
; Bð1Þ ¼

1=8 0

0 1=12

 !
;

Að2Þ ¼
2=5 1=10

0 3=10

 !
; Bð2Þ ¼

1=5 0

0 1=10

 !
:

In this case, we need to find a vector νb0 such that ðAð1Þ þ Bð1Þ� IÞTν50,
ðAð1Þ þ Bð2Þ � IÞTν50, ðAð2Þ þ Bð1Þ � IÞTν50, ðAð2Þ þ Bð2Þ� IÞTν50. It is not difficult to check
that the vector ν¼ ð1; 1ÞT will suffice in this instance. Thus, the system (33) is absolutely stable
and admits an L–K functional of the form (37). In fact, we can choose the vector
w¼ ð1=25; 1=4ÞT and find that d¼ ð1=125; 1=40ÞT . Therefore, setting μ¼ ð7=250; 6=40ÞT we
obtain the functional whose existence is guaranteed by the theorem.

6.2. Several delays

Finally, for this section, consider the family of subsystems

xðk þ 1Þ ¼ AðsÞf ðxðkÞÞ þ BðsÞ
1 f ðxðk�1ÞÞ þ⋯þ BðsÞ

m f ðxðk�mÞÞ; ð40Þ
for s¼1,…,N. Here AðsÞ;BðsÞ

1 ;…;BðsÞ
m are nonnegative matrices for 1rsrN, and the

nonlinearities f ðxÞ ¼ ðf 1ðx1Þ;…; f nðxnÞÞT satisfy the conditions (2) and (35).
We note that it is relatively straightforward to adapt the argument used in the proof of

Theorem 6.1 to obtain the following result for systems with several delays.

Theorem 6.2. Assume that there exists a positive vector νb0 satisfying the inequalities

ðAðsÞ þ Bðr1Þ
1 þ⋯þ BðrmÞ

m � IÞTν50;

for s; r1;…rm ¼ 1;…;N. Then there exist positive constants μlj, such that

V ¼ ∑
n

i ¼ 1
νijxiðkÞj þ ∑

n

j ¼ 1
∑
m

l ¼ 1
μljðjf jðxjðk�1ÞÞj þ⋯þ jf jðxjðk� lÞÞjÞ

defines a common L–K functional for the family (40).

7. Conclusions

We have presented a set of results concerning Lyapunov–Krasovski functionals and absolute
stability for various classes of nonlinear, switched systems with time-delay. Specifically, we have
described sufficient conditions for absolute stability of the system class considered in [18] that
relax the requirements of this previous paper. We have extended this analysis to systems
described by coupled differential-difference equations and neutral systems. We have also briefly
noted that corresponding results can be obtained for discrete-time systems. There are several
possibilities for developing the work described here. In particular, it would be of interest to
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investigate whether our analysis can be adapted to the design of stabilising switching sequences
[23] or to address questions of controller synthesis such as those considered in [7,8].
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