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The aim of this article is to o�er a brief survey of an interesting,

yet accessible line of research in Di�erential Geometry. A funda-

mental problem of mathematics is to understand the relationship

between the geometry and topology of manifolds. The geometry

of a manifold is determined by a Riemannian metric{that is, a

smoothly varying inner product on the tangent bundle. Altering

the Riemannian metric on a given manifold alters the way in which

it curves. It is natural, therefore, to ask to what extent the pos-

sible curvatures of a manifold determine and are determined by its

topology. Note that all manifolds are assumed to be Riemannian,

smooth, complete and without boundary.

There are three main ways of quantifying curvature: sectional

curvature, Ricci curvature and scalar curvature. The sectional

curvature provides the most information, and the scalar curvature

the least. The Ricci curvature can be thought of as an average of

sectional curvatures, and the scalar curvature in turn as an average

of Ricci curvatures. Any textbook on Di�erential Geometry can

be consulted for the exact de�nitions.

Of particular importance is the sign of the curvature. For

example, in dimensions � 3 every manifold admits a metric of

negative Ricci (and therefore negative scalar) curvature. On the

other hand, relatively few possess metrics of everywhere posit-

ive curvature. Manifolds that admit for example a positive Ricci

curvature metric include spheres, some algebraic varieties, many

exotic spheres, Lie groups and homogeneous spaces. Much is now

known about how the existence of a positive scalar curvature met-

ric restricts the possible topology of the manifold. Comparatively
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little is known about positive or non-negative Ricci and sectional

curvature. (See [7] for an overall view.) For an introduction to the

relevance of curvature conditions for the local and global geometry,

see [9].

The object of our attention will be the inuence of posit-

ive or non-negative curvature on perhaps the simplest topological

invariant: the fundamental group. There are many results describ-

ing this inuence, the most important of which we will touch on

below.

There are two approaches to this line of study. One approach

is to attempt to describe the structure of �

1

, and in particular to

say something about the kind of subgroups which can arise. The

other approach is to investigate the growth of �

1

, a concept which

we will explain presently.

Consider a �nitely generated group. We will de�ne the growth

of such a group. Let fg

1

; g

2

; :::; g

r

g be a set of generators. Let (s),

n 2 N be the number of group elements which can be expressed as

words of length � s in the generators and their inverses. Clearly,

(s) will depend on the particular choice of generators. However,

the way in which (s) behaves as s �! 1 turns out to be essen-

tially independent of this choice

We will say that the growth of the group is exponential if

(s) � a

s

for some constant a > 1. We will say the growth

is polynomial if (s) � cs

d

for some constants c and d. More

precisely we will say that the group has polynomial growth of

order � p if

lim sup

s!1

(s)

s

p

<1

and has polynomial growth of order � p if

lim inf

s!1

(s)

s

p

> 0

It is straightforward to show that Z

n

has polynomial growth

of order n. (For example, Z�Z has growth function (s) = 2s

2

+

2s+1.) In contrast, the free group on r generators has exponential
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growth. Explicitly Gpfg

1

; g

2

; :::; g

r

g has growth function

(s) = 1 +

r

r � 1

[(2r � 1)

s

� 1]:

It can be shown that these concepts are independent of the chosen

generators.

To help understand the implications of group growth, it is

useful to consider the growth of a �nitely generated abelian group

with generators g

1

, : : : , g

r

. It is clear that the growth function

(s) is less than or equal to the corresponding function for the

free abelian group on r generators, which by the above has poly-

nomial growth of order r. It follows then that a �nitely generated

abelian group has polynomial growth of order at most equal to the

minimum possible number of generators. From this we can also

conclude that a �nitely generated group with exponential growth

must be non-abelian.

We begin our survey by considering the weakest measure of

curvature: the scalar curvature.

As remarked earlier, the property of admitting a positive or

non-negative scalar curvature metric imposes restrictions on the

possible topology of the underlying manifold. This is particularly

true in the compact case (see [15] for example). However, the inu-

ence of the scalar curvature on the fundamental group is somewhat

weaker than might be expected.

Let (M; g) be any Riemannian manifold, compact or non-

compact. (In the non-compact case assume the scalar curvature is

bounded above and below.) Then there is a metric g

1

on M � S

2

such that scal(g

1

) > 0. The point here is that �

1

(M)

�

=

�

1

(M �

S

2

), so the fundamental group alone cannot be an obstruction to

positive scalar curvature. We de�ne g

1

to be a product metric as

follows:

g

1

= g + tds

2

where ds

2

is the round metric of radius 1 on S

2

and t is a constant.

We have

scal(g

1

) = scal(g) +

2

t

:
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We can therefore ensure scal(g

1

) > 0 everywhere simply by choos-

ing t su�ciently small.

Given that scalar curvature restrictions hold little interest for

our considerations, it makes sense to consider instead the Ricci

curvature.

The most famous result in this direction is due to Myers: a

compact manifold with positive Ricci curvature has a �nite funda-

mental group.

If we weaken the condition Ric > 0 to Ric � 0, then Myers'

result no longer holds. For example if M has a positive Ricci

curvature metric, the product metric on M �S

1

has non- negative

Ricci curvature (where S

1

is equipped with the standard metric).

However, �

1

(M � S

1

)

�

=

�

1

(M) � Z. Of course the class Ric � 0

also contains at tori, and �

1

(T

n

)

�

=

Z

n

. More generally, it can be

shown that the fundamental group of a compact n�dimensional

manifold M has a free abelian subgroup of rank � n of �nite

index in �

1

(M). This is a consequence of the Splitting Theorem

[6], which states that if M is a non-compact, Ricci non-negative

manifold which contains a line (ie a non-closed geodesic) then M

is isometric to some metric product M

0

� R. In terms of group

growth, we can deduce that �

1

(M) has polynomial growth of order

� n.

For Ricci positive or non-negative curvature, the non-compact

case is more interesting. We begin by looking at Ric � 0.

The fundamental group of a non-compact manifold could be

in�nitely generated. Of course, the concept of group growth has

no meaning in this case. However, if the Ricci curvature of an

n�dimensional non-compact manifold M is � 0, any �nitely gen-

erated subgroup of �

1

(M) must satisfy (s) � ks

n

for some con-

stant k. This is a result of J. Milnor, see [12].

To put this into context, compare with the fact that if M is a

compact manifold with negative sectional curvature, �

1

(M) must

have exponential growth [12].

The growth results we will describe arise for the most part

from volume comparison theorems. Any Riemannian manifold

admits a canonical measure, which is determined by the metric.
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Using this measure we can �nd the volume of the manifold. It is

more enlightening, however, to choose a point on the manifold and

consider the volume of small disks about that point. Suppose we

measure the volume of a (geodesic) disk of radius R, then do the

same for a disk of radius R in Euclidean space. In general these

volumes will be di�erent. For example the disk of radius

�

2

in

the standard 2-sphere has volume (area) = 2�. The corresponding

disk in R

2

has volume (area) =

�

3

4

. More generally we have that

if all Ricci curvatures of M

n

are � 0, for every x 2M :

V (x;R) � !

n

(R)

where V (x;R) is the volume of the geodesic ball of radius R about

x and !

n

(R) the volume of a ball of radius R in R

n

. This is the

Bishop comparison theorem, see [4; Theorem 3.7]. We also have

the Gromov-Bishop comparison theorem [4; Theorem 3.9], which

states that

V (x;R)

!

n

(R)

is decreasing with respect to R. Thus on manifolds of non-negative

Ricci curvature, volume grows slower than in Euclidean space.

We have seen the connection between curvature and volume

growth. We will now say a little about the relationship between

volume growth and the growth of the fundamental group.

The key fact is that the fundamental group can be regarded as

the group of deck transformations of the universal cover. Moreover,

if we pull back the metric from the manifold to its universal cover,

the deck transformations are actually isometries. Choose a set

of generators fg

1

; :::; g

r

g for �

1

(or if �

1

is not �nitely generated

consider a �nitely generated subgroup of �

1

and select generators

for this). Let M

n

denote our manifold, and let

~

M be its universal

cover. Choose a point x 2

~

M and let D = max

i

fd(x; g

i

x)g where

d(x; y) is the distance between x and y. Let N

R

(x) denote the

neighbourhood of

~

M centred on x of radius R. We can then assert

that the neighbourhood N

sD

(x), (s 2 R

+

) contains at least (s)

images of x under the action of �

1

(or the subgroup thereof).
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If we consider a disk of volume V about x, this disk will

be mapped isometrically under the action of �

1

onto at least (s)

other disks which are centred within N

sD

(x). If this disk is chosen

suitably small, we can ensure these images are disjoint. On the

other hand, if the disks are suitably large, the images will cover

N

sD

(x). The idea is to estimate the volume of N

sD

(x) in terms

of (s):V . Invoking a volume comparison theorem then allows us

to estimate (s) in terms of the growth of disks in

~

M , and this in

turn allows us to estimate the growth of (s) is terms of s.

The �rst Milnor result above was sharpened by Anderson in

[1]. Before discussing his results, let us recall some elementary

facts about covering spaces. The universal cover U of a space

S is simply-connected and admits a proper discontinuous action

from �

1

(S). The quotient of U under this action is S. We can

also form the quotient of U under the action of a normal subgroup

G � �

1

(S). Such a quotient space will be a (normal) cover of S

with deck transformation group isomorphic to

�

1

(S)

G

.

The Milnor results arose from comparing the growth rate of

the fundamental group and the growth of volume on the manifold

and its universal cover. The Anderson results below are a natural

generalization of this. Their importance lies in the fact that they

say essentially everything about �

1

growth on non-compact man-

ifolds of non-negative Ricci curvature. They involve comparing

the volume growth of a manifold and an arbitrary normal covering

space with the growth rate of the group of covering transforma-

tions.

LetM be a non-compact manifold with Ric � 0, and let N be

a normal cover of M with covering group �. If � has polynomial

growth of order � p and N has polynomial volume growth of order

� p+k, then M has polynomial volume growth of order � k ([1]).

This makes intuitive sense for reasons we will discuss. One

might expect the curvature of a manifold to be increased by form-

ing the quotient under some group action as this results in a more

`twisted' space. Conversely, one would expect a cover to have

smaller curvature and therefore faster volume growth than the ori-

ginal manifold.
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Let M be a manifold of non-negative Ricci curvature which is

acted upon properly and discontinuously by two discrete groups

G

1

and G

2

. If the growth of G

1

is greater than that of G

2

, this

suggests that in some sense G

1

is a larger group than G

2

. We

would therefore expect

M

G

1

to be more `twisted' (ie have greater

curvature) than

M

G

2

. In terms of volume growth we would expect

the volume of small disks to grow slower in

M

G

1

than in

M

G

2

. Notice

that this is precisely what the above result says: for a given man-

ifold of non-negative Ricci curvature, a lower bound on group

growth imposes an upper bound on the volume growth of the quo-

tient space.

Using similar methods of proof it is possible to turn this result

around: for a given manifold of non-negative Ricci curvature, an

upper bound on the volume growth of a cover imposes an upper

bound on the growth of the covering group. More precisely we

have: if the volume growth of M is polynomial of order � k and

N has polynomial volume growth of order � p + k, then � has

polynomial growth of order � p.

Using these theorems we can deduce some interesting results

about the structure of �

1

in the case that Ric � 0. Since any

�nitely generated normal subgroup of �

1

(M) is the group of deck

transformations of some covering of M , it is easy to see that if the

volume growth of our Ricci non-negative manifold is polynomial

of order � k, then every �nitely generated subgroup of �

1

has

polynomial growth of order � n�k. Notice that this is generalizes

the Milnor theorem.

We can actually say more: a little group theory shows that

the �rst Betti number

b

1

(M) =

�

1

[�

1

; �

1

]

� n� k:

In particular, the maximal rank of a free abelian subgroup of �

1

is n� k.

Finally, it is possible to deduce that if the volume growth is

maximal, ie of order n, then a uniform bound can be imposed on

the order of all �nitely generated subgroups of �

1

, from which it

can be concluded that �

1

itself is �nite.
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Let us now consider the condition Ric > 0, again in the non-

compact case. First note that the conclusion of Myers' Theorem

is false in the non-compact case: there exist manifolds of strictly

positive Ricci curvature having in�nite fundamental groups. For

example Nabonnand [13] showed that a metric of strictly positive

Ricci curvature can be given to S

1

� R

3

. What can we say about

the growth of �

1

for such manifolds? Clearly the results of Milnor

and Anderson for Ricci non-negative manifolds still apply. It is a

consequence of [1] that if Ric > 0 then the order of polynomial

growth is � n� 3. As a result of examples of B�erard Bergery [2]

and the above result of Nabonnand, it follows that this bound is

sharp. The bound does not hold in the Ricci non-negative case: it

is easy to construct manifolds for which the fundamental group has

order n� 1 polynomial growth - for example T

n�1

�R. However,

it is not known to the author whether non-compact manifolds real-

izing this growth bound exist.

It is natural to ask to what extent our results for Ric � 0 hold

if we perturb this condition slightly, ie allow some small negative

curvatures. In other words, are the growth and structure of �

1

stable phenomena?

For compact manifolds the answer is essentially yes. In [16]

Wei showed that if Ric(M

n

) � ��, then �

1

(M) has polynomial

growth of order � n provided � is less than some (small) constant

which depends on n, the diameter and volume of the manifold.

(There is no stability if we replace Ric by the sectional

curvature K. Given � > 0, any metric with K bounded away from

�1 can be rescaled to satisfy K � �� using some suitably large

scaling factor. Ricci curvature, by contrast, is invariant under

global rescalings.)

It would be interesting to know if �

1

growth shows similar

stability for non-compact manifolds.

We now move to the strongest measure of curvature, the sec-

tional curvature. (The sectional curvature actually determines

the curvature tensor {see [4; Proposition 2.1]{and so contains all

curvature information.)

If K > 0 then in the non-compact case, a theorem of Gro-
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moll and Meyer [8] asserts that the manifold must actually be

di�eomorphic to R

n

. From this it follows that the fundamental

group is zero. In the compact case there are clearly non-simply

connected manifolds with K > 0, for example the real project-

ive and lens spaces. However, Myers' Theorem ensures that the

fundamental group is �nite for K > 0 also. A conjecture due to

Chern claims that the fundamental group is actually cyclic. Some

progress towards proving this conjecture has been made by Rong

[14]. He showed that if the sectional curvature is quarter-pinched,

ie

1

4

< K � 1 then the fundamental group is almost-cyclic. In

other words, there is a cyclic subgroup of �nite index.

Weakening positive sectional curvature to non-negative allows

much more exibility for the fundamental group. In the non-

compact case, the Soul Theorem [3] describes the structure of

manifolds with K � 0: all such manifolds are di�eomorphic to

the total space of a vector bundle over a compact manifold with

K � 0. From this it follows that the fundamental group must be

�nitely generated (compare the Milnor problem below). Moreover,

a result of Gromov shows that an upper bound for the number

of generators needed can be given in terms of the dimension n

only (explicitly 2:5

n

2

). This bound also holds in the compact case.

Since non-negative sectional curvature implies non-negative Ricci

curvature, the results concerning the growth of the fundamental

group of Ricci non-negative manifolds are also true for K � 0.

No survey of this subject area would be complete without

mentioning arguably its most famous unsolved problem. If M is

non-compact with non-negative Ricci curvature, then a conjecture

of Milnor claims that �

1

(M) itself is �nitely generated. Though

universally believed to be true, this conjecture has resisted proof

for 30 years. If one could establish the truth of this conjecture,

it would follow from a result of Gromov [10] that �

1

(M) has a

nilpotent subgroup of �nite index.

The emphasis in this article has been on consequences of non-

negative curvature. The case of non-positive curvature merits a

few words. As mentioned earlier, any manifold - compact or non-

compact - of dimension � 3 admits a metric with negative Ricci
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curvature [11] (and therefore a metric of negative scalar curvature).

So admitting a negative or non-positive Ricci curvature has no

homotopy-theoretic consequences.

The situation is markedly di�erent for non-positive sectional

curvature. The theorem of Hadamard and Cartan [4; Corollary

2.2] asserts that the universal cover of such a manifold is R

n

. As

a result, every higher homotopy group vanishes, and all homo-

topy information is concentrated in the fundamental group. The

collection of manifolds which satisfy this curvature requirement is

extensive (even in dimension 2 there are in�nitely many di�eo-

morphism types). Not surprisingly, the study of the fundamental

group has yielded a correspondingly rich theory. For an introduc-

tion to this area, see [5].

The underlying theme of this article has been the interaction

of geometry and topology. One would expect the curvature of a

manifold to inuence a variety of topological invariants{not just

the fundamental group. However, with the exception of a few

isolated results, very little is known about these relationships. The

situation is particularly acute in the case of positive/non-negative

Ricci curvature.
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