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Abstract

If E is the total space of a vector bundle over a compact Ricci non-negative manifold, it is known that E ×R
p admits a complete

metric of positive Ricci curvature for all sufficiently large p. In this paper we establish a small, explicit lower bound for the
dimension p.
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1. Introduction

It is easy to see from [1, §9G] that the total space of any fibre bundle with base and fibres compact and Ricci positive
will admit a Ricci positive metric—at least if the structural group is a Lie group and acts by isometries on the fibre.
(All metrics under consideration will be complete.) This result was first pointed out by Nash [5]. In [5] and [2], the
existence of a Ricci positive metric for any vector bundle with fibre dimension at least two and compact Ricci positive
base was established. In [3] it was shown that if M is a complete manifold (either compact or non-compact) with
non-negative Ricci curvature, then M × R

n admits a Ricci positive metric, provided n � 3. This raises the question of
which vector bundles over Ricci non-negative manifolds admit Ricci positive metrics.

The existence of Ricci positive metrics on bundles where base and fibre are compact and Ricci non-negative, and
on vector bundles over compact Ricci non-negative manifolds was investigated in [4]. In both cases it was shown that
the manifold admits a positive Ricci curvature metric after ‘stabilising’, that is, after forming the Cartesian product
with some Euclidean space R

p for p sufficiently large. The required minimum value of p depends on the base and
fibre dimensions, as well as how twisted the bundle is. It would seem difficult to compute a suitable value for p in
most cases, and it is likely that suitable values arising from the method in the paper are very large. Belegradek and
Wei ask whether it is possible to obtain a realistic lower bound for p. The aim of this paper is to address this question.
Specifically, we prove:

E-mail address: David.Wraith@nuim.ie.
0926-2245/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.difgeo.2007.06.005

http://www.elsevier.com/locate/difgeo
mailto:David.Wraith@nuim.ie
http://dx.doi.org/10.1016/j.difgeo.2007.06.005


D.J. Wraith / Differential Geometry and its Applications 25 (2007) 552–560 553
Theorem A. Let E be the total space of a bundle with compact Ricci non-negative base, either compact Ricci non-
negative fibre or a vector space as fibre, with structural group a Lie group acting by isometries on the fibre in the
compact fibre case, and an orthogonal group in the case of a vector bundle. Suppose the fibre has dimension n. Then
E × R

p admits a complete metric of positive Ricci curvature provided p > 24n + 1.

Thus in our case, the lower bound for p is independent of both the base dimension and the twisting of the bundle E.
It is not clear if this lower bound is optimal.

It follows easily from Theorem A that if N denotes the three-dimensional Heisenberg manifold, then N × R
p

admits a Ricci positive metric whenever p > 25. It is interesting to compare this with [8, p. 17] where it is shown that
p > 26 is sufficient.

This paper is laid out as follows. In Section 2 we describe the form our metric on E × R
p will take. Our approach

to computing curvatures is to use the O’Neill formulas for Riemannian submersions. This necessitates computation
of A-tensors, and this is carried out in Section 3. We present the Ricci curvature formulas for our metric in Section 4,
and finally we prove Theorem A in Section 5.

2. Metric overview

Consider a fibre bundle with total space E, base Bm, fibre Fn and Lie structural group G. We will assume that both
B and F are equipped with Ricci non-negative metrics (G-invariant in the case of F ), and that B is compact. Given
a principal connection Θ on the associated principal G-bundle, it follows from [7] that there is a unique submersion
metric g on E with totally geodesic fibres, which agrees with the given metrics on B and F , and whose horizon-
tal distribution is associated to Θ . From the O’Neill formulas for the Ricci curvature of a Riemannian submersion
[1, §9D] it is clear that this submersion metric will not necessarily have positive Ricci curvature.

We will study the curvature of such bundles after ‘stabilising’—that is we will study the curvature of E × R
p

for some p. There are various ways in which we could view such a product. For example, we could view this as a
bundle with base B and fibre F × R

p , where the structural group G acts trivially on R
p . We will adopt the viewpoint,

however, where we regard E ×R
p as a bundle with base B ×R

p , fibre F and structure group G. If π :E → B denotes
the bundle projection for E, then clearly the bundle projection for E × R

p is given by π ′ :E × R
p → B × R

p , where
π ′ = π × I with I the identity on R

p .
Let us consider metrics on such an object. We will equip E × R

p with a submersion metric as described above. To
do this we need to specify a G-invariant fibre metric, a base metric and a G-invariant horizontal distribution on the
associated principal bundle. We assume that there exists a G-invariant Ricci non-negative metric on F : label such a
metric ĝ. On the base we will assume a warped product metric of the form

dr2 + f 2(r) ds2
p−1 + h2(r)ǧ

where ǧ is a given Ricci non-negative metric on B , r denotes the radial parameter of R
p , f (r) is a smooth function

which is odd at r = 0 satisfying f ′(0) = 1, f (r) > 0 for r > 0, and h(r) is a smooth positive function which is even
at r = 0.

Let P denote the principal G-bundle associated to E. Fix a principal connection on P . This is equivalent to giving a
(right) G-invariant distribution of horizontal subspaces H for P . There is a natural way in which this can be ‘extended’
to a horizontal distribution H̃ for P × R

p , the principal bundle associated to E × R
p . At any point x ∈ P , we have a

subspace Hx ⊂ TxP . For any y ∈ R
p , the subspace H̃(x,y) is defined to be the space

Hx ⊕ R
p ⊂ TxP ⊕ TyR

p = T(x,y)(P × R
p).

Clearly {H̃(x,y) | (x, y) ∈ P × R
p} is a horizontal distribution, and moreover is G-invariant since {Hx | x ∈ E} is

G-invariant. Thus H̃ corresponds to a principal connection on P × R
p . Associated to H respectively H̃ we obtain

horizontal distributions on E respectively E × R
p which we will denote D respectively D̃. It is easy to check that

D̃(e,y) =De ⊕ TyR
p at any point (e, y) ∈ E × R

p .
Given this data, a result of [7] guarantees us a complete submersion metric on E × R

p with totally geodesic fibres,
agreeing with the given data. Let us denote this new metric g̃. From now on, all quantities labelled with a tilde will
relate to this metric.
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3. A-tensor calculations

We now compute the A-tensor, Ã, of g̃. See [1, §9C] for definitions and details. In particular we will compare
Ã with the A-tensor of the submersion metric g on E determined by ǧ, ĝ and D. We will denote this latter tensor
simply A. First we select local vector fields on E × R

p . Let X and X′ be horizontal fields tangent to E, U a (vertical)
vector field tangent to the fibres of E, W and W ′ vector fields tangent to Sp−1 ⊂ R

p , and d/dr the radial vector field
on R

p . Note that there is a canonical way of extending the vector fields X and X′ to D̃-horizontal vector fields on
E × R

p , and of extending U to a vertical vector field on E × R
p . In the following discussion we will use the same

symbols to denote both the vector fields on E and the ‘equivalent’ fields on E × R
p , the context making clear which

is to be understood. Moreover, we will also be considering the Lie brackets of these vector fields for both bundles.
However, it is clear that [X,X′] and [X,U ] on E ×R

p are just the canonical extensions of the equivalent Lie brackets
on E. We will therefore use the same notation for these Lie brackets in both contexts.

Lemma 3.1. ÃXX′ = AXX′.

Proof. By [1, 9.24] we have

ÃXX′ = 1

2
Ṽ[X,X′] = 1

2
V[X,X′] = AXX′.

Here, Ṽ (respectively V) denotes vertical projection onto the tangent space to the fibres in E × R
p (respec-

tively E). �
Lemma 3.2. The following expressions all vanish identically: Ãd/drd/dr , Ãd/drW , Ãd/drX, ÃWX, ÃWW ′.

Remark. For horizontal vector fields in E × R
p (that is, vector fields tangent to the distribution D̃), the A-tensor is

anti-symmetric. Thus the above two lemmas essentially cover all possibilities for Ã evaluated on a pair of D̃-horizontal
vector fields.

Proof of lemma. We show that the Ṽ-components of the Lie brackets [d/dr, d/dr], [d/dr,W ], [d/dr,X] and [W,X]
all vanish.

By antisymmetry of the Lie bracket it follows that [d/dr, d/dr], and hence Ṽ[d/dr, d/dr] must vanish.
An elementary calculation shows that [d/dr,W ] is a vector field tangent to Sp−1, so its vertical component must

be zero. The same is of course true for [W,W ′].
Since Ã is a tensor, the quantities Ṽ[W,X] and Ṽ[d/dr,X] only depend on X at any given point. Hence we are

free to extend a given D-horizontal vector to any D̃-horizontal vector field X without altering Ṽ[•,X]. Let us extend
a given vector to a D-horizontal vector field on E in any way, and then extend to E × R

p in the canonical way. In
particular, the resulting vector field X is independent of the R

p coordinate. With these assumptions it is easy to show
that [d/dr,X] vanishes, and [W,X] is a vector field tangent to Sp−1 and so has no vertical component. �

We now turn our attention to expressions taking the form Ã•U , where the dot represents a horizontal vector field.

Lemma 3.3. We have Ãd/drU ≡ 0, ÃXU = 1
h2 AXU and ÃWU ≡ 0.

Proof. First let us consider Ãd/drU . By definition of the A-tensor, we have

Ãd/drU = H̃∇̃d/drU

where ∇̃ is the Levi-Civita connection of the metric g̃ and H̃ is the operator taking the D̃-horizontal compo-
nent. We construct a local coordinate system for E × R

p as follows. First choose a local coordinate system
x1, . . . , xn, xn+1, . . . , xn+m for E, such that x1, . . . , xn are coordinates in the fibres. Next, extend this to a local coor-
dinate system y1, . . . , yn+m+p on E × R

p , where yi = xi for 1 � i � n + m, yn+m+1 = r and yn+m+2, . . . , yn+m+p

are local coordinates on Sp−1. It is an elementary computation to show that the Christoffel symbols Γ̃ k vanish
n+m+1 i
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identically for all 1 � i � n and for all k, and hence ∇̃d/dr∂/∂yi vanishes for all 1 � i � n. The vertical vector field U

can be expressed as

U =
n∑

i=1

fi∂/∂yi

where the fi are functions on B × R
p . We therefore have

∇̃d/drU =
n∑

i=1

fi∇d/dr∂/∂yi +
m∑

i=1

∂fi/∂r∂/∂yi =
m∑

i=1

∂fi/∂r∂/∂yi .

Clearly, this is a vertical vector, so

Ãd/drU = H̃∇̃d/drU = 0.

Next we consider the term ÃXU . To evaluate this, we must consider the following expressions: g̃(ÃXU,d/dr),
g̃(ÃXU,W) and g̃(ÃXU,X′). In all cases, these expressions are equal to −g̃(ÃX•,U) (see [1, 9.21(d)]). Since
ÃXd/dr and ÃXW both vanish (as discussed above), we conclude that ÃXU has no component in any R

p direc-
tion.

For g̃(ÃXU,X′) we have:

g̃(ÃXU,X′) = −g̃(ÃXX′,U) = −g̃(AXX′,U)

= −g(AXX′,U) = +g(AXU,X′) = 1

h2(r)
g̃(AXU,X′).

Since ÃXU is tangent to E, we deduce that

ÃXU = 1

h2
AXU.

It remains to compute ÃWU . Considering the expressions g̃(ÃWU,d/dr), g̃(ÃWU,W) and g̃(ÃWU,X) in similar
fashion to the above shows that ÃWU vanishes identically. �

Our curvature computations (Section 4) will be based on the O’Neill formulas for Riemannian submersions
[1, §9D]. These formulas involve A-tensor terms, including a certain A-tensor derivative. We now turn our atten-
tion to computing this for Ã.

Consider a local orthonormal family of vector fields for (B, ǧ) which form a basis for the tangent spaces. Lift these
to horizontal vector fields in E, and extend and scale these fields in the obvious way to horizontal orthonormal fields
in (some local region of) E × R

p . Call these fields X1, . . . ,Xm. Pick orthonormal fields U1, . . . ,Un spanning fibre
directions in E, and again extend in the obvious way to fields defined locally on E × R

p . Similarly, choosing local
orthonormal vector fields spanning the tangent spaces of (Sp−1; ds2

p−1) gives rise to local orthonormal vector fields

W1, . . . ,Wp−1 tangent to Sp−1 in E × R
p .

We consider the following derivative of Ã (see [1, 9.33(e)]):

δ̌Ã := −
m∑

i=1

(∇̃Xi
Ã)Xi

−
p−1∑
i=1

(∇̃Wk
Ã)Wk

− (∇̃d/dr Ã)d/dr .

From a Ricci curvature point of view δ̌Ã arises in the O’Neill formulas in the form g̃((δ̌Ã)•,U), where • represents
a D̃-horizontal vector field. We will evaluate this expression in the various possible cases.

Lemma 3.4. Denoting the Levi-Civita connection of g by ∇ , we have:

∇̃Xi
Xj = ∇Xi

Xj ;
∇̃Xi

d = h′
Xi;
dr h
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∇̃Xi
Wk = 0;

Ṽ∇̃Xi
U = V∇Xi

U.

Proof. These formulas follow from the Koszul formula [6, p. 22] by a straightforward computation. �
Lemma 3.5.

g̃
(
(∇̃Wk

Ã)Wk
•,U

) = 0;
g̃
(
(∇̃d/dr Ã)d/dr•,U

) = 0;
where the dot represents either a horizontal or vertical vector field.

Proof. In the first case we have

g̃
(
(∇̃Wk

Ã)Wk
•,U

) = g̃
(∇̃Wk

(ÃWk
•),U

) − g̃(Ã∇̃Wk
Wk

•,U) − g̃
(
ÃWk

(∇̃Wk
•),U

)
.

As discussed above, AWk
• vanishes identically, so we have

g̃
(
(∇̃Wk

Ã)Wk
•,U

) = −g̃(Ã∇̃Wk
Wk

•,U).

By the Koszul formula

g̃(∇̃Wk
Wk,•) = Wkg̃(Wk,•) + g̃

([•,Wk],Wk

)
.

From this it is clear that g̃(∇̃Wk
Wk,•) can only be non-zero if • has a component tangent to Sp−1. Therefore ∇̃Wk

Wk

is a vector tangent to Sp−1. It follows that

g̃
(
(∇̃Wk

Ã)Wk
•,U

) = 0.

Similar arguments show that

g̃
(
(∇̃d/dr Ã)d/dr•,U

) = 0. �
Combining the results of Lemma 3.5 with the definition of δ̌Ã we get:

Corollary 3.6. If • represents a D̃-horizontal vector field, then

g̃
(
(δ̌Ã)•,U

) = −
m∑

i=1

g̃
(
(∇̃Xi

Ã)Xi
•,U

)
.

Consider the expression

g̃
(
(∇̃Xi

Ã)Xi
•,U

) = g̃
(∇̃Xi

(ÃXi
•),U

) − g̃(Ã∇̃Xi
Xi

•,U) − g̃
(
ÃXi

(∇̃Xi
•),U

)
.

By Lemmas 3.2 and 3.4 we see that this expression vanishes if the dot represents d/dr or a Wk . It remains to study
the case g̃((∇̃Xi

Ã)Xi
X,U).

Lemma 3.7. g̃((∇̃Xi
Ã)Xi

X,U) = g((∇Xi
A)Xi

X,U).

Proof. We have

g̃
(
(∇̃Xi

Ã)Xi
X,U

) = g̃
(∇̃Xi

(ÃXi
X),U

) − g̃(Ã∇̃Xi
Xi

X,U) − g̃
(
ÃXi

(∇̃Xi
X),U

)
.

Consider g̃(∇̃Xi
(ÃXi

X),U). Since ÃXi
X = AXi

X (Lemma 3.1) and Ṽ∇̃Xi
U = V∇Xi

U from Lemma 3.4, we deduce
that

g̃
(∇̃Xi

(ÃXi
X),U

) = g
(∇Xi

(AXi
X),U

)
.
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Next consider g̃(Ã∇̃Xi
Xi

X,U). It follows from Lemmas 3.1, 3.4 and the fact that ÃU• vanishes for any vertical vector

field U that

g̃(Ã∇̃Xi
Xi

X,U) = g(A∇Xi
Xi

X,U).

Finally, consider g̃(ÃXi
(∇̃Xi

X),U). Again, we deduce easily that

g̃
(
ÃXi

(∇̃Xi
X),U

) = g
(
AXi

(∇Xi
X),U

)
and the lemma is proved. �

Putting these results together we can establish

Proposition 3.8. If X is a vector field tangent to B , W a vector field tangent to Sp−1 and U a vertical vector field we
have

g̃
(
(δ̌Ã)X,U

) = 1

h2
g
(
(δ̌A)X,U

);
g̃
(
(δ̌Ã)W,U

) = 0;
g̃

(
(δ̌Ã)

d

dr
,U

)
= 0.

Proof. The second and third equations follow immediately from the discussion above. For the remaining case, note
that g((δ̌A)X,U) is defined in terms of g-orthonormal vectors for the horizontal space of the bundle E. The vectors
hXi form such a family. Therefore

m∑
i=1

g
(
(∇Xi

A)Xi
X,U

) = 1

h2

m∑
i=1

g
(
(∇hXi

A)hXi
X,U

) = 1

h2
g
(
(δ̌A)X,U

)
. �

4. Curvature formulas

The Ricci curvatures of the submersion metric g̃ are given by the O’Neill formulas [1, §9D]. These express the
Ricci curvatures of g̃ in terms of the Ricci curvatures of the fibre (F, ĝ), the base manifold (B, ǧ) of E, the sphere
(Sp−1, ds2

p−1), the warping functions f (r), h(r), and tensors A and T . In the case of g̃, the fibres are all totally
geodesic (guaranteed by Vilms [7]), which means that T ≡ 0.

We consider the effect of rescaling the metric g̃ in fibre directions. Specifically, we introduce a function θ(r) and
replace the metric ĝ in fibre directions by the metric θ2(r)ĝ. The curvature effect of such a scaling was computed in
[9] for the case of a general Riemannian submersion with totally geodesic fibres. A term by term analysis using the
Koszul formula yielded the following expressions.

Lemma 4.1. Consider a Riemannian submersion with totally geodesic fibres F ↪→ M → B . Denote the submersion
metric by 〈 , 〉. Let X and Y denote horizontal vector fields, and U and V denote vertical vector fields. Rescale the
submersion metric in fibre directions by θ2, where θ :B → R

+. Then the Ricci curvature, Ric, of this new metric is
given by

Ric(U,V ) = Ricĝ(U,V ) − (dimF − 1)〈U,V 〉‖∇θ‖2 + θ4(AU,AV ) + 〈U,V 〉θ	θ;
Ric(U,X) = θ dimF 〈AXU,∇θ〉 − θ2〈(δ̌A)X,U

〉;
Ric(X,Y ) = Ricǧ(X,Y ) − 2θ2(AX,AY ) − dimF

θ
Hessθ (X,Y ).

Using these equations, a long but elementary calculation yields the curvature formulas below. We have used Yi

and Vj to denote the orthonormal vector fields on (E,g) spanning H respectively V which generate the vector fields
Xi and Uj on E × R

p . We have done this so that the A-tensor terms of the right-hand side of these formulas is
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independent of the parameter r . In particular note that we have used Lemmas 3.1, 3.3 and Proposition 3.8 to write the
terms involving the tensor Ã for g̃ in terms of the tensor A on (E,g).

Proposition 4.2. The Ricci curvatures of the metric obtained from scaling g̃ in fibre directions by the function θ2(r)

are as follows:

Ric(d/dr, d/dr) = −(p − 1)
f ′′

f
− m

h′′

h
− n

θ ′′

θ
;

Ric(Xi,Xi) = 1

h2
Ricǧ(Yi, Yi) − h′′

h
− (m − 1)

h′2

h2
− (p − 1)

f ′h′

f h
− n

θ ′h′

θh
− 2

θ2

h4
(AYi

,AYi
);

Ric(Wk,Wk) = −f ′′

f
+ (p − 2)

1 − f ′2

f 2
− m

h′f ′

hf
− n

θ ′f ′

θf
;

Ric(Uj ,Uj ) = 1

θ2
Ricĝ(Vj ,Vj ) − θ ′′

θ
− (n − 1)

θ ′2

θ2
− m

θ ′h′

θh
− (p − 1)

θ ′f ′

θf
+ θ2

h4
(AVj ,AVj );

Ric(Xi,Uj ) = − θ

h3
g
(
(δ̌A)Yi,Vj

);
Ric(d/dr,Xi) = Ric(d/dr,Wk) = Ric(Xi,Wk) = Ric(d/dr,Uj ) = Ric(Wk,Uj ) = 0.

5. Proof of Theorem A

We are now in a position to prove Theorem A. We simply need to choose appropriate scaling functions f (r), h(r)

and θ(r) which make the Ricci curvature formulas in Proposition 4.2 positive. We will need the quantities (AYi
,AYi

)

and |g((δ̌A)Yi,Vj )| to be bounded above on (E,g). This is automatic in the case of a compact fibre. In the case where
E is a vector bundle, the discussion in [4, Example 4.1] shows that a suitable choice of (Ricci non-negative) fibre
metric will give boundedness.

Proof. Let us set

f (r) = L(1 + r)
1
2 ;

h(r) = (1 + r)
− 1

q ;
θ(r) = k(1 + r)−(2+α);

where q ∈ N, k ∈ R
+ and α, L ∈ (0,1). Note that the resulting metric does not satisfy the necessary boundary con-

ditions at r = 0 to give a smooth metric on E × R
p . Leaving this point aside for the moment, let us check that these

functions give us Ricci positivity for r > 0. A simple calculation shows that

Ric(d/dr, d/dr) = 1

(1 + r)2

[
p − 1

4
− m

q

(
1 + 1

q

)
− n(2 + α)(3 + α)

]
.

This is strictly positive for all r provided that

p − 1

4
>

m

q

(
1 + 1

q

)
+ n(2 + α)(3 + α).

Since we are free to choose q as large as we like and α as small as we like, we can always fulfil this requirement
provided

p > 24n + 1.

For the Xi directions, suppose that (AYi
,AYi

) < Ki < ∞. We then have

Ric(Xi,Xi) � 1

(1 + r)2

[
− 1

q

(
1 + 1

q

)
+ p − 1

2q
− m − 1

q2
− (2 + α)n

q
− 2k2Ki

(1 + r)
2+2α− 4

q

]
.
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This will be strictly positive for all r if, for q sufficiently large and α sufficiently small, we have

p − 1

2
> 1 + 2n − 2k2Kiq.

Choosing k sufficiently small compared to Ki and q (for example setting k = 1
q maxi {√Ki } ) we just need to ensure that

p > 4n + 3.

For Wk we have

Ric(Wk,Wk) = 1

(1 + r)2

[
1

4
+ p − 2

4

(
4 + 4r − L2

4L2(1 + r)2

)
+ m

2q
+ (2 + α)n

2

]
.

Clearly this is always strictly positive.
For Uj we have

Ric(Uj ,Uj ) � 1

(1 + r)2

[
−(n − 1)(2 + α)2 − (2 + α)(3 + α) − (2 + α)m

q
+ (p − 1)(2 + α)

2

]
.

For q sufficiently large and α sufficiently small it suffices to keep p − 1 > 4(n − 1) + 6, or equivalently

p > 4n + 3.

Finally, we consider the influence of the (non-zero) ‘mixed’ curvature term Ric(Xi,Uj ). In order for this term not to
upset Ricci positivity, we need to ensure that

(�)Ric(Xi,Xi)Ric(Uj ,Uj ) >
[
Ric(Xi,Uj )

]2
.

Notice from the above lower bounds that by choosing q sufficiently large and α sufficiently small we can make the
lower bounds for Ric(Xi,Xi) respectively Ric(Uj ,Uj ) arbitrarily close to λ/(1 + r)2 respectively μ/(1 + r)2 where

λ = 1

q

(
p − 1

2
− 2n − 1

)
,

μ = p − 1 − 4(n − 1) − 6.

As noted at the start of Section 5, on (E,g) we can assume that |g((δ̌A)Yi,Vj )| < Λij for some constants Λij . Thus
for a suitably large choice of q and suitably small choice of α the inequality (�) will be true provided

λμ

(1 + r)4
> Λ2

ij k
2(1 + r)

−4−2α+ 6
q ,

or more simply

λμ > Λ2
ij k

2(1 + r)
−2α+ 6

q .

By choosing k sufficiently small we can guarantee this, provided −2α + 6/q < 0. For any choice of α we can arrange
for this simply by choosing q larger, if necessary.

So far we have shown that for r > 0 the Ricci curvatures of the metric created by setting f (r), h(r) and θ(r) as
above are all strictly positive. We now turn our attention to the problem of adjusting the metric near r = 0 to create a
well-defined smooth metric on E × R

p , without introducing any negative Ricci curvatures.
Consider a constant r0 ∈ (0,1). We will adjust all our scaling functions over the interval r ∈ [0, r0].
First of all we alter θ and h near r = 0. We require both of these functions to be smooth, even, and positive at r = 0.

We will consider θ : the arguments for h are analogous.
Suppose we change θ(r) for r ∈ [0, r0] by instead setting θ(r) = d − cr2 at these values of r , where c and d are

positive constants. This ensures that θ is even and positive at r = 0, and by choosing c and d appropriately we can
ensure the resulting function is C1 at r = r0. Specifically, suppose that

lim
r→r+

0

θ ′(r) = −s (≈ −(2 + α)k since r0 is small).
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With the above form for θ on [0, r0] we have

lim
r→r−

0

θ ′(r) = −2cr0.

Therefore for first derivatives to agree at r = r0 we need

c = s

2r0
.

We can then select a value for d to achieve a C1 join at r = r0, namely

d = sr0/2 + k(1 + r0)
−(2+α).

It is easy to see that over [0, r0] the quantity |θ ′/θ | can be bounded above independently of r0. Moreover, −θ ′′/θ ≈
2c/d for r0 sufficiently small, and since d can be bounded above and below by positive constants independent of r0
we see that −θ ′′/θ can be made arbitrarily large, simply by choosing r0 sufficiently small. Thus we can ensure that
the −θ ′′/θ term dominates in the expression for Ric(Uj ,Uj ) for r ∈ [0, r0].

By a similar argument we can ensure that the term −h′′/h dominates the expression for Ric(Xi,Xi). In addition
the expressions for Ric(d/dr, d/dr) and Ric(Wk,Wk) are clearly still positive for r ∈ [0, r0].

We must also consider the mixed curvature term. By choosing r0 sufficiently small, it is clear that we can keep
the variation in Ric(Xi,Uj ) arbitrarily small over [0, r0]. On the other hand, as noted above we can choose the lower
bounds on Ric(Xi,Xi) and Ric(Uj ,Uj ) to be as large as we like by choosing r0 sufficiently small. Thus the mixed
curvature term cannot upset positive Ricci curvature for r ∈ [0, r0], at least if r0 is sufficiently small.

Let us fix once and for all a suitable value for r0, and turn our attention to the function f (r). For r ∈ [0, r0] set
f (r) = sin r . This will then satisfy the required boundary conditions at r = 0, namely f is odd with f ′(0) = 1. In
order that this curve intersects the original function f (r) = L(1 + r)1/2 at r = r0 we need to select a sufficiently
small value for L ∈ (0,1). We fix such a value of L. Note that ‘sufficiently small’ here depends on the chosen value
for r0. Clearly, for r ∈ [0, r0] the derivative of our modified f is greater than or equal to the derivative of the original
function, and the values taken by the modified f are less than or equal to those of the original function. Thus our
modification results in the quantity f ′/f being at least as large after the modification as it was before. As a result it is
clear that this modification cannot affect the positivity of the Ricci curvature.

The resulting function f (r) is, however, only C0 at r = r0. However we can smooth the function over an arbitrarily
small interval [r0 − ε, r0] in a way that does not diminish f ′, does not increase f and is everywhere concave down.
Hence Ricci positivity can be retained over this deformation.

We now have a well-defined metric on E ×R
p , which is smooth except at r = r0 because of the lack of smoothness

of θ(r) and h(r). We observe that the dependence of the Ricci curvature on θ ′′ and h′′ is linear. Since we can smooth
both functions keeping θ ′′ and h′′ between their values on either side of the deformation interval, and since we can
keep this interval arbitrarily small, we see that the smoothing can be performed keeping the Ricci curvature positive.

This concludes the proof of Theorem A. �
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