THE HAUSDORFF DIMENSION OF SYSTEMS OF -
SIMULTANEOUSLY SMALL LINEAR FORMS

H. DICKINSON

Introduction. 1In this paper the Hausdorff dimension of systems of real
linear forms which are simultaneously small for infinitely many integer vectors
is determined. A system of real linear forms,

m
Zaix,-j, j=1,2,...,n,
i=1

where a;, x;€R, 1 <i<im, 1 <j<n will be denoted more concisely as
aX, 1

where aeR™, XeR™ and R™ is identified with M,, . ,(R), the set of real m x n
matrices. The supremum norm |v|,=max {|v\|,. . ., |v]} of any vector in k-
dimensional Euclidean space, R* will be denoted by |v|. The distance of a point
a from a set B, will be denoted by dist (@, B)=inf {|{a—b|: be B}.

Let 7>0. The set of points (matrices) X in R™ such that

lgX| <|q] "

for infinitely many qe Z™ will be denoted by W (m, n; t). For m>2 the Haus-
dorff dimension of the set W(m,n;r) will be shown to be
(m—-Dn+(m/(t+1))if 1>(m/n)—1, and mn if t<(m/n)—1. (For the defi-
nition of Hausdorff dimension see [6].) The case n=1 was solved in [5] but
the methods used there cannot be used in the more general case dealt with
here.

Let I be the interval (—3,3). To prove the lower estimate we shall use
instead of W(m, n; 7) its subset

W(m,n; t)= {XeI™: |qX| <|q|”* for infinitely many qe Z™}

in the working of the lemmas. Note that this set can be expressed in the general
“lim sup” form

wmn;oy= U U {Xer™: |qx|<|q ™"}
N=1q>N |ql=¢
qeZ™
It is readily verified that the set W (l,n; 7)={0} and so obviously the
dimension in this case is 0. Thus, from now on, unless otherwise stated, only
the case m>2 is considered.
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368 H. DICKINSON

THEOREM 1. When t>(m/n)—1 and m=2

dim W(m, n; 7)=(m—n+—2—,
T+1

and when 0 <t <(m/n)—1

dim W(m, n; t)=mn.

The first part of the theorem is proved by finding upper and lower bounds
for the Hausdorff dimension separately. The calculations for the upper inequal-
ity are simple but they are included for completeness. The lemma is true for
any cube but is proved for I™ for convenience.

LemMA 1. For any positive integers m,n=1

dirm W (om, n: 7) <{(m— Dn+(m/(z+1)) for  t>(m/n)—1,
mn for O0<t<(m/n)—1.

_ Proof. As the points X are contained in R™, the Hausdorff dimension of

W(m, n; t) is at most mn.

Denote by I1(q) the set {XeI™: ¢X=0}. Now let t>{m— )n+(m/(z+1))
and t>(m/n)—1. For each non-zero qeZ™, the number of mn-dimensional
hypercubes C of width L(C)=4|q| """ with centres on the (m—1)n-
dimensional hyperplane I(q) at integral multiples of |q| """ apart, with sides
parallel to the axes, is

< |q|(1+ 1)(m— l)n’
where <f(x) means <cf(x) for some positive constant c¢. The collection 6(q)
of such hypercubes C covers
B@={XelI™:|qX| <|q|""}
and for each N=1,2, ..., the collection
€v={¢):]ql >N}
covers W(m, n;t).

The t-volume of € is defined by
L'(6y)= Y LC)Y=3Y T 4lg° ",

Ce€n qeZ™ Ce%€(q)
lal >N

and, for N sufficiently large,
Lt((gN) < Z Z Z q—(r+l)t
g>N |4l =q Ce¥@
< Z q—(t+l)t+(m—1)+(r+l)(m—l)n< €

g>N
since > (m—1n+(m/(r+1)). Hence infy_ o, L(€x)=0 and the lemma fol-
lows from the definition of Hausdorff dimension.

Note that this bound is not best possible when m=1.
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The lower bound is obtained in two parts. Firstly the idea of ubiquity,
introduced in [4], is used to find a bound in the case m >n. In the complemen-
tary case where m<n, a diffeomorph of W(m, n; r) is decomposed into a
cartesian product of two spaces, one of which is an (m—1)(n—m+1) dimen-
sional cube. The arguments for the case m>n apply to the other space. The
following definition of ubiquity for affine spaces is easily shown to be equivalent
to that in [4], where further details are given. Note that the Lebesgue measure
of a set A is written |A].

Ubiquity. Let Q be a non-empty bounded open region in R™ and let
I(q)={XeQ:qX=0}.
Denote the family of non-empty subsets of Q
{I(q): qeZ™\{0}}
by R. Also for each § >0 write
B(I1(q); 6)={XeQ: dist (X, I1(q)) <6}.
Let
A= U BI(@); p(N)).

q
lgl <N
Then, if imy_, o, |Q\A(N)| =0 and limy_,, p(N)=0 the family R is called a
ubiquitous system relative to p. (For the details see [4].)
Now assume that m>n and take Q as
Q={Xel™: X is of maximal rank n},

i.e., the column vectors x¥ eI, 1 <j<n(<m—1) of the matrix X are linearly
independent. Note that Q is an open subset of /™", Denote the set

{XeQ:|qX| <|q| " for infinitely many qe Z™}
by W(m, n; 7). Let w(|q))=m""|q|"“*". Then, since Q is a subset of I"™,
W(m, n; )2 Wim,n; 7).
Also,
W(m,n; t)2A
where

A={XeQ:dist (X, TI(q)) < w(lq]) < y(|q|) for infinitely many qeZ"™}.

To see this let XeA and for non-zero qeZ™, let U=, . .., u™)ell(q) be
the nearest point to X so that |[X — U] <y(|q|). Then, for each column vector
xY? of XeA,

Iq.x(’)l = |q.x(j)—q.u‘j’+q.u(”| - Iq.x(” —q-u(j)l
=|q.(XU)—l.l(j))| <|q|2|x(j)"“(j)|2
Sm’/zlql wml/2|x(j)—ll(j)|°o.
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But XeA so there exist infinitely many qeZ™ such that
lq.x| <miqly(lql)=lq""
by choice of y. Thus Xe W(m, n; r). Hence
dim W(m, n; t)>dim A.
It therefore suffices to find a lower bound for dim A.

LEMMA 2. The family R is ubiquitous with respect to the function p: N>R
where p(N)=mN ™" log N.

The proof relies on the following familiar variation of the Dirichlet box
argument.

LEMMA 3. For each XeI™ and N =2 there exists a non-zero integer vector
q in 7™ with |q| <N such that
lqX| <mN /1
Proof. Consider the vectors qeZ™ with non-negative components such

that |q| <N. There are (N+1)” such q. This gives (N +1)™ values of q.x®
and (N+ 1)™ vectors, ¢X. Since X is in I"™ and |q| <N

lgX] <3mN.

Divide the cube with centre 0 and sidelength mN in R” into N™ smaller
cubes of volume m”N"~™ and sidelength mN'~ /™. Since N™ is less than
(N+1)" there are at least two values q;X, q.X, say, in one small cube. Thus

X — q2X| = (1 —g2)X| <mN '~/

Taking q, —q.=q€Z"™, so that |q| =|q; —qz| <N, the lemma follows.

Proof of Lemma 2. In the definitions of the following sets the q’s refer to
those integer vectors satisfying |q| <N and |qX| <mN'~ /™ that exist by

Lemma 3. Let
E(N)= {XEQ: lql <%v}
and
D(N)={XeQ:dist (X, aI™)>N""}\E(N).
Now,

ENes U U {(xeQ:|qxj<mN~ /1

1<r<N/logN |q|=r
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whence

mnN-m+n

[EN)I< X Y
1<r<N/logN |q| =r |q|2

<N_m+" Z rm—n—l

1<r<N/logN

m—n—1
<N—m+n N N —
log N (log N)™™"
=(log N) """,

Therefore, since m>n, limy_ o, |E(N)| =0 and limy_,,, |Q\D(N)| =0. Now let
XeD(N) and { be such that |§| <N and |§X] <mN~"/”*! by Lemma 3. Since

X¢E(N),

N

<|gl <N.
log N <
By definition, |§| =|4 for some 1<i<m. Let §;=—§.x/|g],j=1,...,ns0
that §.(xY’+ §,¢') =0, where e denotes the i’th basis vector. Also,
N—(m/n)+l
15/ sm—ﬂ——smN_'”/" log N.
q

Therefore U=(x"+6¢,...,x"+8,6) is a point in TI(G), and
|X — U <mN ™" log N. Now, let p(N)=mN /" log N. Then
D(N)sA(N)= U BII(@); p(N))
q
lgl<N

$0 that imy_. o, |Q\A(N)| =0. Thus £ is ubiquitous with respect to the func-
tion p.

By Theorem 1 in [4], we know the following.

Suppose that R is a ubiquitous system with respect to p and that y:R* ->R"*
is a decreasing function. Then
dim A >1,
where t=dim R+ y codim R, and

N
¥y =min {1, lim sup lo_g_gg_)_}
N-oo” log y(N)
In this case dim IT1(q)=(m—1)n, codim I1(q)=n, p(N)=mN /" log N
and w(N)=m 'N~"*D, Therefore y=m/(n(z+1)), and so

dim W (m, n; 7) = dim A> (m— )n+—
T+1
for m>n.
Now it only remains to find a lower bound when m<n. Firstly the case
m=n is dealt with.
To complete the argument giving the lower bound for the Hausdorff dimen-
sion the following two lemmas will be needed.
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LeMMA 4.  For any real interval, (a, b), and set X = R¥, the Hausdor[f dimen-
sion of the set (X x (a, b)?), where p is a positive integer, is

dim (X X (a, b)?)=dim X +p.

Proofs for p=1 can be found in [1] and [9]. A simple induction argument
gives the general case.

LEMMA 5. If there exists an onto function f: X— Y, such that f is one-one
and obeys a bi-Lipschitz condition then

dim Y=dim X.

This follows from Theorem 1.8, page 10 in [6].
It is readily verified that the set 4 <I™ consisting of points of the form

m-—1
(x“), XY ajx‘”>
j=1
where
&P, X" MYeW(mom—1; 1),

and

j=1,...,m—1,

aje - s s J=
2m—1)" 2m—1)

is a subset of W(m, m; 7). Define the function

5 1 1 m—1
fTWmm—1; T)x(_Z(m—l)’Z(m-—l)> —A

by

m—1
1 -1 — 1 -1 ]
f&x®, L x™ ),al,...,a,,,-l)—(x( S SR ajx(”).
=1

The linear independence of the vectors xY°, j=1,...,m—1 ensures that this
onto function f'is well defined and one-to-one. Now, the linear independence
of the x” implies that the Jacobian of fis of maximal rank. The function fis
therefore (see [8], Chapter 1) an embedding and thus the range of fis diffeo-
morphic to its image 4. This in turn implies that f'is locally bi-Lipschitz. This
can also be shown using the Rank Theorem, see [7]. So from Lemma 5
dim A=dim (W(m,m—1; ) x (—3(m—1)", 3(m—1)""y"""),
and from Lemma 4
dim (W (m,m=1; 1) x (—3(m=1)7", 3(m=1)"")""")
=dim W(m,m—1;7t)+m—1.
Therefore

dim W (m, m; 1)>dim A=(m— Dm+—.
T+1
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The result extends naturally to the set W(m, n; t) with m<n as follows.
Let A" be the set of points

m=—1 -
(X(]), el X(m_l), Z a}l)x(’), Z (n m+1) (1))

j=1 j=
where (xV, ..., x" " Ye W(m, m—1) and
a’e(—3m—-1)7" 3(m—1)7", 1<i<n—-m+1.
As before it is readily verified that 4’ W(m, n; 7). Then take the function

g W(imm—1)x(— %(m—- 7, %(m— 1) HYer=mE D= _, g

defined by
1 -1 1 1 - 1 1
g, X7 a0, a, e, ST
=(x®,... x™D, Z a"x, Z "~ gDy,

This function can also be shown to be one-to-one, onto and bi-Lipschitz but
the details are omitted. Hence

dim 4'=dim W(m, m—1)x (—z3(m—1)"", 3(m—1)"H@-m+Hm-1
=(m—1’+(m/(t+1))+(n—m+1)(m—1)=m—Dn+(m/(t+1)).
Therefore for all positive integers m, nm> 1,
dim W(m, n; t)=(m—Dn+(m/(z +1)),
and from Lemma 1,
dim W(m, n; ty=(m—Dn+(m/(r+1)).

If this method is used when m>n the lower bound obtained is smaller than
that obtained using ubiquity. It gives the correct lower bound when m<n
because in this case the vectors of X are linearly dependent.

The second part of the theorem again uses Lemma 3. Consider the set

1 . .
{Ye— I'™:|qY| <|q| ™" for infinitely many qu’"}.
m

This set is contained in m~'I™. By Lemma 3, for each Y=m"'Xem™'I"™ there

exists a q such that
lqY|=|q(n™'X)| =m"|qX| <N~/

In fact there are infinitely many such g since Lemma 3 holds for all N>2.
If |qY| =0 then |kqY| =0 for integer multiples kq of q.

Suppose qY=c#0 for all qeZ™. For each N=2,3,..., there exists
q=q(N) such that

Y| <N'"0"”,
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Suppose there are only finitely many such q and let § be one such. Then the
inequality

|§Y| <N'=

holds for infinitely many N. But |§Y|=|c| >0 and given m<n, N' /" can
be made arbitrarily small. Thus there is a contradiction.
Since || <N and 0< 7<(m/n)—1 we therefore get

|qY| <N_(m/")+l<|q1_(m/")+l<|qrr,

for infinitely many q. Thus when 0< < (m/n)—1, every Yem™'I"™ is a mem-
ber of the set

{Yem™'I"™: |qY| <|q| " for infinitely many qe Z™}.

Therefore
e

{Yem™'I'"™: |qY| <|q| " for infinitely many qe 2"} =m"

Since W(m, n; t)2m™'I™

dim W(m, n; t)=mn
and Lemma 1 gives the final result,

dim W(m, n; t)=mn.
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