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ALGEBRAIC MINIMAL SURFACES IN R4

ANTHONY SMALL∗

Abstract

There exists a natural correspondence between null curves in C4 and ‘free’ curves on O (1) ⊕
O (1) −→ P1; it underlies the existence of ‘Weierstrass type formulae’ for minimal surfaces in
R4. The construction determines correspondences for minimal surfaces in R3, and constant mean
curvature 1 surfaces in H3; moreover it facilitates the study of symmetric minimal surfaces in R4.

1. Introduction

Our purpose here is to describe a natural correspondence between null holo-
morphic curves in C4, and ‘free’ holomorphic curves on the total space of the
holomorphic vector bundle O (1) ⊕ O (1) over P1. Our main interest in the
former derives from the fact that any minimal surface in R4 may be described
as the real part of such a curve. The correspondence is particularly useful in the
study of algebraic minimal surfaces, that is, the real parts of null meromorphic
curves in C4.

The construction is closely related to the classical Klein correspondence
between lines in P3 and points of the quadric Q4 ⊂ P5. In fact, compactifying
C4 to Q4, and O (1) ⊕ O (1) to P3, it may be understood in terms of classical
osculation duality, cf. [10]. Here we work in the ‘uncompactified picture’.
We feel that this makes the differential geometry clearer, in particular the
appearance of nullity, and moreover eases the discussion of the relationship
with the other correspondences described below.

The correspondence underlies the Weierstrass-type formulae (10)–(13) be-
low. These were found by Montcheuil [15], and studied at length by Eisenhart
in [5] and [6]. The geometrical structure underlying the formulae was first
exposed by Shaw [21]. This was framed in ‘twistor terminology’, in terms of
the Klein construction. Unfortunately, this interesting paper has largely been
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overlooked. The results of §4 are essentially an amplification of the relevant
part Shaw’s paper. One should consult [13] for a higher dimensional analogue
and [2] for connections with spinors and strings.

Lie discovered a duality between null curves in C3 and ‘free’ curves on a
singular quadric cone in P3, see [3], [11], [17] and [18] for further details.
In fact this may be understood, following Lie, in terms of classical oscula-
tion duality between curves in P3 and P∗

3. This duality underlies the classical
Weierstrass representation formulae, [23]. In §5 we see how this fits into the
construction mentioned above and relate the two through the Euler sequence
on P1; moreover we see that the Weierstrass formulae may be derived from the
formulae for null curves in C4.

In [19], a duality between null curves in P SL(2,C) and ‘free’ curves on
a non-singular quadric surface in P3 is described. This is interesting mainly
because Bryant [1] showed that the former project to H3 to give all surfaces of
constant mean curvature 1. This duality underlies an integrated version of the
Bryant representation formula, cf. (18)–(21). In §6 we explain how to derive
this duality from the correspondence for null curves in C4. For other recent
derivations, see [4], [7] and [8]. (For basic information about constant mean
curvature 1 surfaces in H3, in addition to [1], one should consult the seminal
papers of Umehara and Yamada and their coauthors.)

In §7 we explain how to read various features of an algebraic minimal sur-
face off its dual curve in O (1)⊕O (1); this means the total Gaussian curvature,
end and branch point structures.

In §8 we show that the correspondence facilitates, through some element-
ary representation theory, the study of algebraic minimal surfaces in R4 with
symmetry.

2. Null Geometry of C4

First we fix notation and review some basic concepts. Complexification of the
Euclidean structure of R4 gives a quadratic form on C4 which determines the
quadric hypersurface Q2 ⊂ P3 of null directions:

Q2 = { [z] ∈ P3 ; (z, z) = z2
1 + z2

2 + z2
3 + z2

4 = 0 }.
The null vectors comprise the affine cone C(Q2) ⊂ C4.

With respect to the coordinates given by:

(1)

(
a b

c d

)
=

(
z1 + iz2 z3 + iz4

−z3 + iz4 z1 − iz2

)
,

Q2 is described by (ad − bc = 0). Recall that Q2
∼= P1 × P1: expli-

citly, consider the following Segré embedding 
 : P1 × P1 −→ Q2, where
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([s0, s1], [t0, t1]) = [s0t0,−s1t0, s0t1,−s1t1]. Let ζ1 = s0/s1, ζ2 = t0/t1; if
neither a and b, nor a and c are both zero, then

(2) 
−1([a, b, c, d]) = (−a/b, a/c) = (ζ1, ζ2),

equivalently, in (z1, z2, z3, z4)-coordinates:

(3) 
−1([z1, z2, z3, z4]) =
(

−z1 + iz2

z3 + iz4
,
z1 + iz2

−z3 + iz4

)
.

A two-dimensional subspace lying on C(Q2) is said to be totally isotropic;
such a subspace projects to a line on Q2. It is well-known that there are two
disjoint families of lines onQ2, each parameterised by a copy of P1; two lines
meet if and only if they are from different families, see [10] for further details.

This can be understood in terms of the Segré embedding. The two families
of lines on Q2 comprise curves of the form 
({ζ1} × P1), and 
(P1 × {ζ2})
respectively; the former are called the A-lines and the latter the B-lines. The
corresponding families of isotropic subspaces of C4 are accordingly referred
to as A-planes and B-planes respectively.

A point q ∈ Q2, lies at the intersection of anA-line with a B-line; these are
thus uniquely determined. In fact, the union of these lines is the intersection
of the tangent plane to Q2 at q, with Q2.

So, there is a P1 of A-planes passing through the origin in C4. Each such
plane has two dimension’s worth of affine translates. Consequently, the set of
all affine A-planes in C4 is parameterised by a rank 2 complex vector bundle
over P1. It is convenient for later calculations to describe this in the following
way.

Let O (1) −→ P1, denote the holomorphic line bundle of degree 1, and
let π : O (1) ⊕ O (1) −→ P1 be the projection map. With respect to an
affine coordinate ζ on P1, an element of H0(P1,O (1) ⊕ O (1)) takes the
form σabcd(ζ ) = (a + bζ, c + dζ ), for some (a, b, c, d) ∈ C4, and hence
H0(P1,O (1)⊕ O (1)) ∼= C4.

Remark 1. We use the same notation for the total space of a bundle and its
sheaf of germs of local sections.

Consider the set of null sections:

{σ ∈ H0(P1,O (1)⊕ O (1)) ; ad − bc = 0},
it is easy to see that the null sections are precisely the sections which vanish
somewhere on P1.

Fix a point ζ1 ∈ P1 and consider the set �ζ1 , of global sections that vanish
there. σ vanishes at ζ1, means a + bζ1 = c + dζ1 = 0, so �ζ1 is the A-plane
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determined by ζ1 = −a/b, cf. (2). Fixing a point p ∈ O (1) ⊕ O (1), with
π(p) = ζ1,

�p = {σ ∈ H0(P1,O (1)⊕ O (1)) ; σ(ζ1) = p}
is just an affine translate of �ζ1 ; thus π−1(ζ1) parameterises all the affine
translates of �ζ1 . Letting � denote the vector bundle on P1 with total space
∪ζ∈P1�ζ , this fact is displayed by the exact sequence

0 −→ � −→ P1 × H0(P1,O (1)⊕ O (1))
ε−→ O (1)⊕ O (1) −→ 0,

where ε(ζ, σ ) = σ(ζ ).
In summary: a point of O (1) ⊕ O (1) corresponds to an affine A-plane in

C4 ∼= H0(P1,O (1) ⊕ O (1)). The image of the global section Pz = σz(P1),
may be viewed as parameterising the set of affine A-planes in C4 which pass
through z.

Now fix the three dimensional subspace of C4, given by (z4 = 0), or equi-
valently, (b + c = 0).

Let C(Q1) be the affine cone in C3 over (z2
1 + z2

2 + z2
3 = 0; z4 = 0); the

latter are equivalent to (ad + b2 = 0; b + c = 0). Clearly,

C(Q2) ∩ C3 = C(Q1).

Observe that 
−1(Q1) is the diagonal � ⊂ P1 × P1. Each q ∈ �, determines
a pair �A

q , �
B
q , an A-plane and B-plane respectively, such that TqQ2 ∩Q2 =

[�A
q ] ∪ [�B

q ]. Observe that

q = �A
q ∩�B

q , and q0 = �A
q +�B

q ,

where q0 = {z ∈ C4 ; (z, w) = 0, for all w ∈ q}.
Recall that an affine plane in C3 is said to be null if the restriction to it of

the quadratic form z2
1 + z2

2 + z2
3 is degenerate. An affine null line in C3 lies on

a unique affine null plane; for q ∈ �, q0 ∩ C3, gives the unique null plane in
C3 that contains q.

Let O (2) denote the line bundle of degree 2 on P1, and recall that H0(P1,

O (2)) ∼= C3. In appropriate coordinates the discriminant of a + bζ + cζ 2

becomes z2
1 + z2

2 + z2
3; thus the non-zero null sections are precisely those

possessing a double root. Points of O (2) determine affine null planes in C3;
simply fix a point and consider the set of all global sections passing through
it. Thus O (2) parameterises the set of all affine null planes in C3. Dually, the
global section Pz = σz(P1), may be viewed as parameterising all the affine null
planes through z ∈ C3. See [11] and [17] for further details. We now relate this
to the correspondence for A-planes in C4 described above.
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Let �A and �B denote the obvious subbundles of C4 = Q1 × C4 over Q1.
From elementary linear algebra there is the following exact sequence:

(4) 0 −→ (�A +�B)/�A −→ C4/�A �−→ C4/(�A +�B) −→ 0

As we saw above, C4/�A parameterises the set of affine A-planes in C4.
Clearly, the last term parameterises the set of affine null planes in C3: � is
given by intersecting an affine A-plane with C3, and taking the unique affine
null plane in C3 that contains the affine null line resulting from the intersection.
The first term is isomorphic to the trivial bundle.

In fact, this is equivalent to the Euler sequence over P1, cf. [10]. Let
(ζ, η1, η2) be the usual coordinates on O (1) ⊕ O (1). Fixing σ1, σ2 ∈ H0(P1,

O (1)), determines a bundle map:

O (1)⊕ O (1) −→ O (2), where (ζ, η1, η2) −→ (ζ, η1σ1(ζ )+ η2σ2(ζ )).

Setting σ1(ζ ) = 1, σ2(ζ ) = −ζ , gives �(ζ, η1, η2) = (ζ, η1 − ζη2). It is easy
to see that ker(�) is the trivial line bundle, and thus (4) may be reformulated
as:

(5) 0 −→ O −→ O (1)⊕ O (1)
�−→ O (2) −→ 0.

The induced cohomology sequence gives:

(6) 0 −→ C −→ H0(P1,O (1)⊕ O (1))
�̃−→ H0(P1,O (2)) −→ 0,

where
�̃(a + bζ, c + dζ ) = a + (b − c)ζ − dζ 2.

Observe that ker(�̃) is the line spanned by (0, 0, 0, z4), and C3 = (z4 =
0) ⊂ H0(P1,O (1) ⊕ O (1)) is mapped isomorphically to H0(P1,O (2)). The
following is now clear:

Proposition 2.1. (i) The null sections in (z4 = 0) ⊂ H0(P1,O (1)⊕ O (1))
map via �̃ to the null (affine quadric) cone in H0(P1,O (2)) that comprises the
zero section, together with the global sections with a double root somewhere
on P1.

(ii) For z ∈ (z4 = 0) ⊂ H0(P1,O (1) ⊕ O (1)), the P1 of affine A-planes
that pass through z, determines as above, the P1 of affine null planes in C3 that
pass through z.
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3. Gauss Maps and ‘Weierstrass Formulae’

Let X be a connected Riemann surface and suppose that ω : X −→ C4 is a
non-constant null holomorphic curve; i.e. (ω′, ω′) = 0, over X. The real part
φ = (ω+ ω̄)/2 describes a branched minimal surface in R4. In fact every such
surface may be parameterised in this way; however in general, one may have
to pass to the univeral cover of X to do so, because of real periods. See [12],
[14] and [16] for further details and background information.

LetG+(2,R4) denote the Grassmann manifold of oriented two planes in R4.
If π ∈ G+(2,R4) has an oriented orthonormal basis {e1, e2}, then [e1 + ie2] ∈
Q2; it is easy to check that this gives a diffeomorphism G+(2,R4) ∼= Q2.

The Gauss map of ω, is given by γω = [ω′] : X −→ Q2. The preceeding
observations show that it may be identified with γφ , the Euclidean Gauss map
of φ, which is given by γφ(ξ) = dφ(TξX).

Following (3), write Gω = 
−1 ◦ γω; this gives the pair

Gω = (gAω , g
B
ω ) : X −→ P1 × P1,

where

(7) gAω = −ω
′
1 + iω′

2

ω′
3 + iω′

4

, gBω = ω′
1 + iω′

2

−ω′
3 + iω′

4

.

Remark 2. Note that gAω and gBω record the A-planes and B-planes, re-
spectively, determined by the null directions described by the Gauss map γω.
If ω : X −→ (z4 = 0), then γω : X −→ Q1, and gAω = gBω , may be identified
with the usual Gauss map gω : X −→ P1, cf. [12].

If ω : X −→ C4 is a non-constant null holomorphic curve such that, in
(a, b, c, d)-coordinates, ω′

4 is not identically equal to ±iω′
3, then there exists a

holomorphic 1-form θ onX, such that with respect to (a, b, c, d)-coordinates:

(8) ω =
∫
(gAωg

B
ω ,−gBω , gAω ,−1)θ,

cf. (1); accordingly, in (z1, z2, z3, z4)-coordinates:

(9) ω = 1

2

∫
(gAωg

B
ω − 1,−i(1 + gAωg

B
ω ),−(gAω + gBω ), i(g

B
ω − gAω ))θ.

Conversely, given a holomorphic 1-form θ , such that none of the components
in (8) have non-zero periods and moreover, at a pole of gAω , gBω or gAωg

B
ω , θ

has a zero of order at least equal to minus the pole, the above defines a null
holomorphic curve ω : X −→ C4, cf. [12].
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Remark 3. Recall that it follows from a theorem of Lawson that if gAω or
gBω is constant, then there exists an orthogonal complex structure on R4 with
respect to which φ = Re(ω) is holomorphic, cf. [14].

Now we locally reparameterise the null curve by the first Gauss map variable
ζ = ζ1 = gAω (ξ). Suppose that gAω is non-constant and that the holomorphic
functions f1(ζ ) and f2(ζ ) are such that

gBω ◦ (gAω )−1(ζ ) = f ′′
1

f ′′
2

(ζ ) and θ(ζ ) = −f ′′
2 (ζ ) dζ.

Substituting into (8) gives:

ω ◦ (gAω )−1(ζ ) =
∫
(−ζf ′′

1 (ζ ), f
′′
1 (ζ ),−ζf ′′

2 (ζ ), f
′′
2 (ζ )) dζ,

and hence

ω ◦ (gAω )−1(ζ ) = (f1(ζ )− ζf ′
1(ζ ), f

′
1(ζ ), f2(ζ )− ζf ′

2(ζ ), f
′
2(ζ )).

Converting to (z1, z2, z3, z4)-coordinates yields the formulae:

ω1 ◦ (gAω )−1(ζ ) = 1

2
(f1(ζ )− ζf ′

1(ζ )+ f ′
2(ζ ))(10)

ω2 ◦ (gAω )−1(ζ ) = i

2
(−f1(ζ )+ ζf ′

1(ζ )+ f ′
2(ζ ))(11)

ω3 ◦ (gAω )−1(ζ ) = 1

2
(f ′

1(ζ )+ ζf ′
2(ζ )− f2(ζ ))(12)

ω4 ◦ (gAω )−1(ζ ) = i

2
(−f ′

1(ζ )+ ζf ′
2(ζ )− f2(ζ ))(13)

4. Duality for Null Curves in C4

We view C4 ∼= H0(P1,O (1)⊕O (1)), and interpret nullity as in §2. Accordingly,
to say that a non-constant holomorphic map ω : X −→ H0(P1,O (1)⊕ O (1))
is null means

dω

dξ
(ξ)(ζ ) = O [ζ − gAω (ξ)].

For ω : X −→ H0(P1,O (1) ⊕ O (1)), non-constant and null, there exists a
globally defined lift of gAω ; Aω : X −→ O (1)⊕ O (1), given by

Aω(ξ) = ω(ξ)(gAω (ξ)).

We refer to this as the Klein transform of ω.
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Remark 4. Aω(ξ) gives the affineA-plane in C4 that contains the null line
γω(ξ), and passes through ω(ξ).

Lemma 4.1. Suppose that ω : X −→ H0(P1,O (1)⊕ O (1)) is null with gAω
non-constant. Then Aω determines ω.

Proof. Suppose that (gAω )
−1 exists on an open set U ⊂ P1 and write

Aω ◦ (gAω )−1(ζ ) = (f1(ζ ), f2(ζ ))

over U . If ω(ξ)(ζ ) = (a(ξ)+ b(ξ)ζ, c(ξ)+ d(ξ)ζ ), then

(f ′
1(ζ ), f

′
2(ζ )) = (b ◦ (gAω )−1(ζ ), d ◦ (gAω )−1(ζ )).

Hence, over U we have:

a ◦ (gAω )−1(ζ ) = f1(ζ )− ζf ′
1(ζ ), b ◦ (gAω )−1(ζ ) = f ′

1(ζ )

c ◦ (gAω )−1(ζ ) = f2(ζ )− ζf ′
2(ζ ), d ◦ (gAω )−1(ζ ) = f ′

2(ζ )

Thus, by uniqueness of analytic continuation, Aω determines ω.

Remark 5. Observe that this elucidates the geometric meaning of (10)–
(13).

Let Spé(O (1) ⊕ O (1)) denote the étalé space of the sheaf of germs of
local holomorphic sections of O (1)⊕ O (1), see [22]. There exists a canonical
holomorphic map

* : Spé(O (1)⊕ O (1)) −→ H0(P1,O (1)⊕ O (1)),

that is given on stalks by:

(O (1)⊕ O (1))ζ
−→ (O (1)⊕ O (1))/(I 2

ζ ⊗ (O (1)⊕ O (1))) ∼= H0(P1,O (1)⊕ O (1)),

where Iζ denotes the ideal sheaf of germs of functions vanishing at ζ .
Let G ⊂ Spé(O (1)⊕ O (1)) denote the set of germs of global sections.

Theorem 4.1. The map * : Spé(O (1)⊕ O (1)) −→ H0(P1,O (1)⊕ O (1))
is null.

Its Klein transform

A* : Spé(O (1)⊕ O (1)) \ G −→ H0(P1,O (1)⊕ O (1)),

is given by evaluation, i.e. A*([σ ]ζ ) = σ(ζ ).
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Proof. By definition of *, for [σ ]ζ0 ∈ Spé(O (1) ⊕ O (1)), there exists a
neighbourhood of ζ0 on which

σ(ζ ) = *([σ ]ζ0)(ζ )+ O [(ζ − ζ0)
2].

Differentiating this equation in the local chart [σ ]ζ0 −→ ζ0 on Spé(O (1) ⊕
O (1)), yields

d*

dζ0
([σ ]ζ0)(ζ ) = O [ζ − ζ0].

Hence * is null, with gA*([σ ]ζ0) = ζ0.
Observe that

A*([σ ]ζ0)(g
A
*([σ ]ζ0)) = *([σ ]ζ0)(ζ0) = σ(ζ0).

Suppose thatω : X −→ H0(P1,O (1)⊕O (1)) is null with gAω non-constant.
Let

X̃ = {ξ ∈ X ; Aω(ξ) is transverse to π−1(gAω (ξ))}.
Furthermore, let Ãω : X̃ −→ Spé(O (1) ⊕ O (1)), be the natural lift of Aω

over X̃.

Theorem 4.2. If ω : X −→ H0(P1,O (1) ⊕ O (1)) is null with gAω non-
constant then ω|X̃ = * ◦ Ãω.

Proof. First note gA
*◦Ãω

= gA* ◦ Ãω. Now,

A
*◦Ãω

(ξ) = *(Ãω(ξ))(g
A

*◦Ãω

(ξ))

= A*(Ãω(ξ))

= Aω(ξ),

and thus the result follows from Lemma 4.1.

5. Null Curves in C3

There exists a canonical holomorphic map*2 : Spé(O (2)) −→ H0(P1,O (2)),
that sends a germ to its 2-jet. It is easy to see that

d*2

dζ0
([σ ]ζ0)(ζ ) = O [(ζ − ζ0)

2];

this means that *2 is null, with Gauss map g*2(ζ0) = ζ0.
For a null curve ω : X −→ H0(P1,O (2)), with gω non-constant, there

exists a lift of gω, the Gauss transform +ω : X −→ O (2), given by +ω(ξ) =
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ω(ξ)(gω(ξ)). (This gives the unique affine null plane in H0(P1,O (2)) through
ω(ξ), that contains the null line [ω′(ξ)].) Moreover, ω|X̃ = *2 ◦ +̃ω, where

X̃ = {ξ ∈ X ; +ω(ξ) is transverse to π−1
2 (gω(ξ))},

and +̃ω; X̃ −→ Spé(O (2)), is the natural lift of +ω over X̃.
This gives a correspondence between curves in O (2) and null curves in

H0(P1,O (2)). Our purpose now is to relate this to the correspondence dis-
cussed in §4, via the Euler sequence, as described in §3.

First, consider *−1(z4 = 0): in particular note that

[(f1, f2)]ζ0 ∈ *−1(z4 = 0) ⇐⇒ [f ′
1]ζ0 = [ζf ′

2 − f2]ζ0 ,

cf. [21]. Let�e : *−1(z4 = 0) −→ Spé(O (2)) denote the map induced by�;
cf. (5). The following is clear: for ζ ′

0 ∈ P1,

Lemma 5.1. (�e)−1([f ]ζ ′
0
) = [(

f − 1
2ζ0f

′,− 1
2f

′)]
ζ ′

0
.

Now suppose that [(f1, f2)]ζ ′
0

∈ *−1(z4 = 0). On a neighbourhood U of
ζ ′

0,
*(ζ0)(ζ ) = (a(ζ0)+ b(ζ0)ζ, c(ζ0)+ d(ζ0)ζ ),

where, writing f = f1 − ζ0f2, from Lemma 5.1 and (10)–(13):

a(ζ0) = f (ζ0)− ζ0f
′(ζ0)+ 1

2
ζ 2

0 f
′′(ζ0)

b(ζ0) = 1

2
(f ′(ζ0)− ζ0f

′′(ζ0))

c(ζ0) = −b(ζ0)

d(ζ0) = −1

2
f ′′(ζ0)

It follows that �̃ ◦*(ζ0) = A(ζ0)+ B(ζ0)ζ + C(ζ0)ζ
2, where

A(ζ0) = f (ζ0)− ζ0f
′(ζ0)+ 1

2
ζ 2

0 f
′′(ζ0)

B(ζ0) = f ′(ζ0)− ζ0f
′′(ζ0)

C(ζ0) = 1

2
f ′′(ζ0)

which, converting to (z1, z2, z3, 0)-coordinates, give the classical Weierstrass
formula for a null curve in C3.

On the other hand, it is clear that *2 ◦ �e gives the same result, thus we
have:
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Proposition 5.1. �̃ ◦* = *2 ◦�e.

Lemma 5.2. If ψ1, ψ2 : X −→ O (1)⊕ O (1), are such that gAψ1
and gAψ2

are

non-constant, and * ◦ ψ̃1 = * ◦ ψ̃2, then ψ1 = ψ2.

Proof. This follows immediately from

ψj ◦ (gA
*◦ψ̃j )

−1(ζ0) = *(ψ̃j ◦ (gA
*◦ψ̃j )

−1(ζ0))(ζ0).

In the next result we see that the Klein and Gauss transforms for a curve
ω : X −→ (z4 = 0), are related, via the Euler sequence, in the obvious way:

Theorem 5.1. For ω : X −→ (z4 = 0), such that gAω is non-constant,

+�̃◦ω = � ◦ Aω.

Proof. First observe that �̃◦ω|X̃ = �̃◦*◦Ãω. But, �̃◦ω|X̃ = *2◦+̃�̃◦ω,
and hence, from Proposition 5.1, * ◦ Ãω = * ◦ (�e)−1 ◦ +̃�̃◦ω. The result
now follows from Lemma 5.2.

6. Null Curves in P SL(2, C)

Translation of the Cartan-Killing form on P SL(2,C) gives a holomorphic
quadratic form.; the induced null cone in each tangent space endows P SL(2,
C) with a conformal structure. In [1], Bryant showed that holomorphic curves
in P SL(2,C) which are null with respect to this conformal structure project
to H3, hyperbolic space of curvature −1, to give surfaces of constant mean
curvature 1.

In [19], it was shown that classical osculation duality between curves in
P3 and P∗

3 induces a natural correspondence between null holomorphic curves
in P SL(2,C) and curves on the dual quadric Q2

∼= P1 × P1. This means that
Bryant’s representation can be integrated, at least locally, to yield ‘free’ Wei-
erstrass type representation formulae for constant mean curvature 1 surfaces
in H3, in terms of a single holomorphic function f (ζ ), cf. (18)–(21) below.

In this section we show that this correspondence and the resulting formulae
can be derived from the correspondence described in §4.

The first point to note is that for a holomorphic map ω : X −→ SL(2,C),

ω∗. = −4 det(ω′)(dξ)2.

Proposition 6.1. The conformal structure on SL(2,C) determined by . is
the same as that induced by the complexification of the Euclidean structure on
C4.
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Now, suppose thatω : X −→ SL(2,C) ⊂ C4 is null, with gAω non-constant.
Locally reparameterising by (gAω )

−1, there exist holomorphic functions f1 and
f2 such that

(14) ω ◦ (gAω )−1(ζ ) =
(
a b

c d

)
=

(
f1 − ζf ′

1 f ′
1

f2 − ζf ′
2 f ′

2

)
;

ad − bc = 1 means that f1f
′
2 − f ′

1f2 = 1 and hence

(15) gBω ◦ (gAω )−1 = f ′′
1

f ′′
2

= f1

f2
= −f (say).

Differentiating f1/f2 = −f yields f2 = (f ′)−1/2, and thus:

f1 = −f (f ′)−1/2(16)

f2 = (f ′)−1/2(17)

Substitution into (14) gives:

a = −f (f ′)−1/2 + ζ

{
(f ′)1/2 − 1

2
f (f ′)−3/2f ′′

}
(18)

b = −(f ′)1/2 + 1

2
f (f ′)−3/2f ′′(19)

c = (f ′)−1/2 + 1

2
ζ(f ′)−3/2f ′′(20)

d = −1

2
(f ′)−3/2f ′′(21)

Now solving, as in [19],

a + bζ

c + dζ
= −f, 1

(c + dζ )2
= f ′,

2d

(c + dζ )3
= −f ′′,

for a, b, c, d, gives essentially the same formulae.

Remark 6. (i) In fact (18)–(21) differ slightly from the formulae in (3.1)
of [19]; this is because there we solved (αζ + β)/(γ ζ + δ) = f , etc.

(ii) Global versions may be derived from (22)–(25) below; cf. [19].

The geometrical relationship that underlies this derives from the holo-
morphic map

2 : O (1)⊕ O (1) \ P0 −→ P1 × P1, where 2(ζ, η1, η2) = (ζ, η1/η2),



algebraic minimal surfaces in R4 121

and P0 = (η1 = η2 = 0). The induced map on global sections, on restriction
to SL(2,C) ⊂ H0(P1,O (1)⊕ O (1)) \ {0}, gives the usual double covering

2̃ : SL(2,C) −→ P SL(2,C).

Now, given ω : X −→ SL(2,C), 2̃ ◦ ω : X −→ P SL(2,C), has a Gauss
transform +2̃◦ω : X −→ P1 × P1, cf. [19]. It is explained there that this map
records the totally geodesic null hypersurfaces of P SL(2,C) that osculate the
curve and moreover that these are cut out by hyperplanes of P3 which lie tangent
to the quadric at infinity of P SL(2,C), i.e. (ad − bc = 0). It is clear from
above that theA-planes determined by the lift of the curve into SL(2,C) ⊂ C4,
give the same information, that is to say we have:

Theorem 6.1. +2̃◦ω = 2 ◦ Aω.

7. Metrical Aspects

Suppose that g, f1, f2 are non-constant meromorphic functions on a compact,
connected Riemann surface Y ; the following are global versions of (10)–(13):

ω1 = 1

2

{
f1 − g

df1

dg
+ df2

dg

}
(22)

ω2 = i

2

{
−f1 + g

df1

dg
+ df2

dg

}
(23)

ω3 = 1

2

{
df1

dg
+ g

df2

dg
− f2

}
(24)

ω4 = i

2

{
−df1

dg
+ g

df2

dg
− f2

}
(25)

ω = (ω1, ω2, ω3, ω4), describes a null meromorphic curve ω : X −→ C4,
where X is Y punctured at the poles of the above. We derive various formulae
from (22)–(25); similiar formulae can be derived from (10)–(13), which work
locally on an arbitrary null curve with non-constant gA.

If there exist a, b, c, d ∈ C, such that f1 = a + bg, and f2 = c + dg, then
the data describes a global section of O (1)⊕ O (1), in which case osculation
is degenerate and the null curve constant. In the following we suppose that no
such constants exist.

First observe that if φ = Re(ω), then the metric induced on X by φ is:

(26) ds2
φ = 1

4
(1 + |g|2)

∣∣∣∣dgdξ
∣∣∣∣
2 {∣∣∣∣d

2f1

dg2

∣∣∣∣
2

+
∣∣∣∣d

2f2

dg2

∣∣∣∣
2}

|dξ |2
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Proposition 7.1. For φ as above, the total Gaussian curvature of the in-
duced metric is∫

K dAφ = −2π

{
deg(g)+ deg

(
d2f1

dg2
/
d2f2

dg2

)}

Proof. It is well-known that∫
K dAφ = −2π{deg(gAω )+ deg(gBω )},

cf. [12], and the result follows immediately.

The next result, which follows easily from (26), characterises branch points
in the induced metric in terms of the behaviour of g, f1 and f2:

Proposition 7.2. Suppose that at a point ξ0 ∈ X, the local coordinate ξ ,
centred at ξ0, is such that:

g(ξ) = ξq; f1(ξ) = a0 + apξ
p + · · · and f2(ξ) = b0 + brξ

r + · · ·
where p and r are positive integers.

(i) If q > 0, then ds2
φ(ξ0) = 0 if and only if p ≥ q + 2 and r ≥ q + 2.

(ii) If q < 0, then ds2
φ(ξ0) = 0 if and only if p ≥ 2 and r ≥ 2.

Next we characterise the ‘ends’ of φ, again this follows easily from (26):

Proposition 7.3. Suppose that at a point ξ0 ∈ X, the local coordinate ξ ,
centred at ξ0, is such that g(ξ) = ξq .

(i) If ξ0 is a pole of f1 or f2, then it is an end of φ.

(ii) If q > 0, f1(ξ) = a0 + apξ
p + · · · and f2(ξ) = b0 + brξ

r + · · ·, where
p, r are positive integers, then ξ0 is an end of φ if and only if p ≤ q or
r ≤ q.

8. Remarks on Symmetry

An invertible bundle mapA : O (1)⊕O (1) −→ O (1)⊕O (1), has the following
form in local coordinates:

A(ζ, η1, η2) = (α(ζ ), aη2 + bη1, cη2 + dη1),

where α ∈ P SL(2,C), and a, b, c, d ∈ C. Observe that A induces, via 2,
Â ∈ P SL(2,C)× P SL(2,C), where Â(ζ, ζ2) = (α(ζ ), β(ζ2)), with β(ζ2) =
(a + bζ2)/(c + dζ2). Â determines A up to a scale factor λ ∈ C∗, and thus

B = {invertible bundle maps}/ ∼
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where A ∼ B means that they differ by a scale factor, is isomorphic to
P SL(2,C) × P SL(2,C). Any invertible bundle map acts linearly on H0(P1,

O (1) ⊕ O (1)) and preserves the null cone of vanishing sections. This leads
easily to the well-known isomorphism

(27) P SO(4,C) = SO(4,C)/{±I } ∼= P SL(2,C)× P SL(2,C).

Cf. §18.2 in [9] for a related description.
Suppose that G is a subgroup of B and C is a G-invariant curve in O (1)⊕

O (1). Via (27), observe that G is isomorphic to a subgroup of the symmetry
group of the null curve in C4, generated by C.

Remark 7. These observations facilitate the construction and study of min-
imal surfaces in R4 with symmetry groups in SO(4,R); we leave this to be
pursued by any interested reader.

Consider the real structure τ : O (1)⊕O (1) −→ O (1)⊕O (1), that is given
in local coordinates by:

(28) τ (ζ, η1, η2) = (−ζ̄−1, η̄2ζ̄
−1, −η̄1ζ̄

−1).

Observe that τ induces the antipodal map α : P1 −→ P1 on the zero section
of O (1)⊕ O (1). Furthermore, τ induces the map

τ̃ : H0(P1,O (1)⊕ O (1)) −→ H0(P1,O (1)⊕ O (1)),

given by: τ̃ (σz) = τ ◦ σz ◦ α.
It is easy to see that τ̃ (σz) = σz̄, in the (z1, z2, z3, z4)-coordinates of (1),

and hence the τ̃ -invariant sections correspond to the real slice, R4, in those
coordinates.

Now, if a curve C in O (1)⊕ O (1) is τ -invariant then the branched minimal
immersion φ = Re(ω) associated to C, factors through C/τ .

Remark 8. Similiar observations for the R3 case were made in [3], see [20]
for a family of elliptic examples.

Example. The data g(ζ ) = ζ, f1(ζ ) = ζ−n, f2(ζ ) = ζ n+1, where n
is a positive even integer, substituted into (22)–(25), gives φ = Re(ω) : P1 \
{0,∞} −→ R4, of total curvature −4(n+1)π , which factor through RP2\{[0]}.
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