
1360 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

Greener Data Exchange in the Cloud:
A Coding-Based Optimization for Big Data

Processing
Zakia Asad, Student Member, IEEE, Mohammad Asad Rehman Chaudhry, Member, IEEE, and David Malone

Abstract—The rise of the cloud and distributed data-intensive
(big data) applications puts pressure on data center networks due
to the movement of massive volumes of data. Reducing the volume
of communication is pivotal for embracing greener data exchange
by efficient utilization of network resources. This paper proposes
the use of mixing technique, spate coding, working in tandem
with software-defined network control as a means of dynamically-
controlled reduction in volume of communication. We introduce
motivating real-world use-cases, and present a novel spate cod-
ing algorithm for the data center networks. We also analyze the
computational complexity of the general problem of minimizing
the volume of communication in a distributed data center appli-
cation without degrading the rate of information exchange, and
provide theoretical limits of such schemes. Moreover, we proceed
to bridge the gap between theory and practice by performing a
proof-of-concept implementation of the proposed system in a real
world data center. We use Hadoop MapReduce, the most widely
used big data processing framework, as our target. The experi-
mental results employing two of industry standard benchmarks
show the advantage of our proposed system compared to a vanilla
Hadoop implementation, an in-network combiner, and Combine-
N-Code. The proposed coding-based scheme shows performance
improvement in terms of volume of communication (up to 62%),
goodput (up to 76%), disk utilization (up to 38%), and the number
of bits that can be transmitted per Joule of energy (up to 200%).

Index Terms— Big data, optimization, hadoop, green comput-
ing, green communication, cloud computing, spate coding, data
center networks, middlebox

I. INTRODUCTION

C ICSO global cloud index predicts that by 2017 cloud
traffic will represent sixty-nine percent of data cen-

ter traffic [2]. Furthermore, recent business insights into
data center network evolution also forecast an unprecedented
growth in data center traffic with 76% of the aggregate traf-
fic not exiting the data center [2]. The increasing migration

Manuscript received March 28, 2015; revised July 20, 2015; accepted
December 4, 2015. Date of publication January 21, 2016; date of current
version May 19, 2016. A preliminary version of this work was presented at
the IEEE Syscon 2015 [1].

Z. Asad is with the Edward S. Rogers Sr. Department of Electrical and
Computer Engineering, University of Toronto, Toronto, ON, Canada (e-mail:
z.asad@mail.utoronto.ca).

M. A. R. Chaudhry was with IBM Research, Dublin, Ireland, and
the Hamilton Institute, Maynooth University, Maynooth, Ireland (e-mail:
masadch@soptimizer.org).

D. Malone is with the Hamilton Institute, Maynooth University, Maynooth,
Ireland (e-mail: david.malone@nuim.ie).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JSAC.2016.2520245

of applications to the cloud is probably the major driver of
this trend: even without a fundamental change in the aver-
age communication/computation ratio exhibited by data cen-
ter workloads, increasing the compute-density-per-server by
means of virtualization leads to proportional increase in traf-
fic generated per server. Orthogonally though, to the effects of
virtualization, the outset of applications crunching and moving
large volumes of data—captured by the market-coined term big
data applications—is also foreseen to significantly contribute
to higher network traffic within data centers [3].

The burden of high volume of communication elemental to
big data processing is anchored to network components like
switches, and routers. With the advent of energy proportional
computations at servers, the energy quota for network compo-
nents is predicted to soar as high as 50% of the total energy
consumption by data centers [4]. Data centers’ energy con-
sumption related to the network was reported to be around 15.6
billion KWh in year 2008 [5]. Energy proportional network
components play a vital role in reducing a data center’s energy
consumption. In energy proportional network components, the
energy consumption is proportional to the volume of com-
munication. Reduction in volume of communication directly
corresponds to energy savings in a data center [4], [6]–[9].
Furthermore, some approaches conserve data center network’s
energy consumption by adaptively choosing the link rates to
match the volume of traffic going through network component.
For instance, an energy saving of approximately 4 Watts per
link can be achieved by decreasing the link rate from 1 Gbps
to 100 Mbps [10]. In such adaptive approaches, decreasing
the volume of communication improves the energy profile by
favoring lower link rates. Hence, the opportunity to improve
the energy efficiency by reducing volume of communication
serves as a corner stone in bringing green practices to big data
processing.

Even with the provision of the energy-efficient net-
work architecture, an inherent limit in data center network-
architectures poses a serious challenge towards embracing big
data in an efficient and greener fashion. Specifically, the data
center networks still are not ready for digesting petabytes of
network data traffic crossing the bisection [11], [12]. Processing
data at this speed needs a network with enough bisectional
bandwidth to allow every server (node) send data at full speed
to every other server (node). This means that network bisec-
tion bandwidth is going to cap the rate at which different
servers can communicate with each other [13]. Unfortunately,

0733-8716 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ASAD et al.: GREENER DATA EXCHANGE IN THE CLOUD 1361

the data center networks are optimized for North-South traffic
(connections between servers and clients) rather than East-
West traffic (servers communicating with each other within
data center) since most of the software architectures in the pre-
cloud era were meant for clients accessing the servers within
data centers. However, with the rise of cloud and distributed
architectures like Hadoop MapReduce [14], Storm [15], and
Dryad/DryadLINQ [16], [17] that are implemented on the dif-
ferent nodes across the data centers, applications rely on East-
West traffic for most of their computations. In fact, as a defacto
standard, data centers use the tree topology assuming that net-
work bisection offers enough bandwidth for the machines at
the lower levels in the network topology [12]. However, most
of the distributed application big data applications like Hadoop
MapReduce exchange tremendous amounts of data over highly
oversubscribed links resulting in high packet drop rates [11].
Therefore, unfolding the full potential of big data by greener
data centers calls for efficient utilization of network resources,
and new non-intrusive frameworks that can seamlessly integrate
with existing network architectures. Consequently, such new
frameworks are expected to heavily rely on managing network
traffic.

The main driving force for the adoption of cloud data cen-
ters is rooted in its ability to deliver services and data at a faster
rate, resulting in improved application performance as well as
higher operational efficiencies. In order to achieve the desired
performance, most of the research is focused on scheduling
computation, jobs, and resources (e.g., see [18]–[20] and ref-
erences therein). However, since more than 50% of the job
completion-time of many jobs is consumed in the communi-
cation phase [3] it is essential to explore the novel means by
which the communication time can be reduced. In this con-
text different approaches have been studied for ameliorating
the network effects due communication-intensive workloads by
managing flows [3], [21], [22], and demand-driven path alter-
ations [23]–[25]. As essential as it is to ensure higher operation
efficiency, avenues to bring in greener prospects in data center
networks are equally fundamental. In this vein this work focus
on presenting an efficient way to manage the network traffic
by minimizing its volume which results in improved resource
usage and their energy footprints. Our work is complementary
to existing approaches.

This paper explores the potential of integrating novel con-
cepts and techniques of spate coding into big data processing
frameworks. We propose exploiting a fundamental property
common to most big data frameworks, i.e., sharing of a physical
node among several processes giving rise to side information.
This side information is generated as a consequence of avail-
ability of a process’s output to other processes hosted by the
same node without going through the network. The concept of
spate coding is inspired by index coding problem [26], [27],
though these two are different problems with different solution
spaces. The core idea in spate coding is to mix (encode) pack-
ets, while leveraging the side information, with the objective
of reducing the overall volume of communication. Although
our proposed solution is general in nature, for demonstration
purposes we have used the Hadoop MapReduce framework.
Apache Hadoop [14], an open-source implementation of the

MapReduce framework, constitutes a popular and thus good
representative of data-intensive workloads. It has been shown
to scale-out to thousands of nodes and is used across various
domains (from bio-sciences to commercial analytics). Focusing
on the shuffle phase of Hadoop, which is known to be the
communication-intensive phase of the application [28], we
present in this paper our work on improving the volume of
communication, goodput, disk utilization, queue size, and the
number of bits that can be transmitted per Joule of energy
during the shuffle phase.

A. Contributions

We propose a system for optimizing big data processing in
a data center, and present motivating use-cases. Our contribu-
tions are not only theoretically significant, but we have also
performed a proof-of-concept implementation of the proposed
system in a real world data center.

Our major theoretical contributions include analyzing the
computational complexity of a general scheme that tries to min-
imize volume of communication in a distributed data center
application without degrading the rate of information exchange.
We then present theoretical limits of such schemes by provid-
ing upper and lower bounds. Moreover, we have proven that
in contrast to a frequent practice in many data centers, the
network bisection is not an optimal location for middlebox
placement for some applications. Furthermore, we have formu-
lated the spate coding problem, which helps in reducing volume
of communication in big data applications. We have presented
an efficient solution for spate coding.

Our major practical contributions include a proof-of-concept
implementation of the proposed system in a real world data cen-
ter, and a testbed. We use Hadoop, the most widely used big
data processing framework, as our target framework. We have
used two of the industry-standard benchmarks—Terasort, and
Grep—for performance evaluation of the proposed system. The
experimental results exhibit coding advantage in terms of vol-
ume of communication, goodput, disk utilization, queue size,
and the number of bits that can be transmitted per Joule of
energy. We also present a novel technique for an efficient imple-
mentation of mutlicast leveraging software-defined networking
(OpenFlow).

B. Related Work

Many studies have been conducted to optimize data transfer
during the communication-intensive phase of big data frame-
works [3], [29], [30], spanning from high-level shifting of
virtual machines to application-level communication reduction
mechanisms (Hadoop combiners) to low-level continuous run-
time network optimization in coordination with orchestrators.
Moreover, traffic-flow-prediction based scheduling to reduce
the impact of network transfers, and improve job processing
has been used to optimize network traffic [21], [31]. Another
approach for traffic optimization is the use of Redundancy
Elimination (RE) schemes that identify and remove repeated
content from network transfer (e.g., [32]–[34]) for increas-
ing end-to-end application throughput. We want to point out
that all these approaches are complementary to our work, and

1362 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

can be combined with our scheme to further improve per-
formance characteristics. Moreover, in our scheme only the
destination nodes perform the decoding, in contrast to the RE
schemes where intermediate nodes are required to be involved
in the decoding process. Furthermore, our scheme provides an
instantaneous encoding and decoding of flows.

In comparison to the related work, which treats data flow
as commodity flow (routing), we utilize the novel concept of
mixing (coding), and it has been proven that mixing at the
network nodes can provide the optimal rate of information
exchange in many scenarios where the routing can not [35].
It has been shown that mixing techniques such as index coding
can significantly increase the rate of information transfer in a
network [27], [36], [37]. Still, index coding [26], [27], [36]–
[39] assumes a broadcast channel, an assumption that is far
from reality in a data center. We therefore propose spate coding
to improve the rate of information transfer in a non-broadcast
environment, as is the case with a data center network. We want
to point out that the solution techniques as well as theoretical
results for index coding do not hold for spate coding. Moreover,
spate coding problem subsumes index coding problem.

II. MOTIVATING USE-CASES

Before delving into system specification details, we present
two motivating use-cases using real, albeit toy, examples. The
examples showcase the use of mixing (coding) in big data appli-
cations, and its potential in reducing volume of communication.
The first example is focussed on Hadoop MapReduce, whereas
the second one is focussed on Storm.

A. Hadoop MapReduce for Electricity Theft Detection

Threshold detection, compared to the base load profile, is
one of the methods to detect non-technical losses and electric-
ity theft [40]. This example highlights a use-case for detecting
atypically high electricity consumption by utilizing Hadoop
MapReduce framework. The Hadoop job scans the data to count
the number of times the power consumption was higher than
a threshold. The data used in this example is regenerated and
anonymized (for privacy, and confidentiality reasons) from real
world smart meter data records accessed via the Irish Social
Science Data Archive [41], where the readings were taken every
30 minutes from 5000 smart meters for a period of two years.

1) Hadoop Job: We consider a four-node Hadoop cluster
in a standard data center network architecture as shown in
Figure 1.

The objective is to count the total number of instances when
the smart meter with ID 1400 reported the power consump-
tion exceeding a baseline of 0.5 for the following day and time
codes: 11518, 35010, 00120, 20513.1

A MapReduce task usually splits the input into independent
chunks which are first processed by the mappers placed across
different data center nodes in a completely parallel manner. The

1Each smart meter reading consists of a meter ID, a day and time code spec-
ifying the day of the year as well as the time—interval—of the day, and the
power consumed.

Fig. 1. Topology and mapper/reducer output/input in the electricity theft
detection example.

outputs of the mappers are then communicated to the reducers
which are also placed across different nodes, during the shuffle
phase, for further processing to complete the job.

The input log of smart meter records is divided by Hadoop
into four splits (spli t1, · · · , spli t4). A split is stored on one of
the four DataNodes (node1, · · · , node4), whereby we assume
that spli ti is stored on nodei .

Each mapperi residing on nodei parses file spli ti and emits
the corresponding < key, value > pairs, where a key is the
smart meter ID along with associated day and time code, and
a value is the number of times the power consumption exceeds
0.5. In this job the role of the map function is to only extract
the parts of the smart meter data log containing the information
about the meter ID 1400 for one of the four targeted times and
dates.

Each reducer (reduceri on nodei) processes the (<

key, value >) pairs emitted by the mappers and counts the total
frequency where power consumption exceeds the threshold.
Each reducer is responsible for counting the (< key, value >)

pairs corresponding to a single key as shown in Figure 1.
During the shu f f le phase the mappers outputs (P1, · · · , P12

as shown in Figure 1) are delivered to the corresponding
reducers, e.g., the mappers outputs with the key 1400 11518—
P4, P8, and P12—are delivered to the reducer1. Without loss
of generality, we assume that a < key, value > pair is com-
municated by a mapper to a reducer through a single packet
transmission.

2) Standard Mechanism: Using standard Hadoop mecha-
nism, it is easy to find that a total of 10 link-level packet
transmissions are required per reducer to fetch all of its desired
< key, value > pairs from respective mappers. For example
reducer1 residing on node1 is responsible for counting the
< key, value > pairs with all keys equal to “1400 11518”, this
process results in 10 link-level packet transmissions.

It follows then due to symmetry that 40 link-level packet
transmissions are required to complete the shuffle phase. Note
that a total of 16 link-level packet transmissions cross the
network bisection (AS − S1, AS − S2) during the shuffle phase.

3) Proposed Coding-Based Mechanism: We note that in a
typical real world Hadoop cluster a node hosts mutiple mappers
and reducers [42], hence a reducer residing on the same node
with a mapper has access to this mapper’s output—referred as
side information—without going through the network.

ASAD et al.: GREENER DATA EXCHANGE IN THE CLOUD 1363

Leveraging on this side information, we propose coding
the packets, whereby the coding refers to applying a simple
X O R(⊕) function to a set of input packets. In this example, the
coding is employed at the bisection, using middlebox attached
to the L2 − aggregate switch AS as shown in Figure 1. The
coding results in only two packets P2 ⊕ P5 ⊕ P8 ⊕ P11, and
P3 ⊕ P6 ⊕ P9 ⊕ P12 crossing the bisection. Each reducer can
use its side information to decode its required packets from the
coded packet it receives as explained below.

Information-Theoretic Equivalence Relation: To explain
the decoding process in an intuitive way, we introduce an
information-theoretic equivalence relation, denoted by ≡.
Specifically, two different packets are information-theoretically
equivalent if they convey the same information, for exam-
ple although packets P4,P8, and P12 are different packets but
as they carry the same information (1400 11518,1), so we
call them information-theoretically equivalent represented by
an equivalent A, i.e., P4 ≡ P8 ≡ P12 := A. Similarly, P1 ≡
P9 ≡ P11 := B, P2 ≡ P6 ≡ P10 := C , and P3 ≡ P5 ≡ P7 :=
D. Let’s explore how reducer1 would be able to decode
its required packet fetched from mapper3. We start by
focussing on the coded packet P2 ⊕ P5 ⊕ P8 ⊕ P11 received by
reducer1:

P2 ⊕ P5 ⊕ P8 ⊕ P11 ≡ C ⊕ D ⊕ A ⊕ B

Then utilizing side information available at reducer1:

(P2 ⊕ P5 ⊕ P8 ⊕ P11) ⊕ P1 ⊕ P2 ⊕ P3

≡ C ⊕ D ⊕ A ⊕ B ⊕ B ⊕ C ⊕ D

= A ≡ P11 = (1400 11518, 1),

i.e., the packet required by reducer1 from mapper3.
Together with the packet exchange occurring via the access

switches and the transmission of the packets input to the cod-
ing function for them to reach the point of coding (aggregation
switch in our example), we find that in this case a total of
36 link-level packet transmissions are required to complete the
shuffle phase.

Note that by using coding a total of 12 link-level packet
transmissions cross the network bisection during the shuffle
phase, i.e., compared to baseline Hadoop implementation a
25% reduction in network bisection traffic. So our approach
compared to current state of the art, depending on the use-case,
translates to 25% less energy utilization of the equipment,
25% more Hadoop jobs that run simultaneously, or to a
25% decrease in job completion time if there is congestion.
The use of identical values for each distinct key generated by a
mapper in this example — picked deliberately to ease presen-
tation — favours the efficiency of coding, but obviously may
not hold for production Hadoop computations. We generalize
the concept of the coding-based shuffle beyond this simplifying
assumption in Section A.

B. Storm for DNA Sequencing

This example introduces the concept of partial coding,
and shows how coding can be generalized to various < key,

Fig. 2. Twelve records emitted by spout for the DNA-sequence processing.

Fig. 3. Storm Topology for DNA sequencing example.

value > pair patterns, and is oblivious to the semantics. In
this example, we focus on Storm (an event processor) [15],
a distributed real-time computation framework for processing
unbounded data streams. Apache storm is an emerging big data
platform used by Taoba, Ooyala, Infochimps, Weather channel,
and Groupon.

The core abstraction in Storm is the stream which is a con-
tinuous sequence of tuples. The basic components of Storm for
the provision of stream transformations are spouts and bolts. A
spout is a source of streams, whereas a bolt processes a number
of input streams and emits the transformed streams. Spout and
bolt tasks are spread across the Storm cluster.

To demonstrate the versatility of our proposed solution, we
consider a network architecture that is different than the one
considered in the Example A. More specifically, we consider
a network architecture that is associated with Split multi-
link trunking (IEEE 802.3ad) [43], NIC (network interface
controller)-teaming with adaptive load balancing (ALB) [44],
and load balancing on servers where different virtual machines
assigned to different NICs.

1) Storm Job: The Storm job considered is a DNA-
sequencing code, which processes samples of short DNA
sequence records. Each DNA-sequence record consists of fol-
lowing two parts: a short DNA sequence (value), and a unique
ID associated with this sequence (key). The objective of this job
is to cluster short DNA-sequences based on the second digit of
their unique ID. For demonstration purposes, we assume that
the input data for this DNA-sequence processing job contains
only twelve records as given in Figure 2.

Figure 3 shows the Storm topology for the DNA-sequencing
job. The topology consists of one spout, and two bolts, bolt A
and bolt B, where each bolt has four tasks.

1364 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

Fig. 4. Placement of tasks of bolt A and bolt B in the DNA sequencing example
on a four node Storm cluster.

The output from the spout is fed to the four tasks of bolt A.
The bolt A emits modified streams through NIC eth0. These
modified streams are fed to the bolt B, via NIC eth1, which is
also running four tasks. The tasks of bolt A and bolt B are run-
ning on the four DataNodes (node1, · · · , node4) as shown in
Figure 4; taskk

i represents the task of bolt k running on nodei .
Furthermore, the stream grouping for bolt A is shuffle grouping
[45], which distributes the tuples to its tasks in a random fash-
ion. The stream grouping for bolt B is fields grouping, which
ensures clustering the short DNA-sequences based on the sec-
ond digit of their unique ID. Specifically, the tuples from output
streams of bolt A with the second digit of the key i will be
delivered to the task B

i+1. Without loss of generality, we assume
that a < key, value > pair is transmitted from bolt A to bolt
B through a single packet transmission, and the spout’s out-
put is such that P1, · · · , P3 are received by task A

1 , P4, · · · , P6

are received by task A
2 , P7, · · · , P9 are received by task A

3 , and
P9, · · · , P12 are received by task A

4 .
2) Standard Mechanism: We proceed to analyze this sce-

nario from the perspective of the standard Storm mechanism.
Assuming each link to have the same capacity, it is easier to
see that the links on the path from switch S1 to S2 i.e., S1 −
AS − S2, are the bottleneck links. Calculating the total link uti-
lization incurred by a task A

i to communicate the transformed
streams to the corresponding tasks of bolt B, we easily find that
a total of 12 link-level packet transmissions are required using
standard Storm mechanisms. It follows then due to symmetry
that 48 link-level packet transmissions are required to complete
the transfer from all tasks of bolt A to the corresponding tasks
of bolt B. Note that a total of 24 link-level packet transmissions
cross the network bisection.

3) Proposed Coding-Based Mechanism: By observing the
output tuples from the tasks of bolt A, it is obvious that
in contrast to Example 1, coding on the basis of an entire
< key, value > pair will be of no advantage in this exam-
ple. This follows from the fact that each of the P1, · · · , P12
has a unique Key, hence no task of the bolt B has sufficient
side information to decode a subset of entire packets coded
together. Therefore, we exploit the novel concept of partial
(a.k.a. fractional) coding . At S1, the L2-Switch of the toy net-
work topology in Figure 4, the coding is performed only on the
portions of the packets (second digit of the key and complete

Fig. 5. An instance of spate coding for the example A.

value). More specifically, the coded packets are: �1 ⊕ �4 ⊕
�7 ⊕ �10, �2 ⊕ �5 ⊕ �8 ⊕ �11, and �3 ⊕ �6 ⊕ �9 ⊕ �12,
where �i represents part of Pi comprising the second digit of
the key and complete value; for example �1 is highlighted in
red block in Figure 2. Each of these coded data are then com-
bined with their corresponding raw (i.e. not coded) portions to
form a partially coded packet. Further details on the format of
a partially coded packet are given in Section A.

Following similar arguments used in Section A, it can be
shown that each task of the bolt B can decode its required
< key, value > pairs. It is interesting to note that the coding-
based network transmissions results in significantly—namely
75%—less utilization of network bisection links, while main-
taining the same amount of information transfer as without
coding. Depending on the use-case, this translates to 75% more
Storm jobs running simultaneously, or to a 75% decrease in job
completion time if the links between AS − S1 and AS − S2 are
congested.

III. SPATE CODING PROBLEM

This section formalizes the concept of coding by defining
spate coding problem. While spate coding has a similar flavour
to network coding and index coding, Appendix IX highlights
the differences, and show that spate coding problem subsumes
both the network coding and index coding problems.

Definition 1 (Spate coding problem): An instance of the
spate coding problem is defined by a coding server, a set X =
{c1, . . . , cm} of m clients (nodes), and a set P = {p1, . . . , pn}
of n packets that need to be delivered to the clients. Each client
ci is interested in a certain subset of packets known as its Want
set Wi ⊆ P , and has access to some side information known as
its Has set Hi . Note, a client might not possess any side infor-
mation, i.e., its Has set might be empty. The server can transmit
the packets in P , or their combinations (coded packets) to the
clients via a point to point network that supports multicast. For
efficiency, the only coding operations that the server is required
to perform are restricted to ⊕ i.e., operations over G F(2). The
goal is to find a transmission scheme that requires the minimum
number μ link-level packet transmissions to satisfy the requests
of all clients.

The example in Section A can be represented by an instance
of spate coding problem where a coding server, co-located with
L2 − Aggregate switch (AS), needs to deliver eight packets
P = {P2, P3, P5, P6, P8, P9, P11, P12} to a set of four clients

ASAD et al.: GREENER DATA EXCHANGE IN THE CLOUD 1365

X = {reducer1, reducer2, reducer3, reducer4}. Demand of
the reducer1 is given by its Want set W1 = {P8, P12}. The side
information available to the reducer1 is given by its Has set
H1 = {P1, P2, P3}, and similarly for rest of the reducers as
shown in Figure 5). We present the proposed solution to spate
coding problem in Section VII.

IV. CHALLENGES AND CONSIDERATIONS

Some of the obvious questions with regards to our proposal
for the use of mixing (coding) are:

1. How does the coder (middlebox) collects the side infor-
mation, and determines destination of each coded packet?

2. How is spate coding problem incorporated in the pro-
posed architecture?

3. What is coding format, and how to determine which parts
of < key, value > pairs should be encoded?

4. How to encode the packets while being able to perform
practical line-rate processing?

5. What extra information is required in each packet, in addi-
tion to a packet’s payload, so that each client can decode
the required packets instantaneously.

6. How does a client decodes a packet?
7. Can we say something about computational complexity

of such schemes in general, and provide some bounds on
the advantage?

8. Can the proposed architecture integrate seamlessly in the
current big data architectures (like Hadoop)?

9. How does the proposed scheme perform in practice?
We present a complete architecture that encompasses questions
1 to 6 in Section A. We present some analysis related to ques-
tion 7 in Section V. The answer to question 8 is discussed
in Section C, and regarding question 9 we present evaluation
results from a clustered prototype implementation of proposed
scheme in Section VIII.

V. ANALYSIS

In this section we analyze the computational complexity
and advantage of the schemes that tend to minimize data
transmission in distributed data center applications.

Let a scheme Si results in a total number of |P(Si)| link-level
packet transmissions during the communication phase of dis-
tributed data center application running over a network N. For
example in Hadoop this communication phase is called shuffle
phase. We start by defining the problem ES.

Definition 2 (Problem ES): Find a scheme S such that for all
other schemes Si : |P(S)| ≤ |P(Si)|.

Let O PT (S) denote the optimal solution to the problem ES.
Theorem 1: The Problem ES is NP-hard, and is NP-hard to

approximate as well.
The proof of Theorem 1 is given in A.
We begin to analyze the maximum and minimum advantage

of the proposed coding based scheme can offer compared to
the current standard non-coding (routing) based techniques. We
start by defining the Utilization Ratio.

Fig. 6. The proposed coding based Hadoop MapReduce data flow.

Definition 3 (Utilization Ratio (μ)): Utilization Ratio μ is
the ratio of link-level packet transmissions when employing
a coding based solution to the number of link-level packet
transmissions while not employing a coding based solution.

We also define diameter of a network as follows.
Definition 4 (Diameter of a Network (d)): The diameter of

a network d is the longest of all the shortest paths (in terms of
number of hops) between DataNodes in a network.

Theorem 2 provides a lower bound on the utilization ratio for
a general network in terms of its diameter d.

Theorem 2: μ ≥ 1
d .

The proof of Theorem 2 is given in D.
Corollary 1: For distributed data center applications running

on large number of nodes (larger than the network diameter),
μ ≥ 1

number of nodes .
Theorem 3: μ ≤ 1, and this bound is a tight bound.
The proof of Theorem 3 is given in E.
Next, we analyze the maximum advantage a coding based

scheme can offer with reference to a network’s bisection when
the coding is also performed at the network’s bisection. We pro-
ceed by defining Utilization Ratio with reference to a network’s
bisection.

Definition 5 (Bisection Utilization Ratio (μ(bisection))):
Bisection Utilization Ratio μ(bisection) is the ratio of link-
level packet transmissions crossing the network’s bisection
when employing a coding based solution to the number of link-
level packet transmissions crossing a network’s bisection while
not employing a coding based solution.

Theorem 4 provides an upper bound on μ(bisection) while
is also performed at the network’s bisection.

Theorem 4: μ(bisection) ≥ 1
2 , while coding is also per-

formed at the network’s bisection, and this bound is a tight
bound.

The proof of Theorem 4 is given in F.
Corollary 2: Network Bisection is not an optimal location to

place the middlebox for performing coding.
The proof of Corollary 2 is given in G.

1366 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

Fig. 7. Architecture for Middlexbox (sampler, and coder).

VI. THEORY TO PRACTICE

A. Coding-Based Middlebox and Its Components

For ease of explanation as well as to be in accordance with
our proof of concept prototype implementation, we present
the details of our architecture with reference to Hadoop
Mapreduce. It can be easily extended to other distributed data
center applications. Moreover, the proposed coding scheme is
independent of the underlying application. We introduce three
new stages, namely sampler, coder, and preReducer to the
traditional Hadoop MapReduce. The primary objective of the
sampler is to gather side information. Similarly the primary
objective of the coder is to code, and of the preReducer is to
decode. The overall architecture is shown in Figure 6, while it
shows only two nodes it is in fact replicated across all the nodes.

In this section we focus on the middlebox, and its compo-
nents (sampler, and coder).

1) Sampler: The sampler gathers the side information.
Specifically, the sampler resides in the middlebox and fetches
ℵ random records from the mappers at each of the physical
machines. These random records are fetched in parallel to the
shuffle phase. This sampling process does not interfere with the
shuffle process. These sampled records not only help to start
building the side information available at each node but also
play a pivotal role in the decision of which portions (segments)
of the packets should be coded (please refer to the Example in
Section B regarding partial coding).

The overall data flow from a mapper to the sampler is
shown in Figure 7. Specifically, a mapper first completes
emitting the < key, value > pairs to the intermediate spills.
These intermediate spills are then merged to form a final
sorted and partitioned sequence file. In the final sequence file
each partition corresponds to a particular reducer. The sam-
pler, co-residing with the coder, fetches the random records
from the final sequence file which is stored in SequenceFile
format at the locations specified by mapred.local.dir [42].
The records from the sequence file is read using java class
org.apache.hadoop.io.SequenceFile.Reader [46]. These sam-
pled < key, value > pairs serve as the initial Has set for each
physical machine.

2) Coder: The coder is a dedicated software appliance,
strategically placed in the middlebox, for wire-speed packet
payload processing (typically XORing packet payloads) and
re-injection of coded packets into the network. Specifically,
the coder initially receives ℵ inputs from the partitions of all

mappers via the sampler. After that it only receives the infor-
mation that passes through the part of the network where it is
placed. The coder performs the following three functions:

(1) Format Decision Making: Based on the sampled data
records the coder decides on a coding format consisting of byte
indices ω1, ω2. The coder treats a < key, value > pair as a data
chunk. In a data chunk the bytes starting from index ω1 and end-
ing at index ω2 are the ones that are anticipated for coding for
the following ℵc generations; we name these bytes the encod-
able chunk. A generation specifies a group of packets to be
processed together by the coder. The rest of the bytes in the data
chunk, named the uncodable chunk, are forwarded without cod-
ing. The logic behind choosing ω1, ω2 is to find partitions of the
data chunk that maximize coding advantage, as for a specific
Hadoop job some bytes of < key, value > pairs might contain
more mutual information than others. Note that coding exploits
the mutual information between different file splits residing on
different physical machines. For the example in Section B, if
each digit in the < key, value > pair represented by a byte then
ω1 = 2, ω2 = 28, and the uncodable chunk is just the first byte
and the rest of the packet is the encodable chunk.

The decision on the coding format is based on comparing
the coding advantage over the ℵ random records fetched by the
sampler from different mappers. Coding advantage is evaluated
for different values of ω1, ω2. The computational complexity of
determining the best contiguous encodable chunk is logarithmic
(a very efficient procedure based on binary partition). The com-
plexity of finding arbitrary number of noncontiguous encodable
chunks can result in higher coding advantage, but can also
increase the computational complexity, more book-keeping,
and a more complex packet header.

The coding format is periodically re-computed after every ℵc

generations to fine tune the decision based on particularities of
the Hadoop job.

(2) Coding: This step performs binary coding (bitwise
X O R) based on the bytes ω1 to ω2 (encodable chunk) from
each generation of received < key, value > pairs. The coding
algorithm is based on solving the spate coding problem in an
efficient fashion, and is presented in Section VII. We note that
the algorithm requires information about both the Want set and
side information (Has set) of each node in the cluster partici-
pating in the Hadoop job under consideration. In our scheme,
the Want set is determined based on the key, whereas knowl-
edge about the Has set keeps on building at each generation.
During each generation the new side information is extracted

ASAD et al.: GREENER DATA EXCHANGE IN THE CLOUD 1367

Fig. 8. Architecture for preReducer.

Fig. 9. The proposed packet payload format for the coding based shuffle at
the application-layer. Depending on size, the format shown may be transported
using multiple segments/packets.

from the bytes ω1 to ω2 from the < key, value > pairs avail-
able at the coder. For the coding purpose, we maintain the Has
set of all the nodes without any assumption over the extent of
information overlaps between different physical machines. The
information overlaps between different physical machines can
be arbitrary or none. Moreover, the coding can result in multi-
ple multicast packets to be forwarded to set of reducers. Each
multicast packet is computed for the subtree of the network
topology under the coder (parent) node. To enable processing
at the line-rate, the algorithm ensures that the coded packets are
instantaneously decodable at the receiver nodes i.e., just based
on the packets received and without any need of buffering a set
of incoming packets.

(3) Packaging: This step packs the outcome of the cod-
ing process into a custom packet payload format, as shown
in Figure 9, that is then re-injected into the network towards
the reducer nodes. Different fields in the packet payload for-
mat collectively ensure that each reducer finally receives the
< key, value > pairs intended for it. The fields are:

• NU M_E NC O DE D: It is a numerical value describ-
ing the number of packets that are coded together. For
instance, for the packet p2 ⊕ p5 ⊕ p8 ⊕ p11 of Example
in Section A, this value is 4. In case where no encoding is
performed, this field is set to 0.

• C O DI N G_V ECT O R: It is a vector of size
NU M_E NC O DE D, and contains hashes of the
encodable chunks. There can be a large set of encodable
chunks, so we use hashes for their fast matching with

the Has set to identify side information for the decoding
process given in Section B.

• RI DK : It is a vector of size NU M_E NC O DE D, and
specifies intended reducers along with its correspond-
ing key. We associate an ID (a bit vector) RI D with the
reducer R, and RK denotes the key assigned to the reducer
R. RI DK contains hashes of RI D RK pairs. Moreover, a
reducer might work on multiple keys, and does not know
in advance what < key, value > pair to expect in the
received packet, so it is necessary that a packet should
contain information about the intended reducers and its
corresponding key.

• C O DE D_SEG: It is the actual coded chunk, formed
by bitwise X O R of the NU M_E NC O DE D encodable
chunks.

• U NC O DE D_SEG: It contains NU M_E NC O DE D
uncodable chunks.

B. PreReducer

The major role of the preReducer component is to ingest the
custom-made packets sent by the coder, decode their payloads
and extract the < key, value > pairs which are to be input to
the standard Hadoop Sorter.

We recall that a mapper stores the output < key, value >

pairs in a set of partitions, where each partition contains
< key, value > pairs for a particular reducer. We further note
that based on the placement of the middlebox, or some rout-
ing intricacies some of the < key, value > pairs fetched by a
reducer might not pass through the middlebox. Hence, preRe-
ducer should tackle both types of the packets, namely packets
coming through the middlebox with additional header, and
packets not-coming through he middlebox. Specifically, the
preReducer passes the packets not-coming through the mid-
dlebox to the reducer without any changes. Whereas, the
preReducer performs decoding, and < key, value > extraction
process on the packets coming through the middlebox. The
complete architecture for the preReducer is shown in Figure
8.

The preReducer decodes the coded part of the packet based
on the coding format, and forms < key, value > pairs by
inserting the decoded chunk from byte index ω1 to ω2 into

1368 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

the corresponding uncoded chunk of the packet. Once a node
receives a packet, the preReducer first checks the RI DK
field to determine the intended reducer and the correspond-
ing key. Then it identifies the side information, required to
decode its intended encodable chunk, by comparing the hashes
of the mappers outputs stored locally with the hashes con-
tained in C O DI N G_V ECT O R. The decoding is performed
by X O Ring CODED_SEG with the side information. The
detailed decoding process is given in in Algorithm 1.

Algorithm 1. PreReducer
1: n = NU M_E NC O DE D
2: if n �= 0 then
3: Retrieve the index myI ndex from the packet by sifting

through the RIDK vector
4: decoded_Seg = C O DE D_SEG
5: for i = 1 to n do
6: if i �= myI ndex then
7: has = lookup(Hashi)

8: decoded_Seg = decoded_Seg ⊕ has
9: end if

10: end for
11: Retrieve < key, value > by inserting decoded_Seg

at index ω1 + 1 in the U NC O DE D_SEG at index
myI ndex

12: else
13: < key, value > is same as packet received
14: end if

C. Seamless Integration Using OpenFlow

For a seamless integration of the proposed scheme into the
Hadoop architecture, we propose a novel software-defined-
networking, specifically OpenFlow, based scheme for multi-
casting coded packets. Unlike conventional receiver-initiated
multicast, the use of OpenFlow (version 1.2) provides the abil-
ity to have the middlebox control the dynamics of multicast
groups on-demand. Hadoop contains information about the
placement of mappers and reducers in the cluster, and the topol-
ogy they are connected through [47]. Using this information
mappers and reducers can be grouped into subtrees.

The proposed scheme implements multicast state across a
multicast group G—at each switch along the tree topology—
using a Group Table entry with Group ID=G. The Group Type
is set to all (multicast), and respective Action Bucket is set to
forward the packets to the set of destination ports correspond-
ing to the multicast tree links. We overload here the semantic of
two IP header fields, namely the ECN and DS fields (8-bits long
in total), to match multicast group state on a switch with packets
of a specific multicast group, allowing us to use 256 multicast
groups in total. An alternative is to use Locally Administered
multicast MAC addresses, which can allow handling of upto
246 multicast groups.

The following two practical constraints are associated with
the implementation of multicast in large-scale data centers.
First, keeping a multicast group for every coding combina-
tion, determined by the coder, may be prohibitively expensive.

Second, creating mulitcast groups on-demand can incur high-
latency. To meet these two practical constraints, we intorduce a
component called the coding groups coordinator (CGC) within
the coder. The CGC coordinates, in tandem with the OpenFlow
controller, the dynamic creation of multicast groups using a
small (constant) working set of multicast groups. Specifically,
the CGC maintains at most α (a small constant) group-queues.
Each group-queues is associated with a distinct set of reducers
(group of receivers) and being identified by a unique Queue-
ID. In addition to this, the CGC maintains one general queue
that is drained to the network. Packets from the coder des-
tined to the same multicast group are buffered in the same
group-queue, whereby at the event of adding the first packet
to a group-queue, the CGC notifies the OpenFlow controller to
create network state for the multicast group that the packet cor-
responds to. Once a queue is fully flushed, the CGC picks the
next multicast group from the general queue and assigns the
emptied queue to a new multicast group, while in parallel the
next group-queue is drained to the network. This ensures a tem-
poral overlap of multicast state creation for a future multicast
group while also operating on a fixed budget of multicast state
(#groups). In short, our approach somewhat resembles with the
concept of virtual queues in network routers, without though
the constraint of starvation, for in this case the workload does
not pose deadlines on identical virtual queues due to Hadoop
being throughput and not latency-bound.

Figure 10(b) describes the process of multicasting four
encoded packets P2 ⊕ P5, P3 ⊕ P6, P8 ⊕ P11, and P9 ⊕ P12,
found as a result of execution of Algorithm 2 applied on the
example in Section A. Figure 10(a) shows the entries for Flow
Tables and the corresponding Group Tables for each switch in
the multicast tree. In particular, the CGC creates two queue, the
queue with Queue-ID=1 for the multicast group consisting of
node1 and node2 (destination of P8 ⊕ P11 and P9 ⊕ P12), and
the queue with Queue-ID=2 for the multicast group consist-
ing of node3 and node4 (destination of P2 ⊕ P5 and P3 ⊕ P6).
The CGC then creates the network state for the these multi-
cast groups. For all the packets in the queue with Queue-ID=1
the DS+ECN field is set equal to 1, and for all the packets
in the queue with Queue-ID=2 the DS+ECN field is set equal
to 2. The Flow Table entries and corresponding match-actions
inspects the DS+ECN field of a packet, and then utilize Group
Table to find the corresponding multicast group and then for-
ward based on the Action Bucket. For example, the packets with
DS+ECN field equal to 1 are forwarded according to the Action
Bucket under Group ID 110, i.e., multicasted to the ports a and
b of the switch S1, and port x of the switch AS.

VII. SOLUTION FOR SPATE CODING PROBLEM

We start by defining the dependency graph to capture mutual
information between the clients (nodes).

Definition 6 (Dependency Graph): Without loss of general-
ity, for the ease of presentation, we assume each client requires
just one packet. In case a client χ requires more than one packet
say |W | packets, we replace it by |W | clients each having one
of the |W | packets as its Want set, and all the |W | clients have
the same Has set as of χ . Given an instance of spate coding

ASAD et al.: GREENER DATA EXCHANGE IN THE CLOUD 1369

Fig. 10. (a) Flow Tables and the corresponding Group Tables for each switch in the multicast tree for the example given in section A.(b) OpenFlow based
multicasting using coding groups coordinator for the example given in section A.

Algorithm 2. ComputeCode
Input: An instance of spate coding problem

1: X ′ := φ

2: while X �= φ AND X �= X ′ do
3: For each set of clients X̂ = {c1, c2, · · · , cy} such that

W1 ≡ W2 · · · ≡ Wy , X ′ := X \ {X̂ \ c1}
4: From the given instance of spate coding problem for the

clients in X ′, construct the dependency graph G(V, E);
5: for k = λ down to 2 do
6: while ∃ a clique ϑ in G(V, E) of size k do
7: Divide clique into x smaller cliques θi each belong-

ing to different subtrees in the multicast topology.
8: for i = 1 to x do
9: Multicast a packet that satisfies all clients corre-

sponding to the vertices in θi ;
10: V := V \ θi ;
11: Delete the clients corresponding to the vertices in

the θi from the client set X
12: end for
13: end while
14: end for
15: end while
16: if X �= φ then
17: Send the uncoded packets corresponding to the clients in

X
18: end if

problem, we define a dependency graph G(V, E) with vertex
set V and edge set E as follows:

• For each client ci there is a vertex vi in G(V, E);
• For any two clients ci and c j not residing on the same

node (server), there is a directed edge, in G(V, E), from
vi to v j if and only if it holds that for Pi ∈ Wi , ∃ P ∈ Hj :
P ≡ Pi , where ≡ represents the information-theoretic
equivalence relation described in Section A

Figure 11 shows the dependency graph for the Example in
Section A.

Lemma 1: A clique of size n in the dependency graph rep-
resents a a group of n clients, whose requests can be satisfied
with only one coded packet.

Proof: Follows from the fact that all the clients repre-
sented by a clique in the dependency graph, can be satisfied
by one transmission which consists of an ⊕ of all the packets in
their Want sets. �

Fig. 11. Dependency graph for the transmissions crossing AS for the Example
given in A. The execution of the Algorithm 2 results in four multicast packets
shown by four cliques each of size 2.

The proposed Algorithm 2, named ComputeCode, greedily
packs as many cliques as possible starting from the largest
clique of size λ. Each clique corresponds to only one mul-
ticast packet, therefore packing cliques starting from larger
cliques heuristically ensures more savings in terms of number
of transmissions. However finding all cliques can become com-
putationally prohibitive, we therefore focus on finding all the
cliques of size λ = 4 and less to allow close-to-runtime exe-
cution of the coding algorithm. Increasing λ could possibly
increase coding benefit. However, in addition to time-versus-
coding benefit tradeoff, another important factor to consider
while selecting λ is the maximum number of leaf nodes in the
subtree rooted at the middlebox. λ should not exceed the max-
imum number of leaf nodes in the subtree, since the maximum
coding advantage is achieved for the case when all the packets
heading to the leaf nodes are coded together as one packet.

The computational complexity of our clique packing algo-
rithm is O(|V |4). In general, extending the same algorithm for
finding all cliques of size λ and smaller results in O(|V |λ)
computational complexity. We note that the computational
complexity of clique finding can be significantly improved
to O(κλ−2|E |) using algorithms similar to [48], where κ is
arboricity of the dependency graph. For graphs with small κ ,
e.g., planar graphs with κ = 3, clique finding is a very efficient
operation of O(|E |).

To reduce the overhead associated with each multicast
packet, we exploit the relationship between a mutlicast packet,

1370 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

corresponding multicast tree, and corresponding clique. We
note each sub-clique, a subset of the vertices and corre-
sponding edges of a clique, encodes fewer packets than the
original clique. Moreover, a sub-clique corresponds to a sub-
tree of the multicast tree associated with the original clique.
Hence, we divide a clique in sub-cliques in a way such that
each multicast sub-tree carries a packet that encodes a sub-
set of the packets in the original encoded packet, resulting
in less coding overhead. For instance for the packet for-
mat proposed for Hadoop in Section 2, the header of each
multicast packet conveys the information regarding each of
the packet in CODED_SEG using CODING_VECTOR, RIDK,
UNCODED_SEG. So if CODED_SEG contains fewer pack-
ets the size of CODING_VECTOR, RIDK, UNCODED_SEG
is smaller. Also note that since each sub-clique is also a
clique so the validity of the solution holds i.e., each client can
decode instantaneously without any need to buffer the packets
it received. Further, dividing a clique into smaller cliques does
not increase the number of overall link-level packet transmis-
sions as it is equivalent to separating information intended for
different clients.

The execution of proposed algorithm resulted in two cliques
each of size 4 (shown in pink and orange in Figure 11) for the
example in Section A. These cliques are further subdivided into
two sub-cliques, one sub-clique is associated with the multicast
sub-tree rooted at the switch S1 (shown in green), and other one
is associated with the multicast sub-tree rooted at the switch S2
(shown in blue) in Figure 11. This corresponds to multicasting
packets p2 ⊕ p5 and p3 ⊕ p6 to reducer3 and reducer4, and
multicasting packets p8 ⊕ p11 and p9 ⊕ p12 to reducer1 and
reducer2.

VIII. PERFORMANCE EVALUATION

We developed a prototype as well as a testbed to evaluate the
performance of the proposed coding based approach. Section
A describes the prototype and Section B describes the testbed.
We want to emphasize that the prototype and the testbed depict
two of the most commonly used real-world system development
models i.e., proprietary–vs–open-source. The prototype was
implemented in a data center using the costly proprietary tools,
and hardware. Whereas the testbed was implemented using
open-source tools, virtualized environments, and commodity
off-the-shelf components. The experimental results showed the
advantage of our proposed scheme in both the models. We use
data from Hadoop shuffle to benchmark our proposed solu-
tion. The Hadoop jobs consisted of the following two industry
standard benchmarks.

1) Terasort, a benchmark to sort 10 billion records (1
Terabytes (TB)). These records are generated using a
program called TeraGen [49]. Each record consists of
100-bytes, with the first 10 bytes being the key and the
remaining 90 bytes being the value. This benchmark rep-
resents the works loads from mathematical applications
to application using artificial intelligence.

2) Grep (Global Regular Expression) represents generic pat-
tern matching and searching on a data set. Our data
set consisted of on an organization’s data-logs, whereby

the goal was to calculate the frequency of occurrence
of eight different types of events in the data-log input.
Applications of Grep vary from data mining and sequenc-
ing to anamoly detection.

We want to point out that these two benchmarks not only
cover a wide range of big data applications, but also cover
a wide spectrum of the network traffic generated by big data
applications. In fact, Cisco has used the same two types of
benchmarks to study big data infrastructure considerations, and
performance of their proposed solutions. Furthermore, these
two benchmarks capture the workloads with two very different
traffic patterns, namely “Business Intelligence (BI)” workload
benchmark captured by Grep, and “Extract, Transform, and
Load (ETL)” workload captured by Terasort [50]. Moreover,
these benchmarks are two of the most widely used standard
practice benchmarks for assessing performance of the Hadoop
MapReduce implementations [21], [29], [31], [51]–[53].

A. Prototype

We have prototyped sampler, coder, and preReducer
(decoder) in a data center as an initial proof of concept imple-
mentation. Our testbed consisted of 96 cores arranged in 8
identical blade-servers. Each server was equipped with twelve
x86_64 Intel Xeon cores, 128 GB of memory, and a single 1
TB hard disk drive. The servers were arranged in three racks.
Furthermore, the servers were connected in a typical data cen-
ter configuration (resembling the one shown in Figure 1) with
OpenFlow enabled IBM RackSwitch G8264 as Top-of-Rack
switches, and OpenFlow enabled Pronto 3780 as Aggregation
switches. One server was used as the middlebox. The compo-
nents were implemented using Java, and Octave [54]. All the
servers were running Red Hat Enterprise Linux 6.2 operating
system [55].

We use the following metrics for quantitative evaluation:
• Job Gain, defined as the increase (in %) in the number of

parallel Hadoop jobs that can be run simultaneously with
coding based shuffle compared to the number of parallel
Hadoop jobs achieved by standard Hadoop

• Utilization Ratio, defined as the ratio of link-level packet
transmissions when employing coding based shuffle to the
number of link-level packet transmission incurred by the
standard Hadoop implementation.

Our experimental study shows that for both of the tested
benchmarks, the overhead to implement coding based shuffle
(in terms of transmission of extra bookkeeping data in packet
headers) was less than 4% in all the experiments. Table I shows
the results across the two metrics for the two benchmarks. The
results show significant performance of our scheme compared
to the standard Hadoop implementation.

Noting the fact that our coding based scheme just requires
X O Ring of packets which is computationally very fast opera-
tion and given high memory bandwidth of the servers, we were
able to process closer to line rate. Specifically, even during the
worst case scenario, the throughput of the coder was 809 Mbps
on a 1 Gbps link.

ASAD et al.: GREENER DATA EXCHANGE IN THE CLOUD 1371

TABLE I
JOB GAIN AND UTILIZATION RATIO USING PROPOSED

CODING-BASED SHUFFLE

B. Testbed

Our testbed consisted of eight virtual machines (VMs), each
running CentOS 7 as the operating system [56], on top of
x86_64 Intel i7 cores. CentOS is a free Linux distribution aimed
at providing enterprise class functionality compatible with Red
Hat Enterprise Linux [55]. We used Citrix XenServer 6.5 as the
underlying hypervisor [57]. In addition to more than 1 TB of
local hard disk and solid state drives, each VM had access to
3 TB of network attached storage. Citrix XenCenter was used
to manage the XenServer environment and deploy, manage and
monitor VMs and remote storage [58]. Open vSwitch [59] was
used as the underlying switch providing network connectivity
to the VMs. Open vSwitch is a production quality, distributed,
multilayer virtual switch designed to enable massive network
automation supporting OpenFlow as well as NIC-teaming. Rest
of the software implementation was same as used in Section A.

Moreover, we have implemented a stand-alone split-shuffle,
to provide better insights into shuffle dynamics, where receiver
service instances (e.g., reducers) fetch file spills from sender
service instances (e.g., mappers) in a split fashion using a http
mechanism.

To investigate performance of the proposed scheme as well as
middlebox placement in different scenarios, we used following
two commonly-used data center topologies:

1) Tree topology (resembling the one shown in Figure 1)
with middlebox at bisection. We denote this topology by
Top-1.

2) Tree topology with NIC-Teaming (resembling the one
shown in Figure 4). Moreover, in this topology the
middlebox is placed at first L2-switch. We denote this
topology by Top-2.

A sorting benchmark was constructed using concatenated
Terasort records. We measured the following parameters of
interest:

• Volume-of-Communication (VoC), defined as the amount
of data crossing the network bisection. Note that VoC and
utilization ratio, although related to each other, measure
two different quantities.

• Goodput (GP), defined as the number of useful informa-
tion bits delivered to the receiver service instance per unit
of time.

• %disk-utilization (%d-util), defined as the percentage of
CPU time during which I/O requests were issued to the
storage disk. Disk saturation occurs when this value is
close to 100%. Higher %d-util means poor performance
(disk bottleneck).

• Queue-size (Qsz), defined as average queue length of the
requests that were issued to the storage disk. Higher Qsz
means longer wait time.

Fig. 12. Normalized VoC using Grep benchmark for both topologies Top-1 and
Top-2.

Fig. 13. Normalized VoC using Sorting benchmark for both topologies Top-1
and Top-2.

• Bits-per-Joule (BpJ), defined as the number of bits that
can be transmitted per Joule of energy.

The selected performance parameters are closely connected
and more comprehensively express the benefits that the pro-
posed scheme has to offer in a holistic fashion capturing both
the network, and the nodes. Specifically, volume of communi-
cation, and number of bits transmitted per Joule of energy focus
on the network aspects, whereas goodput, disk utilization, and
queue size capture a node’s perspective.

VoC measures overall data transfer (network load) during the
shuffle phase. On the other hand, goodput measures the average
effective throughput, crucial from an application’s perspective.
Furthermore, aside from the amount of data and data rate,
the energy required to shuffle data is an important parameter
indicating the level of greener optimization offered by the pro-
posed scheme. Similar is the importance of measuring device
utilization and queue size capturing the advantage of the pro-
posed scheme in terms of availability of the system resources
to different processes and virtual machines.

1) Volume-of-Communication: In this Section we compare
VoC of our proposed approach with vanilla Hadoop and a
state of the art in-network combiner. An in-network com-
biner reduces the VoC by partially distributing functionality
of the receiver service instances over the network [29], [60].
Additionally, to demonstrate the complementary nature of our
approach, we deployed the proposed coding based approach on
top of in-network combiner (Combine-N-Code).

Figure 12 shows the normalized VoC for all four scenar-
ios using the Grep benchmark for both topologies Top-1 and
Top-2. Note that the normalized V oC of the proposed cod-
ing based approach is the same as μ(bisection) defined in
Section V. The results show that the proposed coding based

1372 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

Fig. 14. Normalized VoC for different values of λ (maximum clique size) used
in Algorithm 2.

approach, compared to vanilla shuffle, can reduce the vol-
ume of communication by 43% for Top-1, and 59% or Top-2.
Moreover, the coding based approach outperforms in-network
combiner both for Top-1 and Top-2 by 13% and 38% respec-
tively. Furthermore, deploying Combine-N-Code can reduce the
volume of communication by a staggering 64% for Top-1, and
79% for Top-2.

Figure 13 shows the normalized VoC for all four scenarios
using the Sorting benchmark for both topologies Top-1 and
Top-2. For the sorting benchmark in-network combiner did
not reduce volume of communication at all. Whereas the pro-
posed coding based scheme leads to a 37% reduction volume
of communication for Top-1, and 62% reduction in volume of
communication for Top-2 compared to both vanilla shuffle as
well as in-network combiner.

It is interesting to note that the coding based approach
reduces more network traffic on Top-2 as compared to Top-
1. The reason for better performance for Top-2 is due to the
specific placement of the middlebox resulting in more data
exchanged through it, and hence giving rise to more coding
opportunities. Specifically, for Top-1 56% and 67% of the data
exchange happened through the L2 − Aggregate switch (co-
located with the middlebox) for Grep and Sorting respectively.
Whereas for Top-2 most of the data exchanged passed through
the L2 − swi tch (co-located with the middlebox) giving rise to
more coding opportunities.

The communication overhead associated with side informa-
tion gathering for the sampler for Grep and sorting were less
than 1% (0.65% and 0.4%).

Figure 14 shows the normalized VoC for different values
of λ (maximum clique size) used in Algorithm 2. Increasing
λ increases the coding advantage (decreases VoC). The maxi-
mum coding advantage is achieved at λ = 8 which conforms
the discussion in Section VII.

2) Goodput: In this Section we compare the proposed
approach with vanilla shuffle for GP measured at the receiver
service instance. Figure 15 shows that the coding based scheme
outperforms vanilla shuffle at all link rate settings. Moreover,
the coding benefit increases with the increase in link rates (GP
for coding based scheme is is 55% higher than vanilla shuffle at
500 Mbps and grows to 76% at 1000 Mbps).

Moreover, we investigate the impact of oversubscription ratio
on GP for different link rates. The oversubscription ratios were

Fig. 15. Goodput versus link rates for sorting benchmark for topology Top-1.

Fig. 16. Goodput for different oversubscription ratios using sorting benchmark
for topology Top-1 with link rate at 500 Mbps.

Fig. 17. Goodput for different oversubscription ratios using sorting benchmark
for topology Top-1 with link rate at 1000 Mbps.

implemented by generating constant bit rate background TCP
tarffic using iperf tool. Figure 16 shows the average GP for
oversubscription ratios of 1, 5, 10, and 15, where the link rate
was fixed at 500Mbps. Figure 17 shows a similar plot for link
rate of 1000 Mbps. The coding benefit, averaged over oversub-
scription ratios, is around 56% for 500 Mbps, and 58% for 1000
Mbps.

3) Disk IO Statistics: In this Section we compare pro-
posed approach with vanilla shuffle for two disk I/O related
parameters, i.e., %d-util and Qsz measured at the receiver ser-
vice instance. Figures 18 and 19 show that the coding based
scheme outperforms vanilla shuffle at different link rate set-
tings. Furthermore for both Qsz and %d-util, the percentage
improvement in performance between the proposed scheme and
vanilla shuffle peaks to more than 39% at link rate of 1000
Mbps. This trend can be explained by observing that as the
link rate becomes higher the disk I/O at the receiver service
instances becomes the bottleneck which can be compensated

ASAD et al.: GREENER DATA EXCHANGE IN THE CLOUD 1373

Fig. 18. %d-util versus link rates using sorting benchmark for topology Top-1.

Fig. 19. Qsz versus link rates using sorting benchmark for topology Top-1.

Fig. 20. BpJ versus link rates using sorting benchmark for topology Top-1.

by reduction in the volume of communication offered by the
coding based scheme.

%d-util and Qsz are recorded for the same duration for both
vanilla shuffle as well as coding based scheme.

4) Bits-Per-Joule: In this Section we compare BpJ for the
proposed approach with vanilla shuffle. We investigated pos-
sible improvement in energy efficiency by changing Open
vSwitch link rates in the testbed and using [61] to calculate BpJ.

Figure 20 shows BpJ for different link rates. The improve-
ment in BpJ of coding based scheme over vanilla shuffle grows
significantly with higher link rates (i.e., 2.5, 4.5, and 187.2 more
BpJ at link rates of 10, 100, and 1000 Mbps respectively).

In general by choosing lower link rates, favouring lower
power (energy per unit time) consumption, the corresponding
GP also drops as much more time is elapsed in network. We
observe that the benefit of choosing lower link rate to improve
power efficiency might not be an energy efficient solution for
certain scenarios as deduced by the results of Figure 20 that the
BpJ grows with the increase in link rate.

IX. CONCLUSION

This paper introduces the novel concept of spate coding for
reducing the volume of communication, without degrading the

rate of information exchange, in big data processing frame-
works. We have introduced for the first time, to our knowledge,
a network middlebox service that employs spate coding and
software-defined networking to optimize network traffic. We
have not only analyzed the computational complexity of a gen-
eral schemes for minimizing the volume of communication, but
also provided the bounds on maximum advantage and place-
ment strategies. We have also performed a proof-of-concept
implementation in real world practical scenarios. Moreover,
we performed several experiments to investigate the purposed
scheme in a holistic fashion including the parameters captur-
ing both the network and the host nodes. The performance
indicators including volume of communication, goodput, bits
per Joule, disk utilization, and queue size showed the perfor-
mance of the proposed system across a spectrum of scenarios
and applications.

APPENDIX A

SPATE CODING AND ITS RELATIONSHIP WITH NETWORK

CODING AND INDEX CODING

In this section, we describe spate coding problem in context
of traditional network coding and index coding problems. We
begin by noting that though all these coding problems exploit
mixing of the packets, each of these target a different envi-
ronment that effect the problem characterization and solution
space. Index coding problem was first introduced in 1998 [36],
and network coding was first introduced in 2000 [62], and it
was not until 2015 [63], [64] when a first comprehensive rela-
tionship was established between these problems, though some
previous work focused on establishing relationship for some
specific scenarios (e.g., [65]. We emphasize that spate coding
problem is different from both the standard network coding and
index coding problems [35]–[39], [66]–[68]. Specifically, spate
coding problem incorporates both network coding and index
coding problems as given by Theorems 5, and 6.

We first start by highlighting the relationship between index
coding problem and spate coding problem. Specifically, spate
coding problem subsumes index coding problem as given by
Theorem 5.

Theorem 5: For each instance of index coding problem there
exists a corresponding instance of spate coding problem.

The proof of Theorem 5 is given in Section B.
Index coding problem is closely related to spate coding

problem by virtue of incorporating side information. However,
index coding problem has been defined for the networks com-
municating over a broadcast channel, whereas spate coding
problem incorporates the networks communicating over a non-
broadcast channel. Spate coding extends and generalizes the
concept of index coding problem to non-broadcast environ-
ments.

Furthermore, an optimal solution for index coding problem
is not an optimal solution to spate coding problem. We briefly
present an example where the optimal solution of index cod-
ing problem is not optimal for spate coding problem rather it
is counterproductive and results in more number of link-level
transmissions (even greater than traditional routing). Consider
an instance of spate coding problem as shown in Figure 21(a).

1374 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

Fig. 21. (a) An instance of spate coding problem. (b) A corresponding instance of index coding problem.

A corresponding instance of index coding problem is shown in
Figure 21(b). It can be verified that the number of link-level
packet transmissions required with traditional routing is 16 to
complete the exchange task in Figure 21(a). In contrast if we
use the optimal solution for index coding problem to complete
the exchange task in Figure 21(a) it requires 26 link-level packet
transmissions in total to complete the exchange task (eight link-
level packet transmissions for uplink plus eighteen link-level
packet transmissions for downlink).

Next, we proceed to briefly describe the relationship between
network coding problem and spate coding problem. Theorem 6
shows that spate coding problem incorporates network coding
problem.

Theorem 6: For each instance of network coding problem
there exists a corresponding instance of spate coding problem.

The proof of Theorem 6 is given in Section C.
We note that though network coding and spate coding prob-

lems are closely related to each other there exists subtle dif-
ferences. On similarity point, Spate coding problem is specific
to multiple unicast sessions over an undirected network, and
is therefore related to a well studied class of the network cod-
ing problem. It has been shown that network coding does not
offers any advantage for multiple independent unicast sessions
over an undirected network [69], [70]. The assumption of inde-
pendent upcast sessions does not hold for spate coding, and is
one of the reasons due to which spate coding offers advan-
tage. On dissimilarity point, there are two subtle differences
between network coding and spate coding. One, for general net-
work coding problem—as per standard problem definition [66],
[71]—any intermediate node in the information flow graph can
perform encoding of incoming packets, whereas in spate cod-
ing problem it is not the case rather just a very limited number
of nodes in the information flow graph can perform coding
(e.g., one node in Example A). This restriction can significantly
impact the solution space, and the achievable throughput. Two,
spate coding problem incorporates side information, whereas
network coding does not incorporate it. It is interesting to note
that though it might be possible to transform some instance
of spate coding problem into equivalent instances of network
coding problem, e.g., by treating side information as additional
sources, but in general it is an interesting open problem to show
the counterpart of Theorem 6.

APPENDIX B

PROOFS

A. Proof of Theorem 1

We prove the Problem ES NP-hard by reducing index cod-
ing problem into it. It has been already been shown that index
coding problem is NP-hard, and NP-hard to approximate [72].

For sake of completeness we start by presenting the defini-
tion of index coding problem [39]. An instance of index coding
problem is defined by a relay R which contains a set of k pack-
ets X = {x1, · · · , xk} that are to delivered to a set of m clients
{c1, · · · , cm} over a broadcast channel C H L . Each client ci

has access to some side information Hi ⊆ X , and requires a set
packets Wi ⊆ X from the relay R. The relay R can transmit
packets in X or their combinations (encoding). The objective is
to find a scheme that requires the minimum number of trans-
missions from the relay R, and satisfies the requests of all the
clients. Let O PT (I C) denote the optimal solution of index
coding problem, and |O PT (I C)| denote the minimum number
of transmissions from the relay.

Given an instance of index coding problem, we define an
instance of the Problem ES as follows:

Let |P(AS)| denote the number of link-level packet trans-
missions “made” by the AS in the optimal scheme S. We show
that |O PT (I C)| = |P(AS)|. We start by analyzing the link-
level transmissions in the network N. First note that all the
nodes from the set {node1, · · · , nodek} do not receive any
packet during the communication phase of distributed data cen-
ter application as these do not host any service instance that
intend to receive any packet. Furthermore, all the packets in the
set U have to pass through the AS; as for each of the packet in
U there is a corresponding receiver service instance hosted on
one of the nodes {nodek+1, · · · , nodeT }. Second note that for
all the packets going through AS destined to a service instance
running on any of the nodes {nodek+1, · · · , nodeT }, O PT (S)

requires AS to choose the optimal scheme that minimizes the
number of link-level packet transmissions on the link C H L .
AS can either encode or route the packets as a part of its optimal
scheme by utilizing the side information (i.e., output of the ser-
vice instances running on nodes {nodek+1, · · · , nodeT }. It is
easier to see that the relay R can use the same schemes as of AS
to minimize its number of transmissions which shall be exactly

ASAD et al.: GREENER DATA EXCHANGE IN THE CLOUD 1375

Fig. 22. An instance of the Problem ES.

the same as the link-level packet transmissions by AS on the
link C H L in Figure 22.

B. Proof of Theorem 5

The proof follows directly from Section A. Specifically,
for each instance of index coding problem a corresponding
instance of spate coding problem can be constructed using the
construction given in Section A.

C. Proof of Theorem 6

The proof follows from Theorem 5, and the existence of
on an instance of index coding problem for each instance of
network coding problem [63].

D. Proof of Theorem 2

Let ζ denote the number of sender service instances in the
network (e.g., number of the mappers in Hadoop MapReduce).
Without loss of generality we assume that each sender service
instance is required to communicate exactly one packet to its
corresponding receiver service instance, if it needs to transmit
more than one packet we replace it with multiple sender service
instances where each needs to communicate just one packet. We
note that d is the maximum number of hops between any sender
service instance and its corresponding receiver service instance.
Hence, in a non-coding based solution a sender service instance
would require at most d link-level packets to communicate
its packet to corresponding receiver service instance. As there
are ζ sender service instances so a non-coding based solu-
tion would require at most d · ζ link-level packet transmissions.
Whereas the coding based solution requires at least ζ link-level
packet transmissions to the coding server, one from each of
sender service instances before it can even proceed with coding.
Hence, μ ≥ ζ

d·ζ = 1
d .

E. Proof of Theorem 3

Directly follows from the fact that a coding based solution
can not require more transmissions than a non-coding based
solution. The tightness of the bound follows from the obser-
vation that in all such instances where receiver service instance

do not possess any side information a coding based solution
can not perform better than non-coding based solution and then
μ = 1.

F. Proof of Theorem 4

Without loss of generality we ignore all the sender and
receiver service instances that can communicate with each
other without passing through the network’s bisection, as
such instances do not contribute to μ(bisection). We further
assume, without loss of generality, that each sender service
instance requires to communicate exactly one packet to its
corresponding receiver service instance, if it needs to trans-
mit more than one packets we replace it with multiple sender
service instances where each needs to communicate just one
packet. Next we note a non-coding based solution would result
in two link-level packet transmissions crossing the network’s
bisection for each of ζ sender service instances, one from
sender towards the bisection-switch and other from bisection-
switch towards receiver, resulting in a total of 2ζ link-level
packet transmissions crossing the network’s bisection. Whereas
the coding based solution first requires at least ζ link-level
packet transmissions crossing the network’s bisection to the
coding server, one from each of sender service instances. Hence
μ ≥ ζ

2ζ
= 1

2 .

Regarding tightness of the bound, μ(bisection) → 1
2 for the

tree topologies where β sender service instances are located at
one side of the bisection-switch (root), and β receiver service
instances are located on the other side of the bisection-switch.
Moreover, each receiver service instance possesses the demands
of all the other receiver service instances as its side information.
It is easier to see in such a scenario non-coding based solu-
tion requires 2β link-level packet transmissions crossing the
network’s bisection. Whereas coding based solution requires
β + 1 link-level packet transmissions crossing the network’s
bisection, one from each of β sender service instances to the
coding server, and one encoded transmission from the coding
server to the receiver service instances. Where the encoded
link-level packet transmission consists of bitwise X O R of all
the demands of the receiver service instance. Hence in such
scenario, μ(bisection) = β+1

2β
, and μ(bisection) → 1

2 for
β 1.

G. Proof of Corollary 2

Theorem 4 proves if the coding is performed at the network
bisection then μ(bisection) ≥ 1

2 . We prove this corollary by
presenting an example where μ < 1

2 when middlebox for per-
forming coding is not placed at the network bisection, specifi-
cally in the example presented in Section B μ(bisection) = 1

4
when the coding is not performed at the bisection.

ACKNOWLEDGMENTS

The authors would like to thank Kostas Katrinis with IBM
Research.

1376 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 34, NO. 5, MAY 2016

REFERENCES

[1] Z. Asad, M. Asad Rehman Chaudhry, and D. Malone, “Codhoop: A sys-
tem for optimizing big data processing,” in Proc. IEEE Int. Syst. Conf.
(SysCon), 2015, pp. 295–300.

[2] Cisco. (2013). Cisco Global Cloud Index: Forecast and Methodology,
2012–2017, White Paper [Online]. Available: http://www.cisco.
com/c/en/us/solutions/collateral/service-provider/global-cloud-index-
gci/Cloud_Index_White_Paper.pdf/

[3] M. Chowdhury, M. Zaharia, J. Ma, M. Jordan, and I. Stoica, “Managing
data transfers in computer clusters with orchestra,” ACM SIGCOMM
Comput. Commun. Rev., vol. 41, no. 4, pp. 98–109, 2011.

[4] D. Abts, M. R. Marty, P. M. Wells, P. Klausler, and H. Liu, “Energy pro-
portional datacenter networks,” ACM SIGARCH Comput. Archit. News,
vol. 38, no. 3, pp. 338–347, 2010.

[5] J. G. Koomey, “Worldwide electricity used in data centers,” Environ. Res.
Lett., vol. 3, no. 3, p. 034008, 2008.

[6] M. Gupta and S. Singh, “Using low-power modes for energy conservation
in ethernet LANs,” in Proc. IEEE INFOCOM, 2007, pp. 2451–2455.

[7] S. Nedevschi, L. Popa, G. Iannaccone, S. Ratnasamy, and D. Wetherall,
“Reducing network energy consumption via sleeping and rate-
adaptation,” in Proc. USENIX Symp. Netw. Syst. Des. Implement. (NSDI),
2008, pp. 323–336.

[8] C. Gunaratne, K. Christensen, B. Nordman, and S. Suen, “Reducing the
energy consumption of ethernet with adaptive link rate (ALR),” IEEE
Trans. Comput., vol. 57, no. 4, pp. 448–461, Apr. 2008.

[9] A. Carrega, S. Singh, R. Bruschi, and R. Bolla, “Traffic merging for
energy-efficient datacenter networks,” in Proc. Int. Symp. Perform. Eval.
Comput. Telecommun. Syst. (SPECTS), 2012, pp. 1–5.

[10] C. Gunaratne, K. Christensen, and B. Nordman, “Managing energy con-
sumption costs in desktop PCs and LAN switches with proxying, split
TCP connections, and scaling of link speed,” Int. J. Netw. Manage.,
vol. 15, no. 5, pp. 297–310, 2005.

[11] High Scalability. (2012). Changing Architectures: New Datacenter
Networks Will Set Your Code and Data Free [Online]. Available:
http://highscalability.com/blog/2012/9/4/changing-architectures-new-
datacenter-networks-will-set-your.html

[12] A. Greenberg et al., “Vl2: A scalable and flexible data center network,”
ACM SIGCOMM Comput. Commun. Rev., vol. 39, no. 4, pp. 51–62, 2009.

[13] A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “Towards
a next generation data center architecture: Scalability and commodi-
tization,” in Proc. ACM Workshop Program. Routers Extensible Serv.
Tomorrow (PRESTO), 2008, pp. 57–62.

[14] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/
[15] Apache Storm. [Online]. Available: http://storm-project.net/
[16] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad: Distributed

data-parallel programs from sequential building blocks,” ACM SIGOPS
Oper. Syst. Rev., vol. 41. pp. 59–72, 2007.

[17] Y. Yu et al., “DryadLINQ: A system for general-purpose distributed data-
parallel computing using a high-level language,” in Proc. USENIX Conf.
Oper. Syst. Des. Implement. (OSDI), 2008, pp. 1–14.

[18] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: Fair allocation of multiple
resource types,” in Proc. USENIX Conf. Netw. Syst. Des. Implement.
(NSDI), 2011, pp. 323–336.

[19] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing clus-
ters,” in Proc. ACM 22nd Symp. Oper. Syst. Principles (SIGOPS), 2009,
pp. 261–276.

[20] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, and
I. Stoica, “Delay scheduling: A simple technique for achieving locality
and fairness in cluster scheduling,” in Proc. ACM EuroSys, 2010, pp. 265–
278.

[21] A. Das, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and C. Yu,
“Transparent and flexible network management for big data processing
in the cloud,” in Proc. USENIX HotCloud, 2013.

[22] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the
data center network,” in Proc. USENIX Conf. Netw. Syst. Des. Implement.
(NSDI), 2011, pp. 309–322.

[23] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks,” in Proc.
Conf. Netw. Syst. Des. Implement. (NSDI), 2010, p. 19.

[24] N. Farrington et al., “Helios: A hybrid electrical/optical switch architec-
ture for modular data centers,” ACM SIGCOMM Comput. Commun. Rev.,
vol. 41, no. 4, pp. 339–350, 2011.

[25] G. Wang, T. E. Ng, and A. Shaikh, “Programming your network at run-
time for big data applications,” in Proc. ACM HotSDN, 2012, pp. 103–
108.

[26] M. Chaudhry, Z. Asad, A. Sprintson, and M. Langberg, “On the com-
plementary index coding problem,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), 2011, pp. 244–248.

[27] M. Chaudhry, Z. Asad, A. Sprintson, and M. Langberg, “Finding sparse
solutions for the index coding problem,” in Proc. IEEE GLOBECOM,
2011, pp. 1–5.

[28] A. Curtis, K. Wonho, and P. Yalagandula, “Mahout: Low-overhead dat-
acenter traffic management using end-host-based elephant detection,” in
Proc. IEEE INFOCOM, 2011, pp. 1629–1637.

[29] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea, “Camdoop:
Exploiting in-network aggregation for big data applications,” in Proc.
USENIX Symp. Netw. Syst. Des. Implement. (NSDI), 2012, p. 3.

[30] X. Lin, Z. Meng, C. Xu, and M. Wang, “A practical performance model
for hadoop mapreduce,” in Proc. IEEE CLUSTER Workshops, 2012, pp.
231–239.

[31] M. V. Neves, C. A. De Rose, K. Katrinis, and H. Franke, “Pythia: Faster
big data in motion through predictive software-defined network optimiza-
tion at runtime,” in Proc. IEEE 28th Int. Parallel Distrib. Process. Symp.
(IPDPS), 2014, pp. 82–90.

[32] D. Perino, M. Varvello, and K. Puttaswamy, “ICN-RE: Redundancy elim-
ination for information-centric networking,” in Proc. ACM SIGCOMM
ICN Workshop, 2012, pp. 91–96.

[33] Cisco. (2011). Cisco WAAS 4.4.1 Context-Aware DRE, The Adaptive
Cache Architecture [Online]. Available: http://www.cisco.com/c/
en/us/products/collateral/routers/wide-area-application-services-waas-
software/white_paper_c11-676350.html

[34] Steelhead. Riverbed [Online]. Available: http://www.riverbed.com/
products/wan-optimization/

[35] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[36] Y. Birk and T. Kol, “Informed-source coding-on-demand over broadcast
channels,” in Proc. IEEE INFOCOM, 1998, pp. 1257–1264.

[37] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side
information,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1479–1494,
Mar. 2011.

[38] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” in Proc. ACM
SIGCOMM, 2006, pp. 497–510.

[39] M. Chaudhry and A. Sprintson, “Efficient algorithms for index coding,”
in Proc. IEEE INFOCOM Workshops, 2008, pp. 1–4.

[40] S. Sahoo, D. Nikovski, T. Muso, and K. Tsuru, “Electricity theft detection
using smart meter data,” in Proc. IEEE Power Energy Soc. Innov. Smart
Grid Technol. Conf. (ISGT), 2015, pp. 1–5.

[41] ISSDA. Irish Social Science Data Archive [Online]. Available:
http://www.ucd.ie/issda/

[42] T. White, Hadoop: The Definitive Guide. Sebastopol, CA, USA: O’Reilly,
2012.

[43] R. Lapuh, Y. Zhao, W. Tawbi, J. M. Regan, and D. Head, “System, device,
and method for improving communication network reliability using trunk
splitting,” U.S. Patent 7 173 934, Feb. 6, 2007.

[44] Cisco. (2008). Data Center Multi-Tier Model Design [Online].
Available: http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/
Data_Center/DC_Infra2_5/DCInfra_4.pdf

[45] Apache Storm. [Online]. Available: https://storm.incubator.apache.org/
documentation/Concepts.html

[46] Apache Hadoop Package [Online]. Available: https://hadoop.apache.org/
docs/r1.0.4/api/org/apache/hadoop/io/package-summary.html

[47] Hortonworks Data Platform System Administration Guides, Santa Clara,
CA, USA: Hortonworks, 2015.

[48] N. Chiba and T. Nishizeki, “Arboricity and subgraph listing algorithms,”
SIAM J. Comput., vol. 14, no. 1, pp. 210–223, 1985.

[49] J. Norris. (2013). Package org.apache.hadoop.examples.terasort, Apache
Hadoop [Online]. Available: https://hadoop.apache.org/docs/current/api/
org/apache/hadoop/examples/terasort/package-summary.html

[50] Cisco. “Big data in the enterprise—Network design considerations,”
White Paper, 2011.

[51] W. Yu, Y. Wang, and X. Que, “Design and evaluation of network-levitated
merge for hadoop acceleration,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 3, pp. 602–611, Mar. 2014.

[52] F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. Vijaykumar,
“Shufflewatcher: Shuffle-aware scheduling in multi-tenant mapreduce
clusters,” in Proc. USENIX Annu. Tech. Conf., 2014, pp. 1–12.

ASAD et al.: GREENER DATA EXCHANGE IN THE CLOUD 1377

[53] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “Mapreduce with
communication overlap (MARCO),” J. Parallel Distrib. Comput., vol. 73,
no. 5, pp. 608–620, 2013.

[54] J. W. Eaton, D. Bateman, and S. Hauberg, GNU Octave Version
3.0.1 Manual: A High-Level Interactive Language for Numerical
Computations. CreateSpace Independent Publishing Platform, 2009,
ISBN 1441413006 [Online]. Available: http://www.gnu.org/software/
octave/doc/interpreter

[55] redhat. [Online]. Available: http://www.redhat.com/
[56] CentOS. [Online]. Available: https://www.centos.org/
[57] Citrix. [Online]. Available: http://www.citrix.com/products/xenserver/
[58] XenServer. [Online]. Available: http://xenserver.org/partners/developing-

products-for-xenserver.html
[59] Open vSwitch. [Online]. Available: http://openvswitch.org/
[60] Y. Yu, P. Kumar, and M. Isard, “Distributed aggregation for data parallel

computing,” in Proc. Symp. Oper. Syst. Principles (SOSP), 2009, vol. 9,
pp. 11–14.

[61] B. Zhang, K. Sabhanatarajan, A. Gordon-Ross, and A. George, “Real-
time performance analysis of adaptive link rate,” in Proc. Local Comput.
Netw., 2008, pp. 282–288.

[62] R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. Inf. Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.

[63] H. Maleki, V. R. Cadambe, and S. Jafar, “Index coding: An interference
alignment perspective,” IEEE Trans. Inf. Theory, vol. 60, no. 9, pp. 5402–
5432, Sep. 2014.

[64] M. Effros, S. El Rouayheb, and M. Langberg, “An equivalence between
network coding and index coding,” IEEE Trans. Inf. Theory, vol. 61, no. 3,
pp. 2478–2487, May 2015.

[65] S. El Rouayheb, A. Sprintson, and C. Georghiades, “On the index coding
problem and its relation to network coding and matroid theory,” IEEE
Trans. Inf. Theory, vol. 56, no. 7, pp. 3187–3195, Jul. 2010.

[66] R. Koetter and M. Médard, “An algebraic approach to network coding,”
IEEE/ACM Trans. Netw., vol. 11, no. 5, pp. 782–795, Oct. 2003.

[67] B. Hassanabadi, L. Zhang, and S. Valaee, “Index coded repetition-
based MAC in vehicular ad-hoc networks,” in Proc. IEEE 6th Consum.
Commun. Netw. Conf. (CCNC), 2009, pp. 1–6.

[68] S. Sorour and S. Valaee, “An adaptive network coded retransmission
scheme for single-hop wireless multicast broadcast services,” IEEE
Trans. Netw., vol. 19, no. 3, pp. 869–878, Jun. 2011.

[69] Z. Li and B. Li, “Network coding: The case of multiple unicast sessions,”
in Proc. Allerton Conf. Commun., 2004, vol. 16.

[70] T. Xiahou, Z. Li, C. Wu, and J. Huang, “A geometric perspective to
multiple-unicast network coding,” IEEE Trans. Inf. Theory, vol. 60, no. 5,
pp. 2884–2895, May 2014.

[71] T. Ho and D. Lun, Network Coding: An Introduction. Cambridge, U.K.:
Cambridge Univ. Press, 2008.

[72] M. Langberg and A. Sprintson, “On the hardness of approximating the
network coding capacity,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp.
1008–1014, Feb. 2011.

Zakia Asad (S’13) is currently pursuing the Ph.D. degree in electrical and
computer engineering at the University of Toronto, Toronto, ON, Canada.
He was the recipient of the Schlumberger Fellowship, University of Toronto
Scholarship, Texas A&M ECE Scholarship, a PITB Fellowship, and the
Professor KU Medal.

Mohammad Asad Rehman Chaudhry (M’10) received the Ph.D. degree
in electrical and computer engineering from Texas A&M University, College
Station, TX, USA.

He is an Executive Director with Soptimizer, Toronto, ON, Canada. He has
held several industrial and academic positions including a member of High
Performance and Exascale Systems Team with IBM Research, a Research
Fellow with Hamilton Institute, University of Toronto, a Network Scientist with
RCUH for DARPA System F6, an Assistant Director of Huawei-University
of Engineering and Technology Joint Telecom Center, as well as a Faculty
Member of the Electrical Engineering with the University of Calgary, and the
University of Engineering and Technology.

Dr. Chaudhry is the Chair of IEEE Working Group P1916.1, where he
leads development of the standards for Software-Defined Networking and
Network Function Virtualization Performance. He was the Vice Chair for
Performance at the IEEE Standards Study Group for Security, Reliability, and
Performance for Software Defined and Virtualized Ecosystems. He is the Chair
of the IEEE Research Group on Standards related to SLAs for Virtualized
Environments. He is a General Chair of the IEEE GlobalSIP 2015 Symposium
on Signal and Information Processing for Software-Defined Ecosystems and
Green Computing. He is also a Technical Chair of the IEEE GLOBECOM
2015 Workshop on Green Standardizations for ICT and Relevant Technologies.
He is an editor for IEEE Technical Committee on Green Communications and
Computing’s Green Forum newsletter. He received the Fulbright Fellowship,
Presidential Scholarship, Texas A&M ECE Scholarship, and Texas A&M Class
Star Award for academics.

David Malone received the B.A.(mod.), M.Sc. and Ph.D. degrees in math-
ematics from Trinity College Dublin, Dublin, Ireland. During his time as
a postgraduate, he became a member of the FreeBSD Development Team.
He is currently a member of the Hamilton Institute and the Department of
Mathematics and Statistics, Maynooth University. His research interests include
mathematical modeling and measurement of WiFi, PLC, and password use. He
also works on IPv6 and systems administration. He is a coauthor of O’Reilly’s
“IPv6 Network Administration.”

