
THE HAUSDORFF DIMENSION OF SYSTEMS OF
SIMULTANEOUSLY SMALL LINEAR FORMS

H. DICKINSON

Introduction. In this paper the Hausdorff dimension of systems of real
linear forms which are simultaneously small for infinitely many integer vectors
is determined. A system of real linear forms,

m

£ aiXy, 7 = 1 , 2 , . . . , « ,
1 = 1

where at, x^eR, 1 < i ^ m , K y < n will be denoted more concisely as

aZ, (1)

where aeRm, XeUmn and Umn is identified with Mmxn(U), the set of real m x n
matrices. The supremum norm |v|oo=max {|«i|,. . . , |ufc|} of any vector in k-
dimensional Euclidean space, R* will be denoted by |v|. The distance of a point
a from a set B, will be denoted by dist (a, B) = inf {\a — b\: beB}.

Let T > 0. The set of points (matrices) X in R"1" such that

for infinitely many qeZm will be denoted by W(m, n\x). For m>2 the Haus-
dorff dimension of the set W{m,«; r) will be shown to be
(m-l)n + (m/(r + l)) if r > ( m / n ) - l , and mn if T<(m/n)- 1. (For the defi-
nition of Hausdorff dimension see [6].) The case n = \ was solved in [5] but
the methods used there cannot be used in the more general case dealt with
here.

Let / be the interval (—5,3). To prove the lower estimate we shall use
instead of W(m, n; r) its subset

W(m,n; T) = {XeIm": |q^| <|q|" r for infinitely many qeZm}

in the working of the lemmas. Note that this set can be expressed in the general
"lim sup" form

W(m,n;r)=(\ \J \J {Xelmn: |qX| < | q r } .
JV=1 q>N \n\=q

qeZm

It is readily verified that the set W(\,n; r) = {0} and so obviously the
dimension in this case is 0. Thus, from now on, unless otherwise stated, only
the case m ^ 2 is considered.
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368 H. DICKINSON

THEOREM 1. When x>(m/n)-l andm^2

m
dim W(m, n; v) = (m-

T + l

and when 0 < r ^ (m/ri) — 1

dim W(m, n; r) = mn.

The first part of the theorem is proved by finding upper and lower bounds
for the Hausdorff dimension separately. The calculations for the upper inequal-
ity are simple but they are included for completeness. The lemma is true for
any cube but is proved for Imn for convenience.

LEMMA 1. For any positive integers m,n~^\

for x>(m/n)-l,
dim W(m, n; x) <

[mn for 0 < r < (m/n) - 1.

Proof. As the points X are contained in Rm", the Hausdorff dimension of
W(m, n; T) is at most mn.

Denote by n(q) the set {Xelmn: qX=0}. Now let t>\m- \)n + (w/(r +1))
and x>{m/ri)-\. For each non-zero qeZm, the number of wn-dimensional
hypercubes C of width L(C) = 4|qf(r+1) with centres on the (w-l)n-
dimensional hyperplane II(q) at integral multiples of |q|~(r+1) apart, with sides
parallel to the axes, is

where <f(x) means <c/(x) for some positive constant c. The collection
of such hypercubes C covers

and for each N= 1, 2,. . . , the collection

covers W(m,n; t).
The t-volume of <6N is defined by

!,'(«*) = I L(C)'= ^ £ 4'|.

and, for JV sufficiently large,

|q|=? Ce«(q)

<̂  V o~ ( r + 1)' + (m~1) + ( T + 1 ) ( m""1 )"< £
q>N

since r > ( w - l)n + (w/(r + 1)). Hence mfN^x L'{c6N) = 0 and the lemma fol-
lows from the definition of Hausdorff dimension.

Note that this bound is not best possible when m = 1.
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HAUSDORFF DIMENSION OF SYSTEMS 369

The lower bound is obtained in two parts. Firstly the idea of ubiquity,
introduced in [4], is used to find a bound in the case m > n. In the complemen-
tary case where w<n, a diffeomorph of W(nt,n; T) is decomposed into a
cartesian product of two spaces, one of which is an (m—l)(n — w+1) dimen-
sional cube. The arguments for the case m > n apply to the other space. The
following definition of ubiquity for arfine spaces is easily shown to be equivalent
to that in [4], where further details are given. Note that the Lebesgue measure
of a set A is written \A\.

Ubiquity. Let Q be a non-empty bounded open region in W" and let

Denote the family of non-empty subsets ofQ

{U(q):qEZm\{0}}

by St. Also for each 5>0 write

5(n(q); 8) = {XeQ: dist (X, Il(q)) < 8}.
Let

A(N)= U B(n(q);p(N)).

Then, i / l im^^ |QV4(iV)| =0 and lim*,^ p(N)=0 the family m is called a
ubiquitous system relative to p. (For the details see [4].)

Now assume that m > n and take Q as

Q = {Xelmn: X is of maximal rank «},

i.e., the column vectors x0 )e/m , 1 ^y^««m— 1) of the matrix X are linearly
independent. Note that Q is an open subset of Imn. Denote the set

{XeQ: \qX\ < |q|~r for infinitely many qeZ"1}

by W(m, n; r). Let v(|q|) = m~1|qf<r+1). Then, since Q is a subset of Imn,

Also,

where

A= {Xeil: dist (X, n(q)) < y(|q|) < y(lql) for infinitely many qeZm}.

To see this let XeA and for non-zero qeZ"1, let C/=(u(1),. . . , u^ellCq) be
the nearest point to X so that \X— U\ < y/(\q\). Then, for each column vector
xO)ofAfeA,

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579300007129
Downloaded from https://www.cambridge.org/core. Maynooth University, on 19 Oct 2018 at 13:44:50, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579300007129
https://www.cambridge.org/core


370 H. DICKINSON

But XeA so there exist infinitely many qeZm such that

by choice of y/. Thus Xe W(m, n; r). Hence

dim W{m, n; r) ^ dim A.

It therefore suffices to find a lower bound for dim A.

LEMMA 2. The family @t is ubiquitous with respect to the function p: N->R
where p(N) = mN~m/n log N.

The proof relies on the following familiar variation of the Dirichlet box
argument.

LEMMA 3. For each Xelm" and iV>2 there exists a non-zero integer vector
q in Zm with |q|<JVsuch that

\qX\<mN'(m/n)+i.

Proof. Consider the vectors qeZm with non-negative components such
that |q| <N. There are (N+ l)m such q. This gives (N + l)m values of q.x(0

and (N+l)m vectors, qX. Since X is in 7m" and |q|

Divide the cube with centre 0 and sidelength mN in U" into Nm smaller
cubes of volume m"N"~m and sidelength mNl~im/"\ Since Nm is less than

I)"1 there are at least two values qiX, q2X, say, in one small cube. Thus

\q1X-q2X\=\(ql-q2)X\

Taking q! - q 2 = qeZm, so that |q| = |q, -q2 | ^N, the lemma follows.

Proof of Lemma 2. In the definitions of the following sets the q's refer to
those integer vectors satisfying |q|<AT and \qX\ <mNl~(m/n) that exist by
Lemma 3. Let

log

and

D(N) = {XeQ: dist (X, dIm")^A

Now,

U {Xen:\qX\<mN-im/n)+l}
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HAUSDORFF DIMENSION OF SYSTEMS 371

whence

1«r«JV/logJV | q | = r

-m + n N

logiV (log

Therefore, since m>n, lim^-co \E(N)\ = 0 and l i m ^ ^ |Q\D(Af)| =0. Now let
XeD(N) and q be such that |q| <AT and \q\X\ <mN~(m/n)+l by Lemma 3. Since
XiE(N),

log AT

By definition, |q| = \q,\ for some 1 < / < » « . Let 5j= -q.xO)/\cji\,j= I,... ,n so
that q . ( x ° ) + 5 /e ' ) = 0, where e(<) denotes the Tth basis vector. Also,

Af-Cm/iO + l

15y| ^ — ^mN-m/" log N.
Iql

Therefore t/=(x(1) + 5,e;,.. . , xM + Sne') is a point in Il(q), and
\X- U\ ^mN-(m/n) log AT. Now, let p{N) = mN-(m/n) log JV. Then

= (J
l<

so that limAf_0010X^4(^)1 =0. Thus @l is ubiquitous with respect to the func-
tion p.

By Theorem 1 in [4], we know the following.

Suppose that 91 is a ubiquitous system with respect to p and that yM+-*U+

is a decreasing function. Then

where t = dim M+y codim 9t, and

= min \\, lim supim sup ,.
JV-KX. log yf(N))

In this case dim Il(q) = (w-1)«, codim Tl(q) = n, p(N) = mN~im/n) log N
and v(Ar) = w~'Ar"(r+l). Therefore y = m/(n(r + 1)), and so

dim W(m, n; )^di A ^ ( l) +
T+l

for m>n.
Now it only remains to find a lower bound when m^n. Firstly the case

m=n is dealt with.
To complete the argument giving the lower bound for the Hausdorff dimen-

sion the following two lemmas will be needed.
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372 H. DICKINSON

LEMMA 4. For any real interval, (a, b),andsetX^Uk, the Hausdorff dimen-
sion of the set (X x (a, b)p), where p is a positive integer, is

dim (X x (a, b)p) = dim X +p.

Proofs for p=\ can be found in [1] and [9]. A simple induction argument
gives the general case.

LEMMA 5. If there exists an onto function f: X-> Y, such that f is one-one
and obeys a bi-Lipschitz condition then

dim Y=dimX.

This follows from Theorem 1.8, page 10 in [6].
It is readily verified that the set A c/m m consisting of points of the form

) V ax
j=\

where

(x(1),. . ., x (m"u)6 W{m,m-\; r),

and

a,e\

is a subset of W(m, m; r). Define the function

1

m-\

f:tV(m,m-l;r)x[-

by

j ( \ , . . . , x , a\,. .. , am-1) — i x , . . . ,

V
The linear independence of the vectors xu),j= 1 , . . . , m- 1 ensures that this
onto function/is well denned and one-to-one. Now, the linear independence
of the x0) implies that the Jacobian of/ is of maximal rank. The function/is
therefore (see [8], Chapter 1) an embedding and thus the range of/is diffeo-
morphic to its image A. This in turn implies that/is locally bi-Lipschitz. This
can also be shown using the Rank Theorem, see [7]. So from Lemma 5

dim A = dim (W(m, m- 1; r) x {-\{m- I)"1, \{m- I)"1)"1"1),

and from Lemma 4

dim {W(m, m- 1; r) x {-\(m- \y\ \{m- I)"1)'""1)

= dim W(m, m — 1; r) + m — 1.

Therefore

dim W(m, m; r)^dim 4̂ = (m — 1 )/w +
r + 1
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HAUSDORFF DIMENSION OF SYSTEMS 373

The result extends naturally to the set W{m, n; r) with m < n as follows.
Let A' be the set of points

m —1 m— \

A , . . . , A ) ^ »j * > • • • ) l_j uj A
; = i J=i

where (x(1),..., \(m-l))eW(m,m-l) and

afeC- 5(w- I)"', km- I)'1), 1 ^ /<« -m+ 1.

As before it is readily verified that A'z W(m, n; r). Then take the function

g: W(m, m- 1) x (— \{m— I)"1, 2{m — \)~x)(n~m+^m~X)-*A'

defined by

This function can also be shown to be one-to-one, onto and bi-Lipschitz but
the details are omitted. Hence

' = dim W(,m, m- 1) x ( - \{m- I)"1, \(m- i)-i)(»-«+D(»-i)

Therefore for all positive integers /M, «W > 1,

dim W(m, n; T)>(w- l )

and from Lemma 1,

dim fT(w,n;r) = (w

If this method is used when m > n the lower bound obtained is smaller than
that obtained using ubiquity. It gives the correct lower bound when m^n
because in this case the vectors of X are linearly dependent.

The second part of the theorem again uses Lemma 3. Consider the set

Ye-T": \qY\ < \q\~z for infinitely many qGZm[.
m J

This set is contained in m~xI"m. By Lemma 3, for each Y= m~lXem~iIm" there
exists a q such that

IqFI =|q(m-1X)| =ifT l |q*| <N~(mM + l.

In fact there are infinitely many such q since Lemma 3 holds for all A?>2.
If | q7 | = 0 then \kqY\ = 0 for integer multiples kq of q.

Suppose q 7 = c # 0 for all qeZm . For each N=2,3,..., there exists
q = q(7V) such that

\qY\<N]~im/"\

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579300007129
Downloaded from https://www.cambridge.org/core. Maynooth University, on 19 Oct 2018 at 13:44:50, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579300007129
https://www.cambridge.org/core


374 HAUSDORFF DIMENSION OF SYSTEMS

Suppose there are only finitely many such q and let q be one such. Then the
inequality

|qF|< N1 -(m/n)

holds for infinitely many N. But |qF| = |c| >0 and given m<n, Nl~<m/") can
be made arbitrarily small. Thus there is a contradiction.

Since |q| .̂/V and 0< r ^(m/n) - 1 we therefore get

for infinitely many q. Thus when 0 < r ̂  (m/ri) -1, every YenT^I""1 is a mem-
ber of the set

{ YemTxImn: \^Y\ < |q|~r for infinitely many qeZm}.

Therefore

{ Yem-'I™: \qY\ < |q|~r for infinitely many qeZ"1} = w~7™.

Since W(m,n; r^m""1/""1

dim W{m, n; t)^mn

and Lemma 1 gives the final result,

dim W(m, n; r) = mn.

Acknowledgements. I thank my supervisor Maurice Dodson for suggesting
this problem and for his help and encouragement and Christopher Wood for
his help with the differential topology. I am grateful to the referee for pointing
out some errors and making some helpful comments. I am also grateful to the
SERC for financial support.

References
1. J. D. Bovey and M. M. Dodson. The fractional dimension of sets whose simultaneous rational

approximation have errors with a small product. Bull. London Math. Soc, 10 (1978),
213-218.

2. J. D. Bovey and M. M. Dodson. The Hausdorff dimension of systems of linear forms. Ada
Arith., 10 (1986), pp. 337-358.

3. J. W. S. Cassels. An introduction to Diophantine approximation (Cambridge University Press,
1957).

4. M. M. Dodson, B. P. Rynne and J. A. G. Vickers. Diophantine approximation and a lower
bound for Hausdorff dimension. Mathematika, 37 (1990), 59-73.

5. M. M. Dodson and J. A. G. Vickers. Exceptional sets in Kolmogorov-Arnol 'd-Moser theory.
J. Phys. A: Math. Gen., 19 (1986), 349-374.

6. K. J. Falconer. The geometry of fractal sets (Cambridge University Press, 1985).
7. K. J. Falconer. Classes of sets with large intersection. Mathematika, 32 (1985), 191-205.
8. V. Guillemin and A. Pollack. Differential topology (Prentice Hall International, 1974).
9. D. G. Larman. On Hausdorff measure in finite dimensional compact metric spaces. Proc. London

Math. Soc. (3), 17 (1967), 193-206.

Dr. H. Dickinson, 11J13: NUMBER THEORY; Diophantine
Department of Mathematics, approximation, transcendental num-
The University of York, her theory; Simultaneous homogene-
Heslington, ous approximation, linear forms.
York. YO1 5DD Received on the \lth of October, 1991.

use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1112/S0025579300007129
Downloaded from https://www.cambridge.org/core. Maynooth University, on 19 Oct 2018 at 13:44:50, subject to the Cambridge Core terms of

https://www.cambridge.org/core/terms
https://doi.org/10.1112/S0025579300007129
https://www.cambridge.org/core

