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Network Maximal Correlation
Soheil Feizi*, Ali Makhdoumi*, Ken Duffy, Manolis Kellis, Muriel Médard

Abstract—We introduce Network Maximal Correlation (NMC) as a multivariate measure of nonlinear association among random variables.
NMC is defined via an optimization that infers transformations of variables by maximizing aggregate inner products between transformed
variables. For finite discrete and jointly Gaussian random variables, we characterize a solution of the NMC optimization using basis
expansion of functions over appropriate basis functions. For finite discrete variables, we propose an algorithm based on alternating
conditional expectation to determine NMC. Moreover we propose a distributed algorithm to compute an approximation of NMC for large and
dense graphs using graph partitioning. For finite discrete variables, we show that the probability of discrepancy greater than any given level
between NMC and NMC computed using empirical distributions decays exponentially fast as the sample size grows. For jointly Gaussian
variables, we show that under some conditions the NMC optimization is an instance of the Max-Cut problem. We then illustrate an application
of NMC in inference of graphical model for bijective functions of jointly Gaussian variables. Finally, we show NMC’s utility in a data application
of learning nonlinear dependencies among genes in a cancer dataset.

Index Terms—Maximum Correlation Problem, Alternating Conditional Expectation (ACE), Hermite-Chebyshev Polynomials, Gaussian
Graphical Models, Gene Networks
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1 INTRODUCTION

IDENTIFYING relationships among variables in large datasets
is an increasingly important task in systems biology [1],

social sciences [2], finance [3], and other fields. For indepen-
dent observations of bivariate data, several measures exist
that characterize the strength of the association based on a
linear fit (e.g., Pearson’s correlation [4], canonical correlation
[5], [6]), rank statistics (e.g., Spearman’s correlation [7]), and
information content (e.g., mutual information [8], [9]). Some of
these measures have been extended to the multivariate setting.
For instance, Chow and Liu [10] have used mutual information
in the inference of tree graphical models, while Liu et al. [11],
[12] introduced a copula setup based on rank statistics such
as Spearman’s [7] correlation coefficient to characterize graph-
ical models for some nonlinear functions of jointly Gaussian
variables. Another method to capture a nonlinear association
between two variables is the randomized dependence coef-
ficient [13], where it fixes a set of nonlinear functions and
then uses randomized rank statistics to compute association
between nonlinear transformations of variables.

A classical measure of nonlinear relationships between two
random elements X1 and X2 is Maximal Correlation (MC), in-
troduced by Hirschfeld [14], Gebelein [15], Sarmanov [16] and
Rényi [17], having also appeared in the work of Witsenhausen
[18], Ahlswede and Gács [19], and Lancaster [20]. MC de-
termines possibly nonlinear transformations of two variables,
subject to zero mean and unit variance, to maximize their
Pearson’s correlation. MC not only computes an association
strength between variables, but it also characterizes a possible
functional relationship between them.
Definition 1 (Maximal Correlation). Let (Ω,F , P ) be a prob-
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ability triple and for k ∈ {1,2} let (Xk, βk) be a measurable
space with Xk ∶ Ω → Xk a random element. Maximal
Correlation (MC) between the two (not necessarily real-
valued) random elements X1 and X2 is defined as

ρ(X1,X2) ≜ sup
φ1,φ2

E[φ1(X1) φ2(X2)], (1)

such that φk ∶ Xk → R is Borel measurable, E[φk(Xk)] = 0,
and E[φk(Xk)2] = 1, for k = 1,2.

MC can be computed efficiently for both discrete [21] and
continuous real-valued [20] random variables (Section 2.1). For
discrete random variables, under mild conditions, MC is equal
to the second largest singular value of an scaled joint proba-
bility distribution matrix and the optimal transformations of
the variables can be characterized using right and left singular
vectors of the scaled probability distribution matrix. Alternat-
ing Conditional Expectation (ACE) was introduced by Breiman
and Friedman [21] to compute MC, and was further analyzed
by Buja [22]. Recently, MC has been used in many applica-
tions. It is related to strong data processing inequalities and
contraction coefficients, being recently investigated by Anan-
tharam et al. [23], Polyanskiy [24], and Raginsky [25]. Further
studies include applications in information theory [26], [27],
information-theoretic security and privacy [28], [29], [30], [31],
[32], data processing [23], [25] and other fields [33], [34], [35],
[36], [37]. In particular, Beigi and Gohari [33] has introduced
multipartite maximal correlation and showed its connection
with the multipartite hypercontractivity ribbon. Multipartite
maximal correlation aims to find a correlation matrix C with
the largest r such that C − rI is positive semidefinite, where I
is the identity matrix. This objective function is different than
the one of the network maximal correlation (3) discussed in the
present paper.

Many modern datasets consist of independent observations
of high-dimensional multivariate random elements X1, . . . ,Xn

(i.e., n≫ 2). One approach to characterize relationships among
these elements is to determine the bivariate MC for each
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pair of them. In this approach one would solve the following
optimization for all pairs (i, i′), 1 ≤ i, i′ ≤ n:

sup
φi,i′ ,φi′,i

E [φi,i′(Xi) φi′,i(Xi′)] , (2)

such that φi,i′ ∶ Xi → R is Borel measurable, E[φi,i′(Xi)] = 0,
and E[φi,i′(Xi)2] = 1, for 1 ≤ i, i′ ≤ n.

Should they exist, let φ∗i,i′ for 1 ≤ i, i′ ≤ n denote the result-
ing optimizers. By this approach, each element Xi is assigned
to n − 1 transformation functions {φ∗i,i′ ∶ 1 ≤ i′ ≤ n, i′ ≠ i}.
In some applications, there may be interpretability and over-
fitting issues. To circumvent these issues, we consider an
alternate multivariate extension of the MC optimization (1)
with two types of constraints. We seek to formulate an opti-
mization that (i) assigns a single transformation function to
each element; and (ii) its objective function can be restricted to
a subset of variable pairs. The latter conditioning is described
by a graph and is motivated by several distinct considerations:
(a) there may be a priori known structure that indicates some
elements are necessarily unrelated; (b) one may not care about
the association of certain elements; or (c) the restriction may
serve as a computation reduction technique.
Definition 2 (Network Maximal Correlation). Let G = (V,E)

be a graph with vertices V = {1,2, . . . , n} and edges E ⊆
{(i, i′) ∶ i, i′ ∈ V, i ≠ i′}. The Network Maximal Correlation
(NMC) of X1, . . . ,Xn given G is defined to be

ρG(X1, . . . ,Xn) ≜ sup
φ1,...,φn

∑
(i,i′)∈E

E [φi(Xi) φi′(Xi′)] , (3)

such that φi ∶ Xi → R is Borel measurable, E [φi(Xi)] = 0,
and E [φi(Xi)2] = 1, for all 1 ≤ i ≤ n.

When no confusion arises, we use ρG to refer to the NMC. The
NMC optimization maximizes the aggregate inner products
between transformed variables. NMC naturally generalizes
the bivariate MC to the multivariate setting. For example,
the bivariate MC is equivalent to the NMC when the graph
G = (V,E) has two nodes connected by an edge. That is,
V = {1,2} and E = {(1,2)}. As another example, if V =
{1,2,3} and E = {(1,2), (1,3)}, the objective function of the
NMC optimization (3) aims to find transformation functions
{φi(Xi)}3i=1 which maximize

E [φ1(X1) φ2(X2) + φ1(X1) φ3(X3)] .

Note that in this example the transformation function φ1(X1)
appears in two terms in the objective function, leading to
additional coupling constraints in the optimization (3), when
compared to multiple bivariate MC optimizations (2). We in-
vestigate this optimization for a general graph G = (V,E). In
applications, we highlight appropriate selections of G in the
NMC optimization 1.

Since E[φi(Xi)2] = 1 for any 1 ≤ i ≤ n, we have

ρG = ∣E∣ − inf
φ1,...,φn

1

2
∑

(i,i′)∈E

E[(φi(Xi) − φi′(Xi′))2], (4)

which means that the NMC optimization (3) is equivalent
to finding functions of random variables that minimize the
Mean Squared Error (MSE) among all neighboring random
variables. The form (4) can be useful in different applications
such as fitting a nonlinear regression model (e.g., φi(Xi) =
∑i′={1,...,n}∖{i} φi′(X ′

i) +Z).

1We use the terminology graph and network interchangeably.

The techniques described here to characterize local and
global optima of the aforementioned NMC optimization can
be used in other related formulations as well. For example,
we also introduce absolute NMC, which maximizes the to-
tal absolute pairwise correlations among variables (Section
8.1). Absolute NMC is appropriate for applications where the
strength of an association does not depend on the sign of the
correlation coefficient. Moreover, the NMC optimization can
be regularized to consider fewer nonlinear transformations or
to restrict the set of possible transformations, further avoiding
over-fitting issues (Section 8.1).

In Section 2, for finite discrete random variables, we char-
acterize the solution of the NMC optimization using a natural
basis expansion. For finite discrete random variables, we show
that the NMC optimization is an instance of the Maximum
Correlation Problem (MCP), which is NP-hard [38], [39], [40],
[41].

In Section 3, using the results from the Multivariate Eigen-
vector Problem (MEP) [38], we characterize necessary condi-
tions that are satisfied at the global optimum of the NMC
optimization. We propose an efficient algorithm based on Al-
ternating Conditional Expectation (ACE) [21] that converges to
a local optimum of the NMC optimization. We also provide
guidelines for choosing appropriate starting points of the ACE
algorithm to avoid local maximizers. The proposed algorithm
does not require the formation of joint distribution matrices
which could be expensive for variables with large number
of categories. We develop a distributed version of the ACE
algorithm to compute an approximation of the NMC value for
large dense graphs using graph partitioning. We characterize a
bound on the expected performance of the proposed algorithm
for poly-growth graphs which are often used in analyzing
distributed graph algorithms (see e.g., [42], [43], [44]).

In Section 4, we prove a finite sample bound and error
guarantees for NMC. Under some conditions we prove that
NMC of finite discrete random variables is continuous with
respect to their joint probability distributions. That is, a small
perturbation in the joint distribution results in a small change
in the NMC value. Moreover, we show that the probability
of discrepancy greater than any given level between NMC and
NMC computed using empirical distributions decays exponen-
tially fast as the sample size grows.

In Section 5, for jointly Gaussian variables, we use Hermite-
Chebyshev polynomials as the basis for the functions of Gaus-
sian random variables and characterize the solution of the
NMC optimization. Under some conditions, we show that
the NMC optimization is equivalent to the Max-Cut problem,
which is NP-complete [45]. However, there exist algorithms
to approximate its solution using Semidefinte Programming
(SDP) within certain approximation factors [46]. Moreover, we
provide sufficient conditions under which a solution of the
NMC optimization can be characterized exactly.

In Section 6, we illustrate some applications of NMC. First
we show an application of NMC in inference of graphical
model (Definition 8) for bijective functions of jointly Gaussian
variables. Graphical models provide a useful framework for
characterizing dependencies among variables and for efficient
computation of marginal and the mode of distributions [47].
Moreover, Gaussian graphical models play an important role
in applications such as linear regression [48], partial correla-
tion [49], maximum likelihood estimation [50], etc. Here we
consider a setup in which observed variables are related to
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latent jointly Gaussian variables through link functions. These
link functions are unknown, bijective, and can be linear or
nonlinear. We show that, under some conditions, the inverse
covariance matrix of the transformed variables computed by
the NMC optimization (as well as multiple MC optimizations)
characterizes the underlying graphical model. With an example
we show that when underlying link functions are monotone
the performance of our inference method is comparable to
the one of the copula model developed by Liu et al. [11], [12].
Moreover, we illustrate that if we violate the model assumption
for both our inference framework and for the copula method
by considering non-monotone link functions, our inference
method appears to outperform the copula one, highlighting
the robustness of our proposed inference framework. Finally,
we provide an example to demonstrate NMC’s utility in a data
application where we apply sample NMC to cancer datasets
[51] and infer nonlinear gene association networks. Over these
inferred networks, we deduce gene modules that are signifi-
cantly associated with survival times of individuals while these
modules are not detected using linear association measures.

2 NETWORK MAXIMAL CORRELATION

2.1 Review of Maximal Correlation

Recall the definition of maximal correlation (Definition 1). For
k = i, i′, we let φ∗k(Xk) denote a solution of optimization (1)
should it exist. The existence and uniqueness of a solution
(φ∗i (Xi), φ∗i′(Xi′)) to the MC optimization (1) have been in-
vestigated in [21]. Maximal correlation ρ(Xi,Xi′) is always
between 0 and 1, where a high MC value indicates a strong
association between two variables [15].

Unlike Pearson’s linear correlation [4], MC only depends on
the joint distribution of the variables and not on their sample
spaces Xi. Several works have investigated different aspects
of optimization (1) for both discrete [21] and continuous [20]
random variables. For discrete variables, under mild condi-
tions, MC is equal to the second largest singular value of the
following Q-matrix [21]:

Definition 3. Let PXi,Xi′ be the joint distribution of discrete
variables Xi and Xi′ with finite alphabet sizes ∣Xi∣ and ∣Xi′ ∣,
respectively. Define a matrix Qi,i′ ∈ R∣Xi∣×∣Xi′ ∣ whose (j, j′)
element is

Qi,i′(j, j′) ≜
PXi,Xi′ (j, j

′)
√
PXi(j)PXi′ (j′)

. (5)

The matrix is called theQ-matrix of the distribution PXi,Xi′ .

In this case, optimal transformations of variables can be charac-
terized using right and left singular vectors of the normalized
probability distribution matrix.

For Gaussian variables, Lancaster [20] introduced a basis
expansion with Hermite-Chebyshev polynomials to compute
MC. Interestingly in this case the maximal correlation and
Pearson’s linear correlation is equivalent.

2.2 NMC Formulation

Recall the definition of the Network Maximal Correlation
(Definition 2). NMC infers nonlinear transformation functions
assigned to each node variable so that the aggregate pairwise
correlations over the graph G = (V,E) is maximized.

Let φ∗i (⋅) be a solution of the NMC optimization (3) should
it exist. Then, an edge maximal correlation of variables i and i′

is defined as

ρ(i,i
′
)

G (X1,⋯,Xn) ≜ ∣E[φ∗i (Xi) φ∗i′(Xi′)]∣,

where (i, i′) ∈ E. Unlike the bivariate MC formulation of
(1), the edge maximal correlation is a function of the joint
distribution of all variables. Thus, an edge maximal correlation
of variables Xi and Xi′ is always smaller than or equal to their
bivariate maximal correlation, i.e.,

ρ(i,i
′
)

G (X1,⋯,Xn) ≤ ρ(Xi,Xi′).

We next provide a framework to study NMC and its properties.
Following the definition provided in [18, Section 3], for i =
1,2, . . . , n, we define a set of real-valued measurable functions
HXi as

HXi ={φi ∣ φi ∶ Xi → R, φi is Borel measurable, (6)

E[φi ○Xi] <∞, E[(φi ○Xi)2] <∞},

where the inner product of two elements of HXi is defined as
E[φi(Xi) φ′i(Xi)], and the norm is defined as

√
E[(φi ○Xi)2].

Note that φi(Xi) is a random variable in R such that for any
Borel-measurable set B, we have P[φi(Xi) ∈ B] = P[Xi ∈
φ−1i (B)]. We use the notation φi ○Xi and φi(Xi) interchange-
ably.

We let {ψi,j}∞j=1 represent an orthonormal basis for HXi .
We will explicitly construct such basis in the case of discrete
random variables and Gaussian random variables, studied in
this paper.
Theorem 1. Consider the following optimization:

sup
{{ai,j}ni=1}

∞
j=1

∑
(i,i′)∈E

∑
j,j′

ai,jai′,j′ ρ
j,j′

i,i′ (7)

∞

∑
j=1

a2i,j = 1, 1 ≤ i ≤ n,

∞

∑
j=1

ai,j E[ψi,j(Xi)] = 0, 1 ≤ i ≤ n,

where

ρj,j
′

i,i′ ≜ E[ψi,j(Xi) ψi′,j′(Xi′)]. (8)

Let φ∗i (⋅) and {a∗i,j}∞j=1 for 1 ≤ i ≤ n be solutions of
optimizations (3) and (7), respectively. Then,

φ∗i (Xi) =
∞

∑
j=1

a∗i,j ψi,j(Xi). (9)

is a solution of the NMC optimization (3). Moreover, ρj,j
′

i,i′

for j, j′ ≥ 1 are coefficients of the basis expansion of PXi,Xi′
with respect to the basis {ψi,jψi′,j′}j,j′ , i.e.,

PXi,Xi′ (xi, xi′) =∑
j,j′

ρj,j
′

i,i′ ψi,j(xi)ψi′,j′(xi′).

Proof A proof is presented in Section 7.1.

Equation (9) means convergence in the L2 sense, i.e.,
limn→∞ ∣∣φ∗i (Xi) − ∑nj=1 a∗i,j ψi,j(Xi)∣∣ = 0. Throughout the
paper since we only work with the inner product of func-
tions, without loss of generality, we replace φ∗i (Xi) by
∑∞
j=1 a

∗
i,j ψi,j(Xi). Also note that for the case of finite discrete

random variables, the convergence is in fact pointwise. For
further details, see [20], [52].
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Selecting appropriate set of functions HXi is critical to
have a tractable optimization problem (7). In the following, we
consider the NMC optimization for finite discrete variables,
while the Gaussian case is discussed in Section 5.

3 NMC FOR FINITE DISCRETE VARIABLES

In this section, we analyze the NMC optimization (3) for
finite discrete random variables, and then introduce an efficient
algorithm to compute NMC. We then propose a parallelizable
version of the NMC algorithm based on network partitioning
and characterize a bound for its expected performance.

First we introduce some notation. For any vector v =
(v1, . . . , vd) ∈ Rd and p ≥ 1, we let ∥v∥p represent the standard
p-norm of the vector v defined as

∣∣v∣∣p = (
d

∑
i=1

vpi )
1
p

.

For p = 2, we drop the subscript, i.e., ∣∣v∣∣ = ∣∣v∣∣2. The infinite
norm of a vector is defined as

∣∣v∣∣∞ = max
1≤i≤d

vi.

The inner product between two vectors v and w is defined as

< v,w >=
d

∑
i=1

viwi.

For a matrix V ∈ Rd1 × Rd1 , the matrix norm is a vector norm
on Rd1×d2 . I.e.,

∣∣V ∣∣p = sup
w≠0

∣∣Vw∣∣p
∣∣w∣∣p

.

For p = 2, we drop the subscript.

3.1 Relationship Between NMC and Maximum Correlation
Problem
Let Xi be a discrete random variable with alphabet
{1, . . . , ∣Xi∣}. Let

ψi,j(x) = 1{x = j} 1√
PXi(j)

(10)

be an orthonormal basis for HXi , where 1 is the indicator
function. We assume that all the elements of the alphabet
xi ∈ Xi have positive probabilities, as otherwise they can be
neglected without loss of generality. We can write

ρj,j
′

i,i′ = E[ψi,j(Xi) ψi′,j′(Xi′)] =
PXi,Xi′ (j, j

′)
√
PXi(j) PXi′ (j′)

.

Therefore, the optimization (7) is simplified to the following:

max
{{ai,j}ni=1}

∞
j=1

∑
(i,i′)∈E

∑
j,j′

ai,jai′,j′
PXi,Xi′ (j, j

′)
√
PXi(j) PXi′ (j′)

(11)

∣Xi∣

∑
j=1

(ai,j)2 = 1, 1 ≤ i ≤ n,

∣Xi∣

∑
j=1

ai,j
√
PXi(j) = 0, 1 ≤ i ≤ n.

For i = 1, . . . , n, let

ai ≜ (ai,1, ai,2, . . . , ai,∣Xi∣)
T

(12)
√
pi ≜ (

√
PXi(1),

√
PXi(2), . . . ,

√
PXi(∣Xi∣))

T
.

Therefore, the optimization (11) can be re-written as follows:

max
{ai}ni=1

∑
(i,i′)∈E

aTi Qi,i′ai′ (13)

∥ai∥2 = 1, 1 ≤ i ≤ n,
ai ⊥

√
pi, 1 ≤ i ≤ n,

where Qi,i′ is defined in Definition 3 and ⊥ represents orthog-
onality between two vectors.

The optimization (13) is not convex nor concave in general.
Below, we show that this optimization is an instance of the
Maximum Correlation Problem (MCP) proposed by Hotelling
[39], [40]. By making this connection, we use established tech-
niques via the Multivariate Eigenvalue Problem (MEP) to solve
optimization (13).

For each i, since I∣Xi∣ −
√
pi

√
pi
T is positive semidefinite,

we take its square root2 and write

Bi ≜
√
I∣Xi∣ −

√
pi

√
pi
T , (14)

where I∣Xi∣ is a ∣Xi∣ × ∣Xi∣ identity matrix. Let bi = Biai. Let
UiΣiU

T
i be the singular value decomposition of Bi where U (j)

i

is the j-th column of Ui and σ(j)
i is the j-th singular value of

Bi. We will show that only one singular value of Bi is zero
which corresponds to the singular vector

√
pi. Without loss of

generality, suppose σ(1)
i = 0, for all i. Define Ai, a ∣Xi∣ × ∣Xi∣

matrix, as follows:

Ai ≜
⎛
⎝
[U (2)

i , . . . , U (∣Xi∣)

i ]diag
⎛
⎝

1

σ(2)
i

, . . . ,
1

σ(∣Xi∣)

i

⎞
⎠

(15)

[U (2)
i , . . . , U (∣Xi∣)

i ]
T ⎞
⎠
.

As we show in the proof of Theorem 2, σ(j)
i ≠ 0, for all 1 ≤ i ≤ n,

and j ≥ 2, Ai is well-defined according to (15).
Theorem 2. The NMC optimization (13) can be re-written as

follows:

max
b1,...,bn

∑
(i,i′)∈E

bTi A
T
i (Qi,i′ −

√
pi

√
pi′

T )Ai′bi′ (16)

s.t. ∣∣bi∣∣2 = 1 1 ≤ i ≤ n.

Proof A proof is presented in Section 7.2.

Let C be a matrix consisting of submatrices Ci,i′ ∈ R∣Xi∣×∣Xi′ ∣

where if (i, i′) ∈ E,

Ci,i′ ≜ ATi (Qi,i′ −
√
pi

√
pi′

T )Ai′ , (17)

otherwise Ci,i′ is an all zero matrix of size ∣Xi∣× ∣Xi′ ∣. Note that
since the graph G = (V,E) does not have self-loops, Ci,i is a
zero matrix for 1 ≤ i ≤ n.

Let b ≜ (bT1 , . . . ,bTn )T ∈ R∣X ∣, where ∣X ∣ = ∑ni=1 ∣Xi∣ and
bi ∈ R∣Xi∣.
Corollary 1. The NMC optimization (16) can be written as

follows:

max
b

bTCb (18)

∣∣bi∣∣2 = 1, 1 ≤ i ≤ n.

The optimization (18) is in the standard form of the MCP
problem, proposed by Hotelling [39], [40], to find the linear

2The square root of a symmetric positive semidefinite matrix A is defined
as

√
A = UΣ1/2UT where A = UΣUT .



5

Algorithm 1 Gauss-Seidel Algorithm for MEP

Input: C ∈ R∣X ∣ × R∣X ∣.
Initialization: b(0) ∈ R∣X ∣.
for k = 0,1, . . .

for i = 1, . . . , n
b̃(k)
i = ∑i−1i′=1Ci,i′b

(k+1)
i′ +∑ni′=i+1Ci,i′b

(k)
i′ .

b(k+1)
i = b̃(k)

i

∣∣b̃(k)
i

∣∣2

end
end

combination of one set of variables that correlates maximally
with the linear combination of another set of variables.

Definition 4 (Multivariate Eigenvalue Problem [38] ). The first-
order optimality condition for optimization (18) is the ex-
istence of real-valued scalars, namely, Lagrange multipliers
λ1, . . . , λn, such that the following system of equations is
satisfied:

n

∑
i′=1

Ci,i′bi′ = λibi, 1 ≤ i ≤ n

∣∣bi∣∣2 = 1, 1 ≤ i ≤ n. (19)

This system of equations is called Multivariate Eigenvalue
Problem (MEP) ( [38], [41]).

3.2 An ACE Approach to Compute NMC

In Section 3.1, we established a connection among the NMC
optimization (3), the Maximum Correlation Problem (MCP)
and the Multivariate Eigenvalue Problem (MEP) (see e.g., [38],
[39], [40], [41]). After showing that the NMC optimization
can be reformulated as the MCP, we use existing techniques
from the literature to solve it. Several local maximizers exist
for cases where finding a global optimum of optimization
(18) is computationally difficult [38], [53]. For example, an
aggregated power method that iterates on blocks of C was
proposed by Horst [54] as a general technique for solving the
MEP (Definition 4) numerically.

Below, we summarize general algorithmic ideas to solve
MCP:

(1) First, an efficient algorithm is used to solve MEP which
is the necessary first order condition for MCP. This step
is studied in references [38], [54].

(2) Next, a strategy is used to choose starting points of
the algorithm or to jump out of the local minima of
optimization (18). We adopt this step from [41], [55].

An efficient algorithm to solve MEP: Algorithm 1 proposed
by [38] is a Gauss-Seidel algorithm [56] to solve MEP, which is
a variant of the classical power iteration method (see e.g. [57]).
Let

r(b) = bTCb =
n

∑
i,i′=1

bTi Ci,i′bi′ (20)

λi(b) = bTi [Ci,1, . . . ,Ci,n]b =
n

∑
i′=1

bTi Ci,i′bi′

(21)

Algorithm 1 is an iterative algorithm. Let b(k) =
(b(k)

1 , . . . ,b(k)
n ) be the update of Algorithm 1 at iteration k.

Algorithm 2 Network ACE to compute NMC

Input: G, X1, . . . ,Xn,
Initialization: φ(0)

1 (X1), . . . , φ(0)
n (Xn) with mean zero and

unit variance.
for k = 0,1, . . .

for i = 1, ..., n

φ̃i
(k)(Xi) = E [∑i−1i′=1 φ

(k+1)
i′ (Xi′)∣Xi] +

E [∑ni′=i+1 φ
(k)
i′ (Xi′)∣Xi], for i′ ∈ N (i).

update: φ(k+1)
i (Xi) = φ̃i

(k)
(Xi)

√

E[φ̃i
(k)

(Xi)
2
]

end
ρ(k+1)G = ∑(i,i′)∈E E [φ(k+1)

i (Xi)φ(k+1)
i′ (Xi′)]

end

Theorem 3 ( Theorem 5.1 [41]). The sequence {r(b(k))} gen-
erated by Algorithm 1 is monotonically increasing and
convergent.

Theorem 3 indicates that the Algorithm 1 finds a local optimum
of the optimization (18). According to Proposition 1, this solu-
tion provides a local optimum for the NMC optimization (3). In
the following we introduce a strategy that uses a local optimum
of the optimization (18) and constructs another solution for the
optimization (18) with strictly higher objective function value.
A strategy for avoiding local optima of MCP:
Proposition 1. Let b̄ be a solution of the MEP (19). Suppose

that there exists an 1 ≤ i ≤ n such that λi(b̄) < 0. Let b̂ =
(b̂1, . . . , b̂n) be defined as: b̂i = −b̄i, for any i such that
λi(b̄) < 0, and b̂i′ = b̄i′ , otherwise. Then, we have r(b̂) >
r(b̄).

Proof A proof is presented in Section 7.3.

Algorithm 1 finds a local optimum b̄ for the optimization
(18). This solution can be translated to a solution of the NMC
optimization (3) according to Theorem 1, equations (10), (14),
and using bi = Biai. This leads to a direct algorithm to find
a solution for the NMC optimization (3) based on alternating
conditional expectation (Algorithm 2). Similarly to Algorithm
1, Algorithm 2 converges to the local optimum of the NMC
optimization (3). We use a strategy similarly to the one of
Proposition 1 to avoid remaining at local maximizers. At each
iteration of the algorithm, we update transformation functions
as follows: Suppose at iteration k, transformation functions
are {φ(k)

i }ni=1. If we fix all variables except the transformation
function of node i, an optimizer of φ(k+1)

i can be written
as the normalized conditional expectation of functions of its
neighbors. In each update, the objective function of the NMC
optimization increases or remains the same. Note that, for the
bivariate case (i.e., n = 2), Algorithm 2 is simplified to the ACE
algorithm [21] for the MC computation. If the number of nodes
n is large, then computation of NMC may be expensive. In the
following, we propose an approach to compute NMC using
parallel computation.

3.3 Parallel Computation of NMC
For large and dense networks, exact computation of NMC
may become computationally expensive. For those cases, we
propose a parallelizable algorithm which approximates NMC
using network partitioning. The idea can be described as
follow. For a given graph G = (V,E),
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(1) Partition the graph into small disjoint sets.
(2) Estimate NMC for each partition independently.
(3) Combine NMC solutions over sub-graphs to form an

approximation of NMC for the original graph.

A k-partition π(k,V,E) of graph G = (V,E) is defined as a
set {V1, . . . , VM} such that, for any 1 ≤ i ≠ j ≤ M , Vi ∩ Vj = ∅,
⋃Mi=1 = V , and 1 ≤ ∣Vi∣ ≤ k. We say an edge e ∈ E belongs to
π(k,V,E) if e ∈ ⋃Mi=1 Vi × Vi.
Definition 5. A k-partitioning of graph G = (V,E) is a

set Π(k,V,E) = {π1(k,V,E), π2(k,V,E), ...} where each
πi(k,V,E) is a k-partition of the graph.

Next we define an (ε, k)-partitioning of graph G = (V,E).
Definition 6 ( [58], Section A). An (ε, k)-partitioning of graph

G = (V,E) is a distribution over all k-partitioning of the
graph such that, for any e ∈ E, E[1{e ∉ πi(k,V,E)}] ≤ ε.

Definition 7. A graph G is poly-growth if there exists r > 0
and C > 0, such that for any vertex v in the graph,

∣Nv(d)∣ ≤ Cdr,

where Nv(d) is the number of nodes within distance d of v
in G (distance is defined as the shortest path length on the
graph).

Reference [58] describes the following procedure for generating
an (ε, k)− partitioning on a graph:

1. Given G = (V,E), k, and ε > 0, we define the truncated
geometric distribution as follows:

P[x = l] = { ε(1 − ε)l−1, l < k,
(1 − ε)k−1, l = k. (22)

2. We then order nodes arbitrarily 1, . . . ,N . For node i, we
sample Ri according to distribution (22) and assign all
nodes within that distance from node i to color i. If a
node is already colored, we re-color it with color i.

3. All nodes with the same color form a k-partition of the
graph.

Proposition 2 ( [58], Lemma 2). If G is a poly-growth graph,
then by selecting k = Θ( rε log r

ε ), the above procedure
results in an (ε,Ckr)-partitioning.

Next, we use an (ε, k)-graph partitioning to approximate NMC
over large graphs using parallel computations. Consider the
following approach:

(1) We sample a partition {V1, . . . , VM} of V , given an
(ε, k)- partitioning of G.

(2) For each partition 1 ≤ m ≤ M , we compute NMC
restricted to Gm = (Vm,E ∩ (Vm × Vm)), denoted by
ρ̂Gm .

(3) Let ρ̂G = ∑Mm=1 ρ̂Gm be an approximation of ρG.

In the following, we bound the approximation error by bound-
ing boundary effects:
Theorem 4. Consider an (ε, k)- partitioning of the graph G. We

have,

E[ρ̂G] ≥ (1 − ε)ρG, (23)

where the expectation is over (ε, k)- partitioning of graph
G.

Proof A proof is presented in Section 7.4.

4 PROPERTIES OF NETWORK MAXIMAL CORRELA-
TION FOR FINITE DISCRETE RANDOM VARIABLES

In many applications, often only noisy measurements or sam-
ples of joint distributions are observed. In this section, we
prove a finite sample generalization bound, and error guaran-
tees for Network Maximal Correlation of finite discrete random
variables. Specifically, under general conditions, we prove that
Network Maximal Correlation is a continuous measure with
respect to the joint probability distribution. That is, a small
perturbation in the distribution results in a small change in
the NMC value. Moreover we prove that the probability of
discrepancy between NMC and sample NMC (NMC computed
using empirical distributions) greater than any given level
decays exponentially fast as the sample size m grows.

Throughout this subsection we only consider finite discrete
random variables. Moreover to simplify notation we let P be
the matrix representation of probability distribution PX1,⋯,Xn .
We assume that all the elements of the alphabet xi ∈ Xi
have positive probabilities, as otherwise they can be neglected
without loss of generality, and define

δXi(P ) ≜ arg min
xi∈Xi

PXi(xi) > 0, 1 ≤ i ≤ n. (24)

The empirical distribution of these variables using m observed
samples is defined as P (m)(x1, . . . , xn) = 1

m ∑
m
s=1 1{x

(s)
1 =

x1, . . . , x
(s)
n = xn}, where {(x(s)1 , . . . , x(s)n )}ms=1 are i.i.d. sam-

ples drawn according to the distribution PX1,...,Xn . The vec-
tor of observed samples of variable Xi is denoted by xi =
(x(1)i , x(2)i , . . . , x(m)

i ).

4.1 Continuity of Network Maximal Correlation

Let P and P̃ be two distributions over alphabets (X1, . . . ,Xn).
Let K = max1≤i≤n ∣Xi∣. Thus, K ≜ Kn is an upper bound on
the alphabet size of the joint distribution. In the following,
we show that if the infinity norm distance between P and P̃
is small (i.e., ∣∣P − P̃ ∣∣∞ = maxx1∈X1,...,xn∈Xn ∣P (x1, . . . , xn) −
P̃ (x1, . . . , xn)∣ ≤ γ), their corresponding NMC values (denoted
by ρG and ρ̃G respectively) are close to each other.

Theorem 5. Network Maximal Correlation is a continuous func-
tion of the joint probability distribution P . Let ∣∣P−P̃ ∣∣∞ ≤ γ,
for γ ≤ δ3/2K−1. Then, we have

∣ρG − ρ̃G∣ ≤ γK∣E∣ 8

δ2
, (25)

where δ = min1≤i≤n (min{δXi(P ), δXi(P̃ )}).

Proof A proof is presented in Section 7.5.

Corollary 2. Let ρ and ρ̃ be bivariate MCs with respect to
distributions P and P̃ , respectively. Let ∣∣P − P̃ ∣∣∞ ≤ γ. For
any γ ≤ δ3/2K−1, we have

∣ρ − ρ̃∣ ≤ γK 8

δ2
, (26)

where K and δ are defined according to Theorem 5.
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4.2 Sample NMC

Let {(x(s)1 , . . . , x(s)n )}ms=1 be i.i.d. samples drawn according to
a distribution PX1,...,Xn . Let P (m) denote the empirical distri-
bution obtained from these samples. Network Maximal Corre-
lation computed using this empirical probability distribution
is called Sample Network Maximal Correlation and is denoted by
ρ(m)

G ({(x(s)1 , . . . , x(s)n )}ms=1). For simplicity, when no confusion
arises, we refer to the sample NMC by ρ(m)

G . In the following,
we show that the probability of discrepancy greater than any
given value between ρ(m)

G and ρG decays exponentially fast as
the sample size m grows.

Theorem 6. For any η, ε > 0, if

m ≥ 2(32∣E∣K
εδ′2

)
2

log (8n

η
) , (27)

then we have

P[∣ρ(m)

G − ρG∣ > ε] ≤ η, (28)

where δ′ = min1≤i≤n δXi(P ).

Proof A proof is presented in Section 7.6.

Note that the number of required samples to learn the joint
probability distribution reliably is a function of the alphabet
size. This is reflected in the right hand side of the bound
provided in Theorem 6 through the term K.

Corollary 3. Let ρ and ρ(m) be bivariate MC and sample MC,
respectively. For

m ≥ 2(32K
εδ′2

)
2

log (16

η
) . (29)

we have

P[∣ρ(m) − ρ∣ > ε] ≤ η, (30)

where K and δ′ are defined according to Theorem 6.

5 NMC FOR JOINTLY GAUSSIAN VARIABLES

Suppose that (X1, . . . ,Xn) are jointly Gaussian variables with
zero means and unit variances. Let ρi,i′ be the correlation
coefficient of variables Xi and Xi′ . We assume that ∣ρi,i′ ∣ ≠ 1 if
i ≠ i′. Let Gc = (Vc,Ec) be the covariance graph corresponding
to these variables where Vc = {1,2, ..., n}, and (i, i′) ∈ Ec iff
ρi,i′ ≠ 0. Moreover for continuous variables {φi(.)}ni=1 in opti-
mization (3) are assumed to be continuous and l2 (equivalent
to L2 for discrete random variables).

The k-th Hermite-Chebyshev polynomial [20] is defined as

Ψk(x) ≜ (−1)kex
2 dk

dxk
e−x

2

. (31)

These polynomials form an orthonormal basis with respect to
Gaussian distributions [20]. That is,

∫
∞

−∞
Ψj(xi)Ψj′(xi′)p(xi, xi′)dxidxi′ = (ρi,i′)j1{j = j′}, (32)

where p(xi, xi′) is the joint density function of Gaussian vari-
ables Xi and Xi′ with correlation ρi,i′ . Let ψi,j to be the j-th
Hermite-Chebyshev polynomial, for 1 ≤ i ≤ n. We have

ρj,j
′

i,i′ = E[ψi,j(Xi) ψi′,j′(Xi′)] (33)

= (ρi,i′)j1{j = j′}.

Moreover, using the definition of Hermite-Chebyshev polyno-
mials (31), we have

E[ψi,j(Xi)] = 1{j = 0}, 1 ≤ i ≤ n. (34)

because all of these functions for j ≥ 1 have zero means when
integrated against a Gaussian distribution. Therefore, using
(33) and (34), the optimization (7) can be written as

max
{{ai,j}ni=1}

∞
j=1

∑
(i,i′)∈E

∞

∑
j=1

ai,jai′,j (ρi,i′)j (35)

∞

∑
j=1

(ai,j)2 = 1, 1 ≤ i ≤ n.

We establish that solving the optimization (35) is NP-complete
by identifying one instance of this problem that reduces to the
max-cut problem, which is NP-complete [45].
Theorem 7. Let si ∈ {−1,1} for 1 ≤ i ≤ n. Suppose

∑
i′≠i

(1 − sisi′)ρi,i′ ≥ 0, ∀1 ≤ i ≤ n,

and

∑
i′≠i

sisi′ρi,i′ ≥ ∑
i′≠i

(ρi,i′)2, ∀1 ≤ i ≤ n,

then, a∗i = (0, si,0, . . . ,0), for 1 ≤ i ≤ n is a global maxi-
mizer of the NMC optimization (35) over a complete graph
without self-loops.

Proof A proof is presented in Section 7.7.

Proposition 3. Under assumptions of Theorem 7, the NMC
optimization (3) is simplified to the following max-cut
optimization:

max
si

∑
i≠i′

sisi′ ρi,i′ (36)

si ∈ {−1,1}, 1 ≤ i ≤ n.

Moreover, for all 1 ≤ i ≤ n, we have φ∗i (Xi) = s∗iXi,
where φ∗i and s∗i are solutions of optimizations (2) and (36),
respectively.

Proof A proof is presented in Section 7.8.

For bivariate jointly Gaussian variables, the conditions of
Proposition 3 are always satisfied. For multivariate jointly
Gaussian variables however an optimal NMC solution φ∗i (Xi)
can be different than ±Xi. Proposition 3 provides conditions
under which φ∗i (Xi) = ±Xi for the multivariate setup.

In general, the Max-Cut optimization (36) is NP-complete
[45]. However, there exist algorithms to approximate its solu-
tion using semidefinte programming (SDP) [46].
Assumption 1. Let (X1, ...,Xn) be jointly Gaussian variables,

with zero means and unit variances such that ρi,i′ ≠ 1 if
i ≠ i′, and

∑
i′≠i

ρi,i′ ≥ ∑
i′≠i

(ρi,i′)2, ∀1 ≤ i ≤ n, (37)

where ρi,i′ is the correlation coefficient of Xi and X ′
i .

If all correlation coefficients are non-negative (i.e., ρi,i′ ≥ 0 for
1 ≤ i, i′ ≤ n), Assumption 1 is immediately satisfied. However,
Assumption 1 is more general as some correlation coefficients
can be negative and the condition will still hold.
Corollary 4. Under Assumption 1, φ∗i (Xi) =Xi is a solution of

the NMC optimization (35).
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6 ILLUSTRATION OF NMC’S USE

In this section, we illustrate some applications of NMC.

6.1 Inference of Graphical Models for Functions of Gaus-
sian Variables
Suppose that (X1, . . . ,Xn) are jointly Gaussian variables with
the covariance matrix ΛX . Without loss of generality, we as-
sume all variables have zero means and unit variances. I.e.,
E[Xi] = 0 and E[X2

i ] = 1, for all 1 ≤ i ≤ n.
Definition 8. The graphical model GX = (VX ,EX) is defined

such that if (i, i′) ∉ EX , then

Xi ⊥⊥Xi′ ∣{Xk, k ≠ i, i′}, (38)

where ⊥⊥ represents independence between variables.

Let JX be the information (precision) matrix [47] of these
variables where JX = Λ−1

X .
Theorem 8 ([47], Example 3.3). For jointly Gaussian variables,

(i, i′) ∈ EX if and only if JX(i, i′) ≠ 0.

This Theorem has been stated in other references as well (e.g.
[59]). Theorem 8 represents a way to model explicitly the joint
distribution of Gaussian variables using a graphical model
GX = (VX ,EX). This result is critical in several applications
involved with Gaussian variables which requires computation
of marginal distributions, or computation of the mode of the
distribution. These computations can be performed efficiently
over the graphical model using belief propagation approaches
[47]. Moreover, Gaussian graphical models play an important
role in many applications such as linear regression [48], partial
correlation [49], maximum likelihood estimation [50], etc. In
many applications, even if variables are not jointly Gaussian,
a Gaussian approximation is used often, partially owing to the
efficient inference of their graphical models.

In the following, under some conditions, we use the multi-
ple MC (2) and NMC (3) optimizations to characterize graph-
ical models for functions of latent jointly Gaussian variables.
These functions are unknown, bijective, and can be linear or
nonlinear. More precisely, let Yi = fi(Xi), where fi ∶ R → R
is a bijective function. Our goal is to characterize a graphical
model for the variables (Y1, Y2, . . . , Yn) without knowledge of
the functions fi(⋅).

Consider the following optimizations:

sup
gi,i′ ,gi′,i

E[gi,i′(Yi) gi′,i(Yi′)], (39)

such that gi,i′ ∶ Yi → R is Borel measurable, E[gi,i′(Yi)] = 0, and
E[gi,i′(Yi)2] = 1, for 1 ≤ i, i′ ≤ n, and

max
gi∶R→R

∑
(i,i′)

E[gi(Yi) gi′(Yi′)], (40)

E[gi(Yi)] = 0, 1 ≤ i ≤ n,
E[g2i (Yi)] = 1, 1 ≤ i ≤ n,

such that gi ∶ Yi → R is Borel measurable, E[gi(Yi)] = 0,
and E[gi(Yi)2] = 1, for 1 ≤ i ≤ n. Optimization (39) solves
multiple MC between all pairs of variables while optimization
(40) solves NMC considering a fully connected graph. Suppose
g∗i,i′ and g∗i represent solutions of (39) and (40), respectively.
Theorem 9. g∗i,i′(Yi) = ±Xi for all 1 ≤ i, i′ ≤ n is a solution of

(39). Moreover, if Assumption 1 holds, g∗i (Yi) = Xi for all
1 ≤ i ≤ n is a solution of (40).
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Fig. 1: Relationships between jointly Gaussian variablesXi and
observations Yi for example 1 (panel a), and for example 2
(panel b).

Proof A proof is presented in Section 7.9.

In the multiple MC optimization (39), each variable Yi is
assigned to n − 1 transformation functions {g∗i,i′(Yi) ∶ 1 ≤ i′ ≠
i ≤ n}. However, when variables X1,...,Xn are jointly Gaussian,
all these functions are equal to ±Xi. In general this is not true
for non-Gaussian distributions. On the other hand, when the
Assumption 1 holds, a solution of the NMC optimization (40)
recovers the sign of latent variables as well.

We define the matrices ΛMultiMC and ΛNMC by

ΛMultiMC(i, i′) = E[g∗i,i′(Yi)g∗i′,i(Yi′)]
ΛNMC(i, i′) = E[g∗i (Yi)g∗i′(Yi′)].

Moreover, we let JMultiMC = Λ−1
MultiMC and JNMC = Λ−1

NMC .
We define GNMC = (VNMC ,ENMC) such that (i, j) ∈ ENMC

if and only if JNMC(i, j) ≠ 0. We also let GNMC be the set of all
possible GNMC since the solution of the optimization (40) may
not be unique. Similarly, we define GMultiMC and GMultiMC .

Corollary 5. Let GY be a graphical model of variables Yi =
fi(Xi) according to Definition 8, where fi ∶ R → R is a
bijective function, for 1 ≤ i ≤ n. Then GY ∈ GMultiMC .
Moreover, if Xi 1 ≤ i ≤ n satisfy Assumption 1, then we
have GY ∈ GNMC .

Corollary 9 characterizes the graphical model of variables
{Yi} that are related to latent jointly Gaussian variables {Xi}
through the unknown bijective functions {fi}. The family of
distributions considered in this corollary is broad and in-
cludes many Gaussian distributions as well as distributions
whose variables are bijective functions of Gaussian variables.
Graphical models characterized in Corollary 9 can be used
in computation of marginal distributions, computation of the
mode of the joint distribution, and in other applications of
estimation and prediction similarly to the case of Gaussian
graphical models.

Next we provide two examples to highlight similarities
and differences between our proposed inference framework
(Theorem 5) and the one in reference [12]. Liu et al. [12] con-
siders the graphical model inference problem for functions of
jointly Gaussian variables when the underlying link functions
are monotone. In [12] to characterize the graphical model of
variables Yi according to Definition 8 (or equivalently the co-
variance matrix of jointly Gaussian variablesXi), rank statistics
between variables and connections between Spearman’s and
Pearson’s correlation coefficients are employed.
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Consider four zero mean jointly Gaussian variables
X1,...,X4 with the covariance matrix

ΛX =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.0 0.4 0.2 0.3
0.4 1.0 0.3 0.2
0.2 0.3 1.0 0.4
0.3 0.2 0.4 1.0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

. (41)

In this case we have JX(1,3) ≈ 0 and JX(2,4) ≈ 0 (the
underlying graphical model is illustrated in Figure 2). We
observe samples from Yi = fi(Xi). In Example 1, we have

Y1 = f1(X1) =
⎧⎪⎪⎨⎪⎪⎩

10X1, if X1 ≥ 0,
1
10X1, otherwise,

, Y2 = f2(X2) = e20X2 ,

(42)

Y3 = f3(X3) = −X3, Y4 = f4(X4) =X3
4 .

In this example all link functions are continuous and monotone
satisfying the model assumption of our proposed inference
framework (Corollary 5) and the copula method [12]. In Exam-
ple 2, we violate the model assumption for both our inference
framework and for the copula method by considering non-
monotone link functions:

Y1 = f1(X1) =
⎧⎪⎪⎨⎪⎪⎩

e20X1 , if X1 ≥ 0,

−e−20X1 , otherwise,
(43)

Y2 = f2(X2) =
⎧⎪⎪⎨⎪⎪⎩

1
max(X2)

X2 − 1, if X2 ≥ 0,
−1

min(X2)
X2 + 1, otherwise,

Y3 = f3(X3) = −X3, Y4 = f4(X4) =X3
4 .

Relationships between samples of these variables are illus-
trated in Figure 1. We have drawn 10,000 samples of these
random variables. Note that all variables are normalized to
have zero means and unit variances. The functions fi(⋅) remain
unknown for the inference part.

In the computation of NMC, if variables are continuous and
we only observe samples from their joint distributions, the em-
pirical computation of conditional expectations in Algorithm
2 may be challenging owing to the lack of sufficient samples.
One approach to compute empirical conditional expectations
at point xi ∈ R is to use all samples in its Bi neighborhood.
With m samples {(x(s)1 , . . . , x(s)n )}ms=1, for any i, i′, this leads to

P (m)

Xi,Xi′
(xi, xi′) =

1

m

m

∑
s=1

1{xsi ∈ [xi −
Bi
2
, xi +

Bi
2

] , (44)

xsi′ ∈ [xi′ −
Bi′

2
, xi′ +

Bi′

2
] }.

In our ACE implementations to compute NMC for continuous
variables we have considered both fixed and variable window
sizes (i.e.,Bi’s). In our simulations, in the variable window size
case, we consider 10 bins and choose Bi’s so that the number
of samples in different bins are the same.

Let J̃ be an estimation of the inverse covariance matrix.
Since in the underlying graphical model there are no edges
between nodes 1 and 3, and nodes 2 and 4 (Figure 2), we use
(∣J̃(1,3)∣ + ∣J̃(2,4)∣) /∑1≤i,j≤n ∣J̃(i, j)∣ as a measure to evalu-
ate error in inferring the graphical model structure.

Figure 3 shows inference errors for Jnmc (i.e., the NMC
inference framework), Jcopula (i.e., the copula method [12]),
JY (i.e., observed variables) and JX (i.e., latent variables)
for Example 1 and 2. In the case of Example 1, both NMC

1

2

3

4

Fig. 2: The underlying graphical model considered in Examples
1 and 2 in Section 6.1.
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Fig. 3: Inference errors for Jnmc (i.e., the NMC inference frame-
work), Jcopula (i.e., the copula method [12]), JY (i.e., observed
variables) and JX (i.e., latent variables) for setups of Example
1 (panel a) and Example 2 (panel b). Experiments have been
repeated over 50 random realizations of variables. The red line
in the middle of each box is the sample median. The tops and
bottoms of each box are the 25-th and 75-th percentiles of the
samples, respectively. The performance of NMC and copula
inference frameworks are comparable in the setup of Example
1, while in the one of Example 2 NMC outperforms copula.

and copula inference frameworks have small and compara-
ble errors. In the case of Example 2 where we violate the
monotonicity assumption of link functions, NMC appears to
outperform copula. Experiments have been repeated over 50
random realizations of variables.

In this section we focused on the application of MC and
NMC in learning graphical models for functions of jointly
Gaussian variables. A similar MC/NMC framework can po-
tentially be useful in learning graphical models in other setups
such as tree graphical models with incomplete samples [60]. We
leave further exploration of this application for future research.

6.2 Illustration of Sample NMC’s Use in a Data Application
Having illustrated applications of the NMC optimization in
learning nonlinear dependencies among variables, here we
provide an example to demonstrate NMC’s utility in a real data
application. We validate inference results with second, distinct
data set that was not used in the inference part. This validation
step provides evidence that inference results are likely to be
meaningful.

Data: Cancer is a complex disease involving abnormal cell
growth with the potential to invade or spread to other parts
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of the body [61]. Different studies have shown associations of
micro RNA patterns in different human cancers [51], [62]. In
this section, we use normalized RNA sequence counts from
the TCGA data portal for the Glioma cancer (GBMLGG) at
the gene level [51]. Other cancer types can be considered in
our framework as well. We use the processed data provided in
[51]. Let the variable Xi denote the RNA sequence counts of
the gene i. We have samples from this variable in m patients
denoted by {xji}

m
j=1. In the following we explain inference

assumptions and steps we have taken in this application.
Inferring nonlinear gene-gene interactions: for each can-

cer type, first we select the top 500 highly-variant genes based
on their normalized variances (i.e., n = 500) [63]. Let φ∗i (Xi) for
1 ≤ i ≤ n be a solution for the NMC optimization (3) over a com-
plete graph without self-loops. LetANMC ∈ Rn×n be a symmet-
ric adjacency matrix where ANMC[i, i′] = E[φ∗i (Xi)φ∗i′(Xi′)]
for 1 ≤ i, i′ ≤ n. Moreover, let ALin be a symmetric linear
covariance matrix where ALin[i, i′] = E[XiXi′] for 1 ≤ i, i′ ≤ n.
Figure 4-a illustrates top 5% of elements of the ∣ANMC ∣− ∣ALin∣
matrix for the Glioma Cancer (GBMLGG). The non-zero ele-
ments of this matrix represent gene pairs whose RNA sequence
counts are strongly and nonlinearly associated to each other. In
Figure 5, we consider some other density parameters as well
(e.g., 1% and 10%).

It is important to note that this real-data example is based
on several heuristic steps and assumptions about the underly-
ing data that we explain below.

Assumptions: we assume that different RNA sequence
count samples for a gene (i.e., {xji}

m
j=1) are independent. That

is, there is no between-patient correlations among these sam-
ples [64]. Also we assume that conditions of Theorem 7 holds.
That is, input data comes from, possibly nonlinear, functions of
some latent jointly Gaussian variables satisfying conditions of
Theorem 7. These functions are unknown and bijective. This
assumption is less restrictive than the one of the standard
covariance analysis where input variables are assumed to be
jointly Gaussian.

Inferring Nonlinear Gene Modules: we partition each
network to k groups using a standard spectral clustering
algorithm based on the modularity transformation [65]. We
consider different values of k (between 1 and 20) to obtain
dense and large clusters. Then, in a heuristic manner, we merge
small and heavily overlapping modules to form large and
dense ones. We define a gene module as a group of genes that are
densely connected to each other in the network. A gene module
is called nonlinear if it is present in the NMC network but not
in the linear one. We use a permutation test [66] to compute a
p-value for each gene module in the network by permuting the
network structure and comparing the density of the module
in the original network with the ones in permutated ones. We
only consider gene modules with p-values less than 0.05. An
example of such a nonlinear gene module module is illustrated
by a yellow box in Figure 4-a.

Validations using Survival Time Analysis: we partition
individuals to two equal-size groups based on their average
ranks of normalized RNA sequence counts in that module to
evaluate if there are statistically significant differences between
survival times of patients in the two groups. In order to do that,
we perform a standard survival time analysis for each module
based on Kaplan-Meier procedure to estimate the underlying
survival function [67]. We compute its associated log-rank p-
value to determine its association with individual survival
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Fig. 4: (a) A nonlinear gene module of Glioma cancer
(GBMLGG) defined in Section 6.2, as a group of genes whose
RNA sequence counts are strongly and nonlinearly dependent
among each other. (b) Survival time curves for the corre-
sponding nonlinear cancer module. Survival times of cancer
patients are significantly associated with average normalized
RNA sequence counts of inferred gene module.

times in the considered cancer type [68]. We perform Benjamini
and Hochberg multiple hypothesis correction [69] for the com-
puted p-values of different nonlinear modules. We find that this
gene module is significantly associated with survival times of
cancer patients (Figure 4-b) while it is not detected using linear
association measures. Several references [70], [71], [72], [73],
[74] have hypothesized that complex nonlinear relationships
among genes may play important roles in cancer pathways.
The proposed NMC algorithm and inferred nonlinear gene
modules can be used in discovering such complex nonlinear
relationships in different cancer types. To substantiate these
inferences, further experiments should be performed to deter-
mine the involvement of these nonlinear gene interactions and
modules in different cancers, which is beyond the scope of the
present paper.

7 PROOFS

7.1 Proof of Theorem 1

Proof Recall that {ψi,j}∞j=1 is the orthonormal basis of HXi for
1 ≤ i ≤ n. We can represent functions φi and φi′ in terms of the
basis functions, i.e., for any xi ∈ Xi, xi′ ∈ Xi′ ,

φi(xi) =
∞

∑
j=1

ai,jψi,j(xi),

φi′(xi′) =
∞

∑
j=1

ai′,jψi′,j(xi′),

for two sequences of coefficients {ai,j}∞j=1 and {ai′,j}∞j=1. Thus,
the constraint E[φk(Xk)2] = 1 in optimization (3) would be
translated into ∑∞

j=1 a
2
k,j = 1 and the constraint E[φk(Xk)] = 0

is simplified to ∑∞
j=1 ak,jE[ψk,j(Xk)] = 0, for k = i, i′. More-

over, we have

E[φi(Xi)φi′(Xi′)] =
∞

∑
j,j′=1

ai,jai′,j′ E[ψi,j(Xi)ψi′,j′(Xi′)].

(45)
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Fig. 5: An example illustrating the framework considered in
Section 6.2 for Glioma (GBMLGG). Using normalized RNA
sequence counts from the TCGA data portal, we construct both
linear (ALin) and nonlinear (ANMC ) complete dependency
graphs between genes. We then select the top 5% interactions
among genes in the NMC network with the largest nonlin-
ear association increases compared to their linear association
strengths. Then, using spectral clustering [65] along with a
heuristic step to merge small overlapping clusters, we identify
dense and large clusters over the thresholded network. In this
example, we illustrate the inferred nonlinear gene module over
networks with density parameters 1%, 5% and 10%.

Thus, Network Maximal Correlation optimization (3) can be
re-written as follows:

sup
{{ai,j}ni=1}

∞
j=1

∑
i,i′
∑
j,j′

ai,jai′,j′ E[ψi,j(Xi)ψi′,j′(Xi′)] (46)

∞

∑
j=1

a2i,j = 1, 1 ≤ i ≤ n,

∞

∑
j=1

ai,j E[ψi,j(Xi)] = 0, 1 ≤ i ≤ n.

Moreover, {ψi,jψi′,j′}j,j′ form a basis for the following set of
functions {φi,i′ ∶ Xi × Xi′ → R ∶ E[φ2i,i′(Xi,Xi′)] < ∞}. Since
PXi,Xi′ (⋅, ⋅) ∈ belongs to this set of functions, we can write

PXi,Xi′ (xi, xi′) =∑
j,j′

ρj,j
′

i,i′ ψi,j(xi)ψi′,j′(xi′). (47)

This completes the proof.

7.2 Proof of Theorem 2

Proof To prove Theorem 2, first we show that the constraints
E[φi(Xi)] = 0 and E[φi(Xi)2] = 1 lead to the same solution
as the constraints var(φi(Xi)) = 1. We then show that the
constraint ai ⊥

√
pi can be incorporated into the objective

function, without changing the solution.

Lemma 1. The NMC optimization (3) can be written as follows:

max
φ1,...,φn

∑
(i,i′)∈E

E[(φi(Xi) − φ̄i)(φi′(Xi′) − φ̄i′)] (48)

var(φi(Xi)) = 1, 1 ≤ i ≤ n,

where φ̄i and var (φi(Xi)) represent the mean and the
variance of the random variable φi(Xi).

Proof In this proof, we denote the random variable φi(Xi) by
φi. We let the optimal objective value of optimization (48) be
ρ̃G. We also let φ∗i be an solution of (3). The set of functions φ∗i
for i = 1, . . . , n is feasible for optimization (48) and therefore
we have ρG ≤ ρ̃G. On the other hand, let φ∗∗i be an solution of
optimization (48). Let φ̃i = φ∗∗i − φ̄i

∗∗. The set of functions φ̃i
for i = 1, . . . , n is feasible for optimization (3). Thus, we have
ρG ≥ ρ̃G. Therefore, we have that ρG = ρ̃G.

We have

1 = E[φi(Xi)2] − (E[φi(Xi)])2 = ∣∣ai∣∣22 − (ai
√
pi)2 (49)

= aTi (I −√
pi

√
pi
T )ai.

We next show that the matrix I−√
pi

√
pi
T is positive semidef-

inite and the only vectors in its null space are 0 and
√
pi. This

is because

xT (I −√
pi

√
pi
T )x = ∣∣x∣∣22 − (x√pi)2 ≥ 0, (50)

where we use Cauchy-Schwartz and ∣∣√pi∣∣22 = 1 to obtain the
last inequality (50). This inequality becomes an equality if and
only if x = 0 or x = √

pi.
Now consider the objective function of optimization (48). We
have

E[(φi(Xi) − φ̄i)(φi′(Xi′) − φ̄i′)] = E[φi(Xi)φi′(Xi′)] − φ̄iφ̄i′
= aTi Qi,i′ai′ − (aTi

√
pi)(aTi′

√
pi′) = aTi (Qi,i′ −

√
pi

√
pi′

T )ai′ .

Therefore, optimization (48) (which is equivalent to the NMC
optimization (3) according to Lemma 1) can be written as,

max
ai

∑
(i,i′)∈E

aTi (Qi,i′ −
√
pi

√
pi′

T )ai′ (51)

aTi (I −√
pi

√
pi
T )ai = 1, 1 ≤ i ≤ n.

For each i, since I−√
pi

√
pi
T is positive semidefinte. Thus, we

can write I −√
pi

√
pi
T = BiBTi . Recall bi = Biai. Thus, con-

straints of optimization (51) can be written as bTi bi = ∣∣bi∣∣22 = 1.
We next write ai as a function of bi. Note that since Bi is not
invertible, there are many choices for ai as a function of bi
characterized as follows: Let UiΣiUTi be the singular value
decomposition of Bi. The vector

√
pi is the singular vector

corresponding to singular value zero (σ(1)
i = 0).

ai =([U (2)
i , . . . , U (∣Xi∣)

i ]diag(1/σ(2)
i , . . . ,1/σ(ni)

i ) (52)

[U (2)
i , . . . , U (∣Xi)

i ]T )bi + αi
√
pi = Aibi + αi

√
pi,

where αi can be any scalar.3 Below, we show that all choices
of ai according to (52) lead to the same objective function of

3Since Bi is symmetric it has a set of ∣Xi∣ orthonormal eigenvectors and
can be written as

Bi =
∣Xi ∣

∑
j=1

vjσ
(j)
i vT

j .

We have bi = ∑∣Xi ∣j=2 βjvj and ai = ∑∣Xi ∣j=1 αjvj . From bi = Biai, we obtain

that αj = βj/σ(j)i for j ≥ 2, where α1 can be any scalar.
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optimization (51):

aTi (Qi,i′ −
√
pi

√
pi′

T )ai′ = bTi A
T
i (Qi,i′ −

√
pi

√
pi′

T )Ai′bi′

+ bTi A
T
i (Qi,i′ −

√
pi

√
pi′

T )αi′
√
pi′

+ αi
√
pi
T (Qi,i′ −

√
pi

√
pi′

T )Ai′bi′

+ αi
√
pi
T (Qi,i′ −

√
pi

√
pi′

T )αi′
√
pi′

(1)= bTi A
T
i (Qi,i′ −

√
pi

√
pi′

T )Ai′bi′

+ bTi A
T
i Qi,i′αi′

√
pi′ + αi

√
pi
TQi,i′Ai′bi′

(2)= bTi A
T
i (Qi,i′ −

√
pi

√
pi′

T )Ai′bi′ + bTi A
T
i
√
piαi′

+ αi
√
pi′

TAi′bi′ = bTi A
T
i (Qi,i′ −

√
pi

√
pi′

T )Ai′bi′ ,

where (1) follows from
√
pi′

T√pi′ = 1,
√
pi
T√pi = 1,√

piQi,i′
√
pi′ = 1, ATi

√
pi = 0, and

√
pi′

TAi′ = 0; and (2) fol-
lows from

√
pi
TQi,i′ =

√
pi′

T and Qi,i′
√
pi′ =

√
pi. Therefore,

the NMC optimization (3) can be written as

max
b1,...,bn

∑
(i,i′)∈E

bTi A
T
i (Qi,i′ −

√
pi

√
pi′

T )Ai′bi′

∣∣bi∣∣2 = 1 1 ≤ i ≤ n.

7.3 Proof of Proposition 1
Proof Let b̄ be a solution of the MEP (19). Suppose that there
exists an 1 ≤ i ≤ n such that λi(b̄) < 0. Let b̂ = (b̂1, . . . , b̂n)
be defined as: b̂i = −b̄i, for any i such that λi(b̄) < 0, and
b̂i′ = b̄i′ , otherwise. We show that by flipping the sign of b̄i
while keeping the rest of b̄i′ for i′ ≠ i the same, r(⋅) increases.
To show this we have

r(b̂) − r(b̄) (1)= 2b̂Ti
n

∑
i′=1

Ci,i′ b̂i′ − 2b̄Ti
n

∑
i′=1

Ci,i′ b̄i′

(2)= 2(b̂Ti − b̄Ti )
n

∑
i′=1

Ci,i′ b̄i′

(3)= −2b̄Ti
n

∑
i′=1

Ci,i′ b̄i′

(4)= −2λi(b̄i) > 0,

where equations (1) and (4) follow from (20), equation (2)
follows from the fact that b̂i′ = b̄i′ for i′ ≠ i, and equation (3)
follows from the fact that b̂i = −b̄i. This completes the proof.

7.4 Proof of Theorem 4
Proof For any realization of the partitioning, consider NMC
over all sub-graphs Gm (1 ≤ m ≤ M ) and denote the corre-
sponding functions by φ∗i for 1 ≤ i ≤ n. We have

ρG = ∑
(i,i′)∈E

E[φ∗i (Xi)φ∗i′(Xi′)]

= ∑
(i,i′)∈E∖Ec

E[φ∗i (Xi)φ∗i′(Xi′)] + ∑
(i,i′)∈Ec

E[φ∗i (Xi)φ∗i′(Xi′)]

(1)=
M

∑
m=1

∑
(i,i′)∈Em

E[φ∗i (Xi)φ∗i′(Xi′)] + ∑
(i,i′)∈Ec

E[φ∗i (Xi)φ∗i′(Xi′)]

(2)
≤

M

∑
m=1

ρ̂Gm + ∑
(i,i′)∈Ec

E[φ∗i (Xi)φ∗i′(Xi′)]

= ρ̂G + ∑
(i,i′)∈E

1{(i, i′) ∈ Ec}E[φ∗i (Xi)φ∗i′(Xi′)],

where equation (1) comes from the graph partitioning Defini-
tion 6, and inequality (2) comes from the fact that ρ̂Gm is the
NMC for the partition Gm = (Vm,E ∩ (Vm × Vm)). Therefore,
by taking expectation over the partitioning, we obtain

ρG ≤ E[ρ̂G] + ερG,
which gives us

(1 − ε)ρG ≤ E[ρ̂G].

7.5 Proof of Theorem 5
Proof We first present a lemma in which we bound the
difference between Q matrices, according to Definition 3, by
the difference between probability distributions. We then use
a sensitivity analysis of the optimization whose optimum is
NMC.
Lemma 2. Let P and P̃ be the matrix form of two joint prob-

ability distribution on (Xi,Xi′), such that PXi,Xi′ (xi, xi′) =
[P ]xi,xi′ and P̃Xi,Xi′ (xi, xi′) = [P̃ ]xi,xi′ and where
DXi(P ) = diag (PXi(xi) ∶ xi ∈ Xi). We can bound the
difference between Qi,i′ and Q̃i,i′ by the difference between
P and P̃ , as follows:

∣∣Qi,i′ − Q̃i,i′ ∣∣2 ≤
1

2δ2

√
K ∣∣DXi(P ) −DXi(P̃ )∣∣∞

+ 1

2δ2

√
K ∣∣DXi′ (P ) −DXi′ (P̃ )∣∣∞ + 1

δ

√
K ∣∣P − P̃ ∣∣∞, (53)

where δ is the minimum probability of all elements of Xi
and Xi′ , under both P and P̃ , and K is the maximum
alphabet size. In particular, if ∣∣PXi,Xi′ − P̃Xi,Xi′ ∣∣∞ ≤ γ and
K = max{∣Xi∣, ∣Xi′ ∣}, then we have

∣∣Qi,i′ − Q̃i,i′ ∣∣2 ≤ 2γKn 1

δ2
. (54)

Proof We have

∣∣Qi,i′ − Q̃i,i′ ∣∣2
= ∣∣DXi(P )−

1
2PDXi′ (P )−

1
2 −DXi(P̃ )−

1
2 P̃DXi′ (P̃ )−

1
2 ∣∣2.

We next insert the terms ±DXi(P )− 1
2PDXi′ (P̃ )− 1

2 and
±DXi(P )− 1

2 P̃DXi′ (P̃ )− 1
2 , pair the terms, and use triangle in-

equality to obtain

∣∣Qi,i′ − Q̃i,i′ ∣∣2 ≤ ∣∣DXi(P )−
1
2P ∣∣2∣∣DXi′ (P )−

1
2 −DXi′ (P̃ )−

1
2 ∣∣2
(55)

+ ∣∣DXi′ (P̃ )−
1
2 ∣∣2∣∣P̃ ∣∣2∣∣DXi(P )−

1
2 −DXi(P̃ )−

1
2 ∣∣2

+ ∣∣DXi′ (P̃ )−
1
2 ∣∣2∣∣DXi(P )−

1
2 ∣∣2∣∣P − P̃ ∣∣2,

where each term depends on the difference between P and P̃ .
We have

∣∣DXi(P )−
1
2P ∣∣2

(1)
≤ 1√

δ

√
K (56)

∣∣DXi′ (P )−
1
2 −DXi′ (P̃ )−

1
2 ∣∣2 ≤ ∣∣DXi′ (P )−

1
2 −DXi′ (P̃ )−

1
2 ∣∣∞

(2)
≤ ∣∣DXi′ (P ) −DXi′ (P̃ )∣∣∞

1

2δ3/2
,

where inequality (1) comes from the Cauchy-Schwartz inequal-
ity and the fact that ∣∣P ∣∣2 ≤

√
K ∣∣P ∣∣1 ≤

√
K . Inequality (2)

follows from the fact that for x, y ∈ R, we have
1√
x
− 1√

y
= y − x√

x
√
y(

√
x +√

y)
≤ ∣x − y∣ 1

2 (min{x, y})3/2
. (57)
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Using (56) in (55) results in (53).
Moreover we have

∣∣DXi(P ) −DXi(P̃ )∣∣∞ (58)

≤ ∑
{X1,...,Xn}∖{Xi}

∣∣PX1,,...,Xn − P̃X1,...,Xn ∣∣∞ ≤ γKn−1.

Using (58) and the fact that K > 1 in (53) results in (54). This
completes the proof of this Lemma.

Let P and P̃ be two distributions on X1 × ⋅ ⋅ ⋅ × Xn. We shall
compare the solution of the two following optimization prob-
lems.

max
ai

∑
(i,i′)∈E

aTi Qi,i′ai (59)

∣∣ai∣∣2 = 1, 1 ≤ i ≤ n,
ai ⊥

√
pi, 1 ≤ i ≤ n,

and

max
ai

∑
(i,i′)∈E

aTi Q̃i,i′ai (60)

∣∣ai∣∣2 = 1, 1 ≤ i ≤ n,
ai ⊥

√
p̃i, 1 ≤ i ≤ n.

Let ρG and ρ̃G be the optimal values for (59) and (60), respec-
tively.

Recall that

δ = min
1≤i≤n

(min{δXi(P ), δXi(P̃ )}) .

Suppose a∗i yields the optimum of optimization (59). Based
on this solution, we shall construct a feasible solution for
optimization (60) and then evaluate its objective function. For
any i, let

ci =
a∗i + νi

∣∣a∗i + νi∣∣2
,

where νi =
√
p̃i < a∗i ,

√
pi −

√
p̃i >. Under the assumption of

Theorem 5 (i.e., γ ≤ δ3/2K−1), we show that ∣∣νi∣∣ ≤ 1/2. We have

∣∣νi∣∣ = ∣∣
√
p̃i < a∗i ,

√
pi −

√
p̃i > ∣∣2

(3)
≤ ∣∣

√
p̃i∣∣2∣∣a∗i ∣∣2∣∣

√
pi −

√
p̃i∣∣2

(61)
(4)
≤ ∣∣pi − p̃i∣∣∞

1

2δ3/2

(5)
≤ γKn−1

2δ3/2
(62)

(6)
≤ 1

2
,

where Inequality (3) comes from the Cauchy-Schwartz, In-
equality (4) comes from the facts that ∣∣

√
p̃i∣∣2 = 1, ∣∣a∗i ∣∣2 = 1,

(57), Inequality (5) comes from the fact that ∣∣pi(j)− p̃i(j)∣∣∞ ≤
γKn−1, and Inequality (6) comes from the fact that γK

n

δ3/2
≤ 1 by

the assumption of Theorem 5.
We claim ci is feasible for optimization (60). First note that

the norm of each ci is one. We next show that each ci is
orthogonal to

√
p̃i:

< ci,
√
p̃i > =

1

∣∣a∗i +
√
p̃i < a∗i ,

√
pi −

√
p̃i > ∣∣2

(< a∗i ,
√
p̃i > + < a∗i ,

√
pi −

√
p̃i > ∣∣

√
p̃i∣∣22) = 0,

where the last equality follows from ∣∣
√
p̃i∣∣2 = 1 and ai ⊥

√
pi.

We now plug in the feasible solution ci into the objective
function of optimization (60).

ρ̃G
(7)
≥ ∑

(i,i′)∈E

cTi Q̃ii′ci′ (63)

(8)= ∑
(i,i′)∈E

a∗
T
i Qi,i′a

∗
i′ + cTi (Q̃i,i′ −Qi,i′)ci′ + (cTi − a∗

T
i )Qi,i′ci′

+ a∗
T
i Qi,i′ (ci′ − a∗i′)

(9)
≥ ρG − ∑

(i,i′)∈E

⎛
⎝
∣cTi (Q̃i,i′ −Qi,i′)ci′ ∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term I

+ ∣(cTi − a∗
T
i )Qi,i′ci′ ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Term II

+ ∣a∗Ti Qi,i′ (ci′ − a∗i′)∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Term III

⎞
⎠
,

where Inequality (7) comes from the fact that ci for 1 ≤ i ≤ n is
a feasible solution of optimization (60), Equality (8) comes from
adding and subtracting a∗

T
i Qi,i′a

∗
i′ , c

T
i Qii′ci′ and a∗

T
i Qi,i′ci′ ,

and Inequality (9) comes from the triangle inequality and the
fact that a∗i , 1 ≤ i ≤ n is a solution of optimization (59). Next,
we bound terms I-III on the righthand side of this relation.

Using Lemma 2, for any i, i′, we have

∣cTi (Q̃i,i′ −Qi,i′)ci′ ∣ ≤ ∣∣Q̃i,i′ −Qi,i′ ∣∣2 ≤ 2
γKn

δ2
. (64)

We also have

∣ (cTi − a∗
T
i )Qi,i′ci′ ∣ ≤ ∣∣cTi − a∗

T
i ∣∣2∣∣Qi,i′ ∣∣2∣∣ci′ ∣∣2 = ∣∣cTi − a∗

T
i ∣∣2

≤ 2
∣∣νi∣∣2

1 − ∣∣νi∣∣2
,

where we use the following inequality

∣∣ a + νi
∣∣a + νi∣∣2

− a∣∣2 = ∣∣ νi
∣∣a + νi∣∣2

+ a( 1

∣∣a + νi∣∣2
− 1) ∣∣2 (65)

≤ ∣∣ νi
∣∣a + νi∣∣2

∣∣2 + ∣∣a∣∣2∣
1

∣∣a + νi∣∣2
− 1∣

≤ ∣∣νi∣∣2
1 − ∣∣νi∣∣2

+max{∣ 1

1 − ∣∣νi∣∣2
− 1∣, ∣ 1

1 + ∣∣νi∣∣2
− 1∣}

≤ 2
∣∣νi∣∣2

1 − ∣∣νi∣∣2
,

where we used 1− ∣∣νi∣∣2 ≤ ∣∣a+ νi∣∣2 ≤ 1+ ∣∣νi∣∣2 and the fact that
∣∣νi∣∣ ≤ 1/2 according to (61). Using (61) and (65), we obtain

∣ (cTi − a∗
T
i )Qi,i′ci′ ∣ ≤ 2

γKn−1

δ3/2
, (66)

Using (64) and (66) in (63) leads to

ρ̃G ≥ ρG − ∑
(i,i′)∈E

(4
γKn

δ2
+ 4γKn−1 1

δ3/2
) ≥ ρG − γKn∣E∣ 8

δ2
.

Similarly, we have

ρG ≥ ρ̃G − ∑
(i,i′)∈E

(4
γKn

δ2
+ 4γKn−1 1

δ3/2
) ≥ ρ̃G − γKn∣E∣ 8

δ2
.

Combining the previous two relations, we obtain

∣ρ̃G − ρG∣ ≤ γKn∣E∣ 8

δ2
,

which completes the proof.
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7.6 Proof of Theorem 6
Proof We use the following theorem in the proof.
Theorem 10 ( [75], [76]). Let P be a probability distribution on a

finite alphabet X . Also, let P (m) denote the empirical prob-
ability distribution of X , obtained from m i.i.d. samples,
{xi}mi=1, drawn according to P . We have

P [∣∣P (m) − P ∣∣∞ > γ] ≤ 4e−m
γ2

2 . (67)

Theorem 10 establishes that P and P (m) are close to each
other for a sufficiently large sample size m4. Moreover, one can
use Theorem 5 to bound the difference between NMC values
of distributions P and P (m) by ∣∣P (m) − P ∣∣∞. However, to
prove Theorem 6, we also need to bound the minimum sample
probability of P (m). We explain these steps below.

We have

P [δXi(P
(m)) ≥ δ

′

2
] ≥ P [∣∣P (m)

Xi
− PXi ∣∣∞ ≤ δ

′

2
]

≥ P [∣∣P (m) − P ∣∣∞ ≤ δ′

2Kn−1
]

≥ 1 − P [∣∣P (m) − P ∣∣∞ > δ′

2Kn−1
] ≥ 1 − 4e−m

1
2
( δ′
2Kn−1

)
2

,

where the first inequality follows from δXi(P (m)) ≥
−∣δXi(P (m)) − δXi(P )∣ + δXi(P ) ≥ δ − ∣∣P (m)

Xi
− PXi ∣∣∞ and the

second inequality follows from ∣∣P (m)

Xi
−PXi ∣∣∞ ≤Kn−1∣∣P (m) −

P ∣∣∞. Using the union bound, we obtain

P [⋂
i∈V

{δXi(P
(m)) ≥ δ

′

2
}] = 1 − P [⋃

i∈V

{δXi(P
(m)) ≤ δ

′

2
}]

≥ 1 − 4ne−m
1
2
( δ′
2Kn−1

)
2

.

By applying the union bound once more, we have

P [{∣∣P (m) − P ∣∣∞ < γ}⋂{⋂
i∈V

{δXi(P
(m)) ≥ δ

′

2
}}]

≥ 1 − 4ne−m
1
2
( δ′
2Kn−1

)
2

− 4e−m
γ2

2 .

Thus, with a large probability, i.e., 1−4ne−m
1
2
( δ′
2Kn−1

)
2

−4e−m
γ2

2 ,
the minimum probability of P (m) is bounded by δ = δ′/2 and
∣∣P (m) − P ∣∣∞ is bounded by γ.

For given η < 1 and ε < 1, we let γ = ε(δ′)2

32∣E∣
K−n and

m0 ≥ 2(32∣E∣Kn

ε(δ′)2 )
2

log (8n

η
) .

Now we use Theorem 5 with δ = δ′/2. First note that
γ ≤ δ3/2K−1 which is required as an assumption for invoking
Theorem 5. This leads to

∣ρ(m)

G − ρG∣ ≤ γ∣E∣Kn 8

δ2
≤ ε,

with probability (at least)

1 − (4ne−m0
1
2
( δ′
2Kn−1

)
2

− 4e−m0
γ2

2 ) ≥ 1 − η.

4Note that concentration inequalities for empirical average of a discrete
random variable has been also studied in several other works including
[77], [78], [79], [80]. In particular, [78] exploits properties of the underlying
distribution to provide tight bounds on P[∣∣P (m) − P ∣∣1 ≥ γ]. This in turn
provides a bound on P[∣∣P (m) − P ∣∣∞ ≥ γ] as well. However without
additional assumptions on the underlying probability distribution this
bound is of the same order as the one presented in Theorem 10 (see [78,
Section 3]).

7.7 Proof of Theorem 7
Proof

Let a = (a1,⋯,an). Define

UL(a) ≜ ∑
(i,i′)∈E

L

∑
j=1

ai,jai′,j (ρi,i′)j (68)

U(a) ≜ ∑
(i,i′)∈E

∞

∑
j=1

ai,jai′,j (ρi,i′)j .

Let ã(L) = (ã(L)

1 , . . . , ã(L)
n ) and ã = (ã1, . . . , ãn) be a solution

of the following optimizations

max
a

UL(a) (69)

a ∈ C′,

and

max
a

U(a) (70)

a ∈ C′,

respectively, where C′ is the feasible set of the optimization (35).
We first show for any L and any 1 ≤ i ≤ n, ã(L)

i = (0, si, . . . ,0).
We then show for any 1 ≤ i ≤ n, ãi must be equal to (0, si, . . . ),
completing the proof.
Claim 1: We first characterize a global maximizer of optimiza-
tion (69). Note that the constraint set C′ can be truncated w.l.o.g.
to consider 1 ≤ j ≤ L. Let Λ be the matrix of correlation
coefficients where [Λ]i,i′ = ρi,i′ . Diagonal elements of Λ are
all zero, as we ignore self-loops. Define

x = (a1,1, a2,1, . . . , an,1, a1,2, . . . , an,L)
T
. (71)

Moreover, define A0 as an nL × nL matrix composed of L2

blocks of size n×nwhosem-th diagonal block is equal to 2 Λ.m,
where Λ.m[i, j] ≜ (Λ[i, j])m. Off-diagonal blocks of A0 are all
zeros. Moreover, define Ai for 1 ≤ i ≤ n as an nL × nL matrix
where Ai[i+(m−1)n, i+(m−1)n] = 1 for 1 ≤m ≤ L, otherwise
it is zero. Therefore, optimization (69) can be re-written as the
following standard quadratic optimization:

max
x

1

2
xTA0x (72)

1

2
xT Ai x −

1

2
≤ 0, 1 ≤ i ≤ n.

Note that equality constraints of optimization (69) are replaced
by inequality ones in optimization (72). This is because, since
(ρi,i′)2 ≥ 0, solutions of optimization (72) belong to the
boundary of its feasible set. Optimization (72) is a non-convex
quadratic optimization with quadratic constraints. Reference
[81] (Proposition 3.2)5 characterizes necessary and sufficient
conditions for global minimizers of a generalized form of
optimization (72). Let

x̄ = [s1, s2, . . . , sn,0, . . . ,0]T , (73)

where si ∈ {−1,1}, for 1 ≤ i ≤ n. Using Proposition 3.2
and Theorem 3.1 of [81], to have x̄ as a global minimizer of
optimization (72), we need to have

(
n

∑
i=1

λiAi −A0)x̄ = 0 (74)

5Optimization (72) can be stated as a minimization by replacing −A0

instead of A0 to use Proposition 3.2 of Reference [81]
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and

n

∑
i=1

λiAi −A0 ⪰ 0, (75)

where λi ≥ 0, and A ⪰ 0 means that A is a positive semi-
definite matrix. Using definitions of A0, Ai, and x̄, equation
(74) is satisfied iff

λi = 2∑
i′≠i

sisi′ρi,i′ ≥ 0, 1 ≤ i ≤ n. (76)

Using (76) and Gerschgorin’s circle theorem, if

∑
i′≠i

(1 − sisi′)ρi,i′ ≥ 0, ∀1 ≤ i ≤ n, (77)

∑
i′≠i

sisi′ρi,i′ ≥ ∑
i′≠i

ρ2i,i′ , ∀1 ≤ i ≤ n, (78)

conditions (75) are satisfied. Thus, x̄ is a global minimizer of
optimization (72), establishing that for any L and any 1 ≤ i ≤ n
we have ã(L)

i = (0,1, . . . ,0).
Claim 2: Let a∗ = (a∗1 , . . . ,a∗n) where a∗i = (0, si, . . . ) for all 1 ≤
i ≤ n. We next show that ã = a∗. We proceed by contradiction.
Let

∆ ≜ U(ã) −U(a∗). (79)

By the contradiction assumption ∆ > 0. Since (ρi,i′)L → 0 as
L → ∞ for all i ≠ i′, UL(⋅) converges uniformly to U(⋅). Thus
there exists L0 such that for L ≥ L0 and any a, we have

∣UL(a) −U(a)∣ ≤ ∆

4
. (80)

Therefore we have

UL(ã) ≥ U(ã) − ∆

4
(81)

= U(a∗) +∆ − ∆

4

≥ UL(a∗) −
∆

4
+∆ − ∆

4

= UL(a∗) +
∆

2
> UL(a∗). (82)

This is in contradiction with the assumption that a∗ is the
maximizer of UL(.). Putting Claims 1 and 2 together completes
the proof.

7.8 Proof of Proposition 3

Proof Under assumptions of Theorem 7 and using the defini-
tion of Hermite-Chebyshev polynomials (31), we can restrict
the feasible set of optimization (3) to the set of functions
φi(Xi) = siXi where si ∈ {−1,1} for all 1 ≤ i ≤ n. Moreover, we
have

E[φi(Xi)φi′(Xi′)] = sisi′ρi,i′ .

Furthermore, E[siXi] = E[Xi] = 0, and E[(siXi)2] = E[X2
i ] =

1. This completes the proof.

7.9 Proof of Theorem 9

Proof The proof of the first part of this Theorem is straightfor-
ward. To prove the second part, we re-write optimization (40)
as follows:

max ∑
(i,i′)

E[gi(fi(Xi)) gi′(fi′(Xi′))], (83)

E[gi(fi(Xi))] = 0, 1 ≤ i ≤ n,
E[gi(fi(Xi)2] = 1, 1 ≤ i ≤ n.

Define φi(Xi) = gi(fi(Xi)) for 1 ≤ i ≤ n. Since fi’s are
bijective, feasible regions of optimizations (83) and (3) are
equal. Under the assumptions of Corollary 4, φ∗i (Xi) = Xi.
Thus, g∗i (fi(Xi)) =Xi.

8 DISCUSSION AND CONCLUSION

The techniques we have developed in this paper can be used in
other related formulations as well. In the following, we briefly
highlight two examples of such formulations, namely absolute
NMC and regularized NMC. Considering further properties of
these optimizations is beyond the scope of the present paper.

8.1 Other Objective Functions

The optimization (3) maximizes aggregate pairwise correla-
tions over the network. In some applications, the strength of
an association does not depend on the sign of the correlation
coefficient. In those cases, one can re-write the NMC optimiza-
tion (3) to maximize the total absolute pairwise correlations
over the graph as follows:

Definition 9 (Absolute Network Maximal Correlation). Con-
sider the following optimization:

ρAG(X1, . . . ,Xn) ≜ sup
φ1,...,φn

∑
(i,i′)∈E

∣E[φi(Xi) φi′(Xi′)]∣ ,

(84)

such that φi ∶ Xi → R is Borel measurable, E[φi(Xi)] = 0,
and E[φi(Xi)2] = 1, for all 1 ≤ i ≤ n. G = (V,E) is a graph
with vertices V = {1,2, . . . , n} and edges E = {(i, i′) ∶ i, i′ ∈
V, i ≠ i′}. We refer to this optimization as an absolute NMC
optimization.

A similar approach can be used to characterize the absolute
NMC optimization (84) by introducing extra variables si,i′ to
represent correlation signs of edges (i, i′):

sup
φ1,...,φn

∑
(i,i′)∈E

si,i′E[φi(Xi)φi′(Xi′)]

E[φi(Xi)] = 0, E[φ2i (Xi)] = 1, 1 ≤ i ≤ n
si,i′ ∈ {−1,1}, 1 ≤ i, i′ ≤ n. (85)

The NMC optimization (3) results in n possibly nonlinear
transformation functions φ∗i (Xi) whose correlation with the
original variables can be small. In some applications, one may
wish to restrict the set of possible transformations of the NMC
optimization to control the correlation between transformed
and original variables. This can be done by introducing a
regularization term in the definition of NMC as follows.
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Definition 10 (Regularized NMC). The regularized NMC of
real-valued X1, . . . ,Xn connected by a graph G = (V,E) is
defined as the solution of the following optimization:

ρRG (X1, . . . ,Xn) = sup
φ1,...,φn

(1 − λ) ∑
(i,i′)∈E

E [φi(Xi) φi′(Xi′)]

(86)
+ λ∑

i∈V

E [φi(Xi) (Xi − E[Xi])] ,

such that φi ∶ Xi → R is Borel measurable, E[φi(Xi)] = 0,
and E[φi(Xi)2] = 1, for all 1 ≤ i ≤ n. G = (V,E) is a graph
with vertices V = {1,2, . . . , n} and edges E = {(i, i′) ∶ i, i′ ∈
V, i ≠ i′}. 0 ≤ λ ≤ 1 is the regularization parameter.

Unlike MC and NMC, which only depend on the joint distribu-
tions of variables, the regularized NMC depends on both joint
distributions and support of variables because of the regular-
ization term. Moreover, one can define regularized absolute
NMC similarly to the optimization (84).
Let the optimal transformation functions computed by opti-
mization (86) be φ∗i,λ(Xi). If λ = 0, φ∗i,λ(Xi) = φ∗i (Xi), while if
λ = 1, φ∗i,λ(Xi) = Xi. By varying λ between 0 and 1, φ∗i,λ(Xi)
vary from φ∗i (Xi) to Xi. Define

RG,λ(X1, . . . ,Xn) ≜ ∑
(i,i′)∈E

E [φ∗i,λ(Xi) φ∗i′,λ(Xi′)] .

Therefore, RG,0 = ρG while RG,1 is the total linear correlations
over the network. By the definition of NMC, RG,0 ≥ RG,1. Note
that we can use a similar algorithm to Algorithm 2 to compute
regularized NMC of Definition 10. The objective function of the
regularized NMC optimization (86) can be written as follows:

∑
i∈V

E
⎡⎢⎢⎢⎢⎣
φi(Xi)

⎛
⎝

1 − λ
2

∑
j∈N(i)

φi′(Xi′) + λ(Xi − E[Xi])
⎞
⎠

⎤⎥⎥⎥⎥⎦
, (87)

where N (i) represents the set of neighbors of node i in the
graph G = (V,E). To compute the regularized NMC, one can
use an algorithm similar to the ACE Algorithm 2 with the
following updates for transformation functions:

φ∗i (Xi) = E
⎡⎢⎢⎢⎢⎣

1 − λ
2

∑
j∈N(i)

φi′(Xi′) + λ(Xi − E[Xi])∣Xi

⎤⎥⎥⎥⎥⎦
. (88)

8.2 Conclusion
In this paper, we propose NMC as a measure to capture
nonlinear associations among variables. We show that NMC
extends the standard bivariate MC to the case of having large
number of variables, by assigning each variable to a single
transformation function, thus avoiding over-fitting issues of
using multiple MC optimizations over variable pairs. We also
introduce a regularized NMC optimization which penalizes to-
tal distances of inferred transformed variables from the original
ones. One can use other standard regularization techniques
to further restrict inferred nonlinear functions in practical
applications.

One of the main contributions of this work is providing
a unifying framework to compute NMC (and therefore, MC)
for both discrete and continuous variables using projections
over appropriate Hilbert spaces. Using this framework, we
establish a connection between the NMC optimization with
the MCP and MEP for discrete random variables, and with
the Max-Cut problem for jointly Gaussian variables. Using
these relationships, we provide efficient algorithms to compute
NMC in different cases. Note that properties of NMC for

finite discrete variables characterized in Theorems 5 and 6 de-
pend on minimum marginal probabilities of variables (i.e., δ).
Therefore, extending these properties to the continuous case is
not straightforward and requires exploiting techniques tailored
for continuous variables and measures. To compute NMC for
continuous random variables with general distributions, one
can use the proposed optimization framework by choosing
appropriate orthonormal basis for Hilbert spaces. For example,
we use projections over Hermite-Chebyshev polynomials to
characterize a solution of the NMC optimization for jointly
Gaussian variables. Finally note that the inferred, possibly
nonlinear, functions of the NMC optimization can be used in
other applications such as nonlinear regression.
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