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Abstract 

 Traditionally the in-vivo assessment of novel therapeutics and food additive 

toxicity has relied strongly upon the use of a variety of vertebrate species, such as 

mice, rats, guinea pigs and birds. However the use of mammalian models incurs large 

costs and raises issues of ethical acceptance. In the past decade alternative models 

showing striking metabolic similarities to mammalian models have been widely utilized 

as mini models in biological research. These alternative model systems include; 

Zebrafish, Caenorhabditis elagans, Drosophila melanogaster and Bombyx mori.  

 A widely used alternative model is Galleria. mellonella larvae. G. mellonella 

fulfil many of the basic requirements of a useful animal infection model and have 

many advantages over other invertebrate systems. There are a lot of similarities 

between the insect and mammalian gastrointestinal tracts.  Several xenobiotic 

metabolism enzymes and anti-oxidant enzymes are highly conserved between species. 

The insect fat body functions in drug metabolism in a similar way to the mammalian 

liver. In addition the insect immune system and mammalian innate immune system 

show vast similarities in the cellular and Humoral responses. The response of G. 

mellonella larvae to food additives was ascertained. 

 In this study larvae of the greater wax moth were administered eight 

commonly used food additives by intra-haemocoel or force feeding. A strong 

correlation between the relative toxicity of the compounds was observed between 

HEp-2 cells and larvae force-fed or administered the compounds by intra-haemocoel 

challenge. In addition a positive correlation between the LD50 values obtained for the 

preservatives in rats and in G. mellonella larvae administered the compounds by 

feeding was established. 

 The fungicidal ability of haemocytes form larvae administered commonly used 

food additives was ascertained. There were significant decreases seen in the fungicidal 

ability of haemocytes extracted from larvae administered sodium benzoate, sodium 

nitrate, potassium nitrate, however there was no significant changes seen in the 

fungicidal killing ability of haemocytes from larvae treated with potassium sorbate, 

potassium nitrite, caffeine, monosodium glutamate and creatine. 
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 Significant increases in catalase activity was seen in the haemolymph of larvae 

administered sodium benzoate. Significant increases in superoxide dismutase activity 

were seen in larvae exposed to potassium sorbate, potassium nitrate and monosodium 

glutamate. A Significant increase in alkaline phosphatase activity was seen in larvae 

challenged with monosodium glutamate, but no significant changes were seen in 

larvae challenged with creatine monohydrate. 

 The metabolism of caffeine was analysed using RP-HPLC analysis. Caffeine 

levels in larval haemolymph were significantly reduced from t = 0 to t = 48. The 

metabolites theobromine and theophylline were detected in larvae administered 

caffeine. The effect of caffeine on larval movement and rate of pupation was also 

measured. Both processes saw significant reductions when compared to control 

larvae. 

 Three proteomic studies were conducted to determine the proteomic response 

to potassium nitrate, caffeine and monosodium glutamate. All three studies revealed 

findings that were comparable to those of vertebrates. 
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1.1 Food additive toxicity and the development of a novel model for toxicity 

screening 

Conventional in-vivo assays to assess the toxicity of novel therapeutics and 

food additives have relied strongly upon the use of a variety of vertebrate species, 

such as mice, rats, guinea pigs and birds (Tsai et al., 2016). The use of mammals for 

studying toxicity of compounds has contributed enormously to our knowledge of 

food additive toxicity primarily due to the striking homology between mammalian 

genomes and the many similarities in anatomy, cell biology and physiology (Perlman, 

2016). The toxicity of a compound can be reduced in-vivo due to degradation by host 

enzymes, binding to host components, and the effects of other physiological 

conditions such as pH (Desbois and Coote, 2012). Up until 1965 in Japan, the food 

preservative AF-2 had been used, until it was banned because of carcinogenicity 

detected in experimental animals (Sasaki et al., 2002). However, despite these 

advances, there is recognition that the number of mammals used in such tests must 

be reduced to the minimum and that alternative, but ethically acceptable systems, 

must be developed (Browne and Kavanagh, 2013). 

In the past decade, insects have been widely utilised as model hosts in 

biological research (Wojda, 2017). Insects are a very successful group of 

invertebrates with approximately 1 million species that inhabit all ecological niches, 

apart from the sea. A highly versatile and efficient immune system has allowed 

insects to inhabit a wide variety of environments. Invertebrates and vertebrates 

diverged approximately 500 million years ago, but despite this there are striking 

similarities between their immune systems and gastrointestinal tracts. As a result of 

these conserved similarities a wide range of insects have been employed as models 

to replace conventional mammals for studying the virulence of pathogens (Jaconsen, 

2014; Kavanagh and Fallon, 2010; Junqueira, 2012), the assessment of the activity of 

antifungal agents (Lionakis and Kontoyianis, 2005; MacCallum et al., 2013; Maurer et 

al. 2015) and in determining the efficacy and toxicity of novel antimicrobial drugs 

(Homamoto et al., 2004; Rowan et al., 2009; Desbois and Coote, 2011; Browne et al., 

2014). Insects are also used as models to test the acute and chronic toxicity of 

pesticides (Buyukguzel et al., 2013), solvents (Soos and Szabad, 2014) nanoparticles 
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(Carmona et al., 2015) and food additives (Andretic et al., 2008; Chen et al., 2009; 

Grunwald et al., 2013). In fact insect are becoming well established alternatives to 

mammalian models, providing results that are comparable to mammalian data (Cook 

and McArthur, 2013; Jander et al., 2000; Maccallum et al., 2013).  

Insects provide a more ethically acceptable model, a means to reduce the 

number of vertebrate models employed and therefore minimizing the amount of 

suffering imposed on animals with similar neurological and sentient capacities to 

humans (Scully & Bidochka 2006). Mammalian models, although a necessity, have 

certain disadvantages such as time, cost, legal and ethical restrictions (Mcmillan et 

al. 2015). A key principal of scientific research is the 3R policy (replace, reduce and 

refine). The 3R policy requires the use of mammalian models to be reduced to a 

minimum and to employ alternative, more ethically acceptable systems where 

possible. A wide variety of systems has been evaluated as possible alternative models 

to mammalian testing (e.g. zebra fish embryos, nematodes, animal cell culture) and 

insects have emerged as very useful model systems for specific tests. In particular, 

insects belonging to the order Lepidoptera (the moths and butterflies) are now a 

popular choice for evaluating the virulence of fungal pathogens, for assessing the in 

vivo activity of antifungal agents and for measuring the in vivo toxicity of compounds 

(Maurer et al., 2015). Insect infection models are cheaper and less laborious to 

establish and maintain than mammalian models and are more amenable to high-

throughput screening, giving statistically sound data (Desbois & McMillan, 2015) 

(Cook and McArthur, 2013). A number of insect models have been established 

including Drosophila melanogaster (Sarikaya and Cakir, 2005; Lionakis and 

Kontoyiannis, 2005), Galleria mellonella (Kelly and Kavanagh, 2011; Cook and 

McArthur, 2013; Kavanagh and Fallon, 2010), Bombyx mori (Hamamoto et al., 2004, 

2009), Manducta sexta (Dean et al., 2002) and Romalea microptera (Johny et al., 

2007). A number of insects have also been established as food toxicity models 

including D. melanogaster (Sarikaya and Cakir, 2005; Coelho et al., 2015; Wu et al., 

2010) the red flour beetle Tribolium castaneum (Grunwald et al., 2013)(Nakayama et 

al., 2012) and  Apis mellifera (Ishay & Painiry, 1979). 
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Larger mammals such as sheep or rats can have physiologies and organ sizes 

that are similar to humans. There is a high degree of functional conservation in basic 

cell biological processes between mammals and invertebrates, for example between 

the insect haemocyte and the mammalian neutrophil (Kavanagh and Reeves, 2004). 

Mammals and insects are both susceptible to predation by micro-organisms. 

Moreover, the mechanisms by which pathogens establish infection (i.e. adhesion, 

invasion, systemic spread and avoidance of immune response) is the same in both. 

In response to these infections, both mammals and insects have evolved a range of 

mechanisms to protect themselves. Although some of these mechanisms (i.e. the 

adaptive immune system) are restricted to higher order metazoans, physical barriers 

to infection and innate immune systems are both common to mammals and insects 

and show high functional homology (Kemp and Massey, 2007). Insects however are 

not applicable models for the study of all human pathogens (e.g. the malaria 

parasite), although if appropriately utilised, they provide a range of benefits to the 

researcher. Hence, employing insects as model systems for the determination of 

microbial pathogenesis, toxicity testing and antimicrobial therapies is extremely 

suitable and relevant. 
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1.2 Insect Immune system 

Although vertebrates and invertebrates diverged over 500 million years ago 

many of the structures and functions of the immune systems have been retained 

(Kavanagh and Reeves, 2004). The use of insects, including G. mellonella larvae, also 

offers the possibility of studying a system equivalent to the innate immune system 

of mammals without ‘interference’ from the adaptive immune response. Thus 

insects, and G. mellonella larvae in particular, may be used to model innate immune 

responses and give a clearer understanding of the role of this system in immune 

defences of vertebrates. Insects rely on multiple innate immune defence 

mechanisms which show strong structural and functional similarities to those of 

mammals (Kavanagh and Reeves, 2004; Browne et al., 2013). These immune 

functions have mainly been characterized in D. melanogaster which serves as a 

model for insect immunity (Schneider, 2000). The insect immune response consists 

of two tightly interconnected components known as the cellular and the humoral 

responses. The cellular response is mediated by haemocytes and involves responses 

such as phagocytosis, encapsulation and clotting. The humoral defences are 

composed of soluble effector molecules such as anti-microbial peptides, 

complement-like proteins, melanin, and products created by proteolytic cascades, 

such as the phenoloxidase (PO) pathway, which immobilize or kill pathogens in a way 

similar to the complement cascade in mammals (Kavanagh and Fallon, 2010).  

1.2.1 Cuticle and haemolymph 

 The cuticle is the first line of defence against pathogens in insects and acts in 

a similar way to the skin of mammals by providing a physical barrier against infection. 

The epicuticle is covered in a waxy layer containing lipids and fatty acids, which may 

display anti-microbial properties (Kavanagh and Reeves 2004). The cuticle itself is 

composed of chitin embedded in a protein matrix. Injury to the cuticle leads to the 

production of ceropins and attacins (Browne et al., 2013). Pathogens that breach the 

cuticle activate wound healing through the use of clottable lipophorin proteins 

(Kavanagh and Reeves 2004). The mammalian Von Willebrand’s factor, functions 

similarly to these lipophorin proteins, and both clotting factors share a homologous 

domain (Vilmos and Kurrucz, 1998). The insect haemolymph is functionally similar to 
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mammalian blood and functions in the transport of nutrients, waste products and 

signal molecules; however, unlike mammalian blood, it does not function in 

respiration (Mellanby, 1939). The volume of haemolymph present in an insect differs 

between species and even within a species depending upon the developmental stage 

of the individual insect (Rathcliff, 1985).  

1.2.2 Humoral response              

Insects contain pathogen recognition receptors such as integrins, 

apolipoproteins and lectins, which are conserved between multiple species of 

mammals and insects (Mowlds et al., 2010). Upon recognition of foreign material 

these pathogen recognition receptors can activate both the production of AMPs and 

the melanisation reaction.  The systems that mediate Drosophila Toll and mammalian 

IL-1 receptor-mediated signalling are very similar in structure and function (Browne 

et al., 2013). Both pathways lead to the activation of NFκB transcription factors 

causing the degranulation of both neutrophils and haemocytes and the subsequent 

release of AMPs (Browne et al., 2013, Kavanagh and Reeves, 2004). AMPs are highly 

conserved between species and can act on pathogens as immunomodulatory and/or 

bactericidal agents (Strand, 2008). AMPs are usually produced in the fat body but can 

also be produced and stored in haemocytes. The range of AMPs in insects include 

lysozyme; which breaks down bacterial cell walls, cecrophins; which have been found 

to also attack bacterial cell walls, defensins; which attack Gram positive bacteria and 

apolipophorin 3, which binds to components of bacterial cell walls such as 

lipopolysaccarides (LPS) (Ratcliff, 1985; Kavanagh and Reeves, 2004).  The 

melanisation reaction, which is a common response to parasite entry in invertebrate 

animals, especially arthropods, is due to the activity of an oxidoreductase, 

phenoloxidase. Prophenoloxidase shows similar sequence regions to vertebrate 

complement proteins C3 and C4 (Söderhäll & Cerenius 1998). The prophenoloxidase 

activating system in a non-self-recognition system that leads to the deposition of 

melanin on microbial surfaces. The recognition of foreign material such as 

lipopolysaccharides by pathogen recognition receptors activates the phenoloxidae 

cascade. Monophenyl L-dopa:oxygen oxidoreductase, also known as phenoloxidase,  
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is an enzyme that catalyses the oxidization of phenols to quinones. These quinones 

are then polymerized non-enzymatically to melanin (Söderhäll & Cerenius, 1998).  

1.2.3 The cellular response 

Haemocytes are found circulating freely in the haemolymph or adhering to 

internal organs such as the fat body or the digestive tract of the insect and can be 

rapidly mobilised upon breach of the cuticle or entry of a pathogen. At least eight 

different subtypes of haemocyte have been found in insects: prohaemocytes, 

plasmatocytes, granular cells, coagulocytes, crystal cells, sperulocytes, oenocytoids 

and thrombocytoids (Pandey and Tiwari, 2012; Tanada and Kaya, 1993). At least six 

types of haemocytes have been identified in G. mellonella; prohaemocytes (can 

differentiate into a number of cell types), plasmatocytes (contain lysosomal enzymes 

and are involved in capsule formation), granulocytes (contain granules), coagulocytes 

(function in the clotting process), spherulocytes (have small spherical inclusions) and 

oenocytoids (may contain prophenoloxidase) (Price and Ratcliffe, 1974) (Fig 1.1). 

Lepidopteran haemopoietic organs are found in the meso and metathorax of the 

insect and haematopoiesis occurs during insect embryogenesis (Grigorian and 

Hartenstein, 2013). These organs are the primary sources of prohaemocytes and 

plasmatocytes (Ling et al., 2005). Circulating granulocytes, oenocytes and the 

spherulocytes most likely derive from the prohaemocytes that are already in 

circulation in the haemolymph (Nardi et al., 2003). In order for phagocytic cells to 

engulf and kill pathogens, haemocytes must first recognize invading pathogens and 

this pathogen recognition mechanism shows further similarities in both insects and 

mammals (Kavanagh and Reeves, 2004). Phagocytosis in insects is known to be lectin 

mediated and is similar to what occurs in human neutrophils (Kavanagh and Reeves, 

2004). The insect haemocyte shows structural and functional similarities to the 

mammalian neutrophil in that both can phagocytose and neutralize engulfed 

pathogens through the generation of superoxide and the secretion of lytic enzymes 

in the process known as degranulation (Renwick et al., 2007; Browne et al., 2013) 

(Table 1.1). Bergin et al., (2005) identified proteins in haemocytes homologous to a 

number of proteins essential for superoxide production in human neutrophils and 

demonstrated that significant regions of the 67-kDa and 47-kDa insect haemocyte 
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proteins are identical to regions of the p67phox and p47phox proteins of neutrophils 

(Fig. 1.2). The killing ability of both the mammalian neutrophil and insect haemocyte 

are inhibited when exposed to various toxins such as gliotoxin (Renwick et al., 2007), 

fumagillin (Fallon et al., 2011), cytochalasin b and nocodazole (Banville et al., 2011).  

Encapsulation occurs when haemocytes bind to large structures such as 

protozoa, nematodes and the eggs and larvae of parasitic insects, forming a layer of 

haemocytes. The process usually occurs within a half an hour of the invasion of 

foreign material. Granular cells initially form a layer around the invading object and  

release plasmatocyte spreading peptides which attracts plasmatocytes to the site 

and induces aggregation (Vilmos & Kurucz, 1998; Kavanagh and Reeves, 2004). The 

invading objects are then destroyed. Apolipophorin 3 an antimicrobial peptide has 

been identified to stimulate the process of encapsulation in G. mellonella (Whitten 

et al., 2004). Nodulation is lectin mediated and occurs when multiple haemocytes 

bind to clusters of bacteria and fungi (Vilmos and Kurucz, 1998). The binding of 

haemocytes together allows for the formation of an over lapping sheath around the 

invading pathogen. This process results in the activation of the phenoloxidase 

cascade and the subsequent killing of the pathogen (Lavine and Strand, 2002). 
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Fig 1.1 Haemocytes found within G. mellonella larvae (Kavanagh and Reeves, 2004). 

G. mellonella has 6 types of haemocytes granulocyte (granular cell) and plasmatocyte 

(phagocytosing cells), oenocytoid and coalgulocytes (secondary roles involved in 

immune defence), spherulocyte and adipohaemocyte (energy storage). 
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Table 1.1 Comparison of processes in mammalian neutrophils and insect haemocyte 

(Browne et al. 2013). 

Abbreviations: AMPs, antimicrobial peptides: ERK extracellular signal-regulated 

kinases: JAK-STAT, janus kinas-signal transductor and activator or transcription: 

MAPK, mitogen-activated protein kinases: MPO, myeloperoxidase: PKA, protein 

kinase A: PKC, protein kinase C: ROS, reactive oxygen species 
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1.3 Similarities between the insect and mammalian gastrointestinal tracts. 

 In addition to the similarities in the immune responses (Section 1.2), the 

insect and mammalian gastrointestinal tracts share similar tissue, anatomy and 

physiological function (Fedhila et al., 2010). Plasma membranes from insect midgut 

cells are separated into apical and basolateral domains. The apical domain is usually 

modified into microvilli with a molecular structure similar to microvilli present in the 

gastrointestinal tract of mammals (Fedhila et al., 2010). Intestinal micro-organisms 

can demonstrate several types of biotransformation reactions, such as hydrolysis, 

decarboxylation and deamination and play an important role in xenobiotic 

metabolism (Jourova et al., 2016). Microvilli in the midgut of G. mellonella contain 

microbes that resemble those found in the intestinal microvilli of mammals 

(Mukherjee et al., 2013). The insect fat body is an organ that also functions in drug 

metabolism like the liver in mammals (Büyükgüze et al., 2013). A number of 

antioxidant enzymes produced by the fat body, such as superoxide dismutase, 

catalase and glutathione-s-transferase are highly conserved between species 

(Büyükgüze et al.,2013). The phase I metabolism enzyme cytochrome p450 is 

conserved between Homo sapiens (ref), Zebrafish (Vliegenthart et al. 2014), 

Caenorhabditis elegans (Laing et al., 2015), and multiple insect species (Coelho et al., 

2015). The phase II metabolism enzyme UGTs are conserved between species such 

as H. sapians (ref) Zebrafish (Ouzzine et al. 2014), C. elegans (McElwee et al., 2004), 

and multiple insect species (Luque et al., 2002) (Table 1.2). 
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Metabolism enzymes  Present in insects 

Phase I enzymes 
Cytochrome P-450    (Feyereisen, 1999) 

  
FAD- containing monooxygenase (Kulkarmi and Hodgson, 1984) 

  
Epoxide hydrolase (Xu et al., 2015) 

  
Alcohol dehydrogenase (Carvalho et al., 2009) 

  
Aldehyde dehydrogenase (Leal and Barbancho, 1993) 

  
Esterase (Montella et al., 2012) 

  

Phase II enzymes 
Glucuronosyltransferase (Montella et al., 2012) 

  
Sulfotransferase (Vakiani et al., 1998) 

  
N-Acyl transferase (Wierenga and Hollingworth, 1990) 

  
Glutathione S-Transferases (Kostaropoulos et al., 2001) 

  
Rhodanese (Beesley et al., 1985) 

  
 

Table 1.2 List of phase I and phase II enzymes involved in xenobiotic metabolism in 

insects as well as mammals.  
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1.4 Galleria mellonella      

 The Greater (Lepidoptera: Pyralidae, Galleria mellonella) and lesser 

(Lepidoptera: Pyralidae, Achroia grisella) wax moths are pests of bee colonies 

globally. Their economic importance has led to a number of investigations on their 

life history, biology, behaviour, ecology, molecular biology, physiology, and control. 

In addition to their importance in apiculture, wax moth larvae are widely used as 

model organisms for studies in insect physiology and human pathogens (Browne and 

Kananagh, 2013). G. mellonella larvae have been employed to assess the virulence of 

a range of Candida albicans isolates and to quantify the relative virulence of 

pathogenic and non-pathogenic yeast species (Cotter et al., 2000). Brennan et al., 

(2002) established a positive correlation between the virulence of C. albicans 

mutants in G. mellonella larvae and in BalbC mice and a strong correlation was also 

established between the virulence of Aspergillus fumigatus mutants in larvae and 

mice (Slater et al., 2011). G. mellonella larvae have been utilised to establish a 

correlation between toxin production and virulence of A. fumigatus (Reeves et al., 

2004) and the stage of A. fumigatus spore germination has been shown to affect 

fungal clearance in larvae (Renwick et al., 2006). G. mellonella larvae are now utilised 

as an infection model for Cryptococcus neoformans (Mylonakis et al., 2005) and 

London et al., (2006) identified that a number of virulence-related genes important 

in C. neoformans mammalian infections were also involved in infection of G. 

mellonella. Aspergillus flavus is a pathogen of G. mellonella (St Leger et al., 2000) and 

Scully and Bidochka (2006) demonstrated increased virulence of A. flavus when 

serially passaged in G. mellonella larvae. Antibiotics are effective in the wax moth 

larvae model for the treatment of infections caused by Gram-positive bacteria 

(Desbois and Coote, 2011). G. mellonella larvae have also been utilised for assessing 

the in vivo activity of amphotericin B, flucytosine and fluconazole following challenge 

with C. neoformans (Mylonakis et al., 2005) and to evaluate the antifungal properties 

of novel silver-based compounds (Rowan et al., 2009).   

When using G. mellonella larvae, or other insects, for assessing the in vivo 

antimicrobial properties of compounds it is important to determine whether the 

introduction of the agent into the haemocoel of the insect provokes an inherent anti-
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microbial immune response separate to the antimicrobial properties of the test 

agent. Administration of caspofungin (Kelly and Kavanagh, 2011), glucan (Mowlds et 

al., 2010) or silver nitrate (Rowan et al., 2009) to G. mellonella larvae induces a non-

specific immune response which operates in parallel with the antifungal activity of 

the introduced agent.  Thus, in cases where larvae are used to determine the 

antimicrobial properties of a novel compound it is important to be able to 

differentiate between the inherent antifungal properties of the agent and the 

antimicrobial responses induced by the agent.   
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Examples of the utilization of Galleria larvae as a model 
organism 

Author Title 

Yeasts 
Brennan et al., 2002 Comparison of virulence of C. albicans mutants with virulence in mice 

Mylonakis et al., 2005 Galleria mellonella as a model system to study Cryptococcus neoformans 

pathogenesis 

Bergin et al., 2003 Fluctuations in haemocyte density and microbial load may be used as indicators of 

fungal pathogenicity in larvae of Galleria mellonella. 

Bacteria 
Mukherjee et al., 2013 Brain infection and activation of neuronal repair mechanisms by the human 

pathogen Listeria monocytogenes in the lepidopteran model host Galleria 

mellonella 

Fedhila et al., 2009 Comparative analysis of the virulence of invertebrate and mammalian 

pathogenic bacteria in the oral insect infection model Galleria mellonella 

Peleg et al., 2009 Galleria mellonella as a Model System to Study Acinetobacter baumannii 

Pathogenesis and Therapeutics 

Jander et al.,2000 Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice 

and insects 

Desbois et al., 2011 

 

Wax moth larva (Galleria mellonella): an in vivo model for assessing 

the efficacy of antistaphylococcal agents 

Efficacy of Novel Antimicrobial Agents 
Rowan et al., 2008 Use of Galleria mellonella larvae to evaluate the in vivo anti-fungal activity of 

[Ag2(mal)(phen)3] 

Browne et al., 2014 Assessment of in vivo antimicrobial activity of the carbine silver(I) acetate derivative 

SBC3 using Galleria mellonella larvae 

Dolan et al., 2016 Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure–

activity relationship study of a quinoline thiourea 

Toxicity Testing 
Megaw et al., 2015 Galleria mellonella as a novel in vivo model for assessment of the toxicity of 1-alkyl-

3-methylimidazolium chloride ionic liquids 

Büyükgüzel et al., 2013 Effect of boric acid on antioxidant enzyme activity, lipid peroxidation, and 

ultrastructure of midgut and fat body of Galleria mellonella 

 

Table 1.3 Uses of G. mellonella as model organism 
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1.4.1 Procedures for utilising Galleria mellonella larvae 

 G. mellonella larvae are a widely used model organism (Table 1.3), fulfilling 

many of the basic requirements of a useful animal infection model and have many 

advantages over other invertebrate systems (Fallon et al., 2012). Legal and ethical 

issues restrict the number of mammals that may be used to the lowest possible 

number, however large numbers of G. mellonella larvae can be used in experiments 

and this can yield results demonstrating a high degree of statistical robustness.  G. 

mellonella larvae are widely available and are relatively inexpensive to purchase 

(Desbois and McMillan, 2015). Larvae can be directly purchased from local suppliers 

in their preferred sixth instar stage, ready to use and do not incur husbandry costs.  

G. mellonella can be stored at temperatures between 4 and 37oC (Mowlds and 

Kavanagh, 2008) which makes G. mellonella a good model to study fungal pathogens 

at human body temperature. This is especially important when studying virulence of 

pathogens as temperature regulates expression of a range of virulence factors. 

Mowlds and Kavanagh, (2008) identified the induction of a protective cellular and 

humoral immune response mediated by increased numbers of haemocytes and 

elevated expression of antimicrobial peptides 24 h after incubation of larvae at 4 or 

37oC. G. mellonella are a convenient size (2-3cm in length) and a large number of 

larvae can be inoculated in a short period of time. Larvae are easily maintained in 

wood shavings or on filter paper. Banville et al. (2012) showed that haemolymph 

from larvae deprived of food demonstrated reduced expression of a range of 

antimicrobial peptides (e.g., lipocalin) and immune proteins (e.g., apolipophorin and 

arylphorin) and starved G. mellonella larvae demonstrated an increased 

susceptibility to infection.  

 Quantifying the infecting inoculum is more accurate in G. mellonella than in 

D. melanogaster (Lionakis, 2011). G. mellonella larvae may be inoculated with 

pathogen by topical application – this is usually achieved by rolling the larvae on a 

layer of spores and can be used with entomopathogenic fungi (e.g. A. flavus) or by 

dipping in a solution of spores/cells.  Direct inoculation of larvae with pathogen or 

aliquot of antifungal agent can be by injection into the haemocel (body cavity) 

through one of the prolegs (Cotter et al., 2000) or by force feeding (Mukherjee et al., 
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2013) (Fig 1.3). Intra-haemocoel infection closely mimics systemic infection in 

mammals, while the feeding route can be used to replicate administration of an oral 

antimicrobial agent or an intestinal pathogen. Larvae can be incubated at 

temperature up to 37oC and meaningful results can be obtained in 24 – 48 hours.  

 A variety of end points is used to quantify the response of larvae to the 

inoculum. Larval death is easily assessed by gently probing larvae. The degree of 

melanisation can give an indication of the larval response to the pathogen or toxin as 

can changes in the density of the circulating haemocyte population.  Assessing the 

density of circulating haemocytes is a useful indicator of whether an immune 

response has been triggered by the introduction of a pathogen or antifungal agent 

(Bergin et al., 2003).   Measuring the phagocytotic and killing ability of haemocytes 

gives an indication of the activity of this cell type (Fallon et al., 2011). More in-depth 

analysis can quantify changes in gene expression or protein abundance to create a 

full picture of the larval response to a toxin (Fallon et al., 2012). While the G. 

mellonella genome is not sequenced, the recent characterization of the G. mellonella 

immune gene repertoire and transcriptome by next generation sequencing and 

traditional Sanger sequencing has led to the design of gene microarrays which 

strengthen its development as a model organism (Lionakis, 2011).  Antioxidant stress 

caused by a test compound can be assessed by measuring the activity of enzymes 

such as superoxide dismutase, catalase and gluthionine-S-transferase (Büyükgüzel et 

al., 2013). Developmental changes, such as inability to pupate and movement 

disorders can be used to measure the toxicity of a compound. The metabolism of a 

compound can be measured using RP-HPLC analysis.  
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1.5 Alternative model systems for toxicity testing of food additives. 

Mammalian toxicity studies are expensive and time consuming and meta-

analysis indicate that rodent models successfully predict adverse effects in humans 

only approximately 50% of the time (Hunt, 2017). Therefore, using more than one 

mammalian species can result in greater predictability of the toxicological effects of 

a compound. A wide range of mammalian cell lines have also been used for 

assessing the in vitro toxicity of compounds (Fotakis and Timbrell, 2006). In Vitro 

systems for organ toxicity evaluations have been developed for various organs and 

tissues (Tiffany-Castiglioni et al, 1996; Pfaller and Gstraunthaler, 1998; Gribaldo et 

al, 1996). Human epithelial type 2 (HEp-2) cells were originally derived from a 

human laryngeal carcinoma and have been utilized to determine the efficacy of 

anticancer drugs (Fujii., et al 1995), the cytotoxicity of nanoparticles (Ahamed et al, 

2014)  and the toxicity of food additives (De Angelis et al 1994) In addition, by 

utilising various other alternative models that show similarities to mammalian 

models, such as C. elegans, D. melanogaster, G. mellonella and B. mori (Fig 1.4), the 

researcher is provided with a cost effect approach to further increasing the 

toxicological predictability of a compound. 

1.5.1 Caenorhabditis elegans 

C. elegans (Fig. 1.4) is a nematode that feeds on fungi and bacteria in soil and 

rotting fruit with a typical length of 1 mm and a diameter of 50 µm. Immunity of C. 

elegans relies on three mechanisms: chemosensory neurons sense pathogens and 

promote avoidance behaviour, physical barriers and innate immunity (Trevijano-

Contador and Zaragoza, 2014). The innate immunity of C. elegans relies solely on 

pattern recognition receptors and signal pathways to induce the production of 

antimicrobial peptides. The immune system of C. elegans does not possess 

phagocytic cells (Trevijano-Contador and Zaragoza, 2014). The small size of the 

nematode means it can be placed in 96 well plates for high throughput screening. C. 

elegans has an average life span of approximately 2–3 weeks and a reproduction time 

of 3.5 days (Murschiol et al., 2009). Hermaphrodite nematodes produce both oocytes 

and sperm and have a reproductive capacity of about 300 progeny per 
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hermaphrodite by self-fertilization (Hunt, 2017). C. elegans can be easily maintained 

on nematode growth medium agar, fed on the non-pathogenic bacterium Escherichia 

coli OP50 strain, and preserved at −80 °C. C. elegans are easy to store and handle, 

cost effective and can be utilized with both liquid and solid medium (Desalermos et 

al., 2011). Unlike toxicity testing using cell cultures, C. elegans toxicity assays provide 

data from a whole animal with intact and metabolically active digestive, 

reproductive, endocrine, sensory and neuromuscular systems (Hunt, 2017). The 

nematode is transparent so processes such as axon growth, embryogenesis and fat 

metabolism can be easily studied, with the use of in-vivo florescence markers (Kaletta 

and Hengartner, 2006). C. elegans has a fully sequenced publicly available genome 

and can be genetically modified easily at minimal cost. Various striking similarities 

exist between C. elegans and higher organisms. Bioinformatics has identified C. 

elegans homologues present in 60-80% of human genes, with 12 of 17 known signal 

transduction pathways are conserved between humans and C. elegans (Kaletta and 

Hengartner, 2006). Some key biomedical discoveries were enabled by C. elegans 

research, for example mutations in presenillin-1 can cause early onset familial 

Alzheimers disease (Chan et al., 2002). In 1993 the first presenillin gene was 

described in C. elegans (Sundaram & Greenwald, 1993).  

C. elegans has been previously utilised to study the toxicity of food additives, 

the lethal dose 50 of monosodium glutamate, tannic acid and thiourea in C. elegans 

showed significant positive correlations with data obtained from rats (R2 =0.8) and 

mice (R2 =0.8) (Paul and Manoj, 2009). The toxicity of the food colouring tartrazine 

was studied in C. elegans (Himri et al., 2013) and Wistar rats (Himri et al., 2011) and 

both studies showed a good correlation for tolerability and lethality between rodents 

and C. elegans. C. elegans exposed to tartrazine did not result in death even at 

concentrations as high as 3mM and, in accordance with this, over a 90 day 

administration period no deaths occurred across animal groups (Himri et al., 2011; 

Himri et al., 2013). C. elegans has also been employed to assess the toxicity of heavy 

metals (Jiang et al. 2016; Chen et al. 2013; Hunt et al. 2012), organic solvents and 

pesticides (Leung et al., 2008), with several toxicity end points such as reproduction 

(Boyd et al., 2011), feeding (Hunt et al., 2012), DNA damage (Feng et al., 2017) and 
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gene expression (Kumar et al., 2015). Despite the numerous advantages provided by 

C. elegans it is important to note its disadvantages. C. elegans toxicity assays consist 

of exposing the nematode to a test compound in an agar culture along with feeder 

bacteria, this poses two distinct disadvantages of the model. Firstly the feeder 

bacteria might modify the test compound and secondly there is no way to accurately 

measure the inoculum (Trevijano-Contador and Zaragoza, 2014). In addition, C. 

elegans development proceeds from embryo through four distinct larval stages to 

adult hermaphrodites in approximately 72 hours at 20oC (Boyd et al., 2012); 

however, C. elegans does not  tolerate high temperatures. Making them an 

inadequate model to study the virulence factors of human pathogens (Trevijano-

Contador and Zaragoza, 2014) 

1.5.2 Drosophila melanogaster  

Short life cycle, fast reproduction, larval stages and fewer ethical issues 

associated with its use make D. melanogaster (Fig. 1.4) a suitable model of human 

disease (Prüßing et al., 2013; Pandey & Nichols, 2011), fungal virulence (Lionakis & 

Kontoyiannis, 2012; Lionakis & Kontoyiannis, 2005), cancer (Miles et al., 2011; 

Rudrapatna et al., 2012), aging and metabolic disorders (Hoffmann et al., 2013; 

Bharucha, 2009). Many basic biological, physiological, and neurological properties 

are conserved between mammals and D. melanogaster, and 60% of human disease-

causing genes are believed to have a functional homolog in the fly (Schneider, 2000) 

so it is no surprise that Drosophila is the most widely used insect host for modelling 

pathogenic disease (Kemp & Massey, 2007). Initially D. melanogaster was utilised to 

study Mendelian genetics (Schneider, 2000). The genome of the fruit fly has been 

available since 2000 (Adams et al., 2000), the fruit fly is amenable to forward and 

reverse genetics and with a large collection of D. melanogaster mutant and 

transgenic cell lines the insect mini model is a very effective model to study human 

genetics (Wolf & Rockman, 2008; Lionakis, 2011). To date D. melanogaster has been 

employed to test the toxicity of pesticides (Arain et al., 2014; Parádi and Lovenyák, 

1981), solvents (Soós & Szabad, 2014; Cvetkovic et al., 2015), and nano particles (Araj 

et al., 2015; Ong et al., 2015). It has been well documented that D. melanogaster 

possess an efficient system to metabolise xenobiotics (Coelho et al., 2015; Lasek et 
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al., 2011) resulting in the insect being adapted to measure the toxicity of common 

food additives such as caffeine (Mustard, 2009; Coelho et al., 2015), sodium nitrate 

(Sarikaya and Çakir, 2005), ethanol (Lasek et al., 2011) and tartrazine (Tripathy et al., 

1994) and has provided data that correlate with that obtained from mammalian 

studies (Uysal and Ayar, 2015). Coelho et al., (2015) identified some of the primary 

caffeine metabolites produced in the body of D. melanogaster males administered 

caffeine. These primary metabolites were theobromine, paraxanthine and 

theophylline, all of which are also produced in mammals during the metabolism of 

caffeine (Lelo et al., 1986). In mammals the metabolisation of caffeine is catalysed by 

an enzyme called cytochrome P450. Caffeine metabolism was dramatically 

decreased in flies treated with a cytochrome P450 inhibitor, indicating that the 

cytochrome P450 is also involved in the breakdown of caffeine in D. melanogaster. 

These findings show strong correlation between the metabolic responses of  

mammals and D. melanogaster to caffeine. 

 A long established genotoxicity test is the Wing Somatic Mutation and 

Recombination test (SMART) or as it is also known as the “Wing Spot Test”. The 

somatic cells of D. melanogaster provide a means of developing a rapid and flexible 

short term assay to detect a wide spectrum of genotoxic substances (Graf and Singer, 

1992). SMART supports a number of routes of exposure such as oral, injection and 

inhalation, while the most favoured route of administration is chronic feeding of 

three day old larvae for the rest of their larval development and the wings from the 

emerging adult flies are then scored for the presence of spots of mutant cells Graf 

and Singer, 1992). The presence of single spots are indicative of a somatic point 

mutation, deletion, somatic recombination or non disjunction appearing between 

two markers (Mademtzoglou et al., 2013). The wing spot test has been utilised to 

examine the genotoxicity of food additives (Tripathy et al., 1994; Mademtzoglou et 

al., 2013). 

There are several disadvantages to the use of D. melanogaster as a model 

organism, firstly its small size makes it difficult to inoculate and limits its ability for 

individuals to be biochemically analysed (Kemp and Massey, 2007). D. melanogaster 

requires a more significant commitment of time and resources than the G. mellonella 

model, the fruit fly requires considerable experience and specialized equipment 



24 
 

(Arvanitis et al., 2013) . The fruit fly model must be propagated at approximately 

22OC which is not an ideal temperature for investigating interactions that usually 

occur at 37oC (Kemp and Massey, 2007).  

 

1.5.3 Bombyx mori 

B. mori, commonly known as the silkworm, grows to approximately 5cm in length 

(Fig. 1.4). The silkworm’s large body size is an advantage over other invertebrate 

models such as Drosophila. Its large body size makes haemolymph preparations and 

organ isolation easier, making the silkworm amenable to drug pharmacodynamics 

studies (Hamamoto et al., 2005). Silkworms reproduce in a short period of time, 

larvae are easily maintained in a laboratory, and a large numbers of larvae with a 

fixed genetic background can be used at very low cost (Hamamoto et al., 2009). The 

ability to administer an exact inoculum to silkworm larvae is essential for 

quantitative evaluation of pathogenicity and for assessing the efficacy and toxicity 

of antimicrobial drugs (Hamamoto et al., 2009). B. mori has been evaluated as an 

in-vivo invertebrate model system for identifying substances that supress sucrose-

induced postprandial hyperglycaemia (Matsumaoto et al., 2016). In humans, excess 

intake of sucrose leads to an increase in blood glucose levels. An increase in glucose 

levels can lead to adverse health effects such as obesity and diabetes. Silkworm 

haemolymph glucose levels rapidly increase after intake of a sucrose-containing 

diet. Addition of acarbose or voglibose, α-glycosidase inhibitors clinically used for 

diabetic patients, suppressed the dietary sucrose-induced increase in silkworm 

haemolymph glucose levels. B. mori has been employed to measure the toxicity of 

fluoride (Li et al., 2015) and pesticides (Muthusamy and Rajakumar, 2016). 
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1.5.4 Zebrafish 

One widely used alternative vertebrate model is the zebrafish (Fig. 1.4) (Chen 

et al., 2009; Dooley and Zon, 2000; Meeker and Nikolaus, 2008). In recent years, the 

zebrafish has been widely used to study developmental biology (Meeker and 

Nikolaus, 2008), molecular genetics (Kabashi et al., 2011), human disease modelling 

(Dooley and Zon, 2000), and drug and toxicant analysis (Spitsbergen and Kent., 2003). 

There are many advantages of the zebrafish model including; a short generation 

time, external fertilization, fast development, transparent embryos, and a large and 

growing biological database (Lieschke and Currie, 2007). Zebrafish embryos develop 

most of the major organ systems present in mammals, including the cardiovascular, 

nervous and digestive systems in less than a week (Rubinstein, 2006). The highly 

studied brain and central nervous system of the zebrafish shares many similarities to 

the mammalian nervous system (Milan et al., 2003). Zebrafish have also been 

employed to measure the ototoxicity of drugs (Milan et al., 2003), because hair cells 

in zebrafish known as neuromasts are similar to the inner ear hair cells in mammals 

(Rubinstein, 2006). Neuromasts  are easily visualised by staining with a fluorescent 

vital dye, allowing the investigators to quantify the loss of hair cells in response to 

toxic compounds (Rubinstein, 2006). Zebrafish have a two chambered heart and  

several mutations that cause phenotypes similar to human diseases have been 

described in the heart of zebrafish (Rubinstein, 2006). The measurement of heart 

rate in zebrafish is used as an indicator of cardiac toxicity and the cardiostimulatory 

effects of adrenaline, have been shown in zebrafish (Milan et al., 2003). Zebrafish are 

a good model to test toxicity and teratogenicity since they have transparent eggs, 

making the organogenesis of zebrafish embryos easier to observe (Chen et al., 2008). 

The exposure of zebrafish to ethanol during gastrulation has been shown to cause 

cyclopia and this phenotype is also observed in human babies that were exposed to 

high levels of alcohol during gestation (Rubinstein, 2006). 
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Fig 1.4 Alternative models of toxicity 

(A) Zebrafish (2-7 cm in length), (B) Caenorhabditis elegans (1 mm in length) (C) 

Bombyx mori (20-70 mm in length), (D) Drosophila) melanogaster (3 mm in 

length) and (E) Galleria mellonella (3-30 mm in length)  

(A)  http://www.uniprot.org/taxonomy/7955 

(B)  https://web.science.uu.nl/developmentalbiology/boxem/elegans_intro.html 

(D)  https://en.wikipedia.org/wiki/Drosophila_melanogaster 
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1.6 Xenobiotic metabolism 

Metabolism is the term used to describe the biochemical changes that a 

compound undergoes in-vivo. The metabolism of a compound generally leads to its 

detoxification, for example the metabolism of cyanide with an LD50 value of 

0.002g/kg to thiocyanide with an LD50 value of 0.4g/kg (Deshpande, 2002). However 

the metabolism of a compound can sometimes lead to the formation of a compound 

with increased toxicity, for example the metabolism of pyridine with an LD50 value 

of 1.2 g/kg to methylpyridine with an LD50 value of 0.2 g/kg (Deshpande, 2002). 

Generally lipophilic compounds are more readily absorbed through the 

gastrointestinal tract and will accumulate in an organism to toxic levels unless 

effective means of elimination are achieved (Jandacek and Tso, 2001). Enzymes 

responsible for metabolizing xenobiotics are classed into phase 1, phase 2 and 

transporter enzymes (Croom, 2012). In order to prevent a compound accumulating 

to a toxic level in-vivo, it must undergo chemical changes known as 

biotransformations. These biotransformations result in a more hydrophilic and less 

lipophilic molecule. This increase in water solubility decreases the renal tubular and 

intestinal reabsorption of the compound leading to its elimination by urinary and 

biliary fecal routes (Lin, 1995). Biotransformations can also lead to the production of 

reactive oxygen species (Nebbia, 2001). The biotransformation of a xenobiotic by 

phase 1 enzymes usually involves the adding or unmasking of a hydrophilic group, 

such as a hydroxyl, amine or sulfhydryl group and usually involves reactions such as 

oxidation, deamination, dehalogenation, desulfuration, epoxidation, 

peroxygenation, and reduction (Deshpande, 2002). Phase 1 enzymatic reactions 

result in the exposure of functional moieties on a compound, allowing for phase 2 

metabolism and the conjugation of the molecule with sugars, peptides or amino acids 

(Snyder and Hedli, 1996). Not all xenobiotic compounds must undergo phase I and 

phase II metabolism and it may be adequate for a xenobiotic to undergo phase I 

metabolism and be excreted. It may also be sufficient for a xenobiotic that already 

contains a functional group capable of conjugation to undergo only phase II 

metabolism before excretion (Deshpande, 2002). There are two distinct types of 
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biotransformation systems that exist in mammals. The first system involves enzymes 

that occur normally in tissues functioning to transform normal endogenous 

chemicals in tissues, while also playing a role in the biotransformation of xenobiotics. 

An example of this system of enzymes is the hydrolyzing enzyme cholinesterase that 

in normal biological conditions is responsible for the hydrolysis of acetylcholine, but 

is also involved in the hydrolysis of the xenobiotic procaine. The second type of 

biotransformation systems exclusively metabolises xenobiotics having no known 

endogenous substrates (Jancova et al., 2010). Phase I enzymes are chiefly located in 

the endoplasmic reticulum, allowing the membrane bound enzymes to come in 

contact with lipophilic xenobiotics, while the majority of phase II enzymes are located 

in the cytosol (Deshpande, 2002).  

Some of the enzymes involved in xenobiotic metabolism are glutathione-S-

transferases (Hayes and Pulford, 1995), sulfotransferases (Gamage et al., 2006) and 

UDP-glucuronosyltransferase (Guillemette, 2003), flavin mono-oxygenases (Phillips 

and Shephard, 2018), alcohol dehydrogenases (Cedebaum, 2012) and aldehyde 

dehydrogenases (Leal and Barbancho, 1993). Cytochrome P450 enzymes are 

responsible for a vast amount of phase 1 reactions (Zanger and Schwab, 2013). The 

toxicity of xenobiotics can be altered by metabolic processes such as oxidation and 

conjugation reactions. Consequently the potential for the conversion of a toxic 

compound into a non-toxic derivative and vice versa (Deshpande, 2002).  

Cytochrome p450 enzymes are involved in multiple cellular processes such as 

pigment synthesis (Ren et al., 2016), protection against chemical insults (Gu and 

Manautou, 2013), synthesis of sex steroid synthesis (Praporski et al., 2009), the 

oxidative metabolism of retinoic acid (Ross and Zolfaghari, 2013), mono-oxidation of 

compounds (Cankar et al., 2011) and dehydration (Boucher et al., 1994). 

Dehydrogenation, isomerisation and reduction of substrates  are some of the many 

reactions that are catalysed by CYP enzymes (Meunier et al., 2004). CYPs 3A4, 2C9, 

2C8, 2E1, and 1A2,are the highest expressed in the liver while 2A6, 2D6, 2B6, 2C19 

and 3A5 are less abundant and CYPs 2J2, 1A1, and 1B1 are mainly expressed 

extrahepatically (Zanger and Schwab 2013). Fifty seven functional genes and 58 

pseudogenes make up the human CYP superfamily, with members of the 1, 2, and 3 
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families playing an important role in the metabolism of therapeutic drugs and other 

xenobiotics such as food additives (Zhanger et al., 2013).  

1.6.1 Phase II metabolic enzymes 

Phase II biotransformations are anabolic reactions and therefore require 

energy to drive them. Glucuronidation is one of the major phase II drug-metabolizing 

reactions that contributes to drug biotransformation (Guillemette, 2003). The 

addition of a glucuronic acid moiety, from the endogenous precursor UDP-glucuronic 

acid is catalysed by the UDP-glucuronosyltransferases. This addition of a glucuronic 

acid moiety occurs at a range of different nucleophilic functional groups of 

endogenous and exogenous compounds, such as hydroxyl, carboxylic acid, amines, 

sulfhydryl and ester moieties (Testa and Kramer, 2007). The majority of phase II 

enzymes are present in the cytosol, however the enzymatic activity of UDP-

glucuronosyltransferases is localised in the endoplasmic reticulum (Deshpande, 

2002).  
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1.7 Food additives 

With the world’s population ever increasing there is now more than ever a 

need to increase food production to meet this demand. This increase food 

production must be met while still adhering to high quality standards that preserve 

taste, appearance, texture and microbiological safety. The integrity of food 

production is achieved through the use of food additives. Despite the many benefits 

and the vast amount of food additives in use there still remains a lot of debate of the 

health and safety of their use. Through risk benefit analysis a toxicological standard 

can be defined for a substance. Traditionally, health based recommendations or 

guide values are based on data obtained from toxicological studies carried out on 

experimental mammalian models. However, data obtained from mammalian models 

can sometimes give misleading information for the prediction human toxicity. For 

example, the toxicity of theobromine in humans is 1000mg/kg however it is 250-

500mg/kg in dogs (Jansson et al., 2001). Despite this, the use of mammals in toxicity 

testing is still the best way to predict human toxicity.  

  Several different toxicological units are used to express the toxicity potential 

of chemicals (Table 1.4). The most widely used method is the Lethal dose 50 (LD50) 

method as a measurement of acute toxicity. LD50 value is the amount of a compound 

that kills 50% of a test population and is expressed as mg/kg (Zbinden and Flury-

Roversi, 1981). Several parameters are used to set acceptable human exposure levels 

to food additives (Table 1.5). The most widely used is the average daily intake (ADI) 

value. The definition in a World Health Organisation (WHO) report defines the ADI 

as, “an estimate of the amount of a food additive expressed on a body weight basis 

that can be ingested daily over a life time without appreciable health risks.” The no-

observed-adverse-effect-level (NOAEL) is used to estimate the ADI of a component 

(Lu, 1988). The highest dose that shows no observed adverse effect on an animal test 

population is than divided by a safety factor of 100 to allow for human interpretation. 

The safety factor takes into consideration the differences between animals and 

humans and the difference between human populations (Lu, 1998).  

Food additives are divided into 26 functional classes in the EU as follows; 

sweeteners, colorants, preservatives, antioxidants, carriers, acids, acidity regulators, 
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anticaking agents, antifoaming agents, bulking agents, emulsifiers, emulsifying salt, 

firming agents, flavour enhancers, foaming agents, gelling agents, glazing agents, 

humectants, modified starches, packaging gases, propellants, raising agents, 

sequestrants, stabilizers, thickeners, and flavour treatment agents. In the USA there 

are over 3000 approved food additives grouped into 6 categories (Carocho et al., 

2014) (Fig 1.5)  

Food preservatives can consist of antimicrobials, antioxidants and anti-

browning agents. The preservative prevents natural spoilage and prevent or control 

micro-organism contamination.  Acetic acid, potassium acetate, calcium acetate, 

lactic acid, carbon dioxide, and maleic acid are the main antimicrobials used in food 

with quantum satis status. Benzoic acids and benzoates, sorbic acids and sorbates, 

propionic acids and propionates, nitrites, nitrates and parabens are commonly used 

food additives that are restricted in their use (Carocho et al., 2014). 
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Fig 1.5 Groups and subgroups of food additives (Carocho et al., 2014). 
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Table 1.4 Several different toxicological units are used to express the toxicity potential of 

chemicals (Dehpande, 2002) 

Abbreviation Full name Description 
LD50 Lethal dose/50% 

response 
Calculated dose of a substance that is expected to cause  
the death of 50% of an entire defined experimental  
animal population 

LD01 Lethal dose/1% 
response  

Maximal dose of a substance that is likely to be  
sublethal to an entire experimental animal population 

LD99 Lethal dose/99% 
response  

Minimal dose of a substance that is likely to be lethal to  
an entire experimental animal population 

LDL0 Lowest lethal dose Dose of a substance administered over any given period in  
one or more divided portions and reported to have caused  
death in humans and animals 

ED50 Effective dose/50% 
response 

Median effective dose obtained from a dose versus percentage  
response curve that uses not lethality as end point but rather a  
graded response by identifying a value above which the response  
it defined as positive; may use any clearly defined measure of  
efficiency 

ED01 Effective dose/1% 
response 

Dose effective in only 1 % of treated animals 

ED99 Effective dose/99% 
response 

Dose effective in only 99 % of treated animals 

TD01, TD50, TD99 Toxic dose/1%, 50%, 
99% 

Similar to effective dose (ED) but uses a clearly defined  
measure of clinical toxicity 

LC50 Lethal 
concentration/50% 
response, inhalation 
exposure 

Median lethal concentration of an inhaled chemical defined  
as a "statistically derived concentration of a substance that  
can be expected to cause death during exposure" 

LCt50 Lethal concentration x 
time/50% response, 
inhalation exposure 

Statistically derived concentration of a substance that can be  
expected to cause death within a fixed time after exposure in  
50% of the animals exposed for the specific time 

LCL0 Lowest letha 
concentration, 
inhalation exposure 

Dose of a substance inhaled over any given period in one or  
more divided portions reported to have caused death in  
humans or animals 

LC50 Lethal 
concentrtaion/50% 
response, exposures 
other than inhalation 

For aquatic toxicity: concentration of a chemical in water killing  
50% of a test batch of fish within a particular period of exposure; 
using cultured hamster cells: concentration of a chemical that  
causes transformation of 50% cells in response to carcinogens 
without toxicity-induced selection of subpopulations 

MTD Maximal tolerated 
dose 

Highest dose of the test agent given during the chronic study that  
can be predicted not to alter the animal's longevity from effects  
other than carcinogenicity; should not produce greater than 10% 
inhibition of weight gain, produce clinical evidence of toxicity of 
pathological lesions, or alter longevity except as a result of 
carcinogenesis 

NEL No effect level Level of a substance that can be included in the diet of a group of 
animals without toxic effects; used interchangeable with no 
adverse effect level (NAEL), no observed effect level (NOEL), and 
no observed adverse effect level (NOAEL) 

MED minimal effective dose Minimal effective dose used as an alternative to the NEL: minimal 
dose that produces an observed effect; used interchangeably 
with lowest effect level (LEL), lowest observed effect level (LOEL), 
and lowest observed adverse effect level (LOAEL) 
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Table 1.5 Several different toxicological units are used to express the permissible exposure 

levels of chemicals (Deshpande, 2002) 

Abbreviation Full name Description 
TLV Threshold 

limit value 
Recommended atmosphere concentrations of work place 
substances (ppm or mg/m3) to which workers may be exposed 
to without adverse health effects 

TLV-TWA Threshold 
limit value-
time 
weighted 
average 

Same as TLV except that it represents a time weighted average 
age concentration for an 8 hour workday and a 40 hour work 
week; can be exceeded for short periods during the workday 
without producing adverse health effects as long as the 
average concentration is at or below TLV 

TLV-STEL Threshold 
limit value-
short term 
exposure 
limit 

Used for chemicals that may produce adverse effects when 
TLV is exceeded for only a brief period; time weighted 
concentration limit for 15 min; no more four such exposure 
periods permitted per day, and maximal of 60 min must elapse 
between exposures 

TLV-C Threshold 
limit value 
ceiling 

Stringent maximal permissible exposure that may not be 
exceeded even for short periods; similar to maximal 
acceptable (formerly allowable) concentrations (MACs); 
applied to fast acting highly toxic or extremely irritating 
substances for which even brief exposure periods may cause 
serious toxicity 

ADI Acceptable 
daily intake 

Amount of food additive that can be taken daily in the diet, 
even over a lifetime, without risk; concept also applicable to 
contaminants in food, air and water 

SNARL Suggested 
no adverse 
response 
level 

Level of drinking water contaminants below which no adverse 
effects are expected after specified exposure period, usually 
defined for 24-hr, 7 day, or chronic (lifetime) exposure 
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1.7.1 Benzoic acids and Benzoate 

Benzoic acids and benzoates are commonly coupled with either sodium 

calcium or potassium, for different anti-microbial targets. These antimicrobials are 

effective against yeast, bacteria and fungi through its ability to disrupt membranes, 

inhibit metabolic reactions, and cause the accumulation of toxic anions inside the 

microbial cell.  Sodium benzoate is primarily used as a preservative of acidic foods, 

such as soft drinks and fruit juices. Benzoates are more effective against yeast and 

bacteria as opposed to molds. Studies on humans suggest that sodium benzoate is 

non-deleterious to human health (WHO, 2016). Benzoates do not appear to 

accumulate in the body and are absorbed by the intestines and metabolised and 

excreted as hippuric acid (Barshop et al., 1989). The ADI for total benzoate in the 

human diet is established at 0-5mg/kg body weight (WHO, 2005). 

1.7.2 Nitrates and nitrites 

Nitrate has been used for centuries to pickle meat and as an additive for fish 

and cheese. The growth of yeast and fungi is not affected by nitrites and the action 

is almost exclusively anti-bacterial (Cammack et al., 1999). Nitrates, such as 

potassium nitrate and sodium nitrate, have limited antimicrobial capacity, the main 

microbiological capacity of nitrates is its microbiological conversion to nitrites during 

the curing process (Jouve et al., 1980). Human dietary nitrate may be reduced to 

nitrite by bacteria present in the mouth and sometimes in the stomach (Walker 

1996). Nitrate added to cured meats and other food serves three functions. Through 

its ability to inhibit the development of rancid off flavours nitrites actively contribute 

to flavour (Cammack et al., 1999). Interaction between nitrites and myoglobin 

produces mononitrosylhaemochrome and the characteristic pink colour of cured 

meats (Cammack et al., 1999). Finally, and probably the most important function of 

nitrate addition to meat, is its ability to inhibit the growth of food spoilage bacteria, 

especially Closdridium botulinum (Sindelar & Milkowski, 2012). C. botulinum 

produces botulinum, a neurotoxin that blocks the release of acetylcholine causing 

muscle paralysis (Nigam & Nigam, 2010). Nitrites are the only food preservative that 

inhibit the growth of C. botulinum, thereby validating its use despite various 
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deleterious health problems associated with high levels of nitrites in food (Pierson & 

Smoot, 1982). 

High doses of nitrates and nitrites (and their metabolic products) are 

carcinogenic in humans due to the formation of nitrosamines (Camargo et al., 2005). 

Exposure of HEp-2 cells to nitrates results in increased expression of genes associated 

with a stress response, cell cycle control and DNA repair (Bharadwaj et al., 2005). The 

acute toxicity of potassium nitrate was measured in juvenile blue swimmer crabs, 

histopathological changes to the anterior gill lamellae were observed, including 

lamellae swelling, epithelial thickening, pillar cell disruption, necrosis, and distortion 

(Romano & Zeng, 2007). Epidemiological studies have suggested that high nitrate 

concentrations in drinking water are associated with conditions such as 

teratogenicity, thyroid hypersensitivity and childhood diabetes (Bharadwaj et al., 

2005). The main toxic effect of chronic nitrate is due to the conversion of 

haemoglobin to methaemoglobin which leads to methaemoglobinemia (Van Dijk et 

al., 1983). Patients administered nitrates display enhanced nitric oxide bioavailability 

in the vasculature, vasodilation effects, and inhibition of platelet aggregation. 

Administration of potassium nitrate (0.06–0.35 mmol kg/day) reduces diastolic and 

systolic blood pressure (Van Dijk et al., 1983). Sodium nitrate also reduces blood 

pressure but leads to a reduction in oxygen consumption and increased blood flow 

(Van Dijk et al., 1983). 

1.7.3 Sorbates 

Potassium sorbate is used to preserve cheeses, cakes and syrups. Sorbic acid 

and its salts are effective against a wide variety of yeast molds and bacteria and are 

considered to be among one of the safest antimicrobial agents to be used in foods 

(ADI of 25mg/kg body weight) (Deshpande, 2002).  Toxicity tests over two 

generations in fed mice and rats with sorbic acid doses as high as 90mg/kg showed 

no abnormalities and no carcinogenic or mutagenic effects have been observed 

(Dickens et al., 1968). The low toxicity of sorbic acids may be explained by the fact 

that they are metabolised rapidly by similar pathways to other fatty acids (Walker, 

1990).  Allergic type reactions in sensitive individuals can occur by the irritation of 

mucous membranes and skin in response to high level exposure of sorbates in 
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pharmaceutical or cosmetic products (Lueck, 1980). When in contact with nitrates, 

sorbic acids can form mutagenic compounds however, this only occurs in extreme 

conditions such as high concentrations or temperatures and is not detectable under 

normal conditions, even in curing brines (Walker, 1990).  

1.7.4 Caffeine 

Caffeine (1,3,7-trimethylxanthine) is the most widely used central nervous 

system stimulant in the world and along with its metabolites, theobromine (3,7-

dimethylxanthine) and theophylline (1,3-dimethylxanthine), is found in a wide range 

of plants (Porciúncula et al. 2013). A third metabolite paraxanthine, (1,7-

dimethylxanthine) is not found in food, but is the main metabolite of caffeine in vivo 

(Aresta et al., 2005). Over 60 plant species contain caffeine with the most widely used 

being coffee (Caffea arabica), kola nuts (Cola acuminata), tea (Thea sinensis), and 

chocolate (Cocoa bean) (Vanderveen et al., 2001); and it is also available in synthetic 

form. Caffeine competitively binds to adenosine receptors allowing it to act as an 

antagonist with inverse agonist activity (Rivera-Oliver and Díaz-Ríos, 2014). Caffeine 

affects cAMP signalling both by binding to adenosine receptors and by competitively 

inhibiting the activity of phosphodiesterases which function to degrade cAMP 

(Vanderveen et al., 2001). Caffeine can stimulate dopaminergic activity by removing 

the negative modulatory effects of adenosine at dopamine receptors (Ferré, 2008). 

In addition to the effect caffeine has on adenosine receptors, studies have also 

suggested that paraxanthine, the primary metabolite of caffeine in humans, 

produces increased locomotive activity, as well as a phosphodiesterase inhibitory 

effect which in turn results in increased extracellular levels of dopamine (Orrú et al., 

2010). The consumption of  low to moderate doses of caffeine is generally regarded 

as safe (GRAS) (daily intake of no more than 400 mg in healthy adults) however the 

consumption of higher doses by vulnerable individuals can result in an increased risk 

of negative health consequences such as cardiovascular and perinatal complications 

(Meredith et al., 2013).  
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1.7.5 Monosodium glutamate 

Monosodium glutamate (MSG) is a sodium salt of glutamate and it is widely 

used as a flavour enhancer in several meat preparations, being responsible for the 

umami sensation. MSG is found naturally in tomatoes cheese and other foods. 

Monosodium glutamate causes glutamate hypersensitivity, more commonly known 

as Chinese restaurant syndrome, of which the symptoms include headache, 

sweating, numbness, tickling or burning in the face, chest pain, nausea and weakness 

(Dixit et al., 2014).  

The incidence of obesity was measured in mice and rats of different ages that 

were administered MSG by various methods (Bunyan et al., 1976). Sixteen per cent 

of new-born mice injected subcutaneously with 3mg MSG/g of body weight at 

1,2,3,6,7 and 8  days of age died. Out of the remaining new-born mice 90% became 

markedly obese. Studies in animals have shown that MSG is toxic in organs such as 

the liver (Nakanishi et al., 2008), brain (Xiong et al., 2009), thymus (Hassan et al., 

2014) and kidneys (Sharma, 2015).  

1.7.6 Creatine monohydrate 

               Creatine monohydrate is used by both professional and amateur athletes 

to increase muscle power output. The Lohmann reaction is a reversible reaction 

catalysed by creatine kinase in muscles, where the high energy phosphate bound to 

ATP is transferred to creatine, forming creatine phosphate (Kemp, 2007). Muscle 

cells use both adenosine tri phosphate (ATP) and creatine phosphate as quick 

access to energy. Aerobic respiration cannot produce energy as quickly as muscle 

cells can use it, therefore when muscle ATP levels are depleted creatine phosphate 

can donate a phosphate group to adenosine di phosphate forming adensodine 

phosphate (Clark, 1997). There has been long standing concern that creatine 

monohydrate supplementation could be associated with cancer. This has grown 

through the idea that creatine monohydrate can facilitate the formation of 

carcinogenic heterocyclic amines (HCA). However, dos Santos Pereira et al. (2015) 

provided evidence that low and high doses of creatine supplementation given 

either acutely or chronically, does not cause a significant increase in HCA formation.  
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1.8 Objectives of this study 

The objectives of this study are summarized as follows; 

1. Measure and compare the acute toxicity of food additives in G. mellonella 

larvae and a HEp-2 cell line. 

2. Determine correlations between the mammalian/ Hep-2 cell line and insect 

 response to food additives. 

3. Evaluate the toxic effects of potassium nitrite, sodium nitrate, potassium 

 sorbate, sodium benzoate, potassium nitrate, caffeine, monosodium 

 glutamate and creatine monohydrate in G.mellonella.  

4. Evaluate the potential of using G. mellonella larvae as a  preliminary model to 

 test the toxicity of commonly used food additives. 
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2.1 General laboratory practice and sterilisation procedures 

2.1.1 Chemicals and reagents 

 All reagents were of the highest purity and were purchased from Sigma 

Aldrich Ltd, Somerset, U.K unless otherwise stated. 

2.1.2 Sterilisation procedures 

 All liquids were sterilised prior to use by autoclaving in a Systec 3170 ELV 

autoclave at 121°C and 15 lb/sq. inch for 15 minutes. Any chemicals unsuitable for 

autoclaving were filter-sterilised using a filter with a pore size of 0.22 µm (Sarstedt, 

Nümbrecht, Germany). 

2.1.3 Phosphate buffered saline (PBS) 

 One PBS (NaCl 8.0 g/l; KCl 0.2 g/l; Na2HPO4 1.15 g/l; KH2PO4 0.5 g/l; pH 7.3) 

tablet (Oxoid) was dissolved in 100ml deionised water and autoclaved at 121oC for 

15 minutes. PBS was stored at room temperature.  

2.2 Statistical analysis. 

 All experiments were performed on three independent occasions and 

results are expressed as the mean ± SE. Changes in G. mellonella survival and HEp-2 

cell growth were analysed with log rank (Mantel-Cox) method using GraphPad 

Prism version 5.00. Analysis of significant changes in cell density and killing ability, 

enzymatic activity and protein expression was performed by two-way ANOVA using 

GraphPad Prism version 5.00 for Windows 8, GraphPad Software, San Diego 

California USA, (www.graphpad.com).  For all experimentation a p-value of < 0.05 

was deemed to indicate a statistically significant difference.    

2.3 Candida albicans growth and harvest. 

2.3.1 C. albicans liquid culture and cell harvest.  

 A single colony of C. albicans (MEN) (serotype B, wild-type originally isolated 

from an eye infection by Dr. D. Kerridge, Cambridge, UK) was transferred to sterile 

YEPD broth (section 2.3.2) using a sterile inoculating loop. The flask was re-plugged 

with cotton wool and incubated at 30oC at 200 rpm overnight. The cell suspension 
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was transferred to a sterile 50 ml tube, cells were diluted in sterile PBS, 

enumerated by the trypan blue cell exclusion assay and adjusted in PBS to the 

correct concentration prior to inoculation. 

2.3.2 YEPD broth / agar 

 YEPD agar was prepared by dissolving glucose (2% w/v), yeast extract (1% 

w/v), and bacteriological peptone (2% w/v), in deionised water and autoclaving at 

121oC for 30 minutes. For agar plates 2% (w/v) agar was added and autoclaved as 

described. In some cases erythromycin was added to the hand warm agar prior to 

pouring to control bacterial contamination. This was prepared by dissolving 0.1g 

erythromycin in 1 ml of deionised (di) H2O and transferring the erythromycin 

solution into the hand warm agar solution. Once in the agar solution the plates 

were spread as per normal and stored at 4oC in the dark. All erythromycin 

supplemented plates were used within 3 days. 

2.3.3 Maintaining long term microbial stocks.  

 Storage of fungal strains over the longer term was achieved by freezing 

stocks of liquid culture in 50% (v/v) glycerol and placing at -80oC.   

2.4 G. mellonella larval storage and experimental conditions. 

2.4.1 G. mellonella storage and food. 

 Sixth instar larvae of the greater wax moth G. mellonella (Lepidoptera: 

Pyralidae, the Greater Wax Moth) (Mealworm Company, Sheffield, England) were 

purchased and stored in wood shavings in the dark at 15oC to prevent pupation 

(Cotter et al., 2000; Hornsey and Wareham, 2011). Larvae weighed 0.20 ± 0.03g and 

were excluded if there was evidence of localised melanisation or infection. 

2.4.2 Inoculation of G. mellonella larvae. 

 Larvae were injected through the last left pro-leg , with a Myjector U-100 

insulin syringe, (Terumo Europe N.V., 3001 Leuven, Belgium), while applying mild 

pressure to the insect to allow the opening of pro-legs (Fig 1.3). In order to 

administer compounds by the feeding route, a blunted Myjector syringe was gently 
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inserted into the mouth of larvae to force-feed 20μl of each solution (Mukherjee et 

al. 2013) (Fig. 1.3; Fig. 2.2). The larvae were kept in 9cm petri-dishes with 0.45 mm 

Whatmann filter paper inserted on the lids and some wood shavings for all 

experiments (Fig 2.1). Great care was taken with each injection to maintain a high 

accuracy of drug or pathogen delivery. All in-vivo assays were performed on three 

separate occasions using a group size of 10 larvae per dish (unless stated otherwise) 

and average results were calculated. For viability studies larvae were injected with 

sterile PBS as a control for the injection of larvae.   

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1 Larvae were stored in 9 cm petri-dishes with 0.45 mm Whatmann filter 

paper  inserted on the lids and some wood shavings 
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Fig. 2.2 Apparatus used to force fed larvae 
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2.5 G. mellonella haemocyte protocols 

2.5.1 Extraction of haemocytes from G. mellonella larvae. 

 Larvae were pierced through the head with a sterile 23G needle and 

haemolymph was squeezed through the head region into a pre-chilled 

microcentrifuge tube. Haemocytes were pelleted by centrifugation at 500 x g for 5 

minutes and washed in PBS to remove any excess haemolymph. Following a further 

centrifugation step at 500 x g for 5 minutes, the remaining supernatant was 

removed and the pelleted cells were resuspended gently in 1 ml of PBS 

(supplemented with 0.37% 2-mercaptoethanol) 

2.5.2 Trypan blue cell exclusion assay for measuring cell viability 

 Cell counts for assays involving haemocytes and HEp-2 cells were achieved 

by performing a trypan blue cell exclusion assay (Eichner et al., 1986). A cell 

suspension (20 µl) was diluted with a trypan blue solution (0.4%, w/v) (60 µl), and 

PBS (pH 7.4) (20 µl) at a ratio of 1 : 5. An aliquot of this mixture was counted using a 

haemocytometer (Neubauer improved cell counting chamber). The number of cells 

stained, and unstained was recorded. From here, cells that excluded trypan blue 

were deemed viable, the percentage (%) cell viability was calculated, and the cell 

density per ml of the cell suspension solution was calculated.   

2.5.3 Haemocyte mediated killing using Candida albicans as a target.  

 G. mellonella larvae were administered a food additive (Section 2.4.2) and 

incubated at 30oC for 24 hours. Ten larvae were bled into 10 ml of cold PBS. The 

haemocytes were pelleted by centrifugation at 500 x g. Cell free haemolymph was 

then poured into a separate container and left on ice. The pelleted haemocytes were 

washed in 10ml of cold sterile PBS, resuspended in 1 ml of PBS, enumerated (Section 

2.5.2) and adjusted to 1 x 105 cells/ml. C. albicans were grown up to the stationary 

phase in YEPD broth (Section 2.3.2). The cell suspension was transferred to a sterile 

50 ml universal and centrifuged at 1500 x g. The pellet of C. albicans cells was washed 

in sterile PBS, resuspended in 40ml of PBS, enumerated and adjusted to 2 x 105 

cell/ml. The C. albicans cells were transferred into the container containing the cell 
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free haemolymph to allow for the opsonization of the cells. The solution of cell free 

haemolymph and C. albicans cells were incubated for 30mins at 30oC. The opsonized 

C. albicans cells were pelleted by centrifugation at 1500 x g and resuspended in 1 ml 

of PBS. Haemocytes (1 x 105 cells/ml) were mixed with opsonised C. albicans cells (2 

x 105 cells/ml) in a ratio of 1:2 in a stirred chamber at 30oC (Bergin et al., 2005). 

Aliquots were removed at t = 0, 20, 40, 60 and 80 minutes and serially diluted (1/100) 

in ice cold minimal essential medium to quench phagocytosis, prior to plating on 

YEPD agar plates to ascertain fungal viability. The percentage reduction in yeast cell 

viability was calculated based on viability of control which was defined as 100% as t 

= 0 

2.5.4 Haemocyte cell preparation for Flow Cytometry analysis 

 Ten larvae were bled (Section 2.5.1) into a sterile pre-chilled centrifuge tube 

containing 800 µl of chilled PBS. Haemolymph was mixed with the PBS by pipetting 

slowly several times. Larval haemolymph was centrifuged at 1500 x g for 5mins at 

4oC, supernatant was removed and pelleted cells were re-suspended in 1ml of ice 

cold PBS. Cells were washed a further 2-3 times using the above method. Re-

suspended cells were enumerated and viability was checked using the trypan blue 

exclusion assay (Section 2.5.2). Cells were adjusted to a cell density of 1x106 per 

500µl. Cells were fixed in 3.7% formaldehyde in PBS for 10min at 4oC. The cells were 

centrifuged at 1500 x g for 5min and re-suspended in 1% bovine serum albumin (BSA) 

/PBS and washed 1 -2 times before final re-suspension in 500µl 1% (w/v) BSA/PBS. 

Cells can be stored at 4oC for approximately 3 days prior to flow cytometry analysis. 

Cells were transferred into a flow cytometry (FACs) tube with a 35 µm cell strainer 

cap to reduce potential blockage of the instrument by cell clumps and debris. 

2.5.5 Flow Cytometry analysis of haemocyte cell populations 

 Cells were analysed on a Becton Dickson® FACS ARIA, with cell populations 

grouped based on their forward scatter (size) and side scatter (granularity).  This work 

was carried out in the National Institute of Cellular Biotechnology, Dublin City 

University under the supervision of Dr. Clair Gallagher. 
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2.6 Larval movement and development 

2.6.1 Assessment of larval movement 

 Larvae were administered food additives (Section 2.4.2) and placed on their 

dorsal surface and the time for each to return to their normal orientation was 

measured at 0, 1, 4, 24, 48 and 72 hours.  

 For more detailed analysis about larval movement work was carried out in 

collaboration with Martin Kunc and Dr. Pavel Hyršl (Masarykova University Czech 

Republic) using the FIMTrack table method (Kunc et al., 2017). Briefly, the method 

used FTIR (frustrated total internal reflection) of infrared light in acrylic glass. On 

the boundary between glass and larva the light is reflected down and captured by 

camera beneath the FIMTrack table (Risse et al., 2013). Ten larvae (5 food additive 

treated and 5 PBS treated as the control) were placed into a square arena made 

from paper (28 x 28 cm), and behaviour response was recorded for 10 minutes. 

Experiment was repeated independently on two separate occasions. Images were 

captured via DMK 31AU03 camera (IMAGINGSOURCE) in a dark room without any 

additional light source except the built-in infrared light, which was generated by the 

FIMTrack. The size of the images was 1024x768 pixels. Images were captured with a 

frequency of 1 FPS (frame per second) for 600 seconds. The scale factor was 24 

pixels/cm. Images were processed by FIMTrack v2 Windows (X86) software 

(downloaded from http://fim.uni-muenster.de/). All tracks were manually verified 

so that data for each track belonged to a given larval trajectory. Data gathered from 

software was processed and visualized in Prism 6 (USA GraphPad). 

2.6.2 Analysis of effect of food additive on pupation 

 Larvae were administered food additives (Section 2.4.2) and were placed in 

sterile 9cm Petri dishes lined with Whatman filter paper containing some wood 

shavings and incubated at 30°C. Larval pupation (Fig. 2.3) was recorded every 24 

hours over a twelve day period. All experiments were performed on three 

independent occasions. 
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Fig 2.3 The pupation step, larvae progressing to the next stage of development 
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2.7 Peptide extraction from G. mellonella. 

2.7.1 Extraction of G. mellonella haemolymph. 

 Haemolymph was extracted from G.mellonella larvae by piercing and 

bleeding through the anterior end with a sterile 23G needle (Section 2.5.1) and 

haemolymph was squeezed into a pre-chilled microcentrifuge tubes  tube 

containing a few grains of N-Phenylthiourea to prevent melanisation. A 1/10 

dilution in cold PBS was carried our using a pippete tip with the tip cut off to enable 

uptake of the viscous haemolymph. Haemocytes were then pelleted by 

centrifugation at 1500 x g for 5mins and the protein supernatant was transferred to 

a fresh pre-chilled microcentrifuge tube and stored at -20oC. For protein 

enumeration and quantification, a further 1/10 dilution of the protein supernatant 

was carried out (1/100 of the original). Protein was then quantified using the 

Bradford assay (Section 2.8.1) and adjusted 100µg. 

2.7.2 Extraction of brain and surrounding tissues from G. mellonella. 

 Larvae were anesthetized using CO2. Following this larval heads were 

dissected and placed into a pre-chilled container containing cold PBS supplemented 

with 7M urea, 2M thiourea. Using a pellet pestle, the tissue was homogenized to a 

liquid consistency, resting on ice occasionally to avoid overheating. A further 500µl 

of cold PBS was added per sample. The tubes were centrifuged at 4oC at 9000 x g 

and the lipid layer removed from the top of the supernatant using a sterile fine tip 

spatula. The supernatant was removed and placed into a fresh microcentrifuge 

tube. The tubes were stored at -20oC until needed. Before use protein was 

quantified by carrying out a Bradford (Section 2.8.1) and acetone precipitated 

(Section 2.8.2) at a concentration of 100µg.  
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2.8 Protein methodology for shotgun label free proteomics. 

2.8.1 Bradford assay for protein quantification. 

 Sterile PBS was used to make a serial dilution of bovine serum albumin and 

this was used to make a range of standards (0.05-1.5mg/ml). All samples used were 

diluted in sterile PBS. Biorad Bradford protein assay reagent was diluted in ddH20 

(ratio 1:5). Twenty microliters of sample were placed in a 1 ml cuvette. To this 

980µl of diluted Biorad Bradford protein assay reagent was added. The cuvettes 

were inverted to mix the contents and then allowed to incubate for 5 minutes at 

room temperature before being read in a microcentrifuge tube Bio-photometer. 

The quantity of protein was based on the OD590 readings. 

2.8.2 Acetone precipitation of protein samples. 

 Acetone precipitation was used to concentrate protein from a dilute sample 

and also to purify protein samples. The required volume of protein was calculated 

following Biorad Bradford assay quantification. The correct protein volume was 

aliquoted into a fresh pre-chilled microcentrifuge tube and 100% ice cold acetone 

was added to the tube at a volumetric ratio of 1:3 (sample: acetone). Protein was 

left at -20oC overnight and then precipitated at 13,000 x g for 10 minutes to pellet 

protein. All protein pellets were placed upside down to air dry for 5 mins following 

removal of acetone. 

2.8.3 In solution digest protocol for overnight peptide digestion for label free 

proteomics .  

 The list of buffers used for the in solution digestion of proteins in 

preparation for label free proteomics are presented below. Buffers were made 

fresh daily. Protease Max (Promega) was used in order for the trypsin (Promega) to 

digest the protein when using urea and thiourea. All water was deionised and was 

taken fresh before use from the deionised water dispenser.  
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Sample Resuspension Buffer (pH to 8.0) 

• 7.2g Urea 

• 2M Thiourea 

• 0.1M Tris-HCL 

• 20mls diH2O 

200mM Ammonium Bicarbonate (AmBic)  

• 0.394g Ammonium bicarbonate 

• 25ml water  

 50mM AmBic 

• 2.5ml 200mM AmBic 

• 7.5ml water  

0.5M Dithiothreitol (DTT) 

• 0.077g DTT  

• 1ml 50mM AmBic  

0.55M Iodoacetamide (IAA) (Protect from light)  

• 0.102g IAA  

• 1ml 50mM AmBic  

ProteaseMax solution (1mg/100µl) 

• 1mg ProteaseMaxTM Surfactant Trypsin Enhancer (Promega) 

• 100µl 50mM AmBic 

Trypsin solution (0.5µg/µl) 

• 20µg Sequence grade modified trypsin (Promega) 

• 40µl trypsin reconstitution buffer (Promega) 
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 Following overnight acetone precipitation, the protein samples were 

centrifuged at 13000 x g for 10 minutes and allowed to air dry. Pellets were 

resuspended in 25µl of sample resuspension buffer. To aid in pellet resuspension 

samples were placed in a sonication bath for 5 minutes and vortexed for 

approximately 30 seconds. Protein enumeration was carried out using a Qubit 

fluorometer, and the Qubit protein assay kit (Theremo scientific). Protein 

concentrations for each sample determined by the qubit protein assay were later 

used to quantify the samples to 1µg/µl just before they were loaded onto the Q-

exactive. One hundred and five microliters of 50mM ammonium bicarbonate was 

added to the samples. Following the addition of 1µl of 0.5M DTT samples were 

incubated at 56oC for 20 minutes. Samples were allowed cool to room temperature. 

The samples were alkylated by the addition of 2.7µl 0.55M IAA and incubated at 

room temperature in the dark for 15 minutes. One microliter of ProteaseMax 

solution and trypsin solution were added to the samples. The samples were 

wrapped in tinfoil, incubated for 24 hours at 37oC in an orbital shaker.  

2.8.4 Sample clean-up prior to loading on Q-exactive.    

 The list of buffers used for the sample clean-up for use on Q-exactive using 

C18 spin columns (Thermo Scientific) are listed below. Buffers were made fresh 

directly before use. All water was deionised and was taken fresh before use from 

the deionised dispenser. The C18 columns are designed to trap only 30μg of protein 

and so is the final step of re-quantification before loading on the Q-exactive 

OrbiTrap. Care was taken to ensure the resin did not reach any flow through. 

Sample buffer (2% TFA, 20% Acetonitrile)  

• 200μL Acetonitrile 

• 20μl TFA 

• 780μl diH2O  

 Equilibration Buffer (0.5% TFA, 5% Acetonitrile) 

• 25μl TFA  

• 250μl Acetonitrile 



53 
 

• 4.3ml diH2O 

Wash buffer (Same as equilibration buffer)  

 Elution buffer (70% Acetonitrile, 30% water) 

• 700µL Acetonitrile 

• 300µl diH2O 

 Activation buffer (50% Acetonitrile, 50% water) 

• 5ml Acetonitrile 

• 5ml diH2O  

 Loading buffer (0.05% TFA, 2% Acetonitrile) 

• Taken straight from the Q-exactive buffer reservoirs 

 Digested protein samples (following digestion according to section 2.8.3) 

were briefly centrifuged in a microfuge to collect any condensate, straight from the 

37oC incubator following overnight peptide digestion. TFA to a concentration of 

0.75% of the total volume of sample was added (approximately 0.75μl), vortexed 

briefly, and incubated at room temperature for 5 minutes. Samples were 

centrifuged at 13000 x g for 10 minutes to remove any debris that may have formed 

overnight, and the supernatant transferred to a fresh tube. Samples were mixed at 

a ratio of 3 parts sample:1 part sample buffer.  

 PierceTM C-18 spin columns (Thermo scientific) were tapped briefly to settle 

the resin, and the protective caps were removed from either end. Holes were 

pierced in the lid of sterile microcentrifuge tubes to place C-18 spin columns  into 

(Fig. 2.4). Resin was activated using 200μl of activation buffer, added to the top of 

the resin, and centrifuged at 1500g for 1 minute. Flow through was discarded and 

the process repeated. Equilibration buffer (200μL) was added to the column, spun 

for 1 minute 1500 x g and the flow through discarded, and repeated once more. 

Samples were loaded to the top of the resin in the C18 column, and a fresh receiver 

tube placed underneath. Tubes were spun at 1500 xg for 1 minute, flow-through 

collected, and placed back onto the resin. This was repeated three times to ensure 
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complete peptide binding to the C18 resin. C18 columns were placed in a fresh 

receiver microcentrifuge tube, and 200μl of wash buffer added. This was then spun 

at 1500 x g for 1 minute, flow through discarded, and the process repeated a total 

of three times to remove containments such as Urea and Ammonium Bicarbonate. 

Column was placed over a fresh receiver tube, this time with the lid open and no 

hole pierced through the lid, and 20μl of elution buffer added to the top of the 

resin bed. The tubes were spun at 1500 x g for 1 minute, and the flow-through 

untouched. This was repeated a total of three times to obtain a final volume of 60μl 

in the receiver microcentrifuge tube. This is now the cleaned peptide sample. 

Samples were then dried down in a SpeedyVac and stored at 20μl until running on 

the Q-exactive. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4 Image shows the C-18 spin placed in a 1.5 ml microcentrifuge tubes. 
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2.8.5 Preparation of sample prior to loading on Q-exactive.     

 The protein concentration of each sample (from Qubit protein assay) was 

used to determine the concentration of sample loading buffer needed to achieve 

peptide resuspension at a concentration of 1µg/µl. The samples were vortexed for 

30 seconds and placed in a water bath for sonication for 5 minutes. Following 

resuspension of the peptide pellet, samples were spun at 13000 x g for 5 minutes at 

room temperature to pellet any insoluble material, and 30μl of the supernatant 

transferred to vials (VWR). 

2.8.6 Parameters for running samples on Q-exactive.  

 One microliter of peptide suspension was eluted onto the Q-Exactive, a high 

resolution accurate mass spectrometer connected to a Dionex Ultimate 3000 

(RSLCnano) chromatography system (Fig. 2.5). Peptides were separated by an 

increasing acetonitrile gradient on a Biobasic C18 PicofritTM column (100 mm length, 

75 mm ID), using a 180 minutes reverse phase gradient at a flow rate of 250 ml 

/min. All data were acquired with the mass spectrometer operating in automatic 

data dependent switching mode. A high-resolution MS scan (300-2000 Dalton) was 

performed using the Orbitrap to select the 15 most intense ions prior to MS/MS.   

2.8.7 Parameters for analysing quantitative results and statistical analysis.     

 Protein identification from the MS/MS data was performed using the 

Andromeda search engine in MaxQuant (version 1.2.2.5; http://maxquant.org/) to 

correlate the data against a database for G. mellonella 

(Galleria_6_frame_database), depending on the experiment. A combined database 

for the two organisms (D. melanogaster and B. mori) was also used. The following 

search parameters were used: first search peptide tolerance of 20 ppm, second 

search peptide tolerance 4.5ppm with cysteine carbamidomethylation as a fixed 

modification and Nacetylation of protein and oxidation of methionine as variable 

modifications and a maximum of 2 missed cleavage sites allowed. False Discovery 

Rates (FDR) were set to 1% for both peptides and proteins and the FDR was 

estimated following searches against a target-decoy database. Peptides with 

minimum length of seven amino acid length were considered for identification and 
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proteins were only considered identified when more than one unique peptide for 

each protein was observed. Results processing, statistical analyses and graphics 

generation were conducted using Perseus v. 1.5.0.31. Label free quantification 

(LFQ) intensities were log2 -transformed and ANOVA of significance and t-tests 

between the proteomes of control and treated larvae was performed using a p-

value of 0.05 and significance was determined using FDR correction 

(BenjaminiHochberg). Proteins that had non-existent values (indicative of absence 

or very low abundance in a sample) were included in the study only when they 

were completely absent from one group and present in at least three of the four 

replicates in the second group (referred to as qualitatively differentially abundant 

proteins). The Blast2GO suite of software tools was utilized to assign gene ontology 

terms (GO terms) relating to biological processes (BP), molecular function (MF) and 

cellular component (CC). Enzyme commission (EC) numbers and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) pathway mapping was performed as part of the 

Blast2GO annotation pipeline.   
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Fig. 2.5 Q-Exactive, a high resolution accurate mass spectrometer connected to a 

Dionex Ultimate 3000 (RSLCnano) chromatography system. 
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2.9 Determination of enzymatic activities. 

2.9.1 Determination of catalase activity in larval haemolymph. 

 Five larvae were administered a compound and catalase activity in 

haemocyte-free haemolymph was determined after 4 and 24 hours incubation as 

described previously (Rowan et al., 2009). Five larvae were bled (Section 2.5.1) into 

a prechilled microcentrifuge tubes with a few grains of N-Phenylthiourea to prevent 

melanisation. Haemolymph was spun at 10000 x g for 10 minutes at 4oC. Cell free 

haemolymph was pipetted into a fresh pre-chilled microcentrifuge tube and its 

protein content was enumerated using the Bradford Assay (Section 2.8.1). 

Haemolymph protein was corrected to 7mg/100mls of PBS. The 100 ml of 

haemolymph protein was then incubated with 1.8 ml of H2O2 (17mM) for 15 mins 

at room temperature in the dark. The samples were then centrifuged at 10000 x g 

for 1 min to stop the reaction. After this time, the supernatant was removed and 

placed in a clean quartz cuvette. The absorbance at 240nm was obtained using 

BeckmanDU640 spectrophotometer. A blank consisted of 17mM H2O2. 

2.9.2 Determination of superoxide dismutase activity in larval haemolymph. 

Homogenisation buffer 

• 272mg potassium phosphate 

• 100ml diH20 

Assay Buffer 

• 50ml homogenisation buffer 

• 15mg  Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA) 

• 4.6µL of N,N,N′,N′-Tetramethylethylenediamine (TEMED) 

Quercetin solution 

• 1.5mg Quercetin 

• 10ml Dimethyl sulfoxide 
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 Five Larvae were administered a compound and superoxide dismutase 

activity in haemocyte-free haemolymph was determined after 4 and 24 hours. Five 

larvae were bled (Section 2.5.1) into a prechilled microcentrifuge tubes with a few 

grains of N-Phenylthiourea to prevent melanisation. Haemolymph was spun at 

10000 x g for 10 minutes at 4oC. Cell-free haemolymph was pipetted into a fresh 

pre-chilled microcentrifuge tubes. Haemolymph was serially diluted (1/2) in 

homogenisation buffer from 100% haemolymph to 6.25% haemolymph (0x-16x). 

Each sample of haemolymph was pippeted in duplicate into a 96-well plate (Corning 

Incorporated Costar®). Homogenisation buffer (100%) was also pipetted in 

duplicate into the well as a control.  One hundred and fifty µl of Assay buffer was 

added to each well. Immediatly 40µl of quercetin solution was added to each well. 

Superoxide dismutase activity in haemocyte-free haemolymph was determined by 

assaying the oxidation of quercetin by N,N ′,N′-tetramethyl-ethylenediamine and 

the absorbance at 406 nm for 5 min was obtained using a microplate reader (Boi-

Tec® Synergy HT) (Fig. 2.6). One-unit total SOD activity was calculated as the 

amount of protein causing 50% inhibition of quercetin oxidation (Buyukguzel et al., 

2013) and total SOD activity was expressed as units per micro gram of protein. 

2.9.3 Determination of alkaline phosphatase activity in larval haemolymph. 

Alkaline phosphatase buffer  

• 104mg p-nitrophenyl phosphate 

• 41mg Sodium acetate 

• 5ml diH2O 

Sodium hydroxide buffer 

• 200mg Sodium hydroxide 

• 5ml of diH2O 

 Five Larvae were administered a compound and catalase activity in 

haemocyte-free haemolymph was determined after 4 and 24 hours. Five larvae 

were bleed (Section 2.5.1) into a prechilled microcentrifuge tubes with a few grains 

of N-Phenylthiourea to prevent melanisation. Haemolymph was spun at 10000 x g 
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for 10 minutes at 4oC. Cell free haemolymph was pipetted into a fresh pre-chilled 

microcentrifuge tubes and its protein content was enumerated using the Braford 

Assay (Section 2.8.1). Haemolymph protein was corrected to 7mg/100mls of PBS. 

The corrected protein sample was added to 100µl of alkaline phosphatase buffer 

and incubated at 30oC for 2 hours. The reaction was stopped with the addition of 

100μl of sodium hydroxide buffer. The solution was thoroughly mixed by pipetting 

and 200µl was aliquoted into a 96 well plate (Corning Incorporated Costar®). Colour 

development was assayed at 405nm, using a microplate reader (Boi-Tec® Synergy 

HT) (Fig 2.6).  
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Fig. 2.6 microplate reader, Boi-Tec® Synergy HT. 
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2.10 Caffeine, theobromine and theophylline extraction from G. mellonella 

haemolymph. 

Ten larvae were administered 20µl of 0.8M caffeine by intra-haemocoel 

injection and force feeding. Larvae were bled into a micro-centrifuge tube and the 

haemolymph was immediately centrifuged at 500 x g for 5 minutes at 4 oC to pellet 

haemocytes. Cell free haemolymph was centrifuged at 20,000 x g for 30 minutes to 

remove any remaining cellular debris. Haemolymph (100µl) was diluted in extraction 

buffer (900µl) (CH3OH: H2O: CH3COOH ratio 90: 9: 1) and mixed thoroughly for 1 hour 

on a rocker. The contents of the micro centrifuge tubes were centrifuged at 20,000 x 

g for 10 minutes at 4oC and supernatant stored at 20oC overnight and subsequently 

centrifuged again at 20,000 x g for 10 minutes at 4oC. Samples were split into two 

400µl aliquots and lyophilized until dryness. Lyophilized samples were stored at -20oC 

and resuspended in apryogenic H2O supplemented with trifluoacetic acid (TFA; 0.1% 

v/v). 

2.10.1 RP-HPLC analysis of caffeine and metabolites in haemolymph. 

 Samples extracted from cell-free haemolymph for RP-HPLC (reverse phase 

high-performance liquid chromatography) analysis were loaded in a 20 µl volume on 

a C-18 Shimadzu HPLC column with diode array detection of 273 nm (Fig. 2.10). 

Samples were maintained at 4oC in thermally controlled sample tray. The elution 

profile was 5 minutes of Buffer B (HPLC grade acetonitrile supplemented with 0.1 % 

(v/v) TFA) at 5 % followed by a linear gradient mobile phase with Buffer B to 100 % 

acetonitrile for 24 minutes. The column was eluted fully with 100 % Buffer B for 3 

minutes and was re-equilibrated with 95 % Buffer A (HPLC grade water supplemented 

with 0.1 % (v/v) TFA), 5 % Buffer B for 15 minutes prior to further analysis. The 

retention times of caffeine, theobromine and theophylline were 13.8 minutes, 9.5 

minutes and 11.9 minutes respectively. Caffeine standard curve was constructed 

using concentrations from 2 - 200 µg/ml (Fig 2.7). Theophylline and theobromine 

standards were from 20 – 1 µg/ml (Fig 2.8: 2.9). 
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Fig 2.7 Standard curve of caffeine detected by RP-HPLC. All values are the mean ±SE 

of three independent replicates.  
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Fig 2.8 Standard curve of theobromine detected by RP-HPLC. All values are the 

mean ±SE of three independent replicates.   
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Fig. 2.9 Standard curve of theophylline detected by RP-HPLC. All values are the 

mean ±SE of three independent replicates.  
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Fig. 2.10 C-18 Shimadzu high powered liquid chromatograhy 
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2.11 General cell culture methodology. 

2.11.1 HEp-2 cell line. 

 HEp-2 cell line (ATCC CCL23, derived from an epidermoid carcinoma of the 

larynx) was obtained from the American type culture collection (Maryland, USA). 

The HEp-2 cells were grown in 25 cm2 tissue culture flasks (Sarstedt) containing 

Eagle’s minimum essential medium supplemented with 5 % (v/v) foetal calf serum 

(GIBCO Laboratories) and 2%(v/v) glutamine (GIBCO) and incubated at 37 °C in a 

humidified atmosphere containing 5 % CO2. Cells were subcultured by trypsinisation 

every 3-4 days as described below. 

2.11.2 Sub-culturing an adherent cell line. 

 Cell medium was poured into a waste bottle and 1 ml of trypsin solution 

(1ml Trypsin (GIBCO): 9ml PBS) was used too rinse out the remaining medium. Five 

millimetres of trypsin solution was added into the 25 cm2 tissue culture flasks and 

placed in an incubator at 37oC, 5% CO2
 for 3-4 minutes. The flask was removed from 

the incubator and examined under an inverted microscope to ensure the successful 

dislodgement of HEp-2 cells from the flask surface into solution. The side of the 

flask was gently hit on the side 2-3 times to ensure full cell dislodgement. Five 

millimetres of culture medium was added to the flask to neutralise the trypsin 

solution. The solution of cells were gently poured into a sterile universal and 

harvested by centrifugation at 200 x g. Medium was poured off and the pellet of 

cells was gently resuspended in 5ml of pre-heated fresh culture medium. The cells 

were reseeded by pipetting 2 ml of cells and 10 ml of fresh preheated medium into 

a fresh flask.  

2.11.3 Cryopreservation of HEp-2 cells in liquid nitrogen (N2).   

 HEp-2 cells were cultured to the exponential phase of growth 

(approximately 60% confluency), and harvested by trypsinization (trypsin [0.25%, 

w/v]-EDTA (0.022%, w/v) in PBS). Cells counts were performed using the trypan 

blue cell exclusion method (Section 2.5.2) before resuspension of HEp-2 cells (2 x 

106 cells/ml) in cryopreservation buffer (Dulbecco’s modified eagle medium 
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(DMEM) (Gibco®) (80%, v/v), supplemented with FCS (10%, v/v), and DMSO (10%, 

v/v) aliquoted to 1 ml volumes using cryovials, and transferred to a Mr Frosty™ 

freezing container (Nalgene®, Thermo Scientific) (contained ice-cold methanol      

(100 ml) and was stored at -80°C the night before use) and stored at -80°C 

overnight before the cyrovials were placed in a liquid N2 (-195.79°C) tank for long 

term storage. The cryopreservation buffer was kept at 4°C before use.   

2.11.4 Recovery of HEp-2 cells from liquid N2.    

 HEp-2 cells were recovered from liquid N2 storage by rapid thawing of cells 

using pre-warmed cell recovery medium (DMEM (95%, v/v) supplemented with FCS 

(5%, v/v)) (10 ml of recovery medium for a 1 ml aliquot of cells per cryovial). The 

cell recovery process was performed quickly to maintain cell viability, and was 

achieved by swiftly pipetting cells into suspension with the recovery medium 

followed centrifugation at 200 x g for 3 minutes. Recovered cells were washed (x 2) 

in Eagle’s minimum essential medium, and centrifuged again before transfer to a 25 

cm2 tissue culture flask (Sarstedt). The flasks were placed in a 5% CO2 humidified 

atmosphere incubator at 37oC for 1 hour followed by a medium change to remove 

unattached cells (non viable).   

2.11.5 Acid phosphatase assay for quantifying cell growth. 

 Confluent HEp-2 cells were trypsinized, enumerated (Trypan Blue Cell 

Exclusion Assay) and used to seed 96-well plates (Corning Incorporated Costar®) at 

a density of 1×104 cells/well in 100μl minimum essential medium (MEM) culture 

medium. After 24 h, incubation cells were exposed to different concentrations of 

the food additives dissolved in MEM. The plates were incubated 37°C and 5% CO2 

for 7 days prior to the quantification of cell growth. The effect of the food additives 

on the growth of HEp- 2 cells was determined using the acid phosphatase assay 

(Yang et al., 1996). Following incubation, medium containing test compounds was 

removed from each well, and the attached cells were washed with PBS. To each 

well, 100μl of buffer containing 0.1M sodium acetate (pH 5.0), 0.1 % Triton X-100 

and 5 mM p-nitrophenyl phosphate was added, and the plates were incubated at 

37 °C and 5 % CO2 for 2 h. The reaction was stopped with the addition of 50μl of 
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1M NaOH, and colour development was assayed at 405nm, using a microplate 

reader (Boi-Tec® Synergy HT) (Fig. 2.6). The percentage growth of HEp-2 cells in the 

presence of food additives was determined. The inhibitory concentration 50 (IC50) 

was defined as the concentration of agent that inhibited growth of HEp-2 cells by 

50 % over the period of the experiment. 
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3.1 Evaluation of Galleria mellonella larvae as an in-vivo model for assessing the 

relative toxicity of food preservative agents. 

The aim of the first part of this Chapter was to evaluate the relative toxicity 

of potassium nitrate, potassium nitrite, potassium sorbate, sodium benzoate, sodium 

nitrate, sodium chloride, sodium nitrite and sodium acetate in G.mellonella larvae 

and human epithelial type 2 (HEp-2) cells. Larvae of Galleria mellonella are widely 

used for evaluating the virulence of microbial pathogens (Fedhila et al., 2010) and for 

measuring the efficacy of anti-microbial agents (Desbois and Coote 2011)  and 

produce results comparable to those that can be obtained using mammals (McMillan 

et al., 2015). A wide range of mammalian cell lines have been utilized for assessing 

the in-vivo toxicity of compounds (Fotakis and Timbrell, 2006). HEp-2 cells were 

originally derived from a human laryngeal carcinoma and have been utilized to 

determine the efficacy of anti-cancer drugs (Rossi et al., 2003), the cytotoxicity of 

nanoparticles (Ahamed et al., 2015) and the toxicity of food additives (Angelis et al., 

1994). 

 The acute toxicity of a compound intended for use as a food additive or 

preservative is measured as the calculated dose of a substance that is expected to 

cause the death of 50 % of a defined experimental animal population and is known 

as the lethal dose 50 (LD50) value. The inhibitory concentration 50 (IC50) value is 

measured in HEp-2 cells, the value was calculated as the dose of a substance that is 

expected to cause 50 % inhibition of growth in the cell line.  

 The second part of this Chapter focused on a more in-depth study of the 

toxic effects of 4 food additives: potassium sorbate, sodium nitrate, sodium benzoate 

and potassium nitrite in G. mellonella larvae. The in-depth study focused on the 

effect these 4 food additives have on the immune system and enzymatic responses 

of G. mellonella. Despite divergence almost 500 million years ago striking similarities 

exist between insects and mammals. In particular human neutrophils and insect 

haemocytes display many similarities (Browne et al., 2013) including the ability to 

produce superoxide by a functional NADPH oxidase complex (Bergin et al., 2005). The 

metabolism of xenobiotics can lead to the production of reactive oxygen species 

causing oxidative stress, resulting in the production of antioxidant enzymes 
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(Büyükgüze et al.,2013). A number of antioxidant enzymes produced by the fat body 

such as superoxide dismutase, catalase and glutathione-s-transferase are highly 

conserved between species (Büyükgüze et al.,2013).  

 This work presented here aimed to characterise the similarities between 

the response of G. mellonella to pre-existing models of food additive toxicity 

therefore highlighting the insect’s utility as a preliminary screening model for 

measuring the toxicity of food additives. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 
 

3.2 Assessment of effect of food preservative agents on G. mellonella 

 G. mellonella larvae were administered 20 µl of the food additive agents 

by intra-haemocoel injection (Fig. 3.1). or by force feeding (Fig. 3.2). as described, 

and the LD20, LD50 and LD80 values of each compound were determined. 

 LD20 values for Intra-haemocoel injected compounds in G. mellonella were 

recorded to be as follows: potassium nitrite 0.07 M, sodium nitrite 0.07 M, sodium 

benzoate 0.17 M, potassium sorbate 0.15 M, sodium acetate 0.42 M, sodium nitrate 

0.50 M, potassium nitrate 0.76 M and sodium chloride 0.85 M. LD50 values for Intra-

haemocoel injected compounds in G. mellonella were recorded to be as follows: 

potassium nitrite 0.09 M, sodium nitrite 0.10 M, sodium benzoate 0.21 M, potassium 

sorbate 0.44 M, sodium acetate 0.50 M, sodium nitrate 0.66 M, potassium nitrate 

0.89 M and sodium chloride 1.00 M. LD80 values for Intra-haemocoel injected 

compounds in G. mellonella were recorded to be as follows: potassium nitrite 0.11 

M, sodium nitrite 0.13 M, sodium benzoate 0.25 M, potassium sorbate 0.47 M, 

sodium acetate 0.56 M, sodium nitrate 0.82 M, potassium nitrate 0.96 M and sodium 

chloride 1.20 M. 

 LD20 values for force fed compounds in G. mellonella were recorded to be 

as follows: potassium nitrite 0.14 M, sodium nitrite 0.07 M, sodium benzoate 0.38 M, 

potassium sorbate 0.40 M, sodium acetate 0.62 M, sodium nitrate 0.50 M, potassium 

nitrate 0.77 M and sodium chloride 0.70 M. LD50 values for force fed compounds in 

G. mellonella were recorded to be as follows: potassium nitrite 0.2 M, sodium nitrite 

0.29 M, sodium benzoate 0.45 M, potassium sorbate 0.48 M, sodium acetate 0.90 M, 

sodium nitrate 0.81 M, potassium nitrate 0.90 M and sodium chloride 1.14 M. LD80 

values for force fed compounds in G. mellonella were recorded to be as follows: 

potassium nitrite 0.25 M, sodium nitrite 0.32 M, sodium benzoate 0.5 M, potassium 

sorbate 0.53 M, sodium acetate 1.20 M, sodium nitrate 0.95 M, potassium nitrate 

0.98 M and sodium chloride 1.24 M. 

 The relative toxicity of each compound in larvae was greatest when 

administered by intra-haemocoel injection compared to the feeding route. For 

example, larvae administered potassium nitrite by intra-haemocoel injection showed 
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an LD50 value of 0.09 M, compared to an LD50 value of 0.20M when larvae were force-

fed the compound. Larvae administered sodium benzoate into the haemocoel 

showed an LD50 value of 0.21 M, compared to an LD50 value of 0.45 M in larvae that 

were force-fed with the compound. A strong correlation between the LD20, LD50 and 

LD80 values for each compound in larvae due to feeding or intra-haemocoel injection 

was established. The results show an R2 value of 0.81 (p=0.0022) between the LD20 

values (Fig. 3.3), an R2 value of 0.88 (p=0.0006) between the LD50 values (Fig. 3.4) and 

an R2 value of 0.76 (p=0.0046) between the LD80 values (Fig. 3.5) obtained due to 

feeding and intra-haemocoel administration respectively. 
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Fig. 3.3 Correlations between the LD20 values of food preservatives when 

administered to Galleria mellonella larvae by feeding or by intra haemocoel injection. 

PNi potassium nitrite, SNi sodium nitrite, SB sodium benzoate, PS potassium sorbate, 

SA sodium acetate, SNa sodium nitrate, PNa potassium nitrate, SC sodium chloride. 

 

 

 

 

 

 



78 
 

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

PNa

PNi

PSSB

SNa

SNi

SC

SA

R2 Value = 0.8766

p = 0.0006

p<0.001

LD50 Values in Injected Larvae (molarity)

L
D

5
0
 V

a
lu

e
s

 i
n

 F
e

e
d

 L
a

rv
a

e
 (

m
o

la
ri

ty
)

 

Fig. 3.4 Correlations between the LD50 values of food preservatives when 

administered to Galleria mellonella larvae by feeding or by intra haemocoel injection. 

PNi potassium nitrite, SNi sodium nitrite, SB sodium benzoate, PS potassium sorbate, 

SA sodium acetate, SNa sodium nitrate, PNa potassium nitrate, SC sodium chloride. 
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Fig. 3.5 Correlations between the LD80 values of food preservatives when 

administered to Galleria mellonella larvae by feeding or by intra haemocoel injection. 

PNi potassium nitrite, SNi sodium nitrite, SB sodium benzoate, PS potassium sorbate, 

SA sodium acetate, SNa sodium nitrate, PNa potassium nitrate, SC sodium chloride. 
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3.3 Response of HEp-2 cells to food preservative compounds. 

 HEp-2 cells were exposed to different concentrations of the food 

preservatives as described, and the effect on growth after 7 days of incubation was 

assessed using the acid phosphatase assay (Fig. 3.6). Higher concentrations of the 

compounds reduced growth of the HEp-2 cells. The IC50 values for each compound in 

HEp-2 cells were determined.  

 IC50 values for compounds in HEp-2 cells were recorded to be as follows: 

potassium nitrite 0.01 M, sodium nitrite 0.03 M, sodium benzoate 0.04 M, potassium 

sorbate 0.03 M, sodium acetate 0.14 M, sodium nitrate 0.11 M, potassium nitrate 

0.05 M and sodium chloride 0.185 M. 

 The relative toxicity of some compounds when tested against HEp-2 cells 

was similar to the toxicity observed in G. mellonella. For example potassium nitrite 

and sodium nitrite were the two most toxic food preservatives in both model 

systems, whereas sodium chloride was the least toxic compound in both systems. An 

R2 value of 0.7666 (p = 0.0076) and 0.5032 (p=0.0488) was obtained by plotting the 

LD50 value for each compound obtained via force-feeding larvae (Fig. 3.7) or by intra-

haemocoel (Fig. 3.8) challenge respectively, against the IC50 value obtained using 

HEp-2 cells.  
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Fig. 3.7 Correlation between the IC50 values of food preservatives in HEp-2 cells and 

LD50 values of food preservatives when administered by intra-haemocoel injection to 

Galleria mellonella larvae. PNi potassium nitrite, SNi sodium nitrite, SB sodium 

benzoate, PS potassium sorbate, SA sodium acetate, SNa sodium nitrate, PNa 

Potassium nitrate, SC sodium chloride. 
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Fig. 3.8 Correlation between the IC50 values of food preservatives in HEp-2 cells and 

LD50 values of food preservatives when administered by feeding to Galleria mellonella 

larvae. PNi potassium nitrite, SNi sodium nitrite, SB sodium benzoate, PS potassium 

sorbate, SA sodium acetate, SNa sodium nitrate, PNa potassium nitrate, SC sodium 

chloride 
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3.4 Correlation between response of larvae and mammals to food preservative 

compounds 

 LD50 values for compounds in rats were obtained in the literature and 

previously recorded to be as follows: potassium nitrite 200 mg/kg, sodium nitrite 

180mg/kg, sodium benzoate 4070 mg/kg, potassium sorbate 4340 mg/kg, sodium 

acetate 3530 mg/kg, sodium nitrate 1267 mg/kg, potassium nitrate 3750 mg/kg and 

sodium chloride 3000 mg/kg (Chemistry 2016; Pfizer 2007; Scholar 2009). The LD50 

values of each food preservative as determined in rats by feeding was plotted against 

the corresponding LD50 for the compounds obtained by feeding G. mellonella larvae. 

The resulting graph shows a significant positive correlation between the LD50 values 

obtained in both systems (R2=0.6506, p=0.0156) (Fig. 3.9). 

 LD50 values for compounds in rabbits were previously recorded to be as 

follows: potassium nitrite 200 mg/kg, sodium benzoate 2000 mg/kg, sodium nitrate 

2680 mg/kg, potassium nitrate 1901, sodium nitrite 186 mg/kg (Chemistry 2016; 

Pfizer 2007; Scholar 2009). The LD50 values of each food preservative as determined 

in rabbits by feeding was plotted against the corresponding LD50 for the compounds 

obtained by feeding G. mellonella larvae. The resulting graph shows a non-significant 

positive correlation between the LD50 values obtained in both systems (R2 = 0.7524, 

p = 0.0568) (Fig. 3.10). 

 LD50 values for compounds in mice were previously recorded to be as 

follows: sodium benzoate 1600 mg/kg, sodium nitrite 175 mg/kg, sodium chloride 

4000mg/kg, sodium acetate 6891mg/kg (Chemistry 2016; Pfizer 2007; Scholar 2009). 

The LD50 values of each food preservative as determined in mice by feeding was 

plotted against the corresponding LD50 for the compounds obtained by feeding G. 

mellonella larvae. The resulting graph shows a non-significant positive correlation 

between the LD50 values obtained in both systems (R2 = 0.7162, p = 0.1537) (Fig. 

3.11). 
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3.5 Summary 

 The response of larvae to eight commonly used food additives 

administered by feeding or by intra-haemocoel injection was measured. A significant 

correlation between the LD50 (R2 = 0.8766, p = 0.0006) and LD80 (R2 = 0.7629, p = 

0.0046) values obtained due to oral or intra- haemocoel administration of 

compounds was established. The response of HEp-2 cells to the food additives was 

determined, and a significant correlation (R2=0.7217, p=0.0076) between the LD50 

values of the compounds administered by feeding in larvae with the IC50 values of 

the compounds in HEp-2 cells was established. A strong correlation between the LD50 

values of the eight food preservatives in G. mellonella larvae and rats (R2=0.6506, 

p=0.0156) was demonstrated. A positive correlation between the LD50 values of the 

5 food preservatives in G. mellonella larvae and rabbits (R2 = 0.7524, p = 0.0568) (Fig. 

3.10). A positive correlation between the LD50 values of the 4 food preservatives in 

G. mellonella larvae and mice (R2 = 0.7162, p = 0.1537) (Fig. 3.11).  
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Fig. 3.9 Correlation between LD50 values of eight food preservatives when 

administered to rats and Galleria mellonella larvae by feeding. PNi potassium nitrite, 

SNi sodium nitrite, SB sodium benzoate, PS potassium sorbate, SA sodium acetate, 

SNa sodium nitrate, PNa potassium nitrate, SC sodium chloride. 
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Fig. 3.10 Correlation between LD50 values of five food preservatives when 

administered to rabbits and Galleria mellonella larvae by feeding. PNi potassium 

nitrite, SNi sodium nitrite, SB sodium benzoate, SNa sodium nitrate, PNa potassium 

nitrate. 
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Fig. 3.11 Correlation between LD50 values of four food preservatives when 

administered to mice and Galleria mellonella larvae by feeding. SNi sodium nitrite, SB 

sodium benzoate, SA sodium acetate, SC sodium chloride. 
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3.6 The effect of four commonly used food additives on the immune response of G. 

mellonella.  

 This part of this chapter aimed to determine the effect of 4 commonly used 

food additives (sodium benzoate, potassium sorbate, sodium nitrate, potassium 

nitrite) on the immune system of insects. It focused on the effect of food additives 

on both haemocyte density and haemocyte function. 

 Insects lack the adaptive immune response present in vertebrates, yet 

despite this insect possess an effective immune response composed of both the 

cellular and humoral immune systems. The insect’s cellular immune response is 

mediated by haemocytes which can engulf, encapsulate, or neutralize pathogens 

(Pech and Strand, 1996; Ratcliffe, 1993). Circulating haemocytes in the haemocoel 

are the first to the site of infection and their numbers can be supplemented by the 

release of haemocytes bound to internal organs such as the fat body (Kavanagh and 

Reeves, 2004). Bergin et al. (2005) highlighted that G. mellonella haemocytes are able 

to consume oxygen and produce superoxide mediated by a NADPH oxidase complex 

that contains proteins homologous to p40phox, p47phox, p67phox and gp91phox of human 

neutrophils. It has also been shown that haemocyte p40, p47 and p67 proteins 

translocate from the cytosol to the membrane in a comparable manner to 

neutrophils (Renwick et al., 2007). Both haemocytes and neutrophils also react in a 

similar way when challenged with the Aspergillus fumigatus toxins, gliotoxin and 

fumagillin. Nodulation is induced in the absence of microbial agents by saline 

injection in cockroaches and locusts (Gunnarsson and Lackie, 1985). This would 

suggest an alternative pathogen-independent mechanism of haemocyte activation, 

that might be induced by agents such as phospholipids released from or exposed on 

wounded cells (Scherfer, 2004). The aim of this work was to determine the effects 

commonly used food additives have on the cellular immune system of insects.  

3.7 Effect of PBS administration on haemocyte densities. 

 Larvae were administered by intra haemocoel injection or force feeding 

three food additive concentrations corresponding to the LD25, LD50 and LD80 values 

for sodium nitrate, sodium benzoate, potassium sorbate and potassium nitrite. The 
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effect of the food additives administration on the density of circulating haemocytes 

in larval haemolymph was ascertained after 4 and 24 hour incubation at 30OC. For 

experimental purposes control larvae were administered PBS by intra haemocoel 

injection or force feeding.  

 Untouched larvae at t = 0 hours showed 0.53 ± 0.06 x107 haemocytes/ml 

of haemolymph. After 4 and 24 hours control larvae injected with PBS showed 0.79 

± 0.09 x107 and 0.27 ± 0.012 x107 haemocytes/ml of haemolymph respectively. This 

corresponds to a 0.47 fold increase (p < 0.05) after 4 hours and a 0.51 fold decrease 

(p < 0.05) after 24 hours in haemocyte densities. 

 Larvae force fed with PBS and incubated for 4/24 hours at 30OC showed 

0.86 ± 0.15 x107 and 0.99 ± 0.02 x107 haemocytes/ml of haemolymph respectively. 

This corresponds to a 0.60 fold increase (p < 0.01) and a 0.84 fold decrease (p < 0.001) 

when compared to untouched larvae at t = 0. 

3.8 Effect of sodium benzoate on haemocyte densities in G. mellonella larvae. 

 Larvae were injected with sodium benzoate and incubated for 4 hours. 

When compared with control PBS injected larvae the administration of sodium 

benzoate by intra-haemocoel injection induced significant decreases in haemocyte 

densities (Fig. 3.12). The haemocyte densities of larvae injected with the LD25 and 

LD50 value of sodium benzoate were 0.6 ± 0.07 x107 and 0.39 ± 0.02 x107 

haemocytes/ml. When compared to control injected larvae a 0.24 fold decrease (p < 

0.05) in LD25 treated larvae and a 0.51 fold decrease (p < 0.001) in LD50 treated larvae 

was revealed. Interestingly the haemocyte density in larvae injected with the LD80 

value of sodium benzoate was 0.73 ± 0.04 x107 haemocytes/ml, showed no 

significant difference with the haemocyte densities shown in control larvae. 

 Larvae were injected with sodium benzoate and incubate for 24 hours. A 

significant increase was seen between the relevant PBS injected control group and 

larvae injected with the corresponding LD50 value of sodium benzoate (Fig. 3.13). 

Control larvae showed 0.26 ± 0.01 x107 haemocytes/ml while larvae injected the LD50 

value of sodium benzoate showed 0.59 ± 0.09 x107 haemocytes/ml, revealing a 1.24 

fold increase (p < 0.01) in LD50 treated larvae. Larvae injected with the LD25 and LD80 
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values of sodium benzoate revealed 0.39 ± 0.02 x107 and 0.28 ± 0.04 x107 

haemocytes/ml respectively, demonstrating slight increases when compared to PBS 

injected control larvae. 

 Larvae were force fed the LD25, LD50 and LD80 values of sodium benzoate 

and incubated for 4 hours. The resulting haemocyte densities were compared with 

control larvae force fed with PBS (Fig. 3.14). The haemocyte densities of larvae 

injected with the LD25/LD50/LD80 value were 0.84 ± 0.05 x107, 0.9 ± 0.46 x107, 1.08 

± 0.18 x107 haemocytes/ml respectively. Larvae force fed PBS and incubated for 4 

hours had 0.86 ± 0.15 x107 haemocytes/ml, showing no significant differences with 

the densities in sodium benzoate treated larvae. 

 The increase in incubation time to 24 hours following sodium benzoate 

feeding reveals significant decreases in haemocyte densities in control larvae vs. 

treated larvae (Fig. 3.15). Control larvae force fed PBS showed 0.99 ± 0.02 x107 

haemocytes/ml. Larvae force fed with the corresponding LD25/LD50/LD80 of sodium 

benzoate showed 0.83 ± 0.07 x107, 0.83 ± 0.07 x107 and 0.64 ± 0.05 x107 

haemocytes/ml respectively. When compared with the control group these values 

showed a 0.16 fold decrease (p < 0.05) for LD25 treated larvae, a 0.16 fold decrease 

(p < 0.05) for LD50 treated larvae and finally a 0.35 fold decrease (p < 0.001) for LD80 

treated larvae. 

3.9 Effect of potassium sorbate on haemocyte densities in G. mellonella larvae. 

 Larvae were administered potassium sorbate by intra-haemocoel injection 

and incubated for 4 hours. The administration of potassium sorbate induced a 

significant decrease in haemocyte density when compared to PBS injected controls 

(Fig. 3.12). The haemocyte density of larvae injected with the LD50 value of potassium 

sorbate was 0.3 ± 0.04 x107 haemocytes/ml, equating to a 0.62 fold decrease (p < 

0.001) when compared to control larvae. Surprisingly the haemocyte densities in 

larvae injected with the LD25 and LD80 value of potassium sorbate were 0.7 ± 0.02 

x107 and 0.81 ± 0.01 x107 haemocytes/ ml inducing no significant difference with the 

haemocyte densities shown in control larvae.  
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 The incubation time of larvae injected with potassium sorbate was 

increased to 24 hours. A significant increase was seen between the relevant control 

group and larvae injected with the corresponding LD80 value of potassium sorbate 

(Fig. 3.13). Control larvae showed 0.26 ± 0.01 x107 haemocytes/ml while larvae 

injected with the LD80 value of potassium sorbate showed 0.93 ± 0.07 x107 

haemocytes/ml, which was a 2.52 fold increase (p < 0.05). Following 24-hour 

incubation larvae injected with the LD25 and LD50 values of potassium sorbate showed 

0.26 ± 0.02 x107 and 0.36 ± 0.02 x107 haemocytes/ml respectively. These values 

showed no significant differences when compared with control larvae.  

 Larvae were force fed potassium sorbate and incubated for 4 hours. A 

significant increase was evident between the relevant PBS force fed control group 

and larvae force fed with the corresponding LD80 value of potassium sorbate (Fig. 

3.14). Control larvae showed 0.86 ± 0.15 x107 haemocytes/ml while larvae injected 

with the LD80 value of potassium sorbate showed 1.66 ± 0.44 x107 haemocytes/ml, 

indicating a 0.94 fold increase (p < 0.05) in LD80 treated larvae. In addition, following 

4 hours incubation larvae force fed with the LD25 and LD50 values of potassium 

sorbate revealed 0.83 ± 0.11 x107 and 1.36 ± 0.09 x107 haemocytes/ml respectively. 

These values show no significant changes when compared with control larvae.  

 Larvae were force fed the LD25, LD50 and LD80 values of potassium sorbate 

and incubated for 24 hours (Fig. 3.15). Haemocyte densities of larvae injected with 

the LD25/LD50/LD80 values were 1.04 ± 0.09 x107, 1.04 ± 0.08 x107, 0.95 ± 0.14 x107 

haemocytes/ml respectively. Control Larvae force fed PBS and incubated for 24 hours 

revealed 0.99 ± 0.02 x107 haemocytes/ ml, showing no significant differences with 

the densities in potassium sorbate treated larvae. 

3.10 Effect of sodium nitrate on haemocyte densities in G. mellonella larvae. 

 Larvae were administered the LD25, LD50 and LD80 values of sodium nitrate 

through intra-haemocoel injection and incubated for 4 hours (Fig. 3.12). Haemocyte 

densities of larvae injected with the LD25/LD50/LD80 value were 0.36 ± 0.09 x107, 0.80 

± 0.31 x107, 0.44 ± 0.02 x107 haemocytes/ml respectively. Control larvae injected 
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with PBS revealed 0.79 ± 0.09 x107 haemocytes/ ml. No significant differences were 

recorded between control and sodium nitrate treated groups.  

 As the incubation time of larvae injected with sodium nitrate increased to 

24 hours, significant increases were seen between the relevant PBS injected control 

group and larvae injected with the corresponding LD50 and LD80 values of sodium 

nitrate (Fig. 3.13). Control larvae injected with PBS showed 0.26 ± 0.01 x107 

haemocytes/ ml while larvae injected with the LD50 and LD80 values of sodium nitrate 

showed 0.45 ± 0.04 x107 and 0.725 ±0.04 x107 haemocytes/ml respectively. When 

compared with the control group the LD50 treated larvae revealed a 0.71 fold increase 

(p < 0.05) and the LD80 treated larvae showed a 1.76 fold increase (p < 0.001). Larvae 

injected with the LD25 value of sodium nitrate showed 0.14 ± 0.06 x107 haemocytes 

per mil revealing no significant changes when compared with control larvae.  

 Larvae incubated for 4 hours following the administration of sodium nitrate 

via force feeding (Fig. 3.14). A significant increase was seen between the relevant PBS 

force fed control group and larvae force fed with the corresponding LD80 value of 

sodium nitrate. Control larvae force fed PBS showed 0.86 ± 0.15 x107 haemocytes/ml 

while larvae injected with the LD80 value of sodium nitrate showed 1.56 ± 0.32 x107 

haemocytes/ml. This revealed a 0.83 fold increase (p < 0.05) in LD80 treated larvae 

compared to control larvae. Larvae force fed with the LD25 and LD50 values of sodium 

nitrate revealed 1.01 ± 0.27 x107 and 1.14 ± 0.19 x107 haemocytes/ml respectively. 

These values show no significant changes when compared with control larvae.  

 Following 24 hours incubation the haemocyte densities of larvae force fed 

with the LD25/LD50/LD80 values were 0.89 ± 0.44  x107, 0.89 ± 0.44 x107, 0.75 ± 0.04 

x107 haemocytes/ml respectively. Larvae force fed PBS and incubated for 24 hours 

revealed 0.99 ± 0.02 x107 haemocytes/ml of haemolymph, showing no significant 

differences with the densities in sodium nitrate treated larvae (Fig. 3.15). 
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3.11 Effect of potassium nitrite on haemocyte densities in G. mellonella larvae. 

 Larvae were incubated for 4 hours following the administration of 

potassium nitrite via intra haemocoel injection (Fig. 3.12). Significant increases were 

seen between the relevant PBS injected control group and larvae injected with the 

corresponding LD25, LD50 and LD80 values of potassium nitrite. Control larvae injected 

with PBS showed 0.7875 ± 0.09 x107 haemocytes/ml while larvae injected with the 

LD25/LD50/LD80 values of potassium nitrite showed 0.39 ± 0.02 x107, 1.08 ± 0.02 x107 

and 0.95 ± 0.07 x107 haemocytes/ml respectively. When compared with control 

larvae a 0.51 fold decrease (p < 0.001) in LD25 treated larvae, 0.37 fold increase (p < 

0.01) in LD50 treated larvae and a 0.21 fold increase (p < 0.05) in LD80 treated larvae 

was revealed. 

 As the incubation time of larvae injected with potassium nitrite increased to 

24 hours, a significant increase was seen between the relevant PBS injected control 

group and larvae injected with the corresponding LD50 and LD80 values of potassium 

nitrite (Fig. 3.13). Control larvae injected with PBS showed 0.26 ± 0.01 x107 

haemocytes/ml while larvae injected with the LD50 and LD80 values of potassium 

nitrite showed 0.7 ± 0.07 x107 and 0.78 ± 0.07 x107 haemocytes/ml respectively. 

When compared with control larvae a 1.67 fold increase (p < 0.001) in LD50 treated 

larvae, 1.95 fold increase (p < 0.001) in LD80 treated larvae was revealed. Larvae 

injected with the LD25 value of potassium nitrite revealed 0.28 ± 0.04 x107 

haemocytes per mil revealing no significant changes when compared with control 

larvae.  

 Larvae were force fed the LD25, LD50 and LD80 values of potassium nitrite and 

incubated for 4 hours. Haemocyte densities of larvae injected with the LD25/LD50/LD80 

values were 0.53 ± 0.04 x107, 1.23 ± 1.03 x107, 1.23 ± 0.60 x107 haemocytes/ml 

respectively (Fig. 3.14). Larvae force fed PBS had 0.86 ± 0.15 x107 haemocytes/ml, 

showed no significant differences with the densities in potassium nitrite treated 

larvae. 

 Larvae were force fed the LD25, LD50 and LD80 values of potassium nitrite and 

incubated for 24 hours (Fig. 3.15). Haemocyte densities of larvae injected with the 



95 
 

LD25/LD50/LD80 values was 0.5 ± 0.18 x107, 0.5 ± 0.18 x107, 1.09 ± 0.37 x107 

haemocytes/ml respectively. Control larvae force fed PBS and incubated for 24 hours 

revealed 0.99 ± 0.02 x107 haemocytes/ml. Slight decreases in haemocyte densities 

were evident between control larvae and larvae force fed the corresponding LD25 and 

LD50 values of potassium nitrite, however no significant differences were observed 

between control groups and potassium nitrite treated groups. 
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Fig. 3.12 Effect of food additives on haemocyte density in intra-haemocoel injected 

G.mellonella larvae at 4 hours. Larvae were administered the LD25, LD50 and LD80 

values of; sodium benzoate, potassium sorbate, sodium nitrate and potassium nitrite. 

The haemocyte density was calculated after 4 hours (*: p < 0.05) (**: p < 0.01) (***: 

p < 0.001). All values are the mean ± SE of 3 independent determinations. 
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Fig. 3.13 Effect of food additives on haemocyte density in intra-haemocoel injected 

G.mellonella larvae at 24 hours. Larvae were administered the LD25, LD50 and LD80 

values of; sodium benzoate, potassium sorbate, sodium nitrate and potassium nitrite. 

The haemocyte density was calculated after 24 hours (*: p < 0.05) (**: p < 0.01) (***: 

p < 0.001). All values are the mean ± SE of 3 independent determinations. 
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Fig. 3.14 Effect of food additives on haemocyte density in force fed G.mellonella 

larvae at 4 hours. Larvae were administered the LD25, LD50 and LD80 values of; sodium 

benzoate, potassium sorbate, sodium nitrate and potassium nitrite. The haemocyte 

density was calculated after 4 hours (*: p < 0.05). All values are the mean ± SE of 3 

independent determinations. 
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Fig. 3.15 Effect of food additives on haemocyte density in force fed G.mellonella 

larvae at 24 hours. Larvae were administered the LD25, LD50 and LD80 values of; 

sodium benzoate, potassium Sorbate, sodium Nitrate and potassium Nitrite. The 

haemocyte density was calculated after 24 hours (*: p < 0.05)(***: p < 0.001). All 

values are the mean ± SE of 3 independent determinations. 
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3.12 Analysis of the effect of commonly used food additives on haemocyte 

mediated pathogen killing. 

 G. mellonella have been employed in recent times for in-vivo studies of 

immunological pathways and functions that are common to both vertebrates and 

invertebrates (Kavanagh and Reeves, 2004; Fuchs and Myolonakis, 2006). The aim of 

this work is to ascertain the killing ability of haemocytes exposed to commonly used 

food additives and determine any conserved reaction between haemocytes and 

neutrophils.  

3.13 Analysis of the effect of PBS administration on haemocyte mediated pathogen 

killing. 

 Larvae were administered by intra haemocoel injection a concentration 

corresponding to the LD50 values for sodium nitrate, sodium benzoate, potassium 

sorbate and potassium nitrite. Haemocytes were extracted from control and test 

larvae following 24-hour incubation at 30OC and mixed with opsonised C. albicans for 

80 minutes. By counting the percentage viability of C. albicans at 20 min intervals, 

the effect of these food additives on haemocyte mediated pathogen killing was 

ascertained.  

 Haemocytes from PBS injected control larvae killed 26 ± 3.4%, 55 ± 3.4% , 65 

± 5.9%, 79 ± 2.9%  of C. albicans MEN cells after 20, 40, 60 and 80 minutes 

respectively. Whereas haemocytes from PBS force fed control larvae killed 21 ± 

10.21%, 35 ± 7.94%, 50 ± 4.76%, 80 ± 17%  of C. albicans MEN cells after 20, 40, 60 

and 80 minutes respectively.  

3.14 Analysis of the effect of sodium benzoate on haemocyte mediated pathogen 

killing. 

 Haemolymph from larvae injected with the LD50 value of sodium benzoate 

showed a significant increase (p < 0.01) in haemocyte density when compared with 

a relevant control group (Fig. 3.13).  In addition haemocytes obtained from larvae 

incubated for 24 hours at 30OC following sodium benzoate injection killed 0 ± 9.68%, 

25 ± 9.68% , 21.79 ± 12.36%, 38.47 ± 15.38%  of C. albicans MEN cells after 20, 40, 60 
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and 80 minutes in-vitro incubation respectively (Fig. 3.16). This amounts to a 0.51 

fold decrease (p < 0.01) in the killing ability of haemocytes extracted from sodium 

benzoate injected larvae when compared with the killing ability of haemocytes from 

PBS injected larvae. 

 Haemolymph from larvae force fed with the LD50 value of sodium benzoate 

showed a significant decrease (p < 0.05) in haemocyte density when compared with 

a relevant control group (Fig. 3.15). Haemocytes obtained from larvae incubated for 

24 hours at 30OC following sodium benzoate force feeding killed 26.04 ± 8.09%, 47.9 

± 3.49% , 63.5 ± 7.26%, 71.1 ± 5.71%  of C. albicans MEN cells after 20, 40, 60 and 80 

minutes in-vitro incubation respectively (Fig. 3.17). These findings did not suggest 

any significant differences between the killing ability of control larvae force fed PBS 

and larvae force fed sodium benzoate. 

3.15 Analysis of the effect of potassium sorbate on haemocyte mediated pathogen 

killing. 

 Haemolymph from larvae injected with the LD50 value of potassium sorbate 

showed no significant changes in haemocyte density when compared with a relevant 

control group (Fig. 3.13).  Haemocytes obtained from larvae incubated for 24 hours 

at 30OC following potassium sorbate injection killed 18.18 ± 3.03%, 46 ± 1.75%, 47 ± 

12.15%, 56 ± 7.78%  of C. albicans MEN cells after 20, 40, 60 and 80 minutes in-vitro 

incubation respectively (Fig. 3.16). These findings did not suggest any significant 

differences between the killing ability of control larvae injected with PBS and larvae 

administered potassium sorbate by intra haemocoel injection however a slight 

decrease (0.29 fold) in the killing ability was observed in haemocytes from potassium 

sorbate injected larvae compared to haemocytes from the relevant control. 

 Haemolymph from larvae force fed with the LD50 value of potassium sorbate 

showed no significant changes in haemocyte density when compared with a relevant 

control group (Fig. 3.15).  Haemocytes obtained from larvae incubated for 24 hours 

at 30OC following potassium sorbate force feeding killed 55.1 ± 15.45%, 50.01 ± 

23.19%, 73.64± 6.86%, 82.74 ± 7.87%  of C. albicans MEN cells after 20, 40, 60 and 

80 minutes in-vitro incubation respectively (Fig. 3.17). These findings did not suggest 
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any significant differences between the killing ability of control larvae force fed PBS 

and larvae force fed potassium sorbate. 

3.16 Analysis of the effect of sodium nitrate on haemocyte mediated pathogen 

killing. 

 Haemolymph from larvae injected with the LD50 value of sodium nitrate 

showed a significant increase (p < 0.05) in haemocyte density when compared with 

a relevant control group (Fig. 3.13). In addition haemocytes obtained from larvae 

incubated for 24 hours at 30OC following sodium nitrate injection killed 3.12 ± 

16.38%, 22.92 ± 7.15% , 25 ± 34.10%, 46.88 ± 15.48%  of C. albicans MEN cells after 

20, 40, 60 and 80 minutes in-vitro incubation respectively (Fig. 3.16). This amounts 

to a 0.41 fold decrease (p<0.05) in the killing ability of haemocytes extracted from 

sodium nitrate injected larvae after 80 mins in-vitro incubation with C. albicans when 

compared with the relevant control. 

 Haemolymph from larvae force fed the LD50 value of sodium nitrate showed 

no significant changes in haemocyte density when compared with a relevant control 

group (Fig. 3.15). Haemocytes obtained from larvae incubated for 24 hours at 30OC 

following sodium nitrate force feeding killed 28.25 ± 18.65%, 38 ± 2.29% , 80.16 ± 

1.32%, 90.84 ± 3.97%  of C. albicans MEN cells after 20, 40, 60 and 80 minutes in-

vitro incubation respectively (Fig. 3.17). These findings did not suggest any significant 

differences between the killing ability of control larvae force fed PBS and larvae force 

fed sodium nitrate. 

3.17 Analysis of the effect of potassium nitrite on haemocyte mediated pathogen 

killing. 

 Haemolymph from larvae injected with the LD50 value of potassium nitrate 

showed a significant increase (p < 0.001) in haemocyte density when compared with 

a relevant control group (Fig. 3.13). In addition haemocytes obtained from larvae 

incubated for 24 hours at 30OC following potassium nitrite injection killed 25.72 ± 

3.16%, 20.74 ± 16.99%, 52.26 ± 4.77%, 60 ± 0.56% of C. albicans MEN cells after 20, 

40, 60 and 80 minutes in-vitro incubation respectively (Fig. 3.16). These findings did 
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not suggest any significant differences between the killing ability of PBS injected 

control larvae and larvae force fed potassium nitrate. 

 Haemolymph from larvae force the LD50 value of potassium nitrite showed 

no significant changes in haemocyte density when compared with a relevant control 

group (Fig. 3.15).  Haemocytes obtained from larvae incubated for 24 hours at 30OC 

following potassium nitrite force feeding killed 23 ± 16.32%, 34 ± 16.32%, 42 ± 

30.53%, 69 ± 2.72% of C. albicans MEN cells after 20, 40, 60 and 80 minutes in-vitro 

incubation respectively (Fig. 3.17). These findings did not suggest any significant 

differences between the killing ability of control larvae force fed PBS and larvae force 

fed potassium nitrite. 

3.18 Summary. 

 Larvae were administered the corresponding LD25, LD50 and LD80 values of 4 

commonly used food additives and the haemocyte densities in larvae challenged with 

the food additives were measured. 

 The administration of food additives had different effects at different 

concentrations and different incubation times. Generally, when compared to control, 

administering of food additives by intra-hemocoel injection lead to the significant 

decrease in haemocyte densities after 4-hour incubation. An exception to this trend 

was the administration of sodium nitrate which induced no significant differences to 

control larvae and the administration of a value corresponding to the LD50 and LD80 

values of potassium nitrite which revealed significant increases when compared to 

controls.  

 Larvae incubated for 24 hours following administration of the food additives 

by injection revealed numerous significant increases in haemocyte densities when 

compared with control larvae. The largest increase in haemocyte density was 

recorded in larvae injected with the corresponding LD80 value of potassium sorbate. 

The 4-hour incubation of larvae following the force feeding of food additives revealed 

only two significant increases in haemocyte densities when compared to control. 
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These increases were in larvae that had received the LD80 value of potassium sorbate 

and sodium nitrate. 

 Larvae incubated for 24 hours following administration of the food additives 

by force feeding revealed numerous significant increases in haemocyte densities 

when compared with control larvae. An exception to this was the administration of 

sodium benzoate which revealed significant decreases in haemocyte densities when 

compared to control. 

 Haemocytes from larvae administrated sodium benzoate and potassium 

sorbate by intra haemocoel injection revealed significant decreases in their ability to 

kill C. albicans cells when compared with a control. Haemocytes from larvae 

administered the 4 food additives by force feeding showed no significant changes in 

their ability to kill C. albicans when compared with a control. 
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3.19 Effects of commonly used food additives on superoxide dismutase activity of 

the haemolymph. 

  Superoxide activity in the haemolymph of larvae administered 4 commonly 

used food additives was measured. Larvae were administered a concentration of 

food additive by intra-haemocoel injection or force feeding corresponding to its LD50 

value. Larvae were incubated at 30OC for 4 and 24 hours post administration of a 

food additive and the total superoxide dismutase activity was measured in larval 

haemolymph. Superoxide dismutase activity was quantified as units of activity, 1 unit 

of superoxide dismutase activity equated to the 50% inhibition of the oxiditation of 

quercetin. The less µg of protein needed for one unit of SOD activity the greater the 

activity of the antioxidant enzyme in-vivo.  

 One unit of superoxide dismutase activity in PBS injected control larvae 

equated to 131.24 ± 12.1 µg/µl and 231.135 ± 41.98 µg/µl of haemolymph protein 

following 4 or 24 hours incubation respectively. This equates to a 0.76 fold increase 

(p < 0.05) in superoxide dismutase activity seen in larvae incubated for 4 hours when 

compared to larvae incubated for 24 hours. 

 One unit of superoxide dismutase activity in PBS force fed control larvae 

equated to 87.4 ± 11.3 µg/µl and 235.46 ± 35.86 µg/µl of haemolymph protein 

following 4 or 24-hours accordingly. This indicated a 1.69 fold increase (p < 0.01) in 

SOD activity seen in larval incubated for 4 compared to 24 hours. 

3.20 Effects of sodium benzoate on superoxide dismutase activity of the 

haemolymph 

 Superoxide dismutase activity was measured in haemolymph from larvae 

administered sodium benzoate via intra haemocoel injection prior to incubation. One 

unit of superoxide dismutase activity equated to 124.95 ± 27.4 µg/µl and 230.01 ± 

2.68 µg/µl of protein at 4 and 24 hours respectively (Fig. 3.18, 3.19). 

 Superoxide dismutase activity was also measured in haemolymph from larvae 

administered sodium benzoate via force feeding. At 4 and 24 hours one unit of 
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superoxide dismutase activity was 90.63 ± 31.4 µg/µl and 199.52 ± 15.54µg/µl of 

protein (Fig. 3.18, 3.19). 

These findings revealed no significant differences between the superoxide dismutase 

activity in haemolymph extracted from test larvae and control larvae at 4 or 24 hours.  

3.21 Effects of potassium sorbate on superoxide dismutase activity of the 

haemolymph. 

 A significant increase in superoxide dismutase activity was recorded in the 

haemolymph of larvae administered potassium sorbate. One unit of superoxide 

dismutase activity in larvae injected with potassium sorbate equated to 131.92 ± 29.1 

µg/µl and 131.16 ± 6.31 µg/µl of protein following 4 and 24 hours incubation 

respectively (Fig. 3.18, 3.19). When comparing superoxide dismutase activity at 24 

hours a 0.43 fold increase (p < 0.05) was seen in potassium sorbate injected larvae 

compared to PBS injected control larvae. 

 One unit of SOD activity in larvae force fed potassium sorbate equated to 

118.43 ± 16.3 µg/µl and 130.3 ± 28.28 µg/µl of protein following 4 or 24 hours 

incubation respectively. No significant changes in superoxide dismutase activity was 

noted when comparing the data to relevant control groups (Fig. 3.18, 3.19). 

3.22 Effects of sodium nitrate on superoxide dismutase activity of the 

haemolymph. 

 Larvae were administered sodium nitrate by intra-haemocoel injection prior 

to incubation for 4 or 24 hours. In these larvae 1 unit of superoxide dismutase activity 

was shown to be 124.8 ± 31.2 µg/µl of protein when incubated for 4 hours and 142.28 

± 21.2132 µg/µl of protein when incubated for 24 hours (Fig. 3.18, 3.19). 

 Haemolymph was collected from larvae force fed the LD50 value of sodium 

nitrate, 1 unit of superoxide dismutase activity was measured to be 100.75 ± 19.9 

µg/µl and 183.1 ± 15.13 µg/µl of protein following 4 and 24 hours respectively (Fig. 

3.18, 3.19). 

  Slight increases in 24-hour superoxide dismutase activity is evident in sodium 

nitrate injected larvae when compared to PBS injected control larvae. With a 
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difference in mean values of 88.86 ± 33.23 µg/µl between control and sodium nitrate 

treated groups. However no significant differences were revealed. 

3.23 Effects of potassium nitrite on superoxide dismutase activity of the 

haemolymph. 

 Larvae were administered potassium nitrite via direct injection into the 

haemocoel and incubated for 4 or 24 hours. One unit of superoxide dismutase 

activity was 109.14 ± 14.8 µg/µl and 149.14 ± 25.8094 µg/µl of protein after 4 and 24 

hours respectively (Fig. 3.18, 3.19). 

 One unit of superoxide dismutase activity in larvae force fed potassium nitrite 

equated to 102.6 ± 15.8 µg/µl of protein after 4 hours and 156.04 ± 37.42 µg/µl of 

protein after 24 hours (Fig. 3.18, 3.19).  

 A slight increase in superoxide dismutase activity at 24 hours was evident in 

potassium nitrite injected larvae compared to PBS injected control larvae, with an 

82.00 ± 34.85µg/µl difference in protein needed for 1 unit of SOD activity. However, 

the slight increases observed did not yield any significant changes. 
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Fig. 3.18 Superoxide dismutase activity of haemolymph from larvae administered 

sodium benzoate, potassium sorbate, sodium nitrate and potassium nitrite. After 4 

hours haemolymph was extracted from larvae that were administered an LD50 value 

corresponding to a food additive. Superoxide dismutase activity was determined as 

described. All values are the mean ± SE of 3 independent determinations. 
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Fig. 3.19 Superoxide dismutase activity of haemolymph from larvae administered 

sodium benzoate, potassium sorbate, sodium nitrate and potassium nitrite via intra-

haemocoel injection at 24 hours. Superoxide dismutase activity was determined as 

described (*: p < 0.05). All values are the mean ± SE of 3 independent determinations 

(*: p < 0.05). 
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3.24 Effects of commonly used food additives on catalase activity in G. mellonella 

haemolymph. 

 Larvae were administered by intra haemocoel injection or force feeding a 

food additive concentration corresponding to the LD50 values for sodium nitrate, 

sodium benzoate, potassium sorbate and potassium nitrite. Following 4 and 24 hours 

incubation haemolymph was extracted from larvae and incubated with hydrogen 

peroxide. The decomposition of hydrogen peroxide and thus rate of catalase activity 

was measured spectrometrically at 240nm. The rate of catalase activity in larvae 

administered food additives was expressed as the fold change compared with their 

relevant control groups administered PBS.  

3.25 Effects of sodium benzoate on catalase activity in G. mellonella haemolymph. 

 The catalase activity in haemolymph of larvae challenged by injection or force 

feeding with sodium benzoate was measured. Haemolymph taken from larvae 

injected with sodium benzoate and incubated for 24 hours showed a non significant 

0.66 ± 0.07 fold increase in catalase activity when compared to haemolymph from a 

relevant control (Fig. 3.21). However haemolymph extracted from larvae injected 

with sodium benzoate and incubated for 4 hours showed a significant (p<0.001) 2.68 

± 0.78 fold increase when compared to haemolymph from a relevant control (Fig. 

3.20).  

 Haemolymph from G. mellonella larvae force fed sodium benzoate, showed a 

0.57 ± 0.37 and a 0.06 ± 0.04  fold increase when compared to relevant controls after 

4 and 24 hour incubation respectively. 

3.26 Effects of potassium sorbate on catalase activity in G. mellonella haemolymph.  

 Larvae were administered potassium sorbate by direct injection into the 

haemocoel or force feeding. Larvae injected with potassium sorbate showed a 0.37 

± 0.04 and a 0.18 ± 0.02 fold increase when compared to relevant controls after 4 

and 24 hours respectively (Fig. 3.20, 3.21). 

 Larval force fed potassium sorbate, showed a 0.27 ± 0.31 and a 0.07 ± 0.09 

fold increase when compared to relevant controls after 4 and 24 hours incubation 
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respectively (Fig. 3.20, 3.21). The administration of potassium sorbate by force 

feeding or direct injection revealed no significant changes in catalase activity 

between control and test groups. 

3.27 Effects of sodium nitrate on catalase activity in G. mellonella haemolymph. 

 The catalase activity in haemolymph of larvae challenged by injection or 

force feeding with sodium nitrate was measured. Haemolymph taken from larvae 

injected with sodium nitrate showed a 0.61 ± 0.16 and a 0.04 ± 0.03 fold increase 

when compared to relevant controls after 4 and 24 hours incubation respectively 

(Fig. 3.20, 3.21).  

 Haemolymph from G. mellonella larvae force fed sodium nitrate, showed a 

0.21 ± 0.13 and a 0.01 ± 0.06 fold increase when compared to relevant controls after 

4 and 24 hours incubation respectively (Fig. 3.20, 3.21). The administration of sodium 

nitrate by either of the two routes of administration described above did not reveal 

any significant changes in catalase activity between control and test groups. 

3.28 Effects of potassium nitrite on catalase activity in G. mellonella haemolymph. 

 G. mellonella larvae were administered the LD50 value of potassium nitrite 

by direct injection into the haemocoel or by force feeding and the catalase activity in 

larval haemolymph was measured. Catalase activity showed fold changes of 0.30 ± 

0.11 and a 0.75 ± 0.19 when compared with relevant controls following 4 and 24 

hours incubation respectively (Fig. 3.20, 3.21).    

 Potassium nitrite force fed larvae showed a 0.26 ± 0.18 and a 0.03 ± 0.001 

fold increase when compared to relevant controls after 4 and 24 hours incubation 

respectively (Fig. 3.20, 3.21). The findings presented here show no significant 

differences in catalase activity between control and potassium nitrite treated larvae. 

 

 

  



114 
 

3.29 Summary. 

 Larvae were administered 4 commonly used food additives and the effect 

on enzymatic activity in the haemolymph was measured.  

 The administration of the food additives to larvae by force feeding revealed 

no significant changes in superoxide dismutase and catalase activity when compared 

to the relevant controls. 

 Following 4 hours incubation administration of sodium benzoate to larvae 

by force feeding revealed a significant increase in catalase activity when compared 

to a relevant control. 

 After 24 hours incubation larvae administered potassium sorbate by intra 

haemocoel injection revealed a significant increase in superoxide dismutase activity 

when compared to control larvae. 
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Fig. 3.20 Catalase activity of haemolymph from larvae administered sodium 

benzoate, potassium sorbate, sodium nitrate and potassium nitrite. After 4 hours 

haemolymph was extracted from larvae that were administered an LD50 value 

corresponding to a food additive. Catalase activity was determined as described 

(***:p < 0.001). All values are the mean ± SE of 3 independent determinations. 
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Fig. 3.21 Catalase activity of haemolymph from larvae administered sodium 

benzoate, potassium sorbate, sodium nitrate and potassium nitrite. After 24 hours 

haemolymph was extracted from larvae that were administered an LD50 value 

corresponding to a food additive. Catalase activity was determined as described. All 

values are the mean ± SE of 3 independent determinations. 
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3.30 Discussion. 

 The many structural and functional similarities between the immune 

response of insects and the innate immune system of mammals (Browne et al., 2013) 

have been exploited to allow the use of insects as in-vivo models for screening 

microbial pathogens and for measuring the efficacy of anti-microbial drugs (Browne 

et al., 2014). The similarities between the insect and the mammalian gastrointestinal 

and hepatic systems could also be exploited to allow the use of insects as models for 

measuring the relative toxicity of food preservatives and other food additives. D. 

melanogaster has been utilized to evaluate the toxicity of a wide range of products 

including pesticides (Arain et al., 2014), solvents (Soos and Szabad, 2014) and 

nanoparticles (Carmona et al., 2015). The Drosophila wing spot test is a well-

established method for measuring the genotoxicity of compounds (Graf and Singer, 

1992) and has been employed to measure the genotoxicity of four food preservatives 

(sodium nitrite, sodium nitrate, potassium nitrite and potassium nitrate) (Sarikaya 

and Cakir, 2005). The red flour beetle (Tribolium castaneum) has been utilized to 

investigate the effect of the food contaminant acrylamide on fitness and survival 

(Grunwald et al., 2013) and demonstrated a correlation with results obtained using 

rats (Wang et al., 2010). 

 In the work presented here, G. mellonella larvae were administered doses 

of food preservative by force-feeding or by intra-haemocoel injection. The results 

demonstrated that the compounds were toxic irrespective of the route of 

administration, but the toxicity of the compounds were greatest when administered 

by direct injection into the haemocoel. The difference in the relative toxicity 

observed between the routes of administration may be explained by the structure of 

the insect digestive system. The insect foregut and hindgut are covered by cuticle, 

and the midgut epithelium is protected by the peritrophic membrane. Both the 

cuticle and the peritrophic membrane retard the entry of ingested microbes into the 

haemocoel (Vallet-Gely et al., 2008), and these structures may limit the entry of the 

food preservatives administered by the feeding route into the haemocoel and 

therefore reduce the relative toxicity.  
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 The relative toxicity (LD50) of the compounds in larvae is virtually identical 

by the different routes of administration. The only discrepancy is the relative toxicity 

of sodium nitrate and sodium acetate in larvae administered the compounds by 

feeding or by intra- haemocoel challenge. Strong positive correlations between the 

LD20 (Fig. 3.3), LD50 (Fig. 3.4) and LD80 (Fig. 3.5) values for each compound obtained 

by the different administration routes in larvae were established.  

 HEp-2 cells are widely used for screening the in-vivo activity of anti-cancer 

drugs (Rossi et al., 2003) and have previously been employed to measure the relative 

toxicity of food additives (Stefanidou et al. 2003). The effect of the compounds on 

the growth of HEp-2 cells was determined, and a significant correlation between the 

effect of the compounds on the growth of HEp-2 cells and the response of larvae to 

the compounds was established (Fig. 3.7, 3.8). A positive correlation (R2=0.6506, 

p=0.0156) between the LD50 values obtained for the preservatives in rats and in G. 

mellonella larvae administered the compounds by feeding was also established (Fig. 

3.9).  

 A positive correlation between the LD50 values of 5 food preservatives 

(potassium nitrite, sodium nitrite, potassium nitrate, sodium benzoate and sodium 

nitrate) in G. mellonella larvae and rabbits (R2 = 0.7524, p = 0.0568) was established 

(Fig. 3.10). A positive correlation between the LD50 values of 4 food preservatives 

(sodium nitrite, sodium benzoate, sodium chloride and sodium acetate) in G. 

mellonella larvae and mice (R2 = 0.7162, p = 0.1537) was demonstrated (Fig. 3.11). 

The two positive correlations observed were not deemed significant. With a greater 

availability of mammalian data a more significant correlation may be observed. 

 Larvae were administered by intra haemocoel injection or force feeding 

three food additive concentrations corresponding to the LD25, LD50 and LD80 values 

for sodium nitrate, sodium benzoate, potassium sorbate & potassium nitrite. The 

effect of food additive administration on haemocyte densities was ascertained.  

Control larvae administered PBS via intra haemocoel injection after 4 hours 

incubation showed significant increases (p < 0.05) when compared to untouched 

larvae at t = 0 hours (Section 3.6). While control larvae administered PBS via intra 

haemocoel injection after 24 hours incubation showed significant decreases (p < 
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0.05) when compared to untouched larvae at t = 0 hours (Section 3.6). In cockroaches 

and locusts nodulation is induced in the absence of microbial agents by saline 

injection (Gunnarsson and Lackie, 1985). This might suggest why a significant 

increase in haemocyte densities is seen in control larvae after 4 hours. The significant 

decrease in haemocyte densities after 24 hours may be explained as a drop in 

haemocyte densities following a short peak.  

 Significant increases were seen in the haemocyte densities of control larvae 

that were administered PBS via force feeding after 4 (p<0.01) and 24 (p<0.001) hours 

incubation compared to untouched larvae (Section 3.6). Haemocytes are found 

circulating freely in the haemolymph or adhering to internal organs such as the fat 

body or the digestive tract of the insect and can be rapidly mobilised upon breach of 

the cuticle or entry of a pathogen (Browne et al., 2013). In the process of force 

feeding a blunted needle is inserted into the mouth and down the gastrointestinal 

tract. The insertion of the needle into the gastrointestinal tract and the force of the 

PBS being expelled from the needle may result in the dislodgment of gastrointestinal 

attached haemocytes into the haemolymph thus explaining this increase. 

 Different concentrations of xenobiotics can have different biological effects 

(Schulz et al., 2012) and this is evident in the haemocyte densities of larvae 

challenged with a food additive. Larvae were administered food additives by intra-

haemocoel injection or force feeding and incubated for 4 and 24 hours. Significant 

reductions in haemocyte densities were observed in larvae that received a food 

additive. For example larvae that were injected with the LD25 and LD50 values of 

sodium benzoate showed significant reductions (p < 0.05) at 4 hours in their 

haemocyte densities when compared to a relevant control (Fig. 3.12). This may be 

due to the paralysation of the insect directly after the injection of a food additive. 

This paralysation in the insect could be preventing it from mounting a cellular 

immune response. Significant increases in haemocyte densities were also observed 

in larvae that received a food additive. For example significant increases (p < 0.001) 

were seen in the haemocyte densities of larvae injected with the LD50 and LD80 values 

of potassium nitrite following 4 hours incubation (Fig. 3.12). The increase in 

haemocyte densities in the absence of a pathogen would suggest an alternative 
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pathogen-independent mechanism of haemocyte activation, that might be induced 

by agents such as phospholipids released from or exposed on wounded cells 

(Schherfer, 2004) 

 In general there were less significant changes observed in the haemocyte 

densities of larvae that received a food additive by force feeding compared to intra-

haemocoel injection. Perhaps this may also be explained by peritrophic membrane 

of the midgut retarding the entry of the food additives into the haemocoel. By doing 

this it could reduce the number of significant changes in haemocyte densities. 

 Larvae were administered by intra haemocoel injection or force feeding a 

food additive concentration corresponding to the LD50 values for sodium nitrate, 

sodium benzoate, potassium sorbate and potassium nitrite. Following 24 hours 

incubation the effect of these food additives on haemocyte mediated pathogen 

killing was ascertained. Haemocytes from larvae force fed the food additives showed 

no significant decreases in their killing ability when compared with control larvae (Fig. 

3.17). Perhaps this was also due to the peritrophic membranes ability to retard the 

entry of compounds from the midgut into the haemocoel. However there was a 

significant reduction in the fungicidal ability of haemocytes extracted from larvae 

injected with sodium benzoate and sodium nitrate (Fig. 3.16). Sodium benzoate has 

been shown to have a deleterious effect on the mammalian neutrophil, the food 

additive was shown to have a significantly effect on the oxidative respiratory burst 

and phagocytosis of isolated human neutrophils (Bano et al., 2014). Human 

neutrophils and insect haemocytes display many similarities (Browne et al., 2013) 

including the ability to produce superoxide by a functional NADPH oxidase complex 

(Bergin et al., 2005). Haemocytes from larvae injected with sodium benzoate may 

also display a reduced ability to kill C. albicans cells due to a negative effect on their 

oxidative respiratory burst and ability to phagocytose caused by sodium benzoate. It 

has been demonstrated that sodium nitrate inhibits the formation of reactive oxygen 

species by activated murine neutrophils and macrophages (Deriagina et al., 2003) 

and inhibition of reactive oxygen formation may be due to nitric oxide interference 

with the membrane component of the NADPH oxidase complex (Clancy et al., 1992). 

Perhaps the significant reduction in the fungicidal ability of haemocytes from larvae 



121 
 

injected with sodium benzoate is also due to this nitric oxide interference with 

NADPH oxidase complex. 

 Various chemical (pesticides, drugs, metals, abnormal oxygen concentration, 

etc.), physical (radiation, temperature, noise, vibration) and physiological (diseases, 

injury, aging, inflammation) stressors can cause a stress situation that may result in 

oxidative stress (Kodrík et al., 2015). Antioxidant enzymes such as superoxide 

dismutase, catalase, glutathione transferase, and glutathione reductase are highly 

conserved between mammals and insects (Felton and Summers, 1995) making G. 

mellonella a promising model organism of oxidative stress. Catalase and 

superoxidase dismutase are two enzymes that are believed to act in tandem and 

efficiently terminate oxygen radical reactions in insects (Stanic et al., 2004). Larvae 

were administered a food additive by intra-haemocoel injection and force feeding 

and the activity of superoxide dismutase and catalase was measured in larval 

haemolymph. Control larvae were administered PBS by intra-hemocoel injection or 

force feeding and incubated for 4 and 24 hours. The superoxide dismutase activity in 

PBS injected and fed control larvae incubated for 24 hours was significantly reduced 

compared to PBS injected and fed control larvae incubated for 4 hours. Larvae are 

stored at 15oC prior to use and incubated at 30oC when in use (Section 3.19). The 

reduction in superoxide dismutase activity as time progresses from 4 hours 

incubation to 24 hours might be explained by the normalisation of superoxide activity 

in larvae after being stored at the colder temperature of 15oC. Colder temperatures 

are associated with altered metabolic activity. Altered metabolic activity can lead to 

oxidative stress and increases in superoxide dismutase activity (Stanic et al., 2004). 

This could perhaps explain the significant decrease in superoxide activity in control 

larvae incubated for 24 hours at 30oC. 

 A significant increase in catalase activity was seen in larvae injected with 

sodium benzoate following 4 hours incubation.  A significant increase in superoxide 

dismutase activity was seen in larvae injected with potassium sorbate following 24 

hours incubation. Both benzoates and Sorbates can have a disruptive effect on 

membrane structure (Stratford et al., 2013). This disruption can have an effect on 

mitochondria function, causing a decreased electron flow from substrate 
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dehydrogenases to ubiquinone, resulting in the leakage of free electrons from the 

respiratory chain. These free electrons can then combine with molecular oxygen 

resulting in the production of superoxide (Piper and Piper, 2017). The increase seen 

in anti-oxidant enzymes in larvae exposed to sodium benzoate and potassium 

sorbate might also be due to the affect these week acids have on mitochondria 

function. It must be also noted that the administration of the organic nitrate 

nitroglycerin has been reported to cause the increased production of reactive oxygen 

species by mitochondria in rat aorta (Sydow et al., 2004). However no significant 

increases in antioxidant enzymes were observed as a response to sodium nitrate 

administration in larvae. 

 The results presented here indicate that larvae of G. mellonella may be a 

useful model system for assessing the relative in-vivo toxicity of food preservative 

agents and generate results that show a strong correlation to those that can be 

obtained using a cultured cell line and mammals. While an alternative system such 

as G. mellonella larvae will never replace the need to use mammals for evaluating 

the relative toxicity of food preservatives, their use may lead to a reduction in the 

number of mammals required for such testing and enables the rapid testing of the 

toxicity of novel food preservatives 
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4.1 Analysis of the acute response of Galleria mellonella larvae to potassium 

nitrate. 

 Having previously determined the LD20/LD50/LD80 values of potassium 

nitrate in G. mellonella larvae (Section. 3.2) and shown significant correlations 

between the results obtained in larvae and those from pre-existing models of food 

additive toxicity, the aim of the work presented here was to characterize the acute 

effect of potassium nitrate on G. mellonella larvae in order to establish similarities 

with effects in mammals.  

 Potassium nitrate (KNO3) is widely used as fertilizer in agriculture and, due 

to its oxidative properties, in many industrial processes. Potassium nitrate is found 

in drinking water, vegetables and, as E252, is widely utilized in the food industry as a 

preservative in the curing of meat (Sebranek and Bacus, 2007). However, high doses 

of nitrates and nitrites (and their metabolic products) are carcinogenic in humans 

due to the formation of nitrosamines (Camargo et al., 2005). Exposure of HEp-2 cells 

to nitrates results in increased expression of genes associated with a stress response, 

cell cycle control and DNA repair (Bharadwaj et al., 2005). The acute toxicity of 

potassium nitrate was measured in juvenile blue swimmer crabs, histopathological 

changes to the anterior gill lamellae were observed, including lamellae swelling, 

epithelial thickening, pillar cell disruption, necrosis, and distortion (Romano and 

Zeng, 2007). Epidemiological studies have suggested that high nitrate levels in 

drinking water are associated with conditions such as teratogenicity, thyroid 

hypersensitivity and childhood diabetes (Bharadwaj et al., 2005). The main toxic 

effect of chronic nitrate is due to the conversion of haemoglobin to methaemoglobin 

which leads to methaemoglobinemia (Van Dijk et al., 1983). Patients administered 

nitrates display enhanced nitric oxide bioavailability in the vasculature, vasodilation 

effects, and inhibition of platelet aggregation (Lonberg et al., 2008). Administration 

of potassium nitrate (0.06–0.35 mmol kg−1 day−1) reduces diastolic and systolic blood 

pressure (Lonberg et al., 2008). Sodium nitrate also reduces blood pressure but leads 

to a reduction in oxygen consumption and increased blood flow (Lonberg et al., 

2008).  
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 The development of an insect based screening system for measuring the 

relative toxicity of preservatives, such as potassium nitrate, could contribute to 

reducing the need to use mammals for this type of testing. 
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4.2 Effect of potassium nitrate administration on haemocyte densities. 

 Larvae were administered by intra haemocoel injection or force feeding 

potassium nitrate concentrations corresponding to the LD25, LD50 and LD80 values. 

The effect of potassium nitrate administration on the density of circulating 

haemocytes in larval haemolymph was ascertained after 4 and 24-hour incubation at 

30OC. For experimental purposes control larvae were administered PBS by intra 

haemocoel injection or force feeding.  

 Untouched larvae at t = 0 hours showed 0.53 ± 0.06 x107 haemocytes/ml 

of haemolymph. After 4 and 24 hours control larvae administered PBS via intra-

haemocoel injection showed 0.79 ± 0.09 x107 and 0.27 ± 0.01 x107 haemocytes/ml  

respectively. This corresponds to a 0.47 fold increase (p < 0.05) after 4 hours and a 

0.51 fold decrease (p < 0.05) after 24 hours in haemocyte densities. Larvae force fed 

with PBS and incubated for 4/24 hours at 30OC showed 0.86 ± 0.15 x107 and 0.99 ± 

0.02 x107 haemocytes in 1 ml of haemolymph respectively. This corresponds to a 0.60 

fold increase (p < 0.01) and a 0.84 fold decrease (p < 0.001) when compared to 

untouched larvae at t = 0 hours (Fig. 4.1). 

 Larvae were incubated for 4 hours following the administration of 

potassium nitrate via intra haemocoel injection (Fig. 4.1). Significant changes were 

seen between the relevant PBS injected control group and larvae injected with the 

corresponding LD25 and LD50 values of potassium nitrate. Control larvae injected with 

PBS showed 0.79 ± 0.09 x107 haemocytes/ml while larvae injected with the LD25/ 

LD50/ LD80 values of potassium nitrite showed 0.2 ± 0.04 x107, 0.94 ± 0.016 x107 and 

0.68 ± 0.04 x107 haemocytes/ml respectively. When compared with control larvae a 

0.75 fold decrease in haemocyte densities (p < 0.001) in LD25 treated larvae, 0.19 fold 

increase (p < 0.05) in LD50 treated larvae and a 0.14 fold decrease in LD80 treated 

larvae was observed. 

 As the incubation time of larvae injected with potassium nitrate increased 

to 24 hours, a significant increase was seen between the relevant PBS injected 

control group and larvae injected with the corresponding LD50 and LD80 values of 

potassium nitrate (Fig. 4.1). Control larvae injected with PBS showed 0.26 ± 0.01 x107 
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haemocytes/ml while larvae injected with the LD50 and LD80 values of potassium 

nitrate showed 0.78 ± 0.07 x107 and 0.93 ± 0.07 x107 haemocytes/ml respectively. 

When compared with the control group the LD50 treated larvae revealed a 1.95 fold 

increase (p < 0.01) and the LD80 treated larvae showed a 2.5 fold increase (p < 0.01). 

Larvae injected with the LD25 value of potassium nitrate showed 0.34 ± 0.06 x107 

haemocytes/ml revealing no significant changes when compared with control larvae.  

 Larvae were force fed the LD25, LD50 and LD80 values of potassium nitrate 

and incubated for 4 hours. The resulting haemocyte densities were compared with 

control larvae force fed with PBS (Fig. 4.2). The haemocyte densities of larvae force 

with the LD25/ LD50/ LD80 value were 1.41 ± 0.93 x107, 1.36 ± 0.16 x107, 1.18 ± 0.04 

x107 haemocytes/ml respectively. Larvae force fed PBS and incubated for 4 hours 

revealed 0.86 ± 0.15 x107 haemocytes/ml, showing no significant differences with the 

densities in potassium nitrate treated larvae. 

 Larvae were force fed the LD25, LD50 and LD80 values of potassium nitrate 

and incubated for 24 hours (Fig. 4.2). Haemocyte densities of larvae injected with the 

LD25/ LD50/ LD80 values were 1.09 ± 0.27 x107, 1.09 ± 0.27 x107, 1.01± 0.55 x107 

haemocytes/ ml respectively. Control Larvae force fed PBS and incubated for 24 

hours revealed 0.99 ± 0.02 x107 haemocytes/ ml, showing no significant differences 

with the densities in potassium nitrate treated larvae. 
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Fig.4.1 Effect of potassium nitrate on haemocyte density in intra-haemocoel injected 

G.mellonella larvae at 4 and 24 hours. Larvae were administered the LD25, LD50 and LD80 

values of potassium nitrite. (*: p < 0.05) (**: p < 0.01) (***: p < 0.001). All values are the 

mean ± SE of 3 independent determinations. 
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Fig. 4.2 Effect of potassium nitrate on haemocyte density in force fed G.mellonella larvae at 

4 and 24 hours. Larvae were administered the LD25, LD50 and LD80 values of potassium nitrite. 

All values are the mean ± SE of 3 independent determinations. 
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4.3 Analysis of the effect of potassium nitrate administration on haemocyte 

mediated pathogen killing. 

 Larvae were administered by intra haemocoel injection a potassium nitrate 

concentration corresponding to the LD50 value of potassium nitrate. Haemocytes 

were extracted from control and test larvae following 24-hour incubation at 30OC and 

mixed with C. albicans for 80 minutes. By counting the percentage viability of C. 

albicans at 20-minute intervals, the effect of potassium nitrate on haemocyte 

mediate pathogen killing was ascertained.  

 Haemocytes from PBS injected control larvae killed 26 ± 3.4%, 55 ± 3.4% , 

65 ± 5.9%, 79 ± 2.9%  of C. albicans MEN cells after 20, 40, 60 and 80 minutes 

respectively. Whereas haemocytes from PBS force fed control larvae killed 21 ± 

10.21%, 35 ± 7.94% , 50 ± 4.76%, 80 ± 17%  of C. albicans MEN cells after 20, 40, 60 

and 80 minutes respectively.  

 Haemolymph from larvae injected with the LD50 value of potassium nitrate 

showed a significant increase (p < 0.01) in haemocyte density when compared with 

a relevant control group (Fig. 4.1).  In addition haemocytes extracted from larvae 

incubated for 24 hours at 30OC following potassium nitrate injection killed 9.07 ± 

10.96% , 39 ± 23.86%, 30.69 ± 17.15% and 40 ± 3.94%, C. albicans MEN cells after 20, 

40, 60 and 80 minutes3respectively (Fig. 4.3). This amounts to a 0.49 fold decrease 

(p < 0.01) in the killing ability of haemocytes extracted from potassium nitrate 

injected larvae when compared with the killing ability of haemocytes from PBS 

injected larvae. 

 Haemolymph from larvae force with LD50 value of potassium nitrate 

showed no significant changes in haemocyte density when compared with a relevant 

control group (Fig. 4.2).  Haemocytes obtained from larvae incubated for 24 hours at 

30OC following potassium nitrate force feeding killed 23 ± 8.82%, 30 ± 14.46% , 42± 

19.22%, 70 ± 2.21%  of C. albicans MEN cells after 20, 40, 60 and 80 minutes in-vitro 

incubation respectively (Fig. 4.3). These findings did not suggest any significant 

differences between the killing ability of control larvae force fed PBS and larvae force 

fed potassium nitrate. 
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4.4 Effect of potassium nitrate on the composition of haemocyte populations in G. 

mellonella. 

 FACs analysis was employed to establish if there was a change in the 

relative proportions of each haemocyte sub-population in control larvae and larvae 

injected with potassium nitrate and incubated for 24 hours. Haemocyte populations 

were differentiated on the basis of size and granularity and at least 6 distinct 

subpopulations, labelled P1, P2, P3, P4, P5 and P6 were identified (Fig. 4.4). In control 

larvae the relative abundance of P1, P2, P3, P4, P5 and P6 were 58.42 ± 0.82%, 12.91 

± 3.85%, 5.84 ± 0.51, 8.72 ± 1.35%, 9.04 ± 2.69 and 5.07 ± 1.29% respectively. In 

potassium nitrate injected larvae the relative abundance of P1, P2, P3, P4, P5 and P6 

were 50.06 ± 3.56, 15.58 ± 2.20, 5.78 ± 0.88, 13.75 ± 2.36, 11.70 ± 3.97 and 3.13 ± 

1.21 respectively. The results demonstrated a significant decrease (p < 0.05) in the 

relative abundance of P1 haemocytes (small granular cells) in the total haemocyte 

populations of larvae injected with potassium nitrate compared to control larvae. 

The abundance of the other haemocyte populations (P2-P6) remained relatively 

constant in both control and potassium nitrate treated larvae (Fig. 4.5). 
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Fig. 4.4 FACs Scatterplot image of haemocyte subpopulations P1-P6 in larvae injected 

with potassium nitrate at 24 hours. 
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4.5 Summary. 

 The effect of potassium nitrate on haemocyte densities was ascertained. 

Larvae force fed potassium nitrate showed no significant changes in their haemocyte 

densities when compared to controls (Fig. 4.2). Larvae injected with the LD25 value of 

potassium nitrate at 4 hours showed significant decrease (p < 0.001) in haemocyte 

densities when compared to controls. Larvae injected with the LD50 value of 

potassium nitrate at 4 hours showed significant increases (p < 0.05) in haemocyte 

densities when compared to controls. In addition larvae injected with the LD50 and 

LD80 value of potassium nitrate 24 hours showed significant increases (p < 0.01) in 

haemocyte densities when compared to controls (Fig. 4.1). 

 Haemocytes from larvae force fed potassium nitrate showed no significant 

differences in their fungicidal ability when compared to controls. Haemocytes from 

larvae administered potassium nitrate via direct injection in the haemocoel showed 

a significant reduction (p < 0.01) in their fungicidal ability (Fig. 4.3). 

 Larvae administered potassium nitrate showed a significant decrease in the 

relative abundance of P1 haemocytes (small, granular cells). There was a small 

increase in the P2 (very small granular cells), P4 and P5 (large and granular) 

populations and a small decrease in the population of P6 (large granular) population 

(Fig. 4.5).  
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4.6 Effects of potassium nitrate on superoxide dismutase activity of the haemolymph. 

 Superoxide activity in the haemolymph of larvae administered potassium nitrate was 

measured. Larvae were administered potassium nitrate by intra-haemocoel injection or 

force feeding of a concentration of food additive corresponding to its LD50. Larvae were 

incubated at 30OC for 4 and 24 hours post administration of potassium nitrate and the total 

superoxide dismutase activity was measured in larval haemolymph. Superoxide dismutase 

activity was quantified as units of activity, 1 unit of SOD activity equated to the 50% inhibition 

of the oxidition of quercetin.  

 One unit of superoxide dismutase activity in PBS injected control larvae equated to 

131.24 ± 12.1 µg/µl and 231.135 ± 41.98 µg/µl of haemolymph protein following 4 and 24 

hours incubation respectively. This equates to a 0.76 fold increase (p < 0.05) in superoxide 

dismutase activity in larvae incubated for 4 hours when compared to larvae incubated for 24 

hours.  

 One unit of superoxide dismutase activity in PBS force fed control larvae equated to 

87.4 ± 11.3 µg/µl and 235.46 ± 35.86 µg/µl of haemolymph protein following 4 and 24-hours. 

This indicated a 1.69 fold increase (p < 0.01) in superoxide dismutase activity seen in larvae 

incubated for 4 compared to 24 hours. 

 A significant increase in superoxide dismutase activity was recorded in the 

haemolymph of larvae administered potassium nitrate via intra-haemocoel injection. One 

unit of superoxide dismutase activity in larvae injected with potassium nitrate equated to 

145.26 ± 24.40 µg/µl and 100.57 ± 27.75  µg/µl of protein following 4 and 24 hour incubation 

respectively. When comparing 24 hour superoxide dismutase activity a 0.56 fold increase (p 

< 0.05) was seen in potassium nitrate injected larvae compared to PBS injected control larvae 

(Fig. 4.6). 

 Superoxide dismutase activity was also measured in haemolymph from larvae 

administered potassium nitrate via force feeding prior to incubation. At 4 and 24 hours one 

unit of superoxide dismutase activity was 102.60 ± 15.8 µg/µl and 156.04 ± 37.42 µg/µl of 

protein respectively (Fig. 4.7). These findings did not suggest any significant changes 

between control and potassium nitrate fed larvae. 
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Fig. 4.6 Superoxide dismutase activity of haemolymph from larvae administered 

potassium nitrate via intra-haemocoel injection. After 4 and 24 hours haemolymph 

was extracted from larvae that were administered an LD50 value of potassium nitrate. 

Superoxide dismutase activity was determined as described. All values are the mean 

± SE of 3 independent determinations. 
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Fig. 4.7 Superoxide dismutase activity of haemolymph from larvae administered 

potassium nitrate via force feeding. After 4 and 24 hours haemolymph was extracted 

from larvae that were administered an LD50 value of potassium nitrate. Superoxide 

dismutase activity was determined as described. All values are the mean ± SE of 3 

independent determinations. 
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4.7 Effects of potassium nitrate on catalase activity in G. mellonella haemolymph. 

 Larvae were administered by intra haemocoel injection or force feeding a 

food additive concentration corresponding to the LD50 values of potassium nitrate. 

Following 4 and 24 hours incubation haemolymph was extracted from larvae and 

incubated with hydrogen peroxide. The decomposition of hydrogen peroxide and 

thus rate of catalase activity was measured spectrometrically at 240nm. The rate of 

catalase activity in larvae administered potassium nitrate was expressed as the fold 

change compared with their relevant control groups administered PBS.  

 Larvae injected with potassium nitrate showed a 0.63 ± 0.30 and a 0.54 ± 0.19 

fold increase when compared to relevant controls after 4 and 24 hour respectively 

(Fig. 4.8). Larvae force fed potassium nitrate, showed a 0.31 ± 0.18 and a 0.44 ± 0.06 

fold increase when compared to relevant controls after 4 and 24 hour incubation 

respectively (Fig. 4.8). The administration of potassium nitrate by force feeding or 

direct injection revealed no significant changes in catalase activity between control 

and test groups. 

 

4.8 Summary. 

 Haemolymph from larvae force fed or injected with the LD50 value of 

potassium nitrate was extracted and the activity of two antioxidant enzymes 

(superoxide dismutase and catalase) was measured. Haemolymph from larvae 

administered potassium nitrate by the two routes of administration showed no 

significant changes in catalase activity compared with controls at 4 and 24 hours (Fig. 

4.8). Haemolymph from larvae injected with potassium nitrate showed no significant 

changes in superoxide dismutase activity at 4 hours however after 24 hours a 

significant increase (p<0.05) in activity was recoreded (Fig. 4.6, 4.7). 
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Fig. 4.8 Catalase activity of haemolymph from larvae administered potassium nitrate 

via force feeding and intra-haemocoel injection. After 4 and 24 hours haemolymph 

was extracted from larvae that were administered an LD50 value corresponding to a 

food additive. Catalase activity was determined as described. All values are the mean 

± SE of 3 independent determinations. 
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4.9 Effects of potassium nitrate on the proteome in G. mellonella haemolymph 

 Label free quantitative proteomics was conducted on haemolymph from 

larvae administered via intra-haemocoel injection the LD50 of potassium nitrate for 

24 hours. Principal component analyses was employed showing clustering of control 

and treatment replicates (Fig. 4.9). In total 525 peptides were identified representing 

167 proteins with two or more peptides and 47 proteins differentially expressed (Fig. 

4.10). Forty proteins (31 proteins imputated and 9 proteins non-imputated) were 

significantly increased in abundance in larvae administered potassium nitrate 

compared to control larvae. (Table 4.1, Fig, 4.11, 4.12). Seven proteins were 

significantly decreased in abundance in larvae administered potassium nitrate 

compared to control larvae (Table 4.2, Fig. 4.13). The exclusively expressed hits 

showed 25 proteins only expressed in potassium nitrate injected larvae (Table 4.3).  

 The protein showing the highest increase in abundance in larvae exposed 

to potassium nitrate was beta actin with a fold increase of 47.9 (p<0.05), while the 

proteins highest in abundance with an imputated value were mitochondrial aldehyde 

dehydrogenase (288.6 fold increase), beta-tubulin (283.1 fold increase), aliphatic 

nitrilase (132.5 fold increase), triosephosphate isomerase enolase (79.8 fold 

increase) and alcohol dehydrogenase precursor (52.8 fold increase) (Table 1).   A 

number of related proteins were observed at increased abundance in larvae 

administered potassium nitrate, including a number of dehydrogenases and 

transferases (mitochondrial aldehyde dehydrogenase (288.6 fold increase), alcohol 

dehydrogenase precursor (52.8 fold increase), cytosolic malate dehydrogenase (46.2 

fold), glyceraldehyde-3-phosphate dehydrogenase (20.3 fold increase), zinc-

containing alcohol dehydrogenase (16.9 fold increase), serine 

hydroxymethyltransferase (12.1 fold increase) short-chain 

dehydrogenease/reductase (12.2 fold increase), isocitrate dehydrogenase (2.3 fold 

increase), glutathione S-transferase (20.6 fold increase)) and serine 

hydroxymethyltransferase (12.1 fold increase). Numerous proteins involved in 

mitochondrial function, glycolysis and the TCA cycle (e.g. mitochondrial aldehyde 

dehydrogenase,  putative mitochondrial Mn superoxide dismutase (15.2 fold 

increase increase), cytosolic malate dehydrogenase (46.2 fold increase), 
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triosephosphate isomerase (37.1 fold increase), enolase (62.4 fold increase) and 

glyceraldehyde-3-phosphate dehydrogenase (9.7 fold increase)) were present at a 

higher abundance in larvae exposed to potassium nitrate (Fig. 4.14).  

 Proteins decreased in abundance in larvae that received potassium nitrate 

included putative protease inhibitor 4 (1.9 fold decrease), imaginal disc growth factor 

(1.7 fold decrease), kazal-type proteinase inhibitor precursor (1.6 fold decrease), 

twelve cysteine protein 1 (1.5 fold decrease), carboxylesterase CarE-7 (1.5 fold 

decrease) (Table 4.2).  

              Blast2GO annotation software was used to group proteins based on 

conserved GO terms in order to identify processes and pathways potentially 

associated with potassium nitrate metabolism.  GO terms were categorized by 

biological processes (BP) and molecular function (MF) and cellular components (CC).  

 The increases in BP in larvae administered potassium nitrate included 

proteins labelled as cellular metabolic process (11 proteins in control – 18 proteins 

in treated larvae), biosynthetic process (5-9), catabolic process (4-7), cellular 

component biogenesis (3-5), cellular component organization (3-4), nitrogen 

compound metabolic process (8-13), organic substance metabolic process (10-21), 

primary metabolic process (9-18), regulation of biological quality (5-7), regulation of 

cellular process (3-4), response to stress (2-4), single-organism cellular process (9-

16), single-organism metabolic process (8-19), establishment of localization (3-0), 

negative regulation of cellular process (3-0), positive regulation of cellular 

component biogenesis (2-0), positive regulation of cellular process (2-0), regulation 

of cellular component biogenesis (2-0) (Fig. 4.15). 

 The increases in MF included proteins labelled as oxidoreductase activity (4 

proteins in control – 12 proteins in treated larvae), carbohydrate derivative binding 

(4-7), heterocyclic compound binding (7-11), hydrolase activity (7-13), ion binding (7-

10), organic cyclic compound binding (7-11), protein binding (3-5), small molecule 

binding (8-12), transferase activity (3-5), cofactor binding (3-0), lipid binding (2-0), 

pigment binding (4-0) (Fig. 4.16). 
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 The increases in CC included proteins labelled as intracellular (2 proteins in 

control – 6 proteins in treated larvae) anchoring junction (1-2), cell leading edge (1-

1), cell projection (1-1-), cell-substrate junction (1-2), extracellular space (2-4), 

intracellular organelle (2-4), intracellular part (2-6), membrane-bounded organelle 

(2-1), blood microparticle (0-1), cell periphery (0-1), extracellular exosome (0-1), 

extracellular organelle (0-1), extracellular vesicle (0-1), intracellular organelle part (0-

2), myelin sheath (0-1), non-membrane-bounded organelle (0-4), plasma membrane 

(0-1), protein complex (0-2), supramolecular polymer (0-2) (Fig. 4.17). 
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Fig. 4.9 Principal component analyses of the proteome of control larvae (red circle) and 

larvae injected with potassium nitrate (black circle).   
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Protein Name (* = imputated protein) Peptides Sequence 
coverage [%] 

PEP Mean LFQ 
Intensity 

Fold 
difference 

*mitochondrial aldehyde 
dehydrogenase 

30 64.5 0 1.20E+11 288.64 

*beta-tubulin 17 31.7 0 5.92E+10 283.14 

*aliphatic nitrilase 19 53 0 7.06E+10 132.52 

*triosephosphate isomerase 18 30.1 0 1.97E+10 79.80 

*enolase 18 43 0 1.40E+10 62.48 

*alcohol dehydrogenase precursor 13 45.2 1.4106E-167 1.32E+10 52.88 

beta actin  11 52.7 0 8.66E+10 47.90 

*cytosolic malate dehydrogenase  15 34.4 2.1709E-143 1.17E+10 46.20 

*AAEL005062-PA  9 26.5 3.5948E-74 1.14E+10 41.93 

*alpha 2-tubulin, partial  4 47.2 0 1.84E+10 38.11 

*thioredoxin-like protein  5 20.4 3.5015E-59 7.57E+09 33.97 

*actin 3  8 29.1 0 1.04E+10 29.17 

*elongation factor 1 alpha  9 34 1.6052E-198 1.03E+10 21.98 

*glutathione S-transferase  10 41.1 7.1188E-140 8.03E+09 20.63 

glyceraldehyde-3-phosphate 
dehydrogenase  

13 49.4 0 7.07E+10 20.36 

*glutathione-S-transferase-like protein  10 47.2 0 9.43E+09 17.68 

*chemosensory protein 4 14 1.7008E-91 7.56E+09 17.29 

*zinc-containing alcohol dehydrogenase  11 44.4 0 8.68E+09 16.97 

*putative mitochondrial Mn superoxide 
dismutase  

9 45.5 2.9836E-281 7.23E+09 15.20 

*phosphoribosylaminoimidazole 
carboxylase, 
phosphoribosylaminoimidazole 
succinocarboxamide synthetase  

19 37.2 4.6317E-271 1.29E+10 15.13 

*cyclophilin-like protein 6 24.7 4.1192E-168 5.47E+09 15.02 

cellular retinoic acid binding protein 15 35.6 7.0508E-292 7.31E+10 12.77 

arginine kinase, partial 10 71.1 3.7151E-203 3.40E+10 12.35 

*short-chain dehydrogenease/reductase 8 30 8.537E-302 3.43E+09 12.22 

*serine hydroxymethyltransferase 21 43.3 3.6909E-238 1.27E+10 12.15 
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*heat shock protein hsp21.4  6 15.4 6.3966E-115 5.09E+09 11.74 

*serine protease inhibitor 5 precursor  11 31.2 2.416E-49 3.12E+09 10.98 

*glyceraldehyde-3-phosphate 
dehydrogenase 

11 39.2 0 7.57E+09 9.74 

*muscle protein 20-like protein 12 39.7 1.7499E-185 4.96E+09 8.70 

*AAEL000132-PA  6 47.8 4.0548E-86 2.57E+09 8.51 

*Tropomyosin 2  8 35.9 2.7637E-91 2.08E+09 7.58 

RecName: Full=Seroin; AltName: 
Full=Silk 23 kDa glycoprotein; Flags: 
Precursor 

3 16.2 1.0038E-121 6.29E+09 5.33 

*14-3-3zeta 3 4.6 1.2498E-295 2.20E+09 5.21 

*prophenol oxidase activating enzyme 3  10 25.4 1.4735E-51 1.46E+09 4.76 

*cathepsin B-like cysteine proteinase 6 19.6 8.7962E-35 1.99E+09 4.63 

abnormal wing disc-like protein 9 46.9 8.0549E-169 1.05E+10 4.22 

AGAP010733-PA, partial  4 15.3 3.6022E-27 1.87E+09 3.90 

*heat shock-like protein, partial  3 17.7 2.0202E-20 1.81E+09 3.24 

heat shock protein 25.4 precursor  11 47.2 0 4.92E+10 2.51 

isocitrate dehydrogenase 17 48.2 0 1.78E+10 2.31 

 

Table 4.1 Relative fold changes of proteins increased in abundance in G. mellonella 

larvae administered potassium nitrate and the number of matched peptides, 

sequence coverage, PEP and overall intensity. Only proteins that had more than two 

matched peptides and were found to be differentially expressed at a level greater 

than ± 1.5 fold were considered to be in significantly variable abundances between 

control and treated larvae. 

 

 

 

 

 

 

 



148 
 

Protein Name  
(* = imputated protein) 

Peptides Sequence 
coverage [%] 

PEP Mean LFQ 
Intensity 

Fold difference 

putative protease inhibitor 4  7 25.7 9.239E-288 7.00E+10 -1.91 

Anopheles gambiae str. PEST 
AGAP012658-PA  

11 47.3 7.915E-85 1.28E+10 -1.75 

imaginal disc growth factor  16 51.9 0 7.00E+11 -1.75 

RecName: Full=Insecticyanin-B; 
Short=INS-b; AltName: Full=Blue 
biliprotein; Flags: Precursor 

14 45.5 0 1.96E+11 -1.65 

kazal-type proteinase inhibitor 
precursor  

8 21.4 1.4788E-224 5.80E+10 -1.61 

twelve cysteine protein 1 10 43.4 0 3.10E+10 -1.59 

carboxylesterase CarE-7  6 42.9 1.096E-232 2.00E+10 -1.55 

 

Table 4.2 Relative fold changes of proteins decreased in abundance in G. mellonella 

larvae administered potassium nitrate and the number of matched peptides, 

sequence coverage, PEP and overall intensity. Only proteins that had more than two 

matched peptides and were found to be differentially expressed at a level greater 

than ± 1.5 fold were considered to be in significantly variable abundances between 

control and treated larvae. 
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Protein Annotation LFQ  
Intensity 
Control 
1 

LFQ  
Intensity 
Control 2 

LFQ  
Intensity 
Control 3 

LFQ  
Intensity 
PNa inj 1 

LFQ  
Intensity 
PNa inj 2 

LFQ  
Intensity 
PNa 3 

elongation factor 1 alpha  0 0 0 1.43E+09 5E+08 7.29E+08 

zinc-containing alcohol 
dehydrogenase  

0 0 0 1.74E+09 1.78E+08 1.61E+09 

glutathione S-transferase  0 0 0 1.1E+09 6.55E+08 1.38E+09 

14-3-3zeta  0 0 0 4.11E+08 1.44E+08 2.99E+08 

triosephosphate isomerase  0 0 0 4.29E+09 1.9E+09 1.15E+09 

short-chain 
dehydrogenease/reductase  

0 0 0 6.51E+08 2.1E+08 5.04E+08 

alpha 2-tubulin, partial  0 0 0 3.25E+09 1.1E+09 1.82E+09 

beta-tubulin  0 0 0 1.05E+10 4.14E+09 5.89E+09 

Tropomyosin 2  0 0 0 2.67E+08 1.62E+08 3.99E+08 

enolase  0 0 0 2.56E+09 1.06E+09 1.8E+09 

AAEL000132-PA  0 0 0 8.28E+08 4.36E+08 3.07E+08 

cyclophilin-like protein  0 0 0 1.02E+09 4.42E+08 7.96E+08 

alcohol dehydrogenase 
precursor  

0 0 0 2.86E+09 7.8E+08 1.73E+09 

glutathione-S-transferase-
like protein  

0 0 0 1.95E+09 8.82E+08 1.22E+09 

uncharacterized protein 
Dyak_GE20538  

0 0 0 2.52E+08 1.24E+08 2.37E+08 

mitochondrial aldehyde 
dehydrogenase  

0 0 0 2.2E+10 1.23E+10 1.49E+10 

chemosensory protein  0 0 0 51226000 35067000 87836000 

prophenol oxidase 
activating enzyme 3  

0 0 0 2.55E+08 1.3E+08 2.32E+08 

thioredoxin-like protein  0 0 0 9.73E+08 5.7E+08 1.43E+09 

actin 3  0 0 0 1.73E+09 7.81E+08 2.12E+09 

AAEL005062-PA  0 0 0 3.26E+09 1.16E+09 1.64E+09 

serine 
hydroxymethyltransferase  

0 0 0 2.17E+09 2.54E+08 1.28E+09 

muscle protein 20-like 
protein  

0 0 0 4.8E+08 4.86E+08 8.57E+08 

serine protease inhibitor 5 
precursor  

0 0 0 7.09E+08 3.11E+08 1.96E+08 

putative mitochondrial Mn 
superoxide dismutase  

0 0 0 9.52E+08 5.77E+08 1.38E+09 

 

Table 4.3 LFQ intensities of proteins exclusively expressed in the haemolymph of 

larvae injected with potassium nitrate. A zero value indicates a protein that was 

absent or undected in the sample. Only proteins that were present or absent in all 

three samples of each group were considered exclusive protein hits. These proteins 

were termed as being “Exclusively expressed”. (PNa, potassium nitrtrate) 
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Fig. 4.14 KEGG pathway analysis of glycolysis/glycogenesis pathway showing a 

number of proteins significantly increased in potassium nitrate injected larvae 

compared to control larvae. (ec:5.3.1.1 - triosephosphate isomerase; ec:1.2.1.12 

- glyceraldehyde-3-phosphate dehydrogenase; ec:1.2.1.59 - glyceraldehyde-3-

phosphate dehydrogenase; ec:4.2.1.11 – enolase) 
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4.10 Discussion. 

 The Insect immune system displays interconnected cellular and humoral 

components despite lacking an adaptive immune system. The cellular immune 

response of insects is mediated by haemocytes which can engulf, encapsulate or 

neutralize pathogens (Pech and Strand, 1996). The first haemocytes to a site of 

infection are those free floating in the haemolymph and the haemocyte densities are 

soon supplemented by the release of haemocytes bound to internal organs 

(Kavanagh and Reeves, 2004). A variety of mechanisms including anti-microbial 

peptide production, melanisation, haemolymph clotting (Kavanagh and Reeves, 

2004) mediate the insect humoral response. Various enzymes involved in xenobiotic 

metabolism including superoxide dismutase and catalase are highly conserved 

between species (Büyükgüzel et al., 2013).  The aim of this chapter was to determine 

the effect of potassium nitrate on the immune, enzymatic and proteomic responses, 

of G. mellonella larvae. 

 Control larvae administered PBS via intra haemocoel injection after 4 hours 

incubation showed significant increases (p < 0.05) in haemocyte densities when 

compared to untouched larvae at t = 0 hours. While control larvae administered PBS 

via intra haemocoel injection after 24 hour incubation showed significant decreases 

(p < 0.05) when compared to untouched larvae at t = 0 hours. Nodulation is induced 

in the absence of microbial agents by saline injection in cockroaches and locusts 

(Gunnarsson and Lackie, 1985). This might suggest why a significant increase in 

haemocyte densities was seen in control larvae after 4 hours. The significant 

decrease in haemocyte densities after 24 hours may be explained as a drop in 

haemocyte densities following a short peak.  

 Significant increases were seen in the haemocyte densities of control larvae 

that were administered PBS via force feeding after 4 (p < 0.01) and 24 (p < 0.001) 

hours incubation compared to untouched larvae at t = 0 hours. Haemocytes are 

found circulating freely in the haemolymph or adhering to internal organs such as the 

fat body or the digestive tract of the insect and can be rapidly mobilised upon breach 

of the cuticle or entry of a pathogen (Browne et al., 2013). In the process of force 

feeding a blunted needle is inserted into the mouth and down the gastrointestinal 
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tract. The insertion of the needle into the gastrointestinal tract and the force of the 

PBS being expelled from the needle may result in the dislodgment of gastrointestinal 

attached haemocytes into the haemolymph thus explaining this increase. 

 Larvae were administered potassium nitrate by intra-haemocoel injection 

and incubated for 4 and 24 hours (Fig. 4.1). After 4 hours incubation, larval 

administration of the LD25 of potassium nitrate by injection resulted in a significant 

reduction (p < 0.001) in haemocyte densities when compared to control larvae. 

However after 4 and 24 hours significant increases were also seen when larvae were 

administered potassium nitrate by intra-haemocoel injection. Different 

concentrations of xenobiotics can have different biological effects (Schulz et al., 

2012). Nitrates are broken down to nitric oxide in-vivo and the level of nitric oxide 

produced is thought to determine whether nitric oxide acts as a proinflammatory or 

anti-inflammatory mediator in mammals (Connelly et al., 2017). Nitric oxide 

activates NF-κB and induces the generation of proinflammatory cytokines such as 

tumour necrosis factor alpha (TNFα) (Connelly et al., 2017). However, nitric oxide 

can also cause the inhibition of NF-κB by upregulating the production of its inhibitor 

IκB (Kuo et al., 2000). The administration of varied concentrations of potassium 

nitrate can lead to varied production of nitric oxide. This therefore might suggest 

that nitric oxide production following potassium nitrate injection was having both a 

positive and negative effect on the haemocyte densities. 

 Larvae that were administered potassium nitrate via force feeding showed 

no significant differences in haemocyte counts when compared to controls (Fig. 4.2). 

Perhaps this maintenance of haemocyte density homeostasis in force fed larvae is 

due to the peritrophic membrane of the midgut, retarding the entry of the food 

additives into the haemocoel. 

 Administration of potassium nitrate to G. mellonella larvae by intra-

haemocoel injection leads to significant changes in the density of circulating 

haemocytes but only small changes in the relative proportions of the haemocyte 

subpopulations. Larvae administered potassium nitrate by intra-haemocoel injection 

showed a significant decrease in the relative abundance of P1 haemocytes (small, 

granular cells). There was a small increase in the P2 (very small granular cells), P4 and 
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P5 (large and granular) populations and a small decrease in the population of P6 

(large granular) population (Fig 4.5). Haemocytes from larvae administered 

potassium nitrate by intra-haemocoel injection showed a significant (p < 0.05) 

reduction in their fungicidal ability compared with haemocytes extracted from 

control larvae. The changes in the relative proportion of haemocyte sub-populations 

would be insufficient to account for this decline in fungicidal ability. It has been 

demonstrated that sodium nitrate inhibits the formation of reactive oxygen species 

by activated murine neutrophils and macrophages (Deriagina et al., 2003) and 

inhibition of reactive oxygen species formation may be due to nitric oxide 

interference with the membrane component of the NADPH oxidase (Clancy et al., 

1992). In addition potassium nitrate was shown to have a significantly inhibitory 

effect on the oxidative respiratory burst and phagocytosis of isolated human 

neutrophils (Bano et al. 2014). Human neutrophils and insect haemocytes display 

many similarities (Browne et al., 2013) including the ability to produce superoxide by 

a functional NADPH oxidase complex (Bergin et al., 2005). Haemocytes from larvae 

injected with potassium nitrate may also display a reduced ability to kill C. albicans 

cells due to suppressed superoxide production.  

 Haemocytes from larvae administered potassium nitrate by force feeding 

showed no reduction in their fungicidal ability compared with haemocytes from 

control larvae. This again might be explained by the ability of the peritrophic 

membrane to retard the entry of compounds into the haemocoel (Fig. 4.3).  

  Nitrates interact with mitochondrial function and modulate oxidative stress 

(Lundberg et al., 2011). A balanced antioxidant enzyme system against reactive 

oxygen/nitrogen species is present in cells; catalase reduces H2O2 to water and 

oxygen and superoxide dismutase catalyses the dismutation of superoxide radicals 

to H2O2 and oxygen, and appears to be the main response to dietary pro-oxidant 

exposure. There was no statistically significant change in the catalase activity in 

haemolymph of larvae administered potassium nitrate by intra hemocoel injection 

or force feeding and no statistically significant changes in the superoxide dismutase 

activity observed in larvae force fed potassium nitrate. In contrast, a significant 

increase in superoxide dismutase activity (p < 0.05) was observed in larvae 
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administered potassium nitrate by intra-haemocoel injection (Fig. 4.6). Sydow et al. 

(2004) reported that the administration of the organic nitrate nitroglycerin (GTN) 

increased the production of reactive oxygen species by mitochondria. In mammals 

the binding of nitric oxide to cytochrome c oxidase causes a depolarization of the 

inner mitochondrial membrane and combined with an increase in the reduction state 

of the electron transport chain results in the generation of superoxide anions, which 

are subsequently converted to hydrogen peroxide by superoxide dismutase 

(Moncada and Erusalimsky, 2002). Proteomic analysis also showed the increased 

abundance of a putative mitochondrial Mn superoxide dismutase (15.2 fold increase) 

in larvae that received potassium nitrate.  

 Proteomic analysis revealed the increased abundance of a mitochondrial 

aldehyde dehydrogenase (288.6 fold) (p < 0.05) in larvae challenged with potassium 

nitrate. Chen et al. (2002) purified a nitrate reductase from mouse RAW264.7 cells 

that specifically catalyses the formation of 1,2-glyceryl dinitrate (GDN) 1,3-GDN, 

inorganic nitrite and nitric oxide from organic nitrate (GTN), which mediates 

vasorelaxation. This nitrate reductase was identified as the redox sensitive enzyme 

mitochondrial aldehyde dehydrogenase and it was also demonstrated that rabbit 

aorta made tolerant to GTN, showed a significantly decrease in GTN reductase 

activity (Chen et al., 2002). It has been previously shown that rabbits chronically 

treated with GTN demonstrate greater degrees of tolerance to GTN after three days 

exposure due to increased steady state concentrations of vascular 0−2 (Munzel et al., 

1995). The finding presented here showed not only a 300-fold (p < 0.05) increase of 

mitochondrial aldehyde dehydrogenase abundance but the significant increase (p < 

0.05) of superoxide dismutase activity in larvae challenged with potassium nitrate. 

These findings would suggest that both mammals and insects metabolise nitrates in 

a similar manner.  

 In G. mellonella larvae treated with potassium nitrate there was an increase 

in the abundance of a number of mitochondrial-associated proteins (e.g. 

mitochondrial aldehyde dehydrogenase (288.6 fold increase), putative mitochondrial 

Mn superoxide dismutase (15.2 fold increase), isocitrate dehydrogenase (2.3 fold 

increase) and cytosolic malate dehydrogenase (46.2 fold increase). Multiple proteins 
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involved in glycolysis and the Kreb's cycle were also shown to be increased in 

abundance such as triosephosphate isomerase (79.80 fold increase), glyceraldehyde 

3 phosphate dehydrogenase (20.36 fold increase), enolase (62.8 fold increase) and 

isocitrate dehydrogenase (2.3 fold increase). Lundberg et al. (2011) reported that 

nitric oxide binds to cytochrome c oxidase, the terminal respiratory complex in the 

mitochondrial electron transport chain, in competition with oxygen, reducing oxygen 

costs and extending time to exhaustion, perhaps due to a reduction in ATP cost of 

muscle force production or as a direct effect of the improved metabolic efficiency. 

Nitric oxide, through its interaction with components of the electron transport chain, 

may act as a physiological regulator of cell respiration and the inhibition of 

cytochrome c oxidase by nitric oxide leads to an increase in the rate of glycolysis, 

ensuring a sufficient supply of glycolytic ATP to fuel the ATPase (Moncada and 

Erusalimsky, 2002). G. mellonella larvae challenged with potassium nitrate 

demonstrated an increase in proteins involved in oxidoreductase activity, together 

with significant increases in mitochondria associated proteins and proteins involved 

in glycolysis and the Kreb’s cycle suggesting that the response to potassium nitrate 

in larvae share similarities with the cell respiration regulatory responses of mammals 

challenged with potassium nitrate. 

 Endogenous levels of nitrates are necessary for the production of a diverse 

group of metabolites including nitric oxide, nitrosothiols and nitroalkenes and the 

subsequent regulation of vasodilation, blood pressure, inflammatory cell 

recruitment, and platelet aggregation (Hord, 2011). Dietary nitrate, nitrite and the 

amino acid L-arginine can serve as sources for the production of these metabolites 

via ultraviolet light exposure to skin, mammalian nitrate/nitrite reductases in tissues, 

and nitric oxide synthase enzymes (Hord, 2011). In larvae that received potassium 

nitrate there was an increase in the abundance of proteins associated with nitrate 

metabolism including mitochondrial aldehyde dehydrogenase (288.6 fold increase), 

aliphatic nitrilase (132.5 fold increase), enolase (62.4 fold increase) and glutathione 

S-transferase (20.6 fold increase). Chen et al., (2002) showed that mitochondrial 

aldehyde dehydrogenase specifically catalyses the formation of 1,2-glyceryl dinitrate 

(GDN) 1,3- GDN, inorganic nitrite and NO from the organic nitrate nitroglycerin. 
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 This chapter has demonstrated numerous similarities between the response 

of an insects and mammals to potassium nitrate challenge. However the 

dissimilarities must also be acknowledged. The main toxic effect of chronic nitrate is 

due to the conversion of haemoglobin to methaemoglobin which leads to 

methaemoglobinemia (Van Dijk et al., 1983). The insect haemolymph is functionally 

similar to mammalian blood and functions in the transport of nutrients, waste 

products and signal molecules however, unlike mammalian blood, it does not 

function in respiration (Mellanby, 1939). Therefore the primary toxic effect of 

nitrates in mammals cannot be modelled in insects as they do not contain 

haemoglobin. In addition nitrates are almost 100% absorbed through the 

gastrointestinal tract in mammals (Ahluwalia et al. 2016). However the findings 

presented in this chapter suggested that potassium nitrate absorption through the 

gastrointestinal tract is retarded by peritrophic membrane in contrast to what 

happens in mammals.  

 There are numerous similarities between response of G. mellonella and 

mammals to potassium nitrate. The findings presented here validate the potential of 

G. mellonella as a candidate to test the toxicity of food potassium nitrate and other 

food additives.  
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5.1 Analysis of the effects of caffeine administration on the behaviour and 

development of Galleria mellonella larvae. 

 The aim this Chapter was to characterise the effect of caffeine on the 

behaviour of insects as this might give an insight into the effect of the compound in 

mammals. The development of an insect based system for measuring the relative 

toxicity and mode of action of caffeine could contribute to reducing the need to use 

mammals for this type of testing and give a greater insight into its mode of action. 

 Caffeine (1,3,7-trimethylxanthine) is the most widely used central nervous 

system stimulant in the world and along with its metabolites, theobromine (3,7-

dimethylxanthine) and theophylline (1,3-dimethylxanthine), is found in a wide 

range of plants (Porciúncula et al., 2013). A third metabolite paraxanthine (1,7-

dimethylxanthine) is not found in food, but is the main metabolite of caffeine in 

vivo (Aresta et al., 2005). Over 60 plant species contain caffeine with the most 

widely used being coffee (Caffea arabica), kola nuts (Cola acuminata), tea (Thea 

sinensis), and chocolate (Cocoa bean) (Vanderveen et al., 2001)  and it is also 

available in the synthetic form. Caffeine competitively binds to adenosine receptors 

allowing it to act as an antagonist with inverse agonist activity (Vanderveen et al., 

2001). Caffeine affects cAMP signalling both by binding to adenosine receptors and 

by competitively inhibiting the activity of phosphodiesterases which function to 

degrade cAMP (Vanderveen et al., 2001). Caffeine can also bind to intracellular 

calcium-channel ryanodine receptors resulting in the release of intracellular 

Ca2+(Bhat et al., 1997). Caffeine can stimulate dopaminergic activity by removing 

the negative modulatory effects of adenosine at dopamine receptors (Ferré, 2008). 

In addition to the effect caffeine has on adenosine receptors, studies have also 

suggested that paraxanthine, the primary metabolite of caffeine in humans, 

produces increased locomotive activity as well as a phosphodiesterase inhibitory 

effect which in turn results in increased extracellular levels of dopamine (Orrú and 

Guitart, 2013). The consumption of a low to moderate doses of caffeine is generally 

regarded as safe (daily intake of no more than 400 mg in healthy adults) however 

the consumption of higher doses by vulnerable individuals can result in an 

increased risk of negative health consequences such as cardiovascular and perinatal 
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complications (Meredith et al., 2013). The most dominant route of consumption is 

by oral intake but injection of caffeine or caffeine citrate is also available. 

 The effect of caffeine on physiology and behaviour of animals is widely 

studied in invertebrates as well as vertebrates (Cruz et al., 2017). In Apis mellifera 

caffeine modulates learning and memory; it specifically affects performance during 

acquisition but not the processes involved in the formation of long term memory  

(Mustard et al., 2012). In Drosophila chronic administration of caffeine reduced and 

fragmented sleep and also lengthened the circadian period (Wu et al., 2009). 

Administration of caffeine to Zebrafish (Danio rerio) embryos at concentrations 

above 300 ppm proved lethal, but lower concentrations resulted in shorter body 

length and reduced tactile sensitivity (Chen et al., 2008). This latter effect was due 

to the misalignment of muscle fibres and motor neurone defects in treated 

embryos. Zebra fish embryos also showed reduced mobility when exposed to 

caffeine possibly as a result of decreased expression of adenosine receptors (Cruz et 

al., 2017). 

 The aim of the work presented here was to characterise the effect of 

caffeine on the behaviour of insects as this might give an insight into the effect of 

the compound in mammals and vertebrate species. 

 For experimental purposes larvae were administered 20 µl of 0.1 M of 

caffeine, as this was the highest concentration that could be achieved in solution 

without resulting in larval death.  
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5.2 Effect of caffeine administration on haemocyte densities. 

 Larvae were administered by intra haemocoel injection or force feeding 20 

µl of 0.1 M of caffeine. The effect of the food additives administration on the 

density of circulating haemocytes in larval haemolymph was ascertained after 4 and 

24 hour incubation at 30OC (Fig. 5.1). For experimental purposes control larvae 

were administered PBS by intra haemocoel injection or force feeding.  

 Larvae force fed PBS and incubated for 4 or 24 hours at 30OC showed 0.96 

± 0.2 x107 and 0.97 ± 0.05 x107 haemocytes/ml respectively. Larvae force fed 

caffeine and incubated for 4 hours showed 1.5 ± 0.43 x107 haemocytes/ml. This 

equated to a 0.56 fold increase in haemocyte densities between control larvae and 

caffeine force fed larvae. Larvae force fed caffeine and incubated for 24 hours 

showed 1.3 ± 0.22 x107 haemocytes/ml. This equated to a 0.34 fold increase (p < 

0.05) in haemocyte densities between control larvae and caffeine force fed larvae 

(Fig. 5.1). 

 Larvae injected with PBS and incubated for 4 or 24 hours at 30OC showed 

1.16 ± 0.1 x107 and 0.71 ± 0.13 x107 haemocytes/ml respectively. Larvae injected 

caffeine and incubated for 4 hours showed 1.7 ± 0.08 x107 haemocytes/ml. This 

equated to a 0.47 fold increase (p < 0.01) in haemocyte densities between control 

larvae and caffeine injected larvae. Larvae injected with caffeine and incubated for 

24 hours showed 1.2 ± 0.18 x107 haemocytes/ml. This equated to a 0.69 fold 

increase (p < 0.05) in haemocyte densities between control larvae and caffeine 

injected larvae (Fig. 5.1). 
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Fig. 5.1 Effect of caffeine on haemocyte density in force fed and intra-haemocoel injected G. 

mellonella larvae at 4 and 24 hours. (*: p < 0.05) (**: p < 0.01). All values are the mean            ± 

SE of 3 independent determinations. 
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5.3 Analysis of the effect of caffeine administration on haemocyte mediated 

pathogen killing. 

 Larvae were administered by intra haemocoel injection or force feeding 20 

µl of 0.1 M of caffeine. Haemocytes were extracted from control and treated larvae 

following 24-hour incubation at 30OC and mixed with opsonised C. albicans for 80-

minute (Fig. 5.2). By counting the percentage viability of C. albicans at 20 min 

intervals, the effect of these food additives on haemocyte mediated pathogen 

killing was ascertained.  

 Haemocytes from PBS force fed control larvae killed 22.52. ± 18.5%, 43.76 

± 21.81% , 43.01 ± 28.29%, 67.23 ± 17.96%  of C. albicans MEN cells after 20, 40, 60 

and 80 minutes respectively. Haemocytes from caffeine force fed larvae killed 39.97 

± 16.48%, 54.48 ± 27.10%, 61.75 ± 29.36%, 75.69 ± 23.12% of C. albicans MEN cells 

after 20, 40, 60 and 80 minutes respectively (Fig. 5.2). 

 Haemocytes from PBS injected control larvae killed 34.33 ± 21.14%, 50 ± 

17.79%, 67.93 ± 21.26%, 76.33 ± 18.29% of C. albicans MEN cells after 20, 40, 60 

and 80 minutes respectively. In addition haemocytes from caffeine injected larvae 

killed 34.09 ± 20.84%, 36.57 ± 14.68%, 58.17 ± 6.26%, 62.59 ± 4.37% of C. albicans 

MEN cells after 20, 40, 60 and 80 minutes respectively (Fig. 5.2).  

The results indicated no significant changes between the killing ability of 

haemocytes from control larvae and larvae administered caffeine by intra-

haemocoel injection or force feeding.  

 

5.4 Summary 

 Larvae were administered caffeine by force feeding and intra-haemocoel 

injection. Larvae that were administered caffeine by intra-haemocoel injection 

showed significant increases in haemocyte densities after 4 (p < 0.05) and 24 (p < 

0.01) hour incubation. Larvae that were administered caffeine by force feeding 

showed significant increases (p < 0.05) in haemocyte densities after 24 hour 

incubation when compared to their relevant controls.  
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 There were no significant changes between the fungicidal ability of 

haemocytes from control or treated larvae (Fig. 5.2). 
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5.5 Effects of caffeine on superoxide dismutase activity of the haemolymph. 

 Superoxide dismutase activity in the haemolymph of larvae administered 

caffeine was measured. Larvae were administered 20 µl of 0.1 M of caffeine by 

intra-haemocoel injection or force feeding. Larvae were incubated at 30OC for 4 and 

24 hours post administration of caffeine and the total superoxide dismutase activity 

was measured in larval haemolymph (Fig. 5.3, 5.4). Superoxide dismutase activity 

was quantified as units of activity, 1 unit of superoxide dismutase activity equated 

to the 50% inhibition of the oxiditation of quercetin.  

 One unit of superoxide dismutase activity in PBS force fed control larvae 

equated to 109.03 ± 35.54 µg/µl and 122.78 ± 5.35 µg/µl of haemolymph protein 

following 4 or 24-hours incubation. In addition 1 unit of superoxide dismutase 

activity in PBS injected control larvae equated to 99.43 ± 24.50 µg/µl and 137.68 ± 

32.24 µg/µl of haemolymph protein following 4 or 24 hours incubation (Fig. 5.3, 

5.4). 

 Superoxide dismutase activity was also measured in haemolymph from 

larvae administered caffeine via force feeding prior to incubation. At 4 and 24 hours 

one unit of superoxide dismutase activity was represented as 92.42 ± 28.88 µg/µl 

and 145.63 ± 40.83 µg/µl of protein. Superoxide dismutase activity was also 

measured in larvae administered caffeine via intra-haemocoel injection prior to 

incubation. At 4 and 24 hours one unit of superoxide dismutase activity was 

represented as 119.48 ± 28.31 µg/µl and 152.64 ± 30.64 µg/µl of protein (Fig. 5.3, 

5.4). 

 These findings revealed no significant differences between the superoxide 

dismutase activity in haemolymph extracted from test larvae and control larvae at 4 

or 24-hours.  
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Fig. 5.3 Superoxide dismutase activity of haemolymph from larvae administered  

Caffeine via intra-haemocoel injection and force feeding. After 4 hours haemolymph was  

extracted from larvae that were administered caffeine. Superoxide dismutase activity  

was determined as described. All values are the mean ± SE of 3 independent  

determinations. 
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Fig. 5.4 Superoxide dismutase activity of haemolymph from larvae administered 

caffeine via intra-haemocoel injection and force feeding. After 24 hours  

haemolymph was extracted from larvae that were administered caffeine.  

Superoxide dismutase activity was determined as described.  

All values are the mean ± SE of 3 independent determinations. 
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5.6 Effects of caffeine on catalase activity in G. mellonella haemolymph 

 Larvae were administered by intra haemocoel injection or force feeding 20 

µl 0.1 M of caffeine. Following 4 and 24 hours incubation haemolymph was 

extracted from larvae and incubated with hydrogen peroxide. The decomposition of 

hydrogen peroxide and thus rate of catalase activity was measured 

spectrometrically at 240 nm (Fig. 5.5, 5.6). Catalase activity in larvae administered 

caffeine was expressed as the fold change compared with their relevant control 

groups administered PBS.  

 The catalase activity in larvae force fed PBS was measured as 0.36 ± 0.04 

Abs and 0.31 ± 0.05 Abs following 4 and 24 hours incubation respectively. In 

addition the catalase activity in larvae administered PBS by intra-haemocoel 

injection was measured as 0.39 ± 0.04 Abs and 0.28 ± 0.07 Abs following 4 and 24 

hour incubation respectively.  

 The catalase activity in caffeine fed larvae was measured as 0.37 ± 0.03 Abs 

and 0.30 ± 0.06 Abs after 4 and 24 hours incubation respectively. These results 

showed no significant changes between control and treated groups (Fig. 5.5) 

 Larvae were administered caffeine via intra-haemocoel injection. The 

catalase activity in these larvae was measured as 0.42 ± 0.01 Abs and 0.35 ± 0.02 

Abs after 4 and 24 hours incubation respectively. Similar to the previous route of 

administration these results showed no significant changes between control and 

treated groups (Fig 5.6). 

 

5.7 Summary 

 The activity of two anti-oxidant enzymes, superoxide dismutase and catalase 

was measured in the haemolymph of larvae challenged with caffeine via force 

feeding or direct injection into the haemocoel. No significant changes were 

recorded in the activity of either anti-oxidant enzyme between test and control 

larvae administered PBS.  
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Fig. 5.5 Catalase activity of haemolymph from larvae administered caffeine via force 

feeding and intra-haemocoel injection. After 4 hours haemolymph was extracted from 

larvae that were administered caffeine. Catalase activity was determined as described. All 

values are the mean ± SE of 3 independent determinations. 

 



176 
 

0.0

0.1

0.2

0.3

0.4

Larvae injected with PBS

Larvae force fed PBS

Larvae injected with caffeine

Larvae force fed caffeine

Treatments

A
b

s
o

rb
ti

o
n

 v
a

lu
e

 A
b

s

  

Fig. 5.6 Catalase activity of haemolymph from larvae administered caffeine via  

force feeding and intra-haemocoel injection. After 24 hours haemolymph was  

extracted from larvae that were administered caffeine. Catalase activity was 

determined as described. All values are the mean ± SE of 3 independent determinations. 
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5.8 Analysis of caffeine metabolism in G. mellonella larvae. 

 Larvae were administered 20 µl of 0.08 M of caffeine via direct injection into 

the haemocoel or force feeding and haemolymph was extracted at 0, 4, 24 and 48 

hours. Caffeine and its associated metabolites were extracted from haemolymph at 

each time point, samples were loaded on an Agilent C-18 column and quantified as 

described by RP-HPLC 

 The caffeine level in force fed larvae were 150.89 ± 36.33 µg/ml, 142.33 ± 

11.75 µg/ml, 73.52 ± 0.34 µg/ml and 75.66 ± 12.66 µg/ml at t = 0, 4, 24 and 48 

hours respectively (Fig. 5.7). This amounts to a 0.06 fold decrease at 4 hours, a 0.51 

fold decrease (p < 0.01) at 24 hours, and a 0.50 fold decrease (p < 0.01) at 48 hours 

when compared to the caffeine levels of larvae at t = 0 hours. At t = 0 hours 

theobromine and theophylline were not detected. However theophylline levels at t 

= 4 hours were 18.94 ± 2.17 µg/ml, at t = 24 hours were 2.88 ± 0.25 µg/ml, and at t 

= 48 were 0.87 ± 0.16 µg/ml (Fig. 5.8). This amounts to a significant increase in 

theophylline levels at t = 4 hours (p < 0.001) and at t = 24 hours (p < 0.05) when 

compared to levels at t = 0 hour. Theobromine levels at t = 4 were 4.06 ± 0.45 

µg/ml, at t = 24 were 5.76 ± 0.46 µg/ml, and at t = 48 were 9.11 ± 1.82 µg/ml. This 

equated to significant increases in theobromine levels at t = 4 hours (p < 0.01), at t 

= 24 hours (p < 0.01) and at t = 48 hours (p <0.001) when compared to levels at t = 0 

hours (Fig. 5.11). 

 The caffeine level in intra-haemocoel injected larvae were 161.91 ± 50.64 

µg/ml, 144.92 ± 55.13 µg/ml, 35.91 ± 30.93 µg/ml and 18.86 ± 5.55 µg/ml at t = 0, 

4, 24 and 48 hours respectively (Fig. 5.10). This amounts to a 0.10 fold decrease at 4 

hours, a 0.78 fold decrease (p < 0.05) at 24 hours, and a 0.88 fold decrease (p < 

0.05) at 48 hours when compared to the caffeine levels of larvae at t = 0 hours. At t 

= 0 hours theobromine and theophylline were not detected. However theophylline 

levels at t = 4 hours were 15.53 ± 4.70 µg/ml, at t = 24 hours were 4.56 ± 0.29 

µg/ml, and at t = 48 hours were 3.83 ± 4.09 µg/ml. This amounts to a significant 

increase in theophylline levels at t = 4 hours (p < 0.01) when compared to levels at t 

= 0 hours (Fig. 5.11). Theobromine levels at t = 4 hours were 18.59 ± 13.57 µg/ml, at 

t = 24 hours were 19.94 ± 1.26 µg/ml, and at t = 48 hours were 7.31 ± 0.64 µg/ml. 
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This equated to significant increases in theobromine levels at t = 4 hours (p < 0.05) 

and at t = 24 hours (p < 0.05) when compared to levels at t = 0 hours (Fig. 5.12). 

5.9 Summary 

 Larvae were administered 20 µl of 0.08 M of caffeine via intra-haemocoel 

injection or force feeding. Caffeine and its associate metabolites, theobromine and 

theophylline were measured by RP-HPLC analysis in the haemolymph of caffeine 

treated larvae at t = 0, 4, 24 and 48 hours.  

 Haemolymph from larvae that were administered caffeine by force feeding 

showed significant decreases in caffeine levels at t = 24 hours (p < 0.01) and t = 48 

hours (p < 0.01) when compared to t = 0 hours. Theobromine and theophylline 

were not detected in haemolymph at t = 0 hours. However Theophylline and 

theobromine was detected in haemolymph at t = 4, 24 and 48 hours. The 

concentration of theophylline and theobromine peaked at t = 4 and t = 48 hours 

respectively. 

 Haemolymph from larvae that were administered caffeine by intra-

haemocoel injection showed significant decreases in caffeine levels at t = 24 hours 

(p < 0.05) and t = 48 hours (p < 0.05) when compared to t = 0 hours. Theobromine 

and theophylline were not detected in haemolymph at t = 0 hours. However 

theophylline and theobromine were detected in haemolymph at t = 4, 24 and 48 

hours. The concentration of theophylline and theobromine peaked at t = 4 hours 

and t = 48 hours respectively. 
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Fig 5.7 Analysis of the metabolism of caffeine in force fed G. mellonella larvae. The 

presence of caffeine in haemolymph was detected by RP-HPLC at 0, 4, 24 and 48 

hours (*:p < 0.05)(**:p < 0.01). All values are the mean ± SE, n = 15.  
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Fig. 5.8 Presence of theobromine in caffeine fed larvae. The presence of 

theobromine in haemolymph were detected by RP-HPLC at 0, 4, 24 and 48 hours 

(*:p < 0.05)(**:p < 0.01)(***:p < 0.001). All values are the mean ± SE, n = 15.  
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Fig 5.9 Presence of theophylline in caffeine fed larvae. The presence of theophylline 

in haemolymph were detected by RP-HPLC at 0, 4, 24 and 48 hours (*:p < 

0.05)(***:p < 0.001). All values are the mean ± SE, n = 15.  
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Fig. 5.10 Analysis of the metabolism of caffeine in intra-haemocoel injected G. 

mellonella larvae. The presence of caffeine in haemolymph were detected by RP-

HPLC at 0, 4, 24 and 48 hours (*:p < 0.05). All values are the mean ± SE, n = 15.  
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Fig. 5. 11 Presence of theobromine in caffeine injected larvae. The presence of 

theobromine in haemolymph were detected by RP-HPLC at 0, 4, 24 and 48 hours 

(*:p < 0.05). All values are the mean ± SE, n = 15.  
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Fig 5.12 Presence of theophylline in caffeine injected larvae. The presence of 

theophylline in haemolymph were detected by RP-HPLC at 0, 4, 24 and 48 hours 

(*:p < 0.05) (**:p < 0.01). All values are the mean ± SE, n = 15.  
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5.10 Effect of caffeine on larval movement. 

 Larvae were administered 20 µL of 0.1 M of caffeine by force feeding and 

the effect on movement was monitored as described. Larvae were placed on their 

dorsal surface and the time to reposition correctly was recorded.  

 Control larvae force fed PBS took 3 ± 0 seconds to reposition and larvae 

administered caffeine at t = 0 hours took 3 ± 0 seconds to reposition. However 

larvae administered caffeine at t = 1 hour took 254 ± 251 seconds to reposition. This 

increased to 319 ± 247.61 seconds at 4 hours and to 309 ± 299 seconds at 24 hours. 

The time to reposition declined at 48 hours to 126 ± 243 seconds and to 35.53 ± 

136 seconds at 72 hours. Significant increases were observed between larvae force 

fed PBS and larvae incubated for 4 (p < 0.001) and 24 hours (p < 0.001) post 

caffeine administration. Significant increases were also observed between larvae 

incubated for 1 hour and 72 hours (p < 0.05) (Fig. 5.13). 

 Control larvae injected with PBS took 3 ± 0 seconds to reposition and larvae 

administered caffeine at t = 0 took 81.64 ± 160.06 seconds to reposition. However 

larvae administered caffeine at t = 1 hour took 246.37 ± 244.76 seconds to 

reposition. This increased to 318 ± 265.90 seconds at 4 hours and decreased to 

217.07 ± 288.72 seconds at 24 hours. The time to reposition declined at 48 hours to 

40.68 ± 135.92 seconds and to 35.11 ± 136 seconds at 72 hours. Significant 

increases were observed between larvae injected with PBS and larvae incubated for 

1 (p < 0.01), 4 (p < 0.001) and 24 hours (p < 0.05) post-caffeine administration. 

Significant increases were also observed when larvae incubated for 1 hour where 

compared to larvae incubated for 48 (p < 0.05) and 72 hours (p < 0.05) (Fig. 5.14). 

 For more detailed analysis work was carried out in collaboration with Martin 

Kunc and Dr. Pavel Hyršl (Masarykova University Czech Republic), larvae were 

placed on the FIMTrack table surface, images were acquired (Fig. 5.15, 5.16). and 

distance travelled and velocity were recorded.  

 Larvae were administered 20 µl of 0.1 M caffeine by force feeding and 

placed on the FIMTrack table surface the distance travelled was recorded. 

Significant decreases in velocity and distance travelled were observed at 1, 4, 24 
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and 48 hours after administration of caffeine compared with control larvae. The 

distance travelled by control larvae force fed PBS was 108.02 ± 45.60 cm, 160.31 ± 

56.60 cm, 215.20 ± 61.47cm, 215.03 ± 67.81 cm, 177.70 ± 58.29 cm and 125.33 ± 

44.60 cm at t = 0, 1, 4, 24, 48 and 72 hours respectively. The distance travelled by 

larvae force fed caffeine was 99.23 ± 46.10 cm, 67.91 ± 24.36 cm, 64.53 ± 21.73 cm, 

52.38 ± 13.26 cm, 51.49 ± 21.24 cm and 99.23 ± 46.1 cm at t = 0, 1, 4, 24, 48 and 72 

hours respectively. Significant decreases in distance travelled were observed at t = 

1, 4, 24 and 48 hours (p < 0.001) after administration of caffeine compared with 

control larvae (Fig. 5.17).  

 Larvae were administered 20 µL of 0.1 M of caffeine by force feeding and 

placed on the FIMTrack table surface and the velocity of larvae was recorded. The 

velocity of larvae force fed PBS was 6.22 ± 2.27 mm/s, 9.11 ± 2.88 mm/s, 9.42 ± 

3.67 mm/s, 12.12 ± 3.01 mm/s, 7.53 ± 3.32 mm/s and 7.03 ± 2.05 mm/s at t = 0, 1, 

4, 24, 48 and 72 hours respectively. The velocity of larvae force fed caffeine was 

5.52 ± 1.53 mm/s, 5.30 ± 1.99 mm/s, 2.65 ± 1.52 mm/s, 4.01 ± 1.00 mm/s, 2.41 ± 

1.30 mm/s and 5.15 ± 2.15 mm/s at t = 0, 1, 4, 24, 48 and 72 hours respectively. 

Significant decreases in velocity were observed at 1 (p < 0.01), 4 (p < 0.001), 24 (p < 

0.001) and 48 hours (p < 0.001) after administration of caffeine compared with 

control larvae (Fig. 5.18).  

 Larvae were administered 20 µL of 0.1 M of caffeine by intra-haemocoel 

injection and placed on the FIMTrack table surface the distance travelled and 

velocity were recorded. The distance travelled by control larvae injected with PBS 

was 170.90 ± 70.17 cm, 238.94 ± 53.60 cm, 251.26 ± 55.53 cm, 215.43 ± 66.67 cm, 

190.97 ± 38.96 cm and 150.18 ± 57.34 cm at t = 0, 1, 4, 24, 48 and 72 hours 

respectively. The distance travelled by larvae injected with caffeine was 37.81 ± 

12.50 cm, 59.12 ± 25.12 cm, 57.00 ± 19.07 cm, 54.78 ± 17.16 cm, 84.26 ± 57.4 cm 

and 133.92 ± 54.03 cm at t = 0, 1, 4, 24, 48 and 72 hours respectively. Significant 

decreases in distance travelled were observed at t = 0, 1, 4, 24 and 48 hours (p < 

0.001) after administration of caffeine compared with control larvae (Fig. 5.19).  

 Larvae were administered 20 µl 0.1 M caffeine by intra-haemocoel injection 

and were placed on the FIMTrack table surface and the velocity of larvae was 
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recorded. The velocity of larvae injected with PBS was 4.26 ± 2.63 mm/s, 10.90 ± 

3.69 mm/s, 5.76 ± 2.68 mm/s, 10.97 ± 2.28 mm/s, 7.78 ± 1.69 mm/s and 5.42 ± 2.12 

mm/s at t = 0, 1, 4, 24, 48 and 72 hours respectively. The velocity of larvae injected 

with caffeine was 0.40 ± 0.14 mm/s, 2.47 ± 1.21 mm/s, 0.98 ± 0.65 mm/s, 4.13 ± 

1.10 mm/s, 3.64 ± 2.23 mm/s and 5.32 ± 2.49 mm/s at t = 0, 1, 4, 24, 48 and 72 

hours respectively. Significant decreases in velocity were observed at t= 0 (p < 

0.01), 1 (p < 0.001), 4 (p < 0.001), 24 (p < 0.001) and 48 hours (p < 0.001) after 

administration of caffeine compared with control larvae (Fig. 5.20). 

  



188 
 

 

 

Fig. 5.13 Effect of caffeine on ability of G. mellonella larvae to move from their 

ventral to dorsal surface. Larvae were positioned on their ventral surface after 

administration of caffeine via force feeding and the time to reposition correctly was 

recorded (*:p < 0.05) (**:p < 0.01) (***:p < 0.001). All values are the mean ± SE, n = 

20.  
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Fig. 5.14 Effect of caffeine on ability of G. mellonella larvae to move from their 

ventral to dorsal surface. Larvae were positioned on their ventral surface after 

administration of caffeine by intra-haemocoel injection and the time to reposition 

correctly was recorded (*:p < 0.05) (**:p < 0.01) (***:p < 0.001). All values are the 

mean ± SE, n = 20.  
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Fig. 5.17 Effect of caffeine on movement distance of force fed G. mellonella larvae. 

Each dot represents individual larva and the line is mean ± SE, n = 10 (***:p < 

0.001).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



193 
 

 

Fig. 5.18 Effect of caffeine on movement distance of intra-haemocoel injected G. 

mellonella larvae. Each dot represents individual larva and the line is mean ± SE, n = 

10 (***:p < 0.001).  
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Fig. 5.19 Effect of caffeine on movement velocity of force fed G. mellonella larvae. 

Each dot represents individual larva and the line is mean ± SE, n = 10 (**:p < 0.01) 

(***:p < 0.001). 
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Fig. 5.20 Effect of caffeine on movement velocity of intra-haemocoel injected G. 

mellonella larvae. Each dot represents individual larva and the line is mean ± SE, n = 

10 (**:p < 0.01) (***:p < 0.001). 
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5.11 Effect of caffeine on formation of pupae. 

The rate of pupae formation at 30oC was recorded from days 0 – 12 in larvae 

administered 20 µl of 0.1 M caffeine via intra-haemocoel injection or force feeding. 

No mortality was observed during experiments. The rate of pupae formation in 

control larvae was 0 ± 0%, 0 ± 0%, 0 ± 0%, 0 ± 0%, 5 ± 7.07%, 50 ± 7.07%, 70 ± 

14.14%, 75 ± 7.07%, 80 ± 14.14%, 85 ± 14.07%, 90 ± 0%, 90 ± 0% and 90 ± 0% after 

0-12 days incubation respectively 

The rate of pupae formation in larvae force fed caffeine was 0 ± 0%, 0 ± 0%, 0 ± 0%, 

0 ± 0%, 0 ± 0%, 0 ± 0%, 5 ± 7.07%, 10 ± 7.07%, 20 ± 0%, 25 ± 7.07%, 27 ± 0%, 30 ± 

7.07% and 32.5 ± 10.6% after 0-12 days incubation respectively. There was a 

significant decrease (p < 0.001) in the ability of caffeine treated larvae to form 

pupae when compared with naive control larvae (Fig. 5.21).  Pupation in control 

larvae commenced at day 4 whereas pupation commenced at day 6 in larvae force 

fed caffeine. In addition to a delay in the commencement of pupation, the rate of 

pupation was also decreased in treated larvae. Larvae that were force fed had an 

average pupation rate of 0.54 larvae per day over a 12 day period, however control 

larvae had an average pupation rate of 1.5 larvae per day over the same period (Fig. 

5.24). 

The rate of pupae formation in larvae injected with caffeine was 0 ± 0%, 0 ± 0%, 0 ± 

0%, 0 ± 0%, 0 ± 0%, 0 ± 0%, 0 ± 0%, 5 ± 0%, 7.5 ± 3.53%, 17.5 ± 3.53%, 20 ± 0%, 20 ± 

0% and 25 ± 7.07% after 0-12 days incubation respectively There was a significant 

decrease (p < 0.001) in the ability of caffeine injected larvae to form pupae when 

compared with naive control larvae.  Pupation in control larvae commenced at day 

4 whereas pupation commenced at day 7 in larvae force fed caffeine. In addition to 

a delay in the commencement of pupation, the rate of pupation was also decreased 

in treated larvae. Caffeine injected larvae had an average pupation rate of 0.33 

larvae per day over a 12 day period, however control larvae had an average 

pupation rate of 1.5 larvae per day over the same period (Fig. 5.21). 
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5.12 Summary 

 Larvae were administered 20 µl of 0.1 M of caffeine by force feeding or 

intra-haemocoel injection and the effect on movement and rate of pupation was 

monitored as described.  

 Significant increases in the inability to reposition correctly were observed 

between larvae force fed PBS and larvae incubated for 4 (p < 0.001) and 24 hours (p 

< 0.001) post-caffeine force feeding. Significant increases were also observed 

between larvae incubated for 1 hour and 72 hours (p<0.05). The inability to 

reposition correctly peaked in larvae tested 4 hours post force feeding of caffeine. 

FIMTrack table surface was used to record the distance travelled and velocity of 

larvae force fed caffeine. Significant decreases in velocity and distance travelled 

were observed at t = 1, 4, 24 and 48 hours after administration of caffeine 

compared with control larvae 

 Significant increases were observed between larvae injected with PBS and 

larvae incubated for 1 (p < 0.01), 4 (p < 0.001) and 24 hours (p < 0.05) post-caffeine 

administration. Significant increases were also observed when larvae incubated for 

1 hour where compared to larvae incubated for 48 (p < 0.05) and 72 hours (p < 

0.05). FIMTrack table surface was used to record the distance travelled and velocity 

of larvae injected with caffeine. Significant decreases in velocity and distance 

travelled were observed at 0, 1, 4, 24 and 48 hours after administration of caffeine 

compared with control larvae. 

 There was a significant decrease (p < 0.001) in the ability of caffeine force 

fed and injected larvae to form pupae over a 12 day period when compared with 

naive control larvae.  
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Fig. 5.21 Caffeine administration inhibits pupation in G. mellonella larvae. The 

formation of pupae was recorded from days 0 – 12 (***:p < 0.001). All values are 

the mean ± SE, n=20. 
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5.13 Effect of caffeine on larval brain proteome  

 Label free quantitative proteomics was performed on the brain and 

surrounding tissue of larvae force fed 20 µl of 0.1 M caffeine for 24 hours. Principal 

component analyses was employed showing clustering of control and treatment 

replicates (Fig. 5.22). In total 480 peptides were identified representing 471 proteins 

with two or more peptides and 32 differentially expressed proteins (Fig. 5.23). 

Seventeen proteins (7 proteins imputated and 10 proteins non-imputated) were 

significantly increased (p < 0.05) in abundance in larvae administered caffeine 

compared to controls (Table 5.1). Fifteen proteins (10 proteins imputated and 5 

proteins non-imputated) were significantly decreased in abundance in larvae 

administered caffeine compared to controls (Table 5.2). The exclusively expressed 

hits showed 11 proteins only expressed in control larvae (Table 5.3) and 3 proteins 

only expressed in caffeine administered larvae (Table 5.4) 

 The protein showing the highest increase in abundance in larvae exposed to 

caffeine was larval cuticle protein 1 at a fold increase of 2.76 (p < 0.05), while the 

proteins highest in abundance with an imputated value were immune-related Hdd1 

(6.28 fold increase), AAEL003067-PA (3.11 fold increase), GG11101 (2.58 fold 

increase) and ras protein (1.91) (Table 5.1). 

 Proteins showing the highest decrease in abundance included 

uncharacterized protein Dvir_GJ22788, isoform A (4.23 fold decrease), C-type lectin 

21 precursor (2.25 fold decrease) and chemosensory protein (1.54 fold decrease), 

while the proteins lowest in abundance with an imputated value were proteasome 

beta-subunit (4.86 fold decrease), chitin deacetylase, partial (3.67 fold decrease), 

putative neuropeptide precursor protein precursor (3.14 fold decrease), 

AAEL003067-PA (3.11 fold decrease) and GG11101 (2.58 fold decrease) (Table 5.2).  

 Blast2GO annotation software was used to group proteins based on 

conserved GO terms in order to identify processes and pathways potentially 

associated with caffeine metabolism.  GO terms were categorized by biological 

processes (BP) and molecular function (MF) and cellular components (CC).  
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 The increases in BP in larvae administered caffeine included proteins labelled 

as catabolic process cellular (99 proteins in control – 99 proteins in treated larvae), 

cellular component biogenesis (45-44), single-organism metabolic process (62-62), 

biosynthetic process (168-166), cellular metabolic process (28-28), nitrogen 

compound metabolic process (133-132), single-organism cellular process (187-184), 

organic substance metabolic process (176-173), primary metabolic process (28-28), 

establishment of localization (87-87) and regulation of cellular process (94-92) (Fig. 

5.24). No significant changes were observed. 

 The increases in MF in larvae administered caffeine included proteins labelled 

small molecule binding (57 proteins in control – 56 proteins in treated larvae), 

organic cyclic compound binding (93-91), ion binding (76-73), carbohydrate 

derivative binding (103-101), hydrolase activity (93-91), heterocyclic compound 

binding (50-48),oxidoreductase activity (72-70) and structural constituent of 

ribosome (52-52) (Fig. 5.25). No significant changes were observed. 

 The increases in CC in larvae administered caffeine included proteins labelled 

intracellular organelle (32 proteins in control – 31 proteins in treated larvae), 

ribonucleoprotein complex (172-169), membrane-bounded organelle (123-121), 

intracellular organelle part (41-41), catalytic complex (165-162), intracellular (49-47), 

protein complex (77-77), non-membrane-bounded organelle (53-51) and 

intracellular part (65-65) (Fig. 5.26). No significant changes were observed. 

5. 14 Summary 

 Analysis of the changes in proteome of the brain and surrounding tissues of 

caffeine force fed larvae revealed an increase in the abundance of immune related 

proteins such as immune-related Hdd1 (6.28 fold increase) and hemolin (1.68 fold 

increase), ATPase associated proteins such as H+ transporting ATP synthase O 

subunit isoform 1 (1.87 fold increase) and H+ transporting ATP synthase delta 

subunit (1.53 fold increase)  and proteins indicative of brain trauma such as 

troponin T transcript variant B, partial (1.55 fold increase).  Proteins involved in 

development and protein degradation such as SUMO-activating enzyme subunit 1 
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(3.08 fold decrease) and chitin deacetylase, partial (3.67 fold decrease) were 

decreased in abundance. 
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Fig. 5.22 Principal component analyses of the proteome of control larvae (black 

circle) and larvae force fed caffeine (red circle).   
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Protein Name 
(*=imputated protein)  

Peptides Sequence  
Coverage 
% 

PEP Mean 
LFQ 
Intensity 

Fold 
difference 

*PREDICTED: adenylyl 
cyclase-associated 
protein 1 isoform X2 
[Tribolium castaneum] 

2 8.9 1.71E-
13 

2.42E+09 7.19 

*immune-related Hdd1 
[Hyphantria cunea] 

10 15.7 2.45E-
140 

7.12E+09 6.28 

*PREDICTED: protein 
CREG1 [Tribolium 
castaneum] 

4 20.6 2.99E-
59 

1.83E+09 4.11 

*AAEL003067-PA [Aedes 
aegypti] 

5 16.2 4.81E-
71 

7.58E+08 3.11 

RecName: Full=Larval 
cuticle protein 1; Flags: 
Precursor 

4 19 1.38E-
108 

4.87E+09 2.76 

*GG11101 [Drosophila 
erecta] 

6 20.3 2.22E-
34 

7.91E+08 2.58 

myofilin variant A 
[Bombyx mandarina] 

6 24.3 1.09E-
59 

8.96E+09 2.35 

*ras protein [Bombyx 
mori] 

3 4.3 1.20E-
17 

1.40E+09 1.91 

H+ transporting ATP 
synthase O subunit 
isoform 1 [Bombyx mori] 

12 42.7 4.65E-
99 

9.55E+09 1.87 

hemolin [Heliothis 
virescens] 

3 47.9 1.55E-
83 

8.13E+09 1.68 

*hypothetical protein, 
partial [Bombyx mori] 

2 16.7 2.42E-
84 

1.07E+09 1.66 

AGAP008115-PA 
[Anopheles gambiae str. 
PEST] 

4 11.7 5.25E-
145 

8.39E+09 1.65 

bifunctional purine 
biosynthesis protein, 
putative [Pediculus 
humanus corporis] 

10 27.4 1.70E-
77 

3.93E+09 1.61 

troponin T transcript 
variant B, partial 
[Bombyx mandarina] 

6 25.6 0 3.96E+10 1.55 

heat shock 70 kD protein 
cognate precursor 
[Bombyx mori] 

3 76.2 1.52E-
69 

6.44E+09 1.54 

heat shock cognate 70 
protein [Spodoptera 
frugiperda] 

4 14.8 1.89E-
13 

4.72E+09 1.54 
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H+ transporting ATP 
synthase delta subunit 
[Bombyx mori] 

7 41.8 7.98E-
106 

9.07E+09 1.53 

 

Table 5.1 Relative fold changes of proteins increased in abundance in G. mellonella 

larvae administered caffeine and the number of matched peptides, sequence 

coverage, PEP and overall intensity. Only proteins that had more than two matched 

peptides and were found to be differentially expressed at a level greater than ±1.5 

were considered to be in significantly variable abundances between control and 

treated larvae. 
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Protein Name 
(*=imputated 
protein) 

Peptides Sequence 
Coverage 
% 

PEP Mean 
LFQ 
intensity 

Fold 
difference 

*proteasome beta-
subunit [Bombyx 
mori] 

8 41.7 3.23E-
50 

2.24E+09 -4.86 

uncharacterized 
protein Dvir_GJ22788, 
isoform A [Drosophila 
virilis] 

13 28.6 6.71E-
182 

1.18E+10 -4.23 

*PREDICTED: probable 
isocitrate 
dehydrogenase [NAD] 
subunit beta, 
mitochondrial 
[Tribolium castaneum] 

2 14.9 1.66E-
45 

1.61E+09 -3.78 

*chitin deacetylase, 
partial [Helicoverpa 
armigera] 

5 15 3.93E-
37 

9.53E+08 -3.67 

*effete, isoform A 
[Drosophila 
melanogaster] 

4 10.5 2.65E-
31 

1.71E+09 -3.21 

*SUMO-1 activating 
enzyme [Bombyx 
mori] 

8 32.4 9.40E-
72 

1.82E+09 -3.08 

*chitin binding 
protein [Papilio 
xuthus] 

6 9.1 1.64E-
37 

1.39E+09 -3.08 

*PREDICTED: similar 
to multiple inositol 
polyphosphate 
phosphatase [Nasonia 
vitripennis] 

6 32.1 5.68E-
81 

1.19E+09 -2.93 

*acyl-coenzyme A 
dehydrogenase 
[Bombyx mori] 

5 7.9 5.19E-
21 

1.06E+09 -2.80 

C-type lectin 21 
precursor [Bombyx 
mori] 

9 38.1 1.89E-
73 

5.00E+09 -2.25 

*PREDICTED: protein 
BCCIP homolog 
[Nasonia vitripennis] 

3 15.7 1.90E-
18 

7.25E+08 -2.20 

*similar to CG3590-PA 
[Papilio xuthus] 

8 25.4 1.54E-
73 

1.52E+09 -2.12 

chemosensory protein 
[Papilio xuthus] 

6 16.7 1.87E-
206 

5.50E+10 -1.54 
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unknown [Picea 
sitchensis] 

10 36.8 3.52E-
178 

2.34E+10 -1.52 

RecName: 
Full=Inducible serine 
protease inhibitor 2; 
Short=ISPI-2 

3 9.8 2.87E-
87 

3.17E+10 -1.50 

 

Table 5.2 Relative fold changes of proteins decreased in abundance in G. mellonella 

larvae administered caffeine and the number of matched peptides, sequence 

coverage, PEP and overall intensity. Only proteins that had more than two matched 

peptides and were found to be differentially expressed at a level greater than ±1.5 

were considered to be in significantly variable abundances between control and 

treated larvae. 
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Protein 
Annotation 

LFQ 
Intensity 
Control  
1 

LFQ 
Intensity 
Control  
2 

LFQ 
Intensity 
Control  
3 

LFQ 
Intensity 
Caff  
1 

LFQ 
Intensity 
Caff  
2 

LFQ 
Intensity 
Caff  
3 

acyl-coenzyme A  
dehydrogenase  

27.2704 27.7843 27.4955 NaN NaN NaN 

chitin 
deacetylase,  
partial 

27.7001 28.1569 27.7596 NaN NaN NaN 

PREDICTED: 
prefoldin  
subunit 5 

26.7372 26.8253 26.5938 NaN NaN NaN 

PREDICTED: 
probable 
isocitrate  
dehydrogenase 
[NAD] subunit 
beta,  
mitochondrial 

28.0088 28.4985 28.0911 NaN NaN NaN 

PREDICTED: 
protein BCCIP  
homolog  

27.3057 27.5698 27.5029 NaN NaN NaN 

proteasome 
beta-subunit  

28.6598 28.7928 28.8288 NaN NaN NaN 

putative 
neuropeptide 
precursor  
protein 
precursor  

24.8122 25.8067 25.1918 NaN NaN NaN 

uncharacterized 
protein  
Dere_GG18643  

25.2109 25.5083 24.8352 NaN NaN NaN 

effete, isoform 
A  

28.2484 27.8466 28.2797 NaN NaN NaN 

 

Table 5.3 LFQ intensities of proteins exclusively expressed in the haemolymph of 

control larvae. A zero value indicates a protein that was absent or undected in the 

sample. Only proteins that were present or absent in all three samples of each group 

were considered exclusive protein hits. These proteins were termed as being 

“Exclusively expressed”.  
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Protein 

Annotation 

LFQ 

Intensity 

Control 

1 

LFQ 

Intensity 

Control 

2 

LFQ 

Intensity 

Control 

3 

LFQ 

Intensity 

Caff 1 

LFQ 

Intensity 

Caff  2 

LFQ 

Intensity 

Caff 3 

PREDICTED: 

adenylyl  

cyclase-

associated  

protein 1 

isoform X2 

NaN NaN NaN 29.2461 28.9088 29.0392 

AAEL003067-PA NaN NaN NaN 28.69 26.9949 27.1828 

PREDICTED: 

protein  

CREG1  

NaN NaN NaN 28.9519 28.812 27.7894 

 

Table 5.4 LFQ intensities of proteins exclusively expressed in the haemolymph of 

larvae administered caffeine. A zero value indicates a protein that was absent or 

undected in the sample. Only proteins that were present or absent in all three 

samples of each group were considered exclusive protein hits. These proteins were 

termed as being “Exclusively expressed”. (Caff, potassium nitrtrate) 
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5.15 Discussion. 

 Caffeine is the most widely consumed stimulant in the world and is ingested 

in a variety of beverages and food stuffs. It has a variety of physiological effects in 

humans including increasing alertness and performance, and reducing fatigue 

(Smith, 2002). Various histological, anatomical and physiological functions in insects 

share similarities with the mammalian gastrointestinal tract and microbes found in 

the midgut of G. mellonella larvae resemble those found in the intestinal microvilli 

of mammals (Fedhila et al., 2010). The fat body of insects functions in xenobiotic 

metabolism in a similar way to the liver of mammals and contains a number of 

cytochrome P450 and sulfo-, glutathione- or glucose- conjugation enzymes which 

are involved in drug metabolism (Büyükgüzel et al. 2013) . Drosophila treated with 

metyrapone, an inhibitor of cytochrome P450s enzyme, showed dramatically 

decreased caffeine metabolism suggesting the highly conserved enzymes 

cytochrome P450s are involved in the metabolism of caffeine in both mammals and 

insects (Coelho et al., 2015) . The results presented here indicate that caffeine is 

metabolised in G. mellonella larvae in a similar manner to that in mammals and that 

the caffeine metabolites theobromine and theophylline were detected four hours 

post administration of caffeine. 

 Larvae that were administered caffeine by intra-haemocoel injection 

showed significant increases in haemocyte densities after 4 (p < 0.05) and 24 (p < 

0.01) hour incubation when compared to their relevant controls. In addition, larvae 

that were administered caffeine by force feeding showed significant increases (p < 

0.05) in haemocyte densities after 24 hours incubation when compared to their 

relevant controls. The slight increase in haemocyte density at 4 hours and 

significant increase in haemocyte density at 24 hours in larvae force fed caffeine 

would suggest that caffeine is readily absorbed into circulation in insects. However 

despite the increase in haemocyte densities the administration of caffeine by force 

feeding or intra-haemocoel injection showed no significant changes between the 

fungicidal ability of haemocytes from control or treated larvae. Caffeine and its 

major metabolite paraxanthine suppress neutrophil and monocyte chemotaxis, and 

also suppress production of the pro-inflammatory cytokine tumour necrosis factor 



214 
 

(TNF)-α from human blood (Horrigan et al., 2006). In addition caffeine 

administration to Macrobrachium rosenbergii significantly reduced the respiratory 

burst in haemocytes (Sung et al., 2008). The findings presented here however do 

not suggest any inhibition of the cellular immune system when larvae are 

administered 20 µl of 0.1M caffeine. 

 The activity of two anti-oxidant enzymes, superoxide dismutase and catalase 

was measured in the haemolymph of larvae challenged with caffeine via force 

feeding or direct injection into the haemocoel. No significant changes were 

recorded in the activity of either anti-oxidant enzyme between test larvae 

administered caffeine and control larvae administered PBS. These findings are in 

disagreement with the antioxidant properties of caffeine displayed in mammals 

(Prasanthi et al., 2010). However further investigation is necessary to determine if 

caffeine reduces oxidative stress in larvae that are already pre-exposed to an agent 

that causes oxidative stress. 

  Larvae incubated for 4 hours following administration of caffeine showed a 

significant reduction in their ability to move and reposition correctly, FIMTrack 

software also revealed a significant decrease (p < 0.001) in distance travelled and 

velocity of larvae force fed caffeine following 4 hour incubation compared to 

control larvae. This inhibition of movement corresponded to a peak in theophylline 

concentration of 18.94 µg/ml. The ability to move and reposition correctly gradually 

recovered by 48 hours corresponding to a theophylline concentration of 0.87µg/ml. 

Theophylline is a muscle relaxant in mammals and human airways the EC50 for 

airway smooth muscle relaxation by theophylline is approximately 1.5 × 10-4 M 

(Barnes, 2010) . The presence of theophylline in the haemolymph of larvae force 

fed caffeine after 4 hours incubation might suggest that it is acting as a muscle 

relaxant in larvae. Previous work on Zebra fish embryos has demonstrated 

administration of caffeine also reduced mobility (Chen et al., 2008). 

 Both the rate of pupation and commencement of pupation were reduced in 

larvae force fed caffeine compared with control larvae. Zebra fish embryos 

administered caffeine displayed developmental alterations including reduced body 

length, reduced tactile responses and muscle fibre formation (Chen et al., 2008) . 
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Developmental changes are also seen in the human foetus where caffeine doses of 

≥ 300 mg per day during pregnancy were associated with reductions in infant birth 

weight that may be especially detrimental to premature or low-birth-weight infants 

(Hinds et al., 1996). 

 Proteomic analysis revealed the increased abundance of troponin T 

transcript variant B, partial (1.55 fold) (p<0.05) in larvae challenged with caffeine. 

Elevated serum troponin is frequently observed after traumatic brain injury in 

patients (Salim et al. 2008). The increase in abundance of troponin T transcript 

variant B, partial in G. mellonella larvae would suggest that caffeine is having an 

adverse effect on the brain. A number of immune related proteins were increased 

in abundance in larvae administered caffeine including immune-related Hdd1 (6.28 

fold) and hemolin (1.68 fold). The brain’s immune system, which consists mainly of 

astrocytes, microglia and infiltrating immune cells is activated in response to 

pathophysiological events such as ischemia, trauma, inflammation and infection 

(Haskó et al., 2005). Ischemia, head injury, seizure activity and inflammation induce 

rapid increases in extracellular adenosine concentrations to 30–100-times that of 

the resting concentration (Von Lubitz, 1999). Adenosine interacts with specific G-

protein-coupled receptors on astrocytes, microglia and infiltrating immune cells to 

regulate the function of the immune system in the brain (Haskó et al., 2005). This 

suggests that caffeine is inducing brain injury in the larvae and thereby leading to 

increased abundance of troponin and various immune related proteins.  

 H+ transporting ATP synthase O subunit isoform 1 (1.87 fold) and H+ 

transporting ATP synthase delta subunit (1.53 fold) were also increased in 

abundance in larvae that had received caffeine. Blayney et al. (1978) studied the 

effects of caffeine on calcium transport by subcellular organelles isolated from 

rabbit myocardium and reported that caffeine increased myofibrillar basic and 

calcium-activated ATPase activity.  

         In G. mellonella larvae treated with caffeine there was a decrease in the 

abundance of proteins associated with cellular protein degradation (e.g. 

proteasome beta-subunit (4.86 fold), effete, isoform A (3.21)).  The reduced 

formation of pupae in caffeine administered larvae may be explained by the 
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decrease of SUMO-activating enzyme subunit 1 (3.08 fold). Smt3 is the only 

homologue to SUMO in Drosophila melanogaster and plays a role in the regulation 

of ecdysteroid levels during post-embryonic development (Talamillo et al., 2008). 

The SUMO homologue causes an ecdysteroid peak in the prothoracic glands which 

is required for the larval to pupal transition (Talamillo et al., 2013). Proteomic 

analysis also revealed decreases in cuticle proteins such as chitin deacetylase, 

partial (3.67 fold decrease). Chitin deacetylases are mainly expressed in the 

integument and play critical roles in molting, cuticle degradation, and new cuticle 

formation .   

 The results presented here indicate that caffeine is metabolised in G. 

mellonella larvae producing theobromine and theophylline. Caffeine administration 

results in reduced larval movement possibly due to the presence of the muscle 

relaxant theophylline. Proteomic analysis revealed decreased abundance of a range 

of proteins associated with development including SUMO-activating enzyme 

subunit 1 and chitin deacetylase, partial which may play a role in reducing pupation. 

G. mellonella larvae are now widely used as an in vivo model for assessing the 

virulence of microbial pathogens and for determining the activity of antimicrobial 

drugs (Browne et al., 2014). The results presented here show a strong correlation 

with the effect of caffeine on Zebra fish embryos and offer the possibility of utilising 

Galleria larvae as a model to study the in vivo activity of caffeine and related 

neuroactive compounds. 
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6.1 Analysis of the acute response of Galleria mellonella larvae to Monosodium 

glutamate and Creatine monohydrate 

 The aim of the first part of this Chapter was to evaluate the relative toxicity 

of monosodium glutamate in Galleria mellonella larvae. The lethal doses 20/50/80 

were determined for monosodium glutamate in G. mellonella. In addition the first 

part of this chapter focused on a more in-depth study of the toxic effects of 

monosodium glutamate in G. mellonella larvae. This study focused on the effect of 

monosodium glutamate on the immune system and enzymatic system of G. 

mellonella. The second part of this chapter focused on the toxic effects of creatine 

monohydrate on the immune and enzymatic systems of G. mellonella larvae.  

 Monosodium glutamate is a sodium salt of glutamate and has been widely 

used as a flavour enhancer in several meat preparations and is responsible for the 

“umami” sensation. Monosodium glutamate is found naturally in tomatoes cheese 

and other foods. Monosodium glutamate causes glutamate hypersensitivity, more 

commonly known as Chinese restaurant syndrome, of which the symptoms include, 

headache, sweating, numbness, tickling or burning in the face, chest pain nausea and 

weakness (Dixit et al., 2014). The incidence of obesity was measured in mice and rats 

of different ages that were administered MSG by various methods (Bunyan et al., 

1976). Sixteen per cent of new-born mice injected subcutaneously with 3mg of 

monosodium glutamate per gram of body weight at 1, 2, 3, 6, 7 and 8  days of age 

died. Out of the remaining new-born mice 90% became markedly obese.  

 Creatine monohydrate is a widely used supplement in the sports industry. It 

has been shown to increase intramuscular phosphocreatine as well as increasing the 

high intensity of various high-powered work tasks (Earnest et al., 1995). A long 

standing concern is that creatine monohydrate supplementation could be associated 

with cancer. This has grown through the idea that creatine monohydrate can 

facilitate the formation of carcinogenic heterocyclic amines (HCA). However dos 

Santos Pereira et al. (2015) provided evidence that low and high doses of creatine 

supplementation given either acutely or chronically, does not cause a significant 

increase in HCA formation.  
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 This work aimed to characterise the similarities between the response of G. 

mellonella to monosodium glutamate and creatine monohydrate and therefore 

highlight the insect’s utility as a preliminary screening model for measuring the 

toxicity of these compounds. 
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6.2 Assessment of effect of monosodium glutamate on viability in G. mellonella. 

 G. mellonella larvae were administered 20µl of 0.12 M monosodium 

glutamate by intra-haemocoel injection (Fig 6.1). or by force feeding (Fig 6.1). as 

described, and the LD20, LD50 and LD80 values were determined. The LD20/LD50/LD80 

values for Intra-haemocoel injected monosodium glutamate in G. mellonella were 

0.5M, 0.66M and 0.82M respectively (Fig 6.1). The LD20/LD50/LD80 values for Intra-

haemocoel injected monosodium glutamate in G. mellonella were 0.7M, 0.92M and 

1.01M respectively (Fig. 6.1).  

 Section 3.2 established a strong correlation between the LD20, LD50 and 

LD80 values for eight commonly used food additives compound in larvae due to 

feeding or intra-haemocoel injection. The LD20, LD50 and LD80 values from section 3.1 

was combined with the LD20, LD50 and LD80 values of monosodium glutamate. This 

showed an R2 value of 0.79 (p = 0.0014) between the LD20 values, an R2 value of 0.87 

(p = 0.0002) between the LD50 values and an R2 value of 0.77 (p = 0.0018) between 

the LD80 values obtained due to feeding and intra-haemocoel administration. 

 LD50 values for monosodium glutamate in rats was obtained in the 

literature and previously recorded to be between 15,000/18,000mg/kg (Walker & 

Lupien, 2000). Section 3.4 obtained the LD50 values for eight commonly used food 

additives in rats from the literature. The LD50 values of the 8 commonly used food 

additives as determined in rats by feeding was plotted against the corresponding LD50 

values for the compounds obtained by feeding G. mellonella larvae (Section 3.4). The 

resulting graph showed a significant positive correlation between the LD50 values 

obtained in both systems (R2=0.6506, p=0.0156) (Fig. 3.6). However when the LD50 

value of monosodium glutamate in G. mellonella larvae and rats was combined with 

data from Section 3.4 no significant correlation is observed (R2=0.0032, p=0.8853). 
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Fig 6.1 Viability (%) of Galleria mellonella larvae following administration of 

monosodium glutamate by intra-haemocoel injection (closed circles) and force 

feeding (closed boxes). Larvae (n = 10) were administered compounds by intra-

haemocoel injection. All values are the mean ± SE of three independent 

determinations.   
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6.3 Effect of monosodium glutamate administration on haemocyte densities. 

 Larvae were administered by intra haemocoel injection or force feeding 20 

µl of 0.12M monosodium glutamate. This concentration of monosodium glutamate 

was the highest concentration that did not result in larval death. The effect on the 

density of circulating haemocytes in larval haemolymph was ascertained after 4 and 

24-hours incubation at 30OC. For experimental purposes control larvae were 

administered PBS by intra haemocoel injection or force feeding.  

 Larvae force fed PBS and incubated for 4/24 hours at 30OC showed 0.89 ± 

0.07 x107 and 0.66 ± 0.06 x107 haemocytes/ml respectively. Larvae force fed 

monosodium glutamate and incubated for 4 hours showed 0.99 ± 0.47 x107 

haemocytes/ml. Larvae force fed monosodium glutamate and incubated for 24 hours 

showed 0.94 ± 0.35 x107 haemocytes/ml. These findings showed no significant 

changes between control and treatment groups (Fig 6.2). 

 Larvae injected with PBS and incubated for 4/24 hours at 30OC showed 

1.25 ± 0.15 x107 and 0.93 ± 0.09 x107 haemocytes/ml respectively. Larvae injected 

with monosodium glutamate and incubated for 4 hours showed 1.41 ± 0.33 x107 

haemocytes/ml. Larvae injected with monosodium glutamate and incubated for 24 

hours showed 1.59 ± 0.27 x107 haemocytes/ml. This equated to a 0.70 fold increase 

(p < 0.05) in haemocyte densities between control larvae and monosodium 

glutamate injected larvae following 24 hour incubation (Fig 6.2). 
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Fig. 6.2 Effect of monosodium glutamate on haemocyte density in force fed and intra-

haemocoel injected G.mellonella larvae at 4 and 24 hours. (*: p < 0.05). All values are 

the mean ± SE of 3 independent determinations. 
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6.4 Analysis of the effect of monosodium glutamate administration on haemocyte 

mediated pathogen killing. 

 Larvae were administered 20 µl of 0.12 M monosodium glutamate by intra 

haemocoel injection or force feeding. Haemocytes were extracted from control and 

test larvae following 24-hour incubation at 30OC and mixed with opsonised C. 

albicans for 80-minutes (Fig. 6.2). By counting the percentage viability of C. albicans 

at 20 min intervals, the effect of monosodium glutamate on haemocyte mediated 

pathogen killing was ascertained.  

 Haemocytes from force fed control larvae killed 22.52. ± 18.5%, 43.76 ± 

21.81% , 43.01 ± 28.29%, 67.23 ± 17.96%  of C. albicans MEN cells after 20, 40, 60 

and 80 minutes respectively. Haemocytes from PBS injected control larvae killed 

34.33 ± 21.14%, 50 ± 17.79%, 67.93 ± 21.26%,  76.33 ± 18.29%  of C. albicans MEN 

cells after 20, 40, 60 and 80 minutes respectively (Fig. 6.3).  

 Haemocytes from monosodium glutamate force fed larvae killed 39.97 ± 

16.48%, 54.48 ± 27.10%, 61.75 ± 29.36%, 75.69 ± 23.12%  of C. albicans MEN cells 

after 20, 40, 60 and 80 minutes respectively. In addition haemocytes from 

monosodium glutamate injected larvae killed 34.09 ± 20.84%, 36.57 ± 14.68%, 58.17 

± 6.26%,  62.59 ± 4.37%  of C. albicans MEN cells after 20, 40, 60 and 80 minutes 

respectively (Fig. 6.3).  

 The results indicated no significant changes in haemocyte mediated killing 

between control larvae and larvae administered monosodium glutamate by intra-

haemocoel injection or force feeding.  

6.5 Summary 

 The LD20/LD50/LD80 values for monosodium glutamate in injected and force 

feed G. mellonella larvae were ascertained. A significant correlation between the 

LD20 (R2 = 0.7896, p = 0.0014), LD50 (R2 = 0.8727, p = 0.0002) and LD80 (R2 = 0.7743, p 

= 0.0018) values obtained due to oral or intra- haemocoel administration of 

compounds was established. No correlation between the LD50 values of the 9 food 

preservatives in G. mellonella larvae and rats (R2=0.0032, p=0.8853) was 

demonstrated. 
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Larvae were administered monosodium glutamate by force feeding and intra-

haemocoel injection. Haemocyte densities were measured in larvae administered 

monosodium glutamate via one of the two routes of administration following 4 and 

24 hours incubation. Larvae that were administered caffeine by intra-haemocoel 

injection showed significant increases in haemocyte densities after 24 (p < 0.05) 

hours incubation when compared to their relevant controls. When compared with 

relevant controls there were no significant changes in the fungicidal ability of 

haemocytes extracted from monosodium glutamate challenged larvae.  
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6.6 Effects of monosodium glutamate on alkaline phosphatase activity in G. 

mellonella haemolymph 

 Larvae were administered by intra haemocoel injection or force feeding 20 

µl of 0.12M monosodium glutamate. Following 4 and 24 hours incubation 

haemolymph was extracted from larvae and incubated with p-nitrophenyl phosphate 

for 2 hours at 30oC. The hydrolysis of p-nitrophenyl phosphate by alkaline 

phosphatases was measured spectrometrically at 406 nm (Section 2.9.3).  

 As a positive control, larvae where physically shaken for 1 minute. 

Following this the alkaline phosphatase activity was measured at 4 and 24 hours at 

30oC. The alkaline phosphatase activity in naive unshaken larvae was measured as 

1.06 ± 0.01 Abs and 0.99 ± 0.06 Abs at 1 and 4 hours incubation respectively. The 

alkaline phosphatase activity in larvae shaken for 1 min was measured as 1.70 ± 0.03 

Abs and 1.46 ± 0.10 Abs at 1 and 4 hours incubation respectively.  When compared 

to their relevant controls this indicated a 0.59 fold increase (p < 0.001) after 1 hour 

and a 0.48 fold increase (p>0.01) after 4 hours in the alkaline phosphate activity of 

larvae shaken for 1 min (Fig 6.4).  

 The alkaline phosphatase activity in injected control larvae was measured 

as 1.02 ± 0.11 Abs and 0.87 ± 0.08 Abs at 1 and 4 hours incubation respectively. The 

alkaline phosphatase activity in larvae force fed monosodium glutamate was 

measured as 1.55 ± 0.07 Abs and 0.9 ± 0.05 Abs at 1 and 4 hours incubation 

respectively. When compared to their relevant controls this indicated a 0.53 fold 

increase (p > 0.01) after 4 hours and a 0.03 fold increase after 24 hours in the alkaline 

phosphate activity of larvae force fed monosodium glutamate (Fig 6.5). 

 The alkaline phosphatase activity in force fed control larvae was measured 

as 1.05 ± 0.11 Abs and 1.32 ± 0.04 Abs at 1 and 4 hours incubation respectively. The 

alkaline phosphatase activity in larvae force fed monosodium glutamate was 

measured as 1.16 ± 0.02 Abs and 1.50 ± 0.06 Abs at 1 and 4 hours incubation 

respectively. When compared to their relevant controls this indicated a 0.11 fold 

increase after 4 hours and a 0.14 fold increase (p > 0.05) after 24 hours in the alkaline 

phosphate activity of larvae force fed monosodium glutamate (Fig 6.6).  
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Fig. 6.4 Alkaline phosphatse activity of haemolymph from physically shaken larvae. 

After 4 and 24 hours haemolymph was extracted from larvae that were physically 

shaken. Alkaline phosphatase activity was determined as described. All values are the 

mean ± SE of 3 independent determinations (**: p < 0.01) (***: p < 0.001). 

 

 

 

 

 

 

 

 

 

 

 

 

 



229 
 

4 24
0.0

0.5

1.0

1.5

2.0

Intra-haemoceol injeted PBS

Intra-haemoceol injected MSG

**

Incubation times (Hours)

A
b

s
o

rb
a
n

c
e
 (

A
b

s
)

 

 

 

 

 

 

 

 

Fig. 6.5 Alkaline phosphatase activity of haemolymph from larvae administered 

monosodium glutamate via intra-haemocoel injection. After 4 and 24 hours 

haemolymph was extracted from larvae that were administered monosodium 

glutamate. Alkaline phosphatase activity was determined as described. All values are 

the mean ± SE of 3 independent determinations (**: p < 0.01). 
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Fig. 6.6 Alkaline phosphatase activity of haemolymph from larvae administered 

monosodium glutamate via force feeding. After 4 and 24 hours haemolymph was 

extracted from larvae that were administered monosodium glutamate. Alkaline 

phosphatase activity was determined as described. All values are the mean ± SE of 3 

independent determinations (*: p < 0.05). 
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6.7 Effects of monosodium glutamate on superoxide dismutase activity in G. 

mellonella haemolymph. 

 Superoxide dismutase activity in the haemolymph of larvae administered 

monosodium glutamate was measured. Larvae were administered 20 µl of 0.12 M 

monosodium glutamate by intra-haemocoel injection (Fig 6.6) or force feeding (Fig 

6.7). Larvae were incubated at 30OC for 1, 4 and 24 hours and the total superoxide 

dismutase activity was measured in larval haemolymph. Superoxide dismutase 

activity was quantified as units of activity, 1 unit of superoxide dismutase activity 

equated to the 50% inhibition of the oxiditation of quercetin (Section 2.9.2) 

 One unit of superoxide dismutase activity in PBS injected control larvae 

equated to 124.59 ± 14.72 µg/µl, 91.36 ± 4.72 µg/µl and 106.04 ± 18.54 µg/µl of 

haemolymph protein following 1, 4 and 24 hours incubation respectively. One unit 

of superoxide dismutase activity in PBS force fed control larvae equated to 87.87 ± 

4.43 µg/µl, 255.05 ± 7.71 µg/µl and 283.93 ± 33 µg/µl of haemolymph protein 

following 1, 4 and 24-hours accordingly. 

 One unit of superoxide dismutase activity in larvae injected with monosodium 

glutamate equated to 73.46 ± 12.91 µg/µl, 88.29 ± 26.32 µg/µl and 146.41 ± 6.29 

µg/µl of protein following 1, 4 and 24 hours incubation respectively. When comparing 

1 hour superoxide dismutase activity a 0.41 fold increase (p < 0.05) was seen in 

monosodium glutamate injected larvae compared to PBS injected control larvae (Fig. 

6.7). 

 Superoxide dismutase activity was also measured in haemolymph from larvae 

administered monosodium glutamate via force feeding prior to incubation. At 1, 4 

and 24 hours one unit of superoxide dismutase activity was 73.82 ± 3.63 µg/µl, 

266.33 ± 62.41 µg/µl and 147.39 ± 62 µg/µl of protein respectively. When comparing 

24 hours superoxide dismutase activity a 0.48 fold increase (p < 0.05) was seen in 

monosodium glutamate injected larvae compared to PBS injected control larvae (Fig 

6.8). 
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Fig. 6.7 Superoxide dismutase activity of haemolymph from larvae administered 

monosodium glutamate via intra-haemocoel injection. After 1, 4 and 24 hours 

haemolymph was extracted from larvae that were administered monosodium 

glutamate. Superoxide dismutase activity was determined as described. All values 

are the mean ± SE of 3 independent determinations (*: p < 0.05). 
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Fig. 6.8 Superoxide dismutase activity of haemolymph from larvae administered 

monosodium glutamate via force feeding. After 1,  4 and 24 hours haemolymph was 

extracted from larvae that were administered 0.12M of monosodium glutamate. 

Superoxide dismutase activity was determined as described. All values are the mean 

± SE of 3 independent determinations (*: p < 0.05). 
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6.8 Effects of monosodium glutamate on catalase activity in G. mellonella 

haemolymph. 

 Larvae were administered by intra haemocoel injection or force feeding 20µl 

of 0.12M of monosodium glutamate. Following 4 and 24 hours incubation 

haemolymph was extracted from larvae and incubated with hydrogen peroxide. The 

decomposition of hydrogen peroxide and thus rate of catalase activity was measured 

spectrometrically at 240nm (Section 2.9.1).  

 The catalase activity in larvae force fed PBS was measured as 0.16 ± 0.04 Abs 

and 0.10 ± 0.03 Abs following 4 and 24 hours incubation respectively. In addition the 

catalase activity in larvae administered PBS by intra-haemocoel injection was 

measured as 0.20 ± 0.06 Abs and 0.15 ± 0.05 Abs following 4 and 24 hour incubation 

respectively.  

 Larvae were administered monosodium glutamate by force feeding. The 

catalase activity in these larvae was measured as 0.13 ± 0.03 Abs and 0.11 ± 0.02 Abs 

after 4 and 24 hours incubation respectively. These results showed no significant 

changes between control and treated groups (Fig 6.9). 

 Larvae were administered monosodium glutamate via intra-haemocoel 

injection. The catalase activity in these larvae was measured as 0.17 ± 0.06 Abs and 

0.10 ± 0.06 Abs after 4 and 24 hours incubation respectively. Similar to the previous 

route of administration these results showed no significant differences between 

control and treated groups (Fig 6.10). 

6.9 Summary. 

 The activity of alkaline phosphatase, superoxide dismutase and catalase 

were measured in the haemolymph of larvae challenged with monosodium 

glutamate via force feeding or direct injection into the haemocoel. When comparing 

1hour superoxide dismutase activity a 0.41 fold increase (p < 0.05) was seen in 

monosodium glutamate injected larvae compared to PBS injected control larvae. In 

addition when comparing 24 hour superoxide dismutase activity a 0.48 fold increase 

(p < 0.05) was seen in monosodium glutamate fed larvae compared to force fed 
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control larvae. When compared to relevant controls no significant changes were seen 

in the catalase activity of larvae administered monosodium glutamate. When 

compared to relevant controls a 0.14 fold increase (p > 0.05) in the alkaline 

phosphate activity of larvae force fed monosodium glutamate was observed at 24 

hours and a 0.53 fold increase (p > 0.01) in the alkaline phosphate activity of larvae 

injected with monosodium glutamate was observed at 4 hours. 
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Fig. 6.9 Catalase activity of haemolymph from larvae administered monosodium 

glutamate via force feeding. After 4 and 24 hours haemolymph was extracted from 

larvae that were administered monosodium glutamate. Catalase activity was 

determined as described. All values are the mean ± SE of 3 independent 

determinations. 
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Fig. 6.10 Catalase activity of haemolymph from larvae administered monosodium 

glutamate intra-haemocoel injection. After 4 and 24 hours haemolymph was 

extracted from larvae that were administered monosodium glutamate. Catalase 

activity was determined as described. All values are the mean ± SE of 3 independent 

determinations. 
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6.10 Effects of monosodium glutamate on the proteome in G. mellonella 

haemolymph 

 Label free quantitative proteomics was conducted on haemolymph from 

larvae injected with 20µl of 0.12M monosodium glutamate and incubated for 24 

hours. Principal component analyses was employed showing clustering of control 

and treatment replicates (Fig. 6.11). In total 368 peptides were identified 

representing 292 proteins with two or more peptides and 24 proteins differentially 

expressed (Fig. 6.12). Seventeen proteins (9 proteins imputated and 8 proteins non-

imputated) were significantly increased in abundance in larvae injected with 

monosodium glutamate compared to control larvae (Table 6.1). Seven proteins (2 

proteins imputated and 5 proteins non-imputated) were significantly decreased in 

abundance in larvae injected with monosodium glutamate compared to control 

larvae (Table 6.2). The exclusively expressed hits showed 7 proteins only expressed 

in monosodium glutamate injected larvae (Table 6.3) and 2 proteins only expressed 

in control larvae (Table 6.4).  

 The protein showing the highest increase in abundance in larvae exposed 

to monosodium glutamate was peptidoglycan recognition-like protein B, partial with 

a fold increase of 33.16 (p<0.05), while the proteins highest in abundance with an 

imputated value were gloverin (129.60), RecName: Full=Cecropin-D-like peptide 

(68.78), gloverin-like protein,partial (58.49) and peptidoglycan-recognition proteins-

LB, partial (42.43). Numerous proteins involved in the immune response were 

significantly increased in abundance in larvae administer monosodium glutamate by 

intra-haemocoel injection (e.g. gloverin (129.60), gloverin-like protein,partial (58.49), 

peptidoglycan-recognition proteins-LB, partial (42.43), peptidoglycan recognition-

like protein B, partial (33.12), RecName: Full+Lysozyme; AltName: Full=1,4-beta-N-

acetylmuramidase (7.46), prophenol oxidase activating enzyme 3 (2.37) and 

peptidoglycan recognition protein precursor (2.29) (Table 6.1) 

 Proteins decreased in abundance in larvae that received monosodium 

glutamate included cathepsin B-like cysteine proteinase (3.68 fold decrease), 

promoting protein precursor (3.65 fold decrease), 3-dehydroecdysone 3beta-



239 
 

reductase (1.93 fold decrease) and hexamerin storage protein PinSP2 (1.65 fold 

decrease) (Table 6.2).  

              Blast2GO annotation software was used to group proteins based on 

conserved GO terms in order to identify processes and pathways potentially 

associated with monosodium glutamate metabolism.  GO terms were categorized by 

biological processes (BP) and molecular function (MF), cellular components (CC) and 

enzyme function (EF).  

 The increases in BP included proteins labelled as catabolic process (7 proteins 

in control – 8 proteins in treated larvae), cellular component organization (4-4), 

cellular metabolic process (11-11), establishment of localisation (5-5), negative 

regulation of cellular process (4-4), nitrogen compound metabolic process (11-12), 

organic substance metabolic process (23-23), primary metabolic process (18-17), 

regulation of biological quality (8-9), regulation of cellular process (7-7), response to 

stress (4-7), single organism cellular process (12-12), single organism metabolic 

process (13-13), response to external stimulus (0-5), response to biotic stimulus (0-

5), immune response (0-5) (Fig 6.13). No significant changes were observed. 

 The increases in MF included proteins labelled as oxidoreductase activity (9 

proteins in control – 9 proteins in treated larvae), small molecule binding (7-7), 

organic cyclic compound binding (8-8), ion binding (15-16), hydrolase activity (29-30) 

and heterocyclic compound binding (8-8) (Fig. 6.14). No significant changes were 

observed. 

 The increases in CC included proteins labelled as intracellular organelle (1 

proteins in control – 1 proteins in treated larvae), cell projection (1-1), anchoring 

junction (1-1), cell-substrate junction (1-1), extracellular space (4-5), catalytic 

complex (1-1), non-membrane-bounded organelle (1-1), intracellular (2-2), cell 

leading edge (1-1), intrinsic component of membrane (1-1), intracellular part (2-2). 

(Fig. 6.15). No significant changes were observed. 

 The increases in EF included proteins labelled as oxidoreductases (5 proteins 

in control – 5 proteins in treated larvae), transferases (2-2), hydrolases (10-11), lyases 
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(1-1), isomerases (1-1) and ligases (1-1) (Fig. 6.16). No significant changes were 

observed. 

6.11 Summary 

 Label free quantitative proteomics was conducted on haemolymph from 

larvae injected with 20µl of 0.12M monosodium glutamate and incubated for 24 

hours. In total 368 peptides were identified. Sixteen proteins were significantly 

increased in abundance in larvae injected with monosodium glutamate compared to 

control larvae. Seven proteins (2 proteins imputated and 5 proteins non-imputated) 

were significantly decreased in abundance in larvae injected with monosodium 

glutamate compared to control larvae. Numerous proteins involved in the immune 

response were significantly increased in abundance in larvae administer 

monosodium glutamate by intra-haemocoel injection. 

  



241 
 

 

 

 

Fig. 6.11 Principal component analyses of the proteome of control larvae (black 

circle) and larvae injected with monosodium glutamate (red circle).    
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protein name (*=imputated vale) Peptides Sequence 

coverage % 

Mean LFQ 

Intensity 

Fold 

Difference 

*gloverin 5 59.6 4.63E+09 129.60 

*RecName: Full=Cecropin-D-like 

peptide 

2 14.5 2.87E+09 68.78 

*gloverin-like protein,partial 4 18.5 1.28E+09 58.47 

*peptidoglycan-recognition 

proteins-LB, partial 

7 89.5 1.04E+09 42.43 

peptidoglycan recognition-like 

protein B, partial 

13 32.6 2.35E+09 33.12 

*RecName: Full=Cecropin-A 2 12.7 1.35E+09 28.00 

*RecName: Full+Lysozyme 6 16.7 2.74E+08 7.46 

AGAP011516-PA, partial 5 44.4 3.48E+08 5.66 

*RecName: Full=Putative defense 

protein Hdd11 

4 42.9 98276000 4.06 

*serine protease inhibitor 6 18 1.54E+08 3.02 

*cobatoxin-like protein 2 15.8 1.71E+08 2.96 

prophenol oxidase activating 

enzyme 3 

15 30.7 6.36E+08 2.37 

peptidoglycan recognition protein 

precursor 

11 52.6 4.14E+09 2.29 

hemolin, partial 22 60.7 9.15E+09 2.20 

heat shock protein hsp21.4 10 19.2 5.48E+08 1.57 

RecName: Full=Beta-1,3-glucan-

binding protein 

2 14.5 6.06E+08 1.55 

alpha esterase 45 13 15.7 1.42E+09 1.46 

 

Table 6.1 Relative fold changes of proteins increased in abundance in G. mellonella 

larvae administered monosodium glutamate and the number of matched peptides, 

sequence coverage and overall intensity. Only proteins that had more than two 

matched peptides and were found to be differentially expressed at a level greater 

than±1.5were considered to be in significantly variable abundances between control 

and treated larvae. 
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protein name (*=imputated 

vale) 

Peptides Sequence 

coverage 

% 

Mean LFQ 

Intensity 

Fold 

Difference 

*cathepsin B-like cysteine 

proteinase 

7 18 2.17E+08 -3.68 

*promoting protein precursor 6 18.1 96762000 -3.65 

3-dehydroecdysone 3beta-

reductase 

11 31.5 8.29E+08 -1.93 

Unknown  16 37.4 1.63E+10 -1.70 

hexamerin storage protein 

PinSP2 

14 63.2 1.2E+11 -1.65 

hydroxypyruvate isomerase 20 38.4 2.31E+09 -1.58 

RecName: Full=Anionic 

antimicobial peptide 2 

11 32.9 7.48E+10 -1.47 

 

Table 6.2 Relative fold changes of proteins decreased in abundance in G. mellonella 

larvae administered monosodium glutamate and the number of matched peptides, 

sequence coverage and overall intensity. Only proteins that had more than two 

matched peptides and were found to be differentially expressed at a level greater 

than±1.5were considered to be in significantly variable abundances between control 

and treated larvae. 

 

 

 

 

 

 



245 
 

Protein 

Annotation 

LFQ 

Intensity 

Control 

1 

LFQ 

Intensity 

Control 

2 

LFQ 

Intensity 

Control 

3 

LFQ 

Intensity 

MSG inj 

1 

LFQ 

Intensity 

MSG inj 

2 

LFQ 

Intensity 

MSG inj  

3 

serine protease 

inhibitor 

NaN NaN NaN 26.11 25.59 25.15 

RecName: 

Full=Cecropin-D-

like 

 peptide 

NaN NaN NaN 29.85 29.35 29.22 

RecName: 

Full+Lysozyme 

NaN NaN NaN 26.28 26.54 26.45 

RecName: 

Full=Putative 

defense  

protein Hdd11 

NaN NaN NaN 25.00 25.08 24.96 

peptidoglycan-

recognition 

proteins-LB,  

partial 

NaN NaN NaN 28.67 28.73 28.13 

gloverin-like 

protein,partial 

NaN NaN NaN 28.99 29.16 27.95 

gloverin NaN NaN NaN 30.53 30.71 30.34 

 

Table 6.3 LFQ intensities of proteins exclusively expressed in the haemolymph of 

larvae injected with monosodium glutamate. A zero value indicates a protein that 

was absent or undetected in the sample. Only proteins that were present or absent 

in all three samples of each group were considered exclusive protein hits. These 

proteins were termed as being “Exclusively expressed” 
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Protein Annotation LFQ  

Intrnsity 

Control 

1 

LFQ 

Intensity 

Control 

2 

LFQ 

Intensity 

control 

3 

LFQ 

Intensity 

MSG inj 

1 

LFQ 

Intensity 

MSG inj 

2 

LFQ 

Intensity 

MSG inj 

3 

promoting protein 

precursor 

24.91 24.93 24.71 NaN NaN NaN 

cathepsin B-like 

cysteine proteinase 

25.24 25.50 25.88 NaN NaN NaN 

 

Table 6.4 LFQ intensities of proteins exclusively expressed in the haemolymph of 

control larvae injected with PBS. A zero value indicates a protein that was absent or 

undetected in the sample. Only proteins that were present or absent in all three 

samples of each group were considered exclusive protein hits. These proteins were 

termed as being “Exclusively expressed” 
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6.12 Effect of creatine monohydrate administration on haemocyte densities. 

 Larvae were administered by force feeding or intra-haemocoel injection 20 

µl of 0.15 M creatine monohydrate, as this was the highest concentration that could 

be achieved in solution without resulting in larval death. The effect of creatine 

monohydrate administration on the density of circulating haemocytes in larval 

haemolymph was ascertained after 4 and 24-hour incubation at 30OC. For 

experimental purposes control larvae were administered PBS by intra haemocoel 

injection or force feeding.  

 Larvae force fed PBS and incubated for 4 or 24 hours at 30OC showed 0.89 

± 0.07 x107 and 0.66 ± 0.06 x107 haemocytes/ml respectively. Larvae force fed 

creatine monohydrate and incubated for 4 hours showed 0.64 ± 0.15 x107 

haemocytes/ml. Larvae force fed creatine monohydrate and incubated for 24 hours 

showed 0.93 ± 0.12 x107 haemocytes/ml. These findings showed no significant 

differences between control and treatment groups (Fig 6.17). 

 Larvae injected with PBS and incubated for 4/24 hours at 30OC showed 

1.25 ± 0.15 x107 and 0.93 ± 0.09 x107 haemocytes/ml respectively. Larvae injected 

with creatine monohydrate and incubated for 4 hours showed 1.45 ± 0.23 x107 

haemocytes/ml. Larvae injected with creatine monohydrate and incubated for 24 

hours showed 1.53 ± 0.35 x107 haemocytes/ml. This equated to a 0.63 fold increase 

(p < 0.05) in haemocyte densities between control larvae and creatine monohydrate 

injected larvae following 24 hour incubation (Fig 6.17). 

 

 

 

 

 

 

 



252 
 

Forc
e 

fe
d la

rv
ae

 (4
 h

ours
)

Forc
e 

fe
d la

rv
ae

 (2
4 

hours
)

In
je

ce
d la

rv
ae

 (4
 h

ours
)

In
je

ct
ed

 la
rv

ae
 (2

4 
hours

)

0.0

0.5

1.0

1.5

2.0

PBS

Creatine monohydrate

*

Treatments

H
a

e
m

o
c

y
te

 c
o

u
n

t 
(1

0
7
)

 

 

 

 

 

 

 

 

 

Fig. 6.17 Effect of creatine monohydrate on haemocyte density in force fed and intra-

haemocoel injected G. mellonella larvae at 4 and 24 hours. (*: p < 0.05). All values are 

the mean ± SE of 3 independent determinations. 
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6.13 Analysis of the effect of creatine monohydrate administration on haemocyte 

mediated pathogen killing. 

 Larvae were administered by intra haemocoel injection or force feeding 20 

µl of 0.15 M creatine monohydrate. Haemocytes were extracted from control and 

test larvae following 24-hour incubation at 30OC and mixed with opsonised C. 

albicans for 80-minutes time (Fig. 6.18). By counting the percentage viability of C. 

albicans at 20 min intervals, the effect of creatine monohydrate on haemocyte 

mediated pathogen killing was ascertained.  

 Haemocytes from PBS force fed control larvae killed 45.12. ± 4.84%, 76.22 

± 10.18%, 86.59 ± 4.22%, 93.29 ± 3.80% of C. albicans MEN cells after 20, 40, 60 and 

80 minutes respectively. Haemocytes from injected control larvae killed 50 ± 10.71%, 

57.14 ± 12.37%, 65.48 ± 5.46%, 77.38 ± 7.43% of C. albicans MEN cells after 20, 40, 

60 and 80 minutes respectively (Fig. 6.18).  

 Haemocytes from creatine monohydrate force fed larvae killed 38.81 ± 

4.63%, 60.74 ± 3.39%, 80.74 ± 3.39%, 85.92 ± 10.96% of C. albicans MEN cells after 

20, 40, 60 and 80 minutes respectively. In addition haemocytes from creatine 

monohydrate injected larvae killed 41.67 ± 10.05%, 62.5 ± 10.25%, 86.46 ± 2.39%, 

94.79 ± 2.38%  of C. albicans MEN cells after 20, 40, 60 and 80 minutes respectively 

(Fig. 7.18).  

 The results indicated no significant changes in haemocyte mediated killing 

between control larvae and larvae administered caffeine by intra-haemocoel 

injection or force feeding.  

6.14 Summary 

 Larvae were administered creatine monohydrate by force feeding and intra-

haemocoel injection. Larvae that were administered creatine monohydrate by intra-

haemocoel injection showed significant increases in haemocyte densities after 24 (p 

< 0.05) hours incubation when compared to their relevant controls. In addition when 

compared with relevant controls there was no significant changes in the fungicidal 

ability of haemocytes extracted from monosodium glutamate challenged larvae. 
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6.15 Effects of creatine monohydrate on alkaline phosphatase activity in G. 

mellonella haemolymph. 

 Larvae were administered 20 µl of 0.15M creatine monohydrate by intra 

haemocoel injection or force feeding. Following 4 and 24 hours incubation 

haemolymph was extracted from larvae and incubated with p-nitrophenyl phosphate 

for 2 hours at 30oC. The hydrolysis of p-nitrophenyl phosphate by alkaline 

phosphatases is measured at 406nm (Section 2.9.3). 

 As a positive control, larvae where physically shaken for 1 minute. 

Following this alkaline phosphatase activity was measured at 1 and 4 hours at 30oC. 

Alkaline phosphatase activity in unshaken larvae was measured as 1.06 ± 0.01 Abs 

and 0.99 ± 0.06 Abs after 1 and 4 hours incubation respectively. Alkaline phosphatase 

activity in larvae shaken for 1 min was measured as 1.70 ± 0.03 Abs and 1.46 ± 0.10 

Abs at 1 and 4 hours incubation respectively.  When compared to their relevant 

controls this indicated a 0.59 fold increase (p < 0.001) after 1 hour and a 0.48 fold 

increase (p < 0.01) after 4 hours in the alkaline phosphate activity.  

 Alkaline phosphatase activity in injected control larvae was measured as 

1.47 ± 0.30 Abs, 1.36 ± 0.36 Abs and 1.25 ± 0.24 Abs after 1, 4 and 24 hours incubation 

respectively. The alkaline phosphatase activity in larvae force fed creatine 

monohydrate was measured as 1.89 ± 0.44 Abs, 0.62 ± 0.50 Abs and 1.54 ± 0.35 Abs 

after 1, 4 and 24 hours incubation respectively. There were no significant changes 

seen between controls and creatine monohydrate force fed larvae (Fig 6.19). 

 The alkaline phosphatase activity in force fed control larvae was measured 

as 1.26 ± 0.30 Abs, 1.04 ± 0.57 Abs and 1.25 ± 0.54 Abs after 1, 4 and 24 hours 

incubation respectively. The alkaline phosphatase activity in larvae force fed creatine 

monohydrate was measured as 1.54 ± 0.44 Abs, 1.21 ± 0.47 Abs and 1.28 ± 0.33 Abs 

after 1, 4 and 24 hours incubation respectively. There were no significant changes 

seen between controls and creatine monohydrate force fed larvae (Fig 6.20).  
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Fig. 6.19 Alkaline phosphatase activity of haemolymph from larvae administered 

creatine monohydrate via intra-haemocoel injection. After 1, 4 and 24 hours 

haemolymph was extracted from larvae that were administered creatine 

monohydrate. Alkaline phosphatase activity was determined as described. All values 

are the mean ± SE of 3 independent determinations. 
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Fig. 6.20 Alkaline phosphatase activity of haemolymph from larvae administered 

creatine monohydrate via force feeding. After 1, 4 and 24 hours haemolymph was 

extracted from larvae that were administered creatine monohydrate. Alkaline 

phosphatase activity was determined as described. All values are the mean ± SE of 3 

independent determinations. 
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6.16 Effects of creatine monohydrate on catalase activity in G. mellonella 

haemolymph. 

 Larvae were administered by intra haemocoel injection or force feeding 20 

µl of 0.15 M creatine monohydrate. Following 4 and 24 hours incubation 

haemolymph was extracted from larvae and incubated with hydrogen peroxide. The 

decomposition of hydrogen peroxide and thus rate of catalase activity was measured 

spectrometrically at 240nm (Section 2.9.1). 

 The catalase activity in larvae force fed PBS was measured as 0.24 ± 0.10 

Abs, 0.34 ± 0.09 Abs and 0.49 ± 0.09 Abs following 1, 4 and 24 hours incubation 

respectively. In addition the catalase activity in larvae administered PBS by intra-

haemocoel injection was measured as 0.28 ± 0.11 Abs, 0.24 ± 0.12 Abs and 0.33 ± 

0.13 Abs following 1, 4 and 24 hour incubation respectively.  

 Larvae were administered creatine monohydrate by force feeding. The 

catalase activity in these larvae was measured as 0.28 ± 0.05 Abs, 0.30 ± 0.08 Abs and 

0.41 ± 0.07 Abs after 1, 4 and 24 hours incubation respectively. These results showed 

no significant changes between control and treated groups (Fig 6.21). 

 Larvae were administered creatine monohydrate via intra-haemocoel 

injection. The catalase activity in these larvae was measured as 0.22 ± 0.07 Abs, 0.29 

± 0.08 Abs and 0.32± 0.19 Abs after 1, 4 and 24 hours incubation respectively. Similar 

to the previous route of administration these results showed no significant changes 

between control and treated groups (Fig 6.21). 
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Fig. 6.21 Catalase activity of haemolymph from larvae administered creatine 

monohydrate via force feeding and intra-haemocoel injection. After 1, 4 and 24 hours 

haemolymph was extracted from larvae that were administered monosodium 

glutamate. Catalase activity was determined as described. All values are the mean ± 

SE of 3 independent determinations. 
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6.17 Effects of creatine monohydrate on superoxide dismutase activity in G. 

mellonella haemolymph. 

 Superoxide dismutase activity in the haemolymph of larvae administered 

creatine monohydrate was measured. Larvae were administered 20 µl 0.15M 

creatine monohydrate by intra-haemocoel injection or force feeding. Larvae were 

incubated at 30OC for 1, 4 and 24 hours post administration of creatine monohydrate 

and the total superoxide dismutase activity was measured in larval haemolymph. 

Superoxide dismutase activity was quantified as units of activity, 1 unit of SOD 

activity equated to the 50% inhibition of the oxiditation of quercetin (Section 2.9.2) 

 One unit of superoxide dismutase activity in PBS injected control larvae 

equated to 130.96 ± 36.92 µg/µl, 164.84 ± 25.56 µg/µl and 136.22 ± 46.53 µg/µl of 

haemolymph protein following 1, 4 and 24 hours incubation respectively. One unit 

of superoxide dismutase activity in PBS force fed control larvae equated to 170.47 ± 

48.15 µg/µl, 145.46 ± 34.56 µg/µl and 165.71 ± 67.52 µg/µl of haemolymph protein 

following 1, 4 and 24-hours accordingly. 

 One unit of superoxide dismutase activity in larvae injected with creatine 

monohydrate equated to 110.86 ± 31.55 µg/µl, 138.04 ± 6.47 µg/µl and 131.89 ± 

31.95 µg/µl of protein following 1, 4 and 24 hour incubation respectively (Fig 6.22). 

Superoxide dismutase activity was also measured in haemolymph from larvae 

administered creatine monohydrate via force feeding (Fig 6.23). At 1, 4 and 24 hours 

one unit of superoxide dismutase activity was 114.83 ± 29.77 µg/µl, 132.88 ± 32.98 

µg/µl and 172.22 ± 39.02 µg/µl of protein respectively. No significant changes were 

observed between control larvae and larvae administered creatine monohydrate. 

6.18 Summary 

 The activity of alkaline phosphatase, superoxide dismutase and catalase was 

measured in the haemolymph of larvae challenged with creatine monohydrate via 

force feeding or direct injection into the haemocoel. When compared to their 

relevant controls  no significant changes were seen in the activity of the three 

enzymes in larvae challenged with creatine monohydrate. 
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Fig. 6.22 Superoxide dismutase activity of haemolymph from larvae administered 

creatine monohydrate via intra-haemocoel injection. After 1, 4 and 24 hours 

haemolymph was extracted from larvae that were administered of creatine 

monohydrate. Superoxide dismutase activity was determined as described. All values 

are the mean ± SE of 3 independent determinations. 
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Fig. 6.23 Superoxide dismutase activity of haemolymph from larvae administered 

creatine monohydrate via force feeding. After 1, 4 and 24 hours haemolymph was 

extracted from larvae that were administration of creatine monohydrate. Superoxide 

dismutase activity was determined as described. All values are the mean ± SE of 3 

independent determinations. 
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6.19 Discussion  

 G. mellonella larvae were administered 20µl of 0.12 M monosodium 

glutamate by intra-haemocoel injection or by force feeding as described, and the 

LD20, LD50 and LD80 values were determined. Section 3.2 established a strong 

correlation between the LD20, LD50 and LD80 values for eight commonly used food 

additives in larvae due to feeding or intra-haemocoel injection. The LD20, LD50 and 

LD80 values from section 3.2 were combined with the LD20, LD50 and LD80 values of 

monosodium glutamate. This showed an R2 value of 0.79 (p=0.0014) between the 

LD20 values an R2 value of 0.87 (p=0.0002) between the LD50 values and an R2 value 

of 0.77 (p=0.0018) between the LD80 values obtained due to feeding and intra-

haemocoel administration respectively. Similar to section 3.2 the results 

demonstrated that monosodium glutamate was toxic irrespective of the route of 

administration, but the toxicity of monosodium glutamate was greatest when 

administered by direct injection into the haemocoel. The difference in the relative 

toxicity observed between the routes of administration may be explained by the 

structure of the insect digestive system. The insect foregut and hindgut are covered 

by cuticle, and the midgut epithelium is protected by the peritrophic membrane. 

Both the cuticle and the peritrophic membrane retard the entry of ingested microbes 

into the haemocoel (Vallet-Gely et al., 2008), and these structures may also retard 

the entry of monosodium glutamate into the haemocoel and therefore reduce the 

relative toxicity.  The results however demonstrate a significant positive correlation 

between the toxicity of the food additives in larvae force fed and injected.  

 A positive correlation (R2=0.6506, p=0.0156) between the LD50 values for 

eight preservatives in rats and in G. mellonella larvae administered the compounds 

by feeding was established in section 3.4 however the inclusion of monosodium 

glutamate data from both mammals and G. mellonella resulted in a non-significant 

correlation in the data. The phenylpyrazole insecticide fipronil is known to act on the 

γ-aminobutyric acid receptor to block the chloride channel (Narahashi et al., 2010). 

Fipronil has been found to be much more toxic to insects than to mammals 

(Narahashi et al., 2010). In recent times fipronil has been reported to block a 

glutamate-activated chloride channel, a chloride channel that is absent in mammals. 
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Fipronil blockage of the glutamate-activated chloride channel is deemed responsible, 

at least partially, for the higher selective toxicity to insects over mammals (Narahashi 

et al., 2010). In addition  while there have been a wide range of glutamate receptor 

antagonists found in spider venoms thus far only 1 spider venom toxin CNTX-Pn1a 

from the Brazilian armed spider has been found to inhibit vertebrate glutamate 

receptors (Pavlovic and Sarac, 2010) . Insects and mammals show different responses 

to glutamate receptor antagonists in pesticides and spider venom, this might suggest 

that they also show a different receptor mediated response to glutamate and thus 

monosodium glutamate. 

 The fungicidal ability of haemocytes extracted from monosodium 

glutamate administered larvae were measured after 24 hours incubation. The results 

indicated no significant changes between control larvae and larvae administered 

monosodium glutamate by intra-haemocoel injection or force feeding. Food 

additives have been shown to have a deleterious effect on the mammalian 

neutrophil, vanillin, monosodium l- glutamate, sodium benzoate, and potassium 

nitrate, were shown to have a significant effect on the oxidative burst and 

phagocytosis of isolated human neutrophils (Bano et al., 2014). The mammalian 

neutrophil and insect haemocyte share striking similarities in the way they recognize, 

phagocytose and kill pathogens (Browne et al., 2013). Despite these similarities the 

results presented here suggest that the mammalian neutrophil and insect haemocyte 

react differently to monosodium glutamate exposure. 

 Alkaline phospatase activity was determined in the haemolymph of larvae 

administered monosodium glutamate. When compared to control larvae significant 

increases in alkaline phosphatase activity was observed in larvae administered 

monosodium via direct injection into the haemocoel and force feeding. Damaged 

liver cells release increased amounts of alkaline phosphatase into the blood (Nagino 

et al., 1999). Alkaline phosphatase is found in the fat body of insects (George and 

Eapen, 1959) and is conserved between insects and mammals (Eguchi, 1995). 

Therefore, an increase in alkaline phosphatase activity in the haemolymph could be 

indicative of fat body damage and thus it is hypothesized that this could serve as a 

preliminary model of liver damage. Adult male Wistar rats were administered 
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0.04mg/kg and 0.08mg/kg of monosodium glutamate thoroughly mixed with the 

grower's mash, on a daily basis for 42 days. Histological findings on liver samples from 

treated groups showed changes such as dilatation of the central vein, which 

contained lysed red blood cells, cyto-architectural distortions of the hepatocytes, 

atrophic and degenerative changes on the liver. This chronic study indicates liver 

damage in rats exposed to monosodium glutamate daily over a 42 day period (Eweka 

et al., 2011). The findings presented here revealed fat body damage following a once 

off administration of monosodium glutamate via direct injection into the haemocoel 

or force feeding.  

 Superoxide activity in the haemolymph of larvae administered 

monosodium glutamate was measured. Significant increases in superoxide 

dismutase activity was recorded in the haemolymph of larvae administered 

monosodium glutamate by intra-haemocoel injection and force feeding. It has been 

demonstrated that administration of high concentrations of monosodium glutamate 

induce oxidative stress in different organs in rats (Pavlovic et al., 2007). There were 

no significant increases in catalase activity in the haemolymph of larvae challenged 

by monosodium glutamate however the significant increase in superoxide dismutase 

activity would suggest that monosodium glutamate is inducing oxidative stress in the 

haemolymph of larvae.  

 Multiple immune related proteins were significantly increased in 

abundance in larvae injected with monosodium glutamate. These proteins included 

gloverin (129.59 fold increase), peptidoglycan recognition-like protein B, partial 

(33.12 fold increase), Lysozyme (7.46 fold increase) and prophenol oxidase activating 

enzyme 3 (2.37 fold increase). Gloverin is an inducible antibacterial insect protein, 

that interacts with lipopolysaccharide in the bacterial envelope, specifically inhibiting 

the synthesis of vital outer membrane proteins, resulting in  an increased 

permeability of the outer membrane (Axen et al., 1997). Peptidioglycan recognition 

proteins are highly conserved between insects and mammals, they recognize 

peptidoglycan of the bacteria cell wall (Dziarski, 2004).  Lysozyme catalyzes the 

hydrolysis of a polysaccharide component of the cell wall of Gram-positive bacteria 

(Dziarski, 2004). Hemolin belongs to the immunoglobulin superfamily, binding to 
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bacterial surfaces (Sun et al., 1990).  These antimicrobial proteins that are increase 

in abundance would suggest that although there was no significant increases 

observed in the fungicidal ability of haemocytes from larvae challenged with 

monosodium glutamate perhaps there may be an increase in the bactericidal ability 

of these haemocytes. In addition perhaps the administration of monosodium 

glutamate has an inhibitory effect on the cellular immune response but a beneficial 

effect on the humoral response.  

 Glutamine and glutamate are not considered to be essential amino acids 

however they play an important role in a wide range of biological process (Phillips, 

2007). A healthy adult human contains over 80g of free glutamine (Curthoys and 

Watford, 1995). Glutamine is made via the action of glutamine synthetase from 

glutamate and ammonia primarily in skeletal muscle, lungs, adipose tissue and liver 

(Curthoys and Watford, 1995). Under conditions of metabolic stress, including 

injuries or illness, the level of glutamine in the body declines markedly, which is 

thought to adversely influence resistance to infectious diseases (de Oliveira et al., 

2006). Plasma concentration of 420 µmol/l has repeatedly been reported as a cut-off  

for a low plasma glutamine concentration associated with a higher risk of mortality 

in adults (de Oliveira et al., 2006). Supplementation of diets with glutamine, 

glutamate or both at 0.5 to 1.0% to both suckling and recently weaned piglets 

improves intestinal and immune function and results in better growth (Curthoys and 

Watford, 1995). The increase in immune related proteins might be explained by the 

conversion of glutamate to glutamine.  

 Larvae were administered by intra haemocoel injection or force feeding 

20µl of 0.15 M creatine monohydrate and the activity of superoxide dismutase and 

catalase was measured. These results showed no significant changes between the 

superoxide dismutase and catalase activity in control and treated groups. Exercise 

training can lead to the induction of oxidative stress due to the over production of 

reactive oxygen species including superoxide anion, hydroxyl and peroxyl radical 

(Yavari et al., 2015). Studies have been carried out in humans to determine if creatine 

administration post exercise has an indirect or direct antioxidant effect. Kingsley et 

al. (2009) found that creatine supplementation post high intensity exercise in 
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humans was not effective in attenuating oxidative stress and did not influence the 

concentrations of non-enzymatic antioxidant vitamins. These findings presented 

here showed that creatine monohydrate administration did not lead to any 

significant changes in the activity of the antioxidant enzymes catalase and superoxide 

dismutase. Therefore, the findings presented here are in agreement with findings 

from human studies. 

 Larvae were administered by intra haemocoel injection or force feeding 20 

µl of 0.15M creatine monohydrate. There were no significant changes in alkaline 

phosphatase activity between controls and creatine monohydrate challenged larvae. 

These findings would suggest that creatine monohydrate does not damage the fat 

body of insects a homologue to the mammalian liver. Despite numerous publications 

on creatine monohydrate, there is little information on the possible adverse effects 

of this supplement. In a long-term placebo controlled creatine supplementation trial, 

175 individuals were randomly assigned to receive 10g of creatine monohydrate daily 

or placebo during an average period of 310 days. At the end of the trial no adverse 

effects were recorded in liver or kidney function (Groeneveld et al., 2005). Twenty-

three members of an NCAA Division II American football team were divided into two 

groups in which they ingested 5 to 20 g of creatine monohydrate for 0.25 to 5.6 years, 

and a control group in which they took no supplements. Venous blood analysis for 

serum albumin, alkaline phosphatase, alanine aminotransferase, aspartate 

aminotransferase, bilirubin, urea, and creatinine produced no significant differences 

between groups (Mayhew et al. 2002). The findings presented here are indicative of 

no fat body damage. The fat body in insects is a homologue to the mammalian liver 

and its response to a compound could be an indication of the liver’s response.   

 No in-vivo model is totally accurate in predicting toxicity however by 

employing multiple models the overall predictability of toxicity can be best 

described. In this study G. mellonella larvae have been employed to determine the 

acute toxicity of creatine monohydrate and monosodium glutamate. The results 

presented here provide data that with in combination with other model systems can 

greatly improve our understanding of the adverse effects these compounds pose to 

humans. 
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7.1 General Discussion 

 Traditionally the in-vivo assessment of novel therapeutics and food additive 

toxicity has relied strongly upon the use of a variety of vertebrate species, such as 

mice, rats, guinea pigs and birds (Wojda, 2017). Meta-analysis indicate that rodent 

models successfully predict adverse effects in humans only 50% of the time (Hunt, 

2017). In addition the use of mammalian models incurs large costs and raises issues 

of ethical acceptance (Browne and Kavanagh, 2013). In the past decade alternative 

models showing striking metabolic similarities to mammalian models have been 

widely utilized as mini models in biological research (Wojda, 2017). These 

alternative model systems include; Zebrafish (Rubinstein, 2006), C. elagans (Himri 

et al., 2013), D. melanogaster (Sarikaya and Çakir, 2005) and B. mori (Hamamoto et 

al., 2009) . 

 G. mellonella larvae are a widely used alternative model. G. mellonella fulfil 

many of the basic requirements of a useful animal infection model and have many 

advantages over other invertebrate systems. Legal and ethical issues restrict the 

number of mammals that may be used to the lowest possible number, however 

large numbers of G. mellonella larvae can be used in experiments and this can yield 

results demonstrating a high degree of statistical robustness.  G. mellonella larvae 

are widely available and are relatively inexpensive to purchase (Desbois and 

McMillan, 2015). Larvae can be directly purchased from local suppliers in their 

preferred sixth instar stage, ready to use and do not incur husbandry costs.  G. 

mellonella can be stored at temperatures between 4 and 37oC (Mowlds and 

Kavanagh, 2008) which makes G. mellonella a good model to study fungal 

pathogens at human body temperature. Despite diverging almost 500 million years 

ago the insect immune system shows striking similarities to the mammalian innate 

immune system (Kavanagh & Reeves 2004). Insect gastrointestinal tracts share 

similar tissue, anatomy and physiological function (Mukerjee et al., 2013). Both 

phase I and phase II metabolic enzymes are highly conserved between insects and 

mammals (Feyereisen, 1999; Montella et al., 2012). Galleria larvae have been 

utilized as a model organism to study bacteria (Debois et al., 2011), fungi 

(Mylonakis et al., 2005), the efficacy and toxicity of novel antimicrobial drugs (Dolan 
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et al., 2016) and the toxicity of compounds (Büyükgüzel et al., 2013). The aim of this 

study was to develop G. mellonella as a model to test the toxicity of commonly 

used food additives.  

 Various studies have demonstrated the possibility of using a less developed 

alternative model systems to obtain results comparable to vertebrate data. C. 

elegans has been previously utilised to study the toxicity of food additives, the LD50 

of monosodium glutamate, tannic acid and thiourea in C. elegans showed a 

significant positive correlation with data obtained from rats (R2 =0.8) and mice (R2 

=0.8) (Paul and Manoj, 2009). There was a significant positive correlation (R2 

=0.924) between virulence of different wild-type Vibrio anguillarum isolates in 

Salmo salar (native) and G. mellonella (alternative) infection models (McMillan et 

al., 2015).  Cotter et al. (2000) demonstrated results showing the existence of a 

hierarchy among Candida species in terms of their killing ability in G. mellonella 

larvae, i.e. C. albicans > C. tropicalis > C.parapsilosis > C. pseudotropicalis > C. krusei 

> C. glabrata, which reflects the hierarchy observed in the ability of these species to 

cause disease in a variety of mammals (Samaranayake and Samaranayake, 2017). 

 In this study larvae of the greater wax moth were administered eight 

commonly used food additives by intra-haemocoel or force feeding. The relative 

toxicity (LD20/LD50/LD80) were determined in larvae administered the food additives 

by the two routes of administration. Strong positive correlations between the LD20, 

LD50 and LD80 values for each compound obtained by the different administration 

routes in larvae were established.  

 The effect of eight commonly used food additives on the growth of HEp-2 

cells was determined. A strong correlation between the relative toxicity of the 

compounds was observed between HEp-2 cells and larvae force-fed or 

administered the compounds by intra-haemocoel challenge. HEp-2 cells are widely 

used for screening the in-vivo activity of anti-cancer drugs (Rossi et al., 2003) and 

have previously been employed to measure the relative toxicity of food additives 

(Stefanidou et al., 2003). The significant correlation between compound toxicity in 

G. mellonella and a well-established preliminary model of toxicity would suggest G. 

mellonella can be used in the place of the less cost effective cell line.  
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 A positive correlation (R2=0.6506, p=0.0156) between the LD50 values 

obtained for the preservatives in rats and in G. mellonella larvae administered the 

compounds by feeding was established. However the use of G mellonella larvae to 

measure the acute toxicity of monosodium glutamate resulted in a significantly 

lower LD50 value than in mammals. To determine the acute toxicity of an unknown 

compound in mammals a wide concentration range of that compound must be 

administered. This leads to a large number of experimental mammals being used, 

which is both ethically and financially unacceptable. Determining the acute toxicity 

of a compound in G. mellonella alone is not a satisfactory prediction of human 

toxicity (e.g monosodium glutamatete). However the values recorded for the acute 

toxicity of compounds in larvae may be used to narrow the compound 

concentration range used in mammalian studies thereby adhering to the three R 

policy of research. 

 The immune response of insects shares a number of structural and 

functional similarities to the innate immune system of mammals (Banville et al., 

2011), consequently insects may be used to predict the likely innate immune 

response of mammals to a variety of pathogens (Junqueira, 2012; Cook and 

McArthur, 2013) and toxins (Renwick et al., 2007). Perhaps the most striking 

similarity between the two immune systems is the insect haemocyte and 

mammalian neutrophil. Both cells share structural and functional similarities to the 

mammalian neutrophil in that both can phagocytose and neutralize engulfed 

pathogens through the generation of superoxide and the secretion of lytic enzymes 

in the process known as degranulation (Renwick et al., 2007). Previous work 

showed that mammalian neutrophils and insect haemocytes are inhibited when 

exposed to various toxins such as gliotoxin (Renwick et al., 2007), fumagillin (Fallon 

et al., 2010), cytochalasin b and nocodazole (Banville et al., 2011). Food additives 

have been shown to have a deleterious effect on the mammalian neutrophil, 

vanillin, monosodium l- glutamate, sodium benzoate, and potassium nitrate, were 

shown to have a significantly effect on the oxidative respiratory burst and 

phagocytosis of isolated human neutrophils (Bano et al. 2014). It has been 

demonstrated that sodium nitrate inhibits the formation of ROS by activated 
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murine neutrophils and macrophages (Deriagina et al., 2003) and inhibition of ROS 

formation may be due to NO interference with the membrane component of the 

NADPH oxidase (Clancy et al., 1992). Flavonoids have also been shown to Inhibit the 

respiratory burst of neutrophils in mammals (Ciz et al., 2012). The aim of this study 

was to determine if these deleterious effects are also seen in haemocytes. The 

fungicidal ability of haemocytes from larvae administered commonly used food 

additives was ascertained. There were significant decreases seen in the fungicidal 

ability of haemocytes extracted from larvae administered sodium benzoate, sodium 

nitrate, potassium nitrate, however there was no significant changes seen in the 

fungicidal ability of potassium sorbate, potassium nitrite, caffeine, monosodium 

glutamate and creatine. Sodium benzoate, sodium nitrate, potassium nitrate and 

monosodium glutamate all have deleterious effects on the mammalian neutrophil 

and all but monosodium glutamate appear to have a deleterious effect on 

haemocytes. These findings would suggest that haemocytes form G. mellonella are 

a relatively good model of the deleterious effects of food additives on the 

mammalian neutrophil.  

 Free radicals, reactive oxygen species and reactive nitrogen can be 

generated by an organism when exposed to physiochemical conditions, such as 

xenobiotic exposure (Lobo et al., 2010). A balance between antioxidants and free 

radicals is necessary to protect an organism from oxidative stress and the resulting 

damage it may incur (Lobo et al., 2010). A number of antioxidant enzymes 

produced by the fat body such as superoxide dismutase, catalase and glutathione-s-

transferase are highly conserved between species (Büyükgüze et al.,2013). 

Previously larvae exposed to the insecticide boric acid showed increased lipid 

peroxidation and altered activity of catalase, superoxide dismutase, glutathione S-

transferase, and glutathione peroxidase (Büyükgüzel et al., 2013). Significant 

increases in catalase activity were seen in the haemolymph of larvae administered 

sodium benzoate. Significant increases in superoxide dismutase activity were seen 

in larvae exposed to potassium sorbate, potassium nitrate and monosodium 

glutamate. In accordance with the findings potassium sorbate, sodium benzoate, 

potassium nitrate and monosodium glutamate have all been reported to cause 



273 
 

oxidative stress in mammals (Lundberg et al., 2011; Pavlovic et al., 2007; Stratford 

et al., 2013). Sodium nitrate has been reported to cause oxidative stress in 

mammals (Lundberg et al., 2011), however it does not cause any increase in 

superoxide dismutase or catalase activity in the haemolymph of larvae. The 

majority of these findings support mammalian data. The insect fat body is an organ 

that also functions in drug metabolism like the liver in mammals (Büyükgüze et al., 

2013). This could lead to the possibility to develop the insect fat body as a 

preliminary model to test the toxicity of food additives in the mammalian liver.  

 The metabolism of a compound can sometimes lead to the increased 

toxicity of a compound for example the metabolism of pyridine with an LD50 value 

of 1.2g/kg to methylpyridine with an LD50 value of 0.2g/kg (Dehpande, 2002). 

Therefore in this instance the toxicity of a compound is the sum of the toxicity of 

itself and its metabolites. Paramount to the understanding of the toxicity of a 

compound is knowledge of the compounds metabolites. Both phase I and phase II 

enzymes are highly conserved between insects and mammals (Kulkarmi and 

Hodgson, 1984; Vakiani et al., 1998). Previously the metabolism of caffeine to 

theobromine, theophylline and paraxanthine has been reported in D. mellanogaster 

(Coelho et al., 2015). In mammals caffeine is also metabolized to theobromine, 

theophylline and paraxanthine (Coelho et al., 2015). In this study G. mellonella were 

administered caffeine via intra-haemocoel injection and force feeding. 

Haemolymph was extracted at t = 0, 4, 24 and 48 hours and analysed for the 

presence of caffeine and its two metabolites (theobromine and theophylline) using 

RP-HPLC analysis. Caffeine was detected and at t = 0 hours and at progressively 

lower concentrations as the time points progressed indicative of its metabolism. 

Theophylline and theobromine were not detected at t = 0 however both 

metabolites were detected at t = 4, 24 and 48 hours. The detection of paraxanthine 

was not possible due to the unavailability of standards. Future work can be done to 

detect the presence of paraxanthine in caffeine challenged larvae. The findings of 

this study are highly supportive for the development of G. mellonella larvae as a 

preliminary model of compound metabolism.  
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 Damaged liver cells release increased amounts of alkaline phosphatase into 

the blood (Nagino et al., 1999). Alkaline phosphatase is found in the fat body of 

insects (George and Eapen, 1959) and is conserved between insects and mammals 

(Eguchi, 1995). Therefore, an increase in alkaline phosphatase activity in the 

haemolymph could be indicative of fat body damage and thus it is hypothesized 

that this could serve as a preliminary model of liver damage. A chronic study revels 

liver damage in rats exposed to monosodium glutamate daily over a 42 day period 

(Eweka et al. 2011). Twenty-three members of an NCAA Division II American 

football team were divided into a Cr monohydrate group in which they ingested 5 

to 20g of creatine monohydrate for 0.25 to 5.6 years, and a control group which 

took no supplements. Venous blood analysis for serum albumin, alkaline 

phosphatase, alanine aminotransferase, aspartate aminotransferase, bilirubin, 

urea, and creatinine produced no significant differences between groups (Mayhew 

et al., 2002). A significant increase in alkaline phosphatase activity was seen in 

larvae challenged with monosodium glutamate, but no significant changes were 

observed in larvae challenged with creatine monohydrate. The G. mellonella model 

is limited to an acute study and cannot be used in a chronic study, however the 

findings were in agreement with those from mammalian chronic studies. This would 

suggest G. mellonella as a useful preliminary acute model for screening possible 

hepatotoxicity.  

 The life cycle of G. mellonella proceeds through 4 life stages: egg, larvae, 

pupae and adult (Kwadha et al., 2017). Monitoring the developmental progression of 

larvae into pupae could be used as an indicator of possible adverse effects to 

development in invertebrates. Zebra fish embryos administered caffeine displayed 

developmental alterations including reduced body length, reduced tactile responses 

and muscle fibre formation (Chen et al., 2008). Developmental changes are also seen 

in the human foetus where by caffeine doses of ≥ 300 mg per day during pregnancy 

were associated with reductions in infant birth weight that may be especially 

detrimental to premature or low-birth-weight infants (Hinds et al., 1996). In this 

study both the rate of pupation and commencement of pupation were reduced in 

larvae force fed and injected caffeine compared with control larvae. The findings of 
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this study agreed with vertebrate studies therefore suggesting G. mellonella as a 

biological developmental model.  

 In nature the greater wax moth larvae moves and burrows into the edge of 

midrib of honeybee comb. Larvae were administered caffeine and the effect of larval 

movement was measured. Following caffeine administration larvae were placed on 

their dorsal surface and the time to reposition correctly was measured. For more in-

depth analysis caffeine challenged larvae were placed on the FIMTrack table surface 

and the distance travelled and velocity were recorded. Previous work on Zebra fish 

embryos has demonstrated administration of caffeine also reduced mobility (Chen 

et al., 2008). In this study larvae that were challenged with caffeine showed a 

significant reduction in their ability to move and reposition correctly, FIMTrack 

software also revealed a significant decrease in distance travelled and velocity of 

larvae challenged with caffeine. These findings are in agreement with previous 

vertebrate findings and would suggest G. mellonella larvae as a possible model to 

test toxic effects on movement in invertebrate species such as zebrafish.  

 Both phase I and phase II enzymes are highly conserved between insects and 

mammals and in addition several antimicrobial pathogens are highly conserved 

between species (Kavanagh and Reeves, 2004). This would suggest G. mellonella as 

proteomic model to assess the humoral immune and metabolic response of 

compounds. In total three Q-exactive proteomic studies were carried out. 

 The first proteomic study was conducted on the hemolymph of larvae 

injected with potassium nitrate. This study revealed numerous changes in protein 

abundance of mitochondrial aldehyde dehydrogenase, mitochondria associated 

proteins and proteins involved in glycolysis and the Krebs cycle. The study reported 

that proteins that are involved in the metabolism (Lundberg et al., 2011) and 

response to nitrates (Moncada and Erusalimsky, 2002) in mammals are also present 

and upregulated in G. mellonella challenged with potassium nitrate. 

 The second proteomic study was conducted on the brain and surrounding 

tissue of larvae force fed caffeine. Significant changes in the abundance of immune 

related proteins, proteins involved in ATPase synthase and proteins involved in larval 
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development. These changes in protein abundance were also seen in invertebrate 

studies (Haskó et al., 2005; Blayney et al., 1978; Talamillo et al., 2013).  

 The third and final proteomic study was conducted on the haemlyphm of 

larvae injected with monosodium glutamte. Multiple immune related proteins were 

significantly increased in abundance in larvae injected with monosodium glutamate. 

Supplementation of diets with glutamine, glutamate or both at 0.5 to 1.0% to both 

suckling and recently weaned piglets improves intestinal and immune function and 

results in better growth (Watford 2015). This increase in immune function in 

mammals appears to be similar to the increase in humoral immune function in larvae 

challenged with monosodium glutamate. All three proteomic studies showed 

significant similarities with the response of various invertebrates to the three food 

additives. 

 The aim of this study was to develop G. mellonella as a model to test the 

toxicity of a range of food additives. This study has shown the use of G. mellonella as 

a preliminary model to measure the acute toxicity of food additives. The immune 

system of G. mellonella has in previous studies been utilised to test the virulence of 

pathogens (Fedhila et al., 2009). In this study a strong correlation between the 

adverse effects of food additives on the immune system of insects and mammals was 

established. Various antioxidant enzymes are highly conserved between species and 

results obtained from this study showed significant increases in antioxidant enzymes 

in response to food additives that have been reported to cause oxidative stress in 

mammals. This study reported the metabolism of a food additive in G. mellonella 

larvae to be similar to mammalian metabolism. Developmental changes and 

movement disorders that were reported in vertebrate models were also observed in 

G. mellonella challenged with food additives. The insect fat body shows many 

similarities to the mammalian liver, an assay to measure fat body damage in G. 

mellonella larvae produced comparable results to mammalian studies of 

hepatoxicity. Proteomic studies conducted on larvae challenged with food additives 

produced results that show similarities to the proteomic response of both mammals 

and vertebrates to food additives. In summary the larvae of the greater wax moth 

will never be a standalone model to measure the toxicity of food additives. However 
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G. mellonella larvae are a very strong preliminary model of food additive toxicity, and 

the data provided by this model could help to reduce the number of mammals and 

more neurologically developed vertebrates in biological toxicity testing. This work 

opens up the potential future applications of larvae in the study of toxicity. 
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