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RICCI CURVATURE DECAY ON OPEN MANIFOLDS

DAVID WRAITH

Abstract

The behaviour of the Ricci curvature along rays in a complete open manifold is examined.

1. Introduction

The object of this paper is to make an observation concerning the behaviour of the
Ricci curvature on a complete open manifold.

Theorem A. Let Mn be a complete, non-compact Riemannian manifold, and let
γ(t), t > 0, be a ray in M. Suppose that Ric(γ̇(t)) > 0 for all t. For δ > 0, let

Iδ = {t > 0 : Ric(γ̇(t)) > (n− 1)δ}.
Then Iδ is Lebesgue measurable, with

µ(Iδ) <
π

2
√
δ
.

It is easy to construct examples of manifolds (for instance, surfaces of revolution)
to show both that Theorem A is sharp, and that it fails to be true if we allow any
negative Ricci curvatures along γ.

It is an elementary consequence of Theorem A that on a non-compact manifold
of non-negative Ricci curvature, the Ricci curvature Ric(γ̇(t)) along a ray γ(t) must
exhibit some form of decay. (This is of course not necessarily true if we consider
directions orthogonal to γ̇(t).) The Bonnet–Myers theorem and the result of Ambrose
[1] offer different perspectives on this phenomonon.

2. Preliminary results

Given a ray γ(t), we study the mean curvature of the distance spheres with center
γ(0). In particular, we investigate how this quantity varies along γ(t). Denote by m(t)
the mean curvature of the distance sphere of radius t at the point γ(t). The following
Riccati inequality is well-known (see, for example, [2, p. 26]):

m′(t) 6 −Ric(γ̇′(t))− m2(t)

n− 1
. (1)

We have equality for all t in (1) if and only if we have constant Ricci curvature
(n− 1)δ in the direction of γ.
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Definition 1. Define the function z(t), t > t0, by

z′(t) = −(n− 1)δ − z2(t)

n− 1
, z(t0) = c.

An elementary calculation yields the following lemma.

Lemma 1. If δ > 0, then z(t) is given by

z(t) = (n− 1)
√
δ tan

{
tan−1

(
c

(n− 1)
√
δ

)
+
√
δ(t0 − t)

}
.

In the case δ = 0, the corresponding expression is

z(t) =

(
c−1 +

t− t0
n− 1

)−1

.

Lemma 2. Suppose that Ric(γ̇(t)) > (n − 1)δ for all t > 0, and that the mean
curvature m(t) along γ(t) satisfies m(t0) = c for some t0 > 0. Using this value of c in
the definition of z(t), for all t > t0, we have

m(t) 6 z(t).

Proof. This follows from the Riccati inequality (1) by a standard argument.

Corollary 1. If Ric(γ̇(t)) > (n− 1)δ for t > 0, then:
if δ > 0, we have m 6 (n− 1)

√
δ tan

(
π/2− t√δ);

if δ = 0, we have m 6 (n− 1)/t.

Proof. These formulae follow easily from Lemmas 1 and 2 by setting t0 = 0 and
using the fact that limt→0+ m(t) = ∞.

Lemma 3. If Ric(γ̇(t)) > 0 for all t > 0, and there exists t0 > 0 for which m(t0) < 0,
then there exists t1 with t0 6 t1 < ∞ such that

lim
t→t−1

m(t) = −∞.

Proof. In the definition of z(t), let the value of c be m(t0), and let the value of δ
be 0. By Lemma 1 we have

z(t) =

(
c−1 +

t− t0
n− 1

)−1

.

Now c−1 < 0 and (t− t0)/(n− 1) increases linearly from 0 for t > t0. We see that
z(t) is undefined when t = t0 − (n− 1)c−1.

Set t2 = t0 − (n− 1)z(t0)−1. As z(t) < 0 for all t, we must have

lim
t→t−2

z(t) = −∞.
Lemma 2 asserts that m(t) 6 z(t) for all t > t0 for which m(t) is defined. It follows
that there exists t1 ∈ [t0, t2] with limt→t−1 m(t) = −∞, as required.

Consider a geodesic γ(t). Let {ei} be any choice of orthonormal basis for the
space γ̇(0)⊥. By parallel translation of this frame along γ we obtain vector fields ei(t)
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which form an orthonormal basis for γ̇(t)⊥ for all t. Let Ji(t) be the (unique) Jacobi
field along γ(t) satisfying

Ji(0) = 0, J ′i (0) = ei.

(See [3] for a detailed account of Jacobi fields.)

Definition 2. Let the matrix At be given by

At := (J1|J2| . . . |Jn−1),

where we are using the frame field {ei(t)} to express the Ji as column vectors.

Lemma 4. Consider the geodesic γ(t), and suppose that there is no point on γ which
is conjugate to γ(0). Let St denote the shape operator at γ(t) of the distance sphere of
radius t about γ(0). If τt denotes parallel translation along γ from γ(0) to γ(t), and αt
is the linear endomorphism of Tγ(0)M for which the matrix with respect to the basis
{ei} is At, then

St = τtα
′
tα
−1
t τ
−1
t .

Note. It is clear that detAt 6= 0 (in the absence of conjugate points). Hence αt is
invertible.

Proof. Consider a vector X ∈ γ̇⊥(t0) for some t0. We show that

St0 (X) = τt0α
′
t0
α−1
t0
τ−1
t0

(X).

By assumption, γ contains no point conjugate to γ(0), so there must be a vector
Y ∈ Tγ(0)M for which the Jacobi field along γ defined by

J(0) = 0, J ′(0) = Y ,

satisfies J(t0) = X. From the definition of the matrix At we have

τt ◦ αt(Y ) = J(t).

It follows that

αt(Y ) = τ−1
t (J(t)), (2)

and so

Y = α−1
t (τ−1

t (J(t)))

for all t. Therefore

α′t ◦ α−1
t (τ−1

t (J(t))) = α′t(Y )

=

[
d

dt
αt

]
(Y )

=
d

dt
[αt(Y )]− αt

[
dY

dt

]
.

As Y is a fixed vector, this expression reduces to

d

dt
[αt(Y )].

By (2), this is the same as
d

dt
[τ−1
t (J(t))],
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and in turn this is clearly equal to

τ−1
t

[
d

dt
J(t)

]
= τ−1

t (J ′(t)).

We therefore have

τt ◦ α′tα−1
t [τ−1

t (J(t))] = τtτ
−1
t (J ′(t))

= J ′(t).

Now J ′(t) = ∇N(t)J(t) where N(t) is the outward normal to the distance sphere of
radius t about γ(0). It is clear that [J,N] ≡ 0, and it follows that J ′(t) = ∇J(t)N(t).
By the definition of the shape operator,

∇J(t)N(t) = St(J(t)).

We therefore have

τtα
′
tα
−1
t τ
−1
t (J(t)) = St(J(t))

for all t, and in particular when t = t0 we have

τt0α
′
t0
α−1
t0
τ−1
t0

(X) = St0 (X),

and the result is proved.

As the mean curvature is just the trace of the shape operator, we obtain the
following corollary.

Corollary 2. The mean curvature m(t) of the distance sphere about γ(0) at γ(t)
is given by

m(t) = traceA′tA−1
t .

We now come to the main result of this section.

Proposition 1. Let Mn be a complete, non-compact Riemannian manifold, and let
γ(t), t > 0, be a geodesic originating at a point p ∈M. Suppose that Ric(γ̇(t)) > 0 for
all t. Suppose further that

Ric(γ̇(t)) > (n− 1)δ > 0 (3)

for all t ∈ [0, R]. Then, if R > π/2
√
δ, there is a point along γ conjugate to p. In

particular, γ is not a ray.

Proof. We establish the proposition by contradiction.
Suppose that we can find a geodesic γ which satisfies the hypotheses, but which

contains no point conjugate to p. This is equivalent to saying that the matrix At
is non-singular for all t > 0. It follows that trA′tA−1

t (t) is well-defined and smooth
(because Jacobi fields are smooth) for all t > 0. By Corollary 2, this quantity is just
the mean curvature of the distance sphere of radius t from p at the point γ(t). It
follows that m must be finite for all t > 0.

Now consider the curvature requirement. By Corollary 1, we know that

m 6 (n− 1)
√
δ tan

(π
2
− t√δ

)
for all 0 < t 6 R. The quantity on the right-hand side is just the mean curvature
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of the distance sphere of radius t in the space form of constant curvature δ. For
t > π/2

√
δ this is clearly negative, and so we conclude that m(t) < 0 also.

By Lemma 3, it follows that there exists t1 such that

lim
t→t1+

m(t) = −∞.
However, we have just established that m(t) is finite for all t > 0, and hence we have
our contradiction.

From Proposition 1 we easily obtain a further corollary.

Corollary 3. Let Mn be a complete Riemannian manifold with non-negative Ricci
curvature. Suppose there exists a geodesic ball Bp(R) ⊂M with centre p and radius R
such that

Ric |Bp(R) > (n− 1)δ > 0.

If R > π/2
√
δ, then M is compact.

According to the well-known Bonnet–Myers theorem, if the Ricci curvature satis-
fies (3) for R > π/

√
δ, then M is compact. In Corollary 3, we weaken this assumption

under the additional condition that the Ricci curvature is everywhere non-negative.

Remark. The result of Ambrose [1] states that the integral of the Ricci curvature
along any ray must be finite. (No assumption is made about the Ricci curvature
either on the manifold as a whole, or along the ray.) By integrating the Riccati
inequality (1) and using Corollary 1 together with the fact that m(t) > 0 for all t
(which follows from the proof of Proposition 1), we can easily obtain an alternative
proof of the Ambrose result in the special case where the Ricci curvature along the
ray is non-negative.

3. The proof of Theorem A

In this section we establish Theorem A. First, however, we need some technical
lemmas.

Lemma 5. Define functions yi(t), i = 1, 2, t > 0, by

y′i(t) = −(n− 1)δ − y2(t)

n− 1
,

yi(ti) = c,

where t2 = t1 + ε, for some ε > 0. Then y1(t) = y2(t+ ε) for all t > 0.

Proof. The result is evident from the explicit form of y1 and y2; see Lemma 1.

Lemma 6. Suppose that we define functions ζi(t), i = 1, 2, by

ζ ′i (t) = −(n− 1)δ − ζ2(t)

n− 1
,

ζi(t0) = ci,

for some t0. If c1 > c2, then for all t > t0 we have ζ1(t) > ζ2(t).
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Proof. The result is a trivial consequence of Lemma 1 and the fact that tan−1(x)
is an increasing function for all x.

Proof of Theorem A. Suppose that Ric(γ̇(t)) > (n− 1)δ on closed intervals

Ii = [ai, bi],

where bi 6 ai+1 and i > 1.
Note that these intervals – and any countable union of them – are Lebesgue

measurable.
On each interval, define functions zi inductively by

z′i(t) = −(n− 1)δ − z2(t)

n− 1
,

z1(a1) = m(a1),

zi(ai) = zi−1(bi−1).

Here, as usual, m denotes the mean curvature along γ(t). By Lemma 2 we have
z1(b1) > m(b1).

Suppose now that zk(bk) > m(bk). Since m′(t) 6 0 for all t, we have

zk+1(ak+1) = zk(bk) > m(bk) > m(ak+1)

and, applying Lemma 2 again, we see that

zk+1(bk+1) > m(bk+1).

It now follows by induction that zi(bi) > m(bi) for all i.
Let ∆k =

∑k
i=1(bi − ai). In other words, ∆k =

∑n
i=1 |Ii|.

We want to compare the zi(t) with the function z(t) from Definition 1. There are
two cases to consider.

Case 1: If t0 = 0 and c = z1(a1) in the definition of z, then z(∆k) = zk(bk). This is
a consequence of Lemma 5.

Case 2: If t0 = 0 and c = ∞, then z(∆k) > zk(bk) (by Case 1 and Lemma 6).

Either way, we find that z(∆k) > m(bk).
From the explicit formula for z (Lemma 1) using t0 = 0 and c = ∞, we see that

if ∆k > π/2
√
δ for some k, then z(∆k) < 0 and therefore m(∆k) < 0. By the proof

of Proposition 1, it follows that γ(t) contains a point conjugate to γ(0). Since this
would contradict our assumption that γ is a ray, we conclude that ∆k 6 π/2

√
δ for

all k. Defining Iδ = supk ∆k , we therefore have Iδ 6 π/2
√
δ.

Finally, we must exclude the possibility that Iδ = π/2
√
δ.

Suppose that there is only one interval [a1, b1] on which Ric(γ̇(t)) > (n − 1)δ. If
the length of this interval is π/2

√
δ, then it follows from the above that m(t) = 0

for all t > b1. We conclude from the Riccati inequality (1) that Ric(γ̇(t)) = 0 for all
t > b1. However, Ric(γ̇(t)) > (n− 1)δ for all t ∈ [a1, b1], a contradiction.

Suppose now there are at least two such intervals. As

Ric(γ̇(b1)) = Ric(γ̇(a2)) = (n− 1)δ > 0,

this means there is a point x ∈ (b1, a2) for which Ric(γ̇(x)) > 0. Thus z2(a2)−m(a2) = ε

for some ε > 0 as a consequence of (1), and by Lemma 2 and Lemma 6 it is easy
to see that zk(bk) − m(bk) > ε for all k > 2. We deduce that z(∆k) − m(bk) > ε

for all k > 2, and so z(∆k) > ε as the mean curvature is non-negative. However,
if Iδ = π/2

√
δ, we must have limk→∞ z(∆k) = 0, another contradiction. Therefore

Iδ < π/2
√
δ, and Theorem A is proved.
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