
Optimizing Indirect Branch Prediction Accuracy

in Virtual Machine Interpreters

Kevin Casey

Trinity College Dublin

M. Anton Ertl

TU Wien

and

David Gregg

Trinity College Dublin

Interpreters designed for efficiency execute a huge number of indirect branches and can spend more
than half of the execution time in indirect branch mispredictions. Branch target buffers (BTBs) are
the most widely available form of indirect branch prediction; however, their prediction accuracy for
existing interpreters is only 2%–50%. In this paper we investigate two methods for improving the
prediction accuracy of BTBs for interpreters: replicating virtual machine (VM) instructions and
combining sequences of VM instructions into superinstructions. We investigate static (interpreter
build-time) and dynamic (interpreter run-time) variants of these techniques and compare them
and several combinations of these techniques. To show their generality, we have implemented
these optimizations in VMs for both Java and Forth. These techniques can eliminate nearly all of
the dispatch branch mispredictions, and have other benefits, resulting in speedups by a factor of
up to 4.55 over efficient threaded-code interpreters, and speedups by a factor of up to 1.34 over
techniques relying on dynamic superinstructions alone.

Categories and Subject Descriptors: D.3 [Software]: Programming Languages; D.3.4 [Program-

ming Languages]: Processors—Interpreters

General Terms: Languages, Performance, Experimentation

Additional Key Words and Phrases: Interpreter, branch target buffer, branch prediction, code
replication, superinstruction

Correspondence Address: David Gregg, Department of Computer Science, University of Dublin,
Trinity College, Dublin 2, Ireland. David.Gregg@cs.tcd.ie

An earlier version of the work described in this paper appeared in the ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation [Ertl and Gregg 2003a]. The
main difference between the versions is that an implementation and experimental results for a
Java VM have been added, whereas the earlier paper contained results only for Gforth. These
new results show that the techniques described in this paper are general, and applicable to the
JVM. We have also solved a number of JVM specific problems, especially those relating to quick
instructions.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 1999 ACM 0164-0925/99/0100-0111 $00.75

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year, Pages 1–35.

2 · Kevin Casey et al.

1. INTRODUCTION

Implementers of programming languages can choose between a number of different
implementation technologies, such as ahead-of-time compilation, just-in-time (JIT)
compilation, and interpretation. Each of these has its own advantages and disad-
vantages in areas such as ease of implementation, compilation speed, and execution
speeed, which make each appropriate for different situations.

Interpreters are frequently used to implement virtual machines because they have
several practical advantages over native code compilers. If written in a high-level
language, interpreters are portable; they can simply be recompiled for a new archi-
tecture, whereas a JIT compiler requires considerable porting effort. Interpreters
are also dramatically simpler than compilers; they are easy to construct, and easy
to debug. Interpreters also require little memory: the interpreter itself is typically
much smaller than a JIT compiler, and the interpreted bytecode is usually a fraction
of the size of the corresponding executable native code. For this reason, interpreters
are commonly found in embedded systems. Furthermore, interpreters avoid the
compilation overhead in JIT compilers. For rarely executed code, interpreting may
be much faster than JIT compilation. The Hotspot JVMs [Sun-Microsystems 2001]
take advantage of this by using a hybrid interpreter/JIT system. Code is initially
interpreted, saving the time and space of JIT compilation. Only if a section of code
is identified as an execution hot spot is it JIT compiled. Finally, it is easy to provide
tools such as debuggers and profilers when using an interpreter because it is easy to
insert additional code into an interpreter loop. Providing such tools for native code
is much more complex. Thus, interpreters provide a range of attractive features for
language implementation. In particular, most scripting languages are implemented
using interpreters. The main disadvantage of interpreters is their poor execution
speed. Even the fastest interpreters are 5–10 times slower than executable native
code.

In this paper we investigate how to improve the execution speed of interpreters.
Existing efficient interpreters perform a large number of indirect branches (up to
13% of the executed real machine instructions on a RISC architecture). Mispre-
dicted branches are expensive on modern processors (e.g., they cost about 10 cycles
on the Pentium III and Athlon and 20–30 cycles on the Pentium 4). As a result,
interpreters can spend more than half of their execution time recovering from in-
direct branch mispredictions [Ertl and Gregg 2003b]. Consequently, improving the
indirect branch prediction accuracy has a large effect on interpreter performance.
The most widely used branch predictor in current processors is the branch target
buffer (BTB). Most current desktop and server processors have a BTB or simi-
lar structure, including the Pentium 3 and 4, Athlon and Alpha 21264 processors.
BTBs mispredict 50%–63% of the executed indirect branches in threaded-code in-
terpreters and 81%–98% in switch-based interpreters [Ertl and Gregg 2003b].

The rest of this paper is organised as follows. We first introduce the some ba-
sic techniques for efficient VM interpreters (Section 2), and explain how indirect
branch mispredictions consume a very large proportion of execution time (Section
3). Section 4 proposes two techniques for reducing the incidence of indirect branch
mispredictions in VM interpreters. In Section 5 we present static and dynamic vari-
ations of each of these technique, and show how they can be efficiently implemented.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 3

typedef enum {

add /* ... */

} Inst;

void engine()

{

static Inst program[] = { add /* ... */ };

Inst *ip = program;

int *sp;

for (;;)

switch (*ip++) {

case add:

sp[1]=sp[0]+sp[1];

sp++;

break;

/* ... */

}

}

Fig. 1. VM instruction dispatch using switch

VM Code VM instruction routines

Machine code for iadd
Dispatch next instruction

Machine code for imul
Dispatch next instruction

imul
iadd
iadd
...

GNU C Alpha assembly

next_inst = *ip; ldq s2,0(s1) ;load next VM instruction

ip++; addq s1,0x8,s1 ;increment VM instruction pointer

goto *next_inst; jmp (s2) ;jump to next VM instruction

Fig. 2. Threaded code: VM code representation and instruction dispatch

Section 6 describes our experimental setup for evaluating these techniques and Sec-
tion 7 describes the results of these experiments. Section 8 compares our approach
with existing related work in the area. Finally, we summarise our contributions in
Section 9.

2. BACKGROUND

In this section we discuss how efficient interpreters are typically implemented and
examine the BTB, a popular branch prediction mechanism. Section 3 will then
highlight the significant relationship between interpreters and BTBs.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

4 · Kevin Casey et al.

2.1 Efficient Interpreters

We do not have a precise definition for efficient interpreter, but the fuzzy concept
“designed for good general-purpose performance” shows a direct path to specific
implementation techniques.

If we want good general-purpose performance, we cannot assume that the inter-
preted program will spend large amounts of time in native-code libraries. Instead,
we have to prepare for the worst case: interpreting a program performing large
numbers of simple operations. On such programs interpreters are slowest relative
to native code, because these programs require the most interpreter overhead per
amount of useful work.

To avoid the overhead of parsing the source program repeatedly, efficient inter-
pretive systems are divided into a front-end that compiles the program into an
intermediate representation, and an interpreter for that intermediate representa-
tion. This is a design which also helps modularity. This paper deals with the
efficiency of the interpreter; the efficiency of the front-end can be improved with
the established methods for speeding up compiler front-ends.

To minimize the overhead of interpreting the intermediate representation, effi-
cient interpretive systems use a flat, sequential layout of the operations (in contrast
to, e.g., tree-based intermediate representations), similar to machine code; such
intermediate representations are therefore called virtual machine (VM) codes.1 Ef-
ficient interpreters usually use a VM interpreter (but not all VM interpreters are
efficient).

The interpretation of a VM instruction consists of accessing arguments of the
instruction, performing the function of the instruction, and dispatching (fetching,
decoding and starting) the next instruction. Dispatch is common to all VM in-
terpreters and can consume most of the run-time of an interpreter, so this paper
focuses on dispatch.

Dispatching the next VM instruction requires executing one indirect branch to
get to the native code that implements the next VM instruction. In efficient inter-
preters, the machine code for simple VM instructions can take as few as 3 native
instructions (including the indirect jump), resulting in a very high proportion of
indirect branches in the executed instruction mix. In previous work on a RISC ar-
chitecture we have measured indirect branches accounting for up to 13% of executed
instructions for the Gforth interpreter and 11% for the Ocaml interpreter [Ertl and
Gregg 2003b] As we show in Section 7.2.2, on the CISC Intel x86 architecture where
more work can be accomplished with fewer real machine instructions, the average
for Gforth can be as high as 16.5% of executed instructions.

There are two popular VM instruction dispatch techniques:

Switch dispatch. Uses a large switch statement, with one case for each instruc-
tion in the virtual machine instruction set. Switch dispatch can be implemented in
ANSI C (see Figure 1), but is not very efficient [Ertl and Gregg 2003b] (see also
Section 3).

1The term virtual machine is used in a number of slightly different ways by various people; the
meaning we use is what Smith and Nair [2005] describe as high-level language VMs.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 5

address of
branch instruction

predicted target

Fig. 3. Branch Target Buffer (BTB)

Threaded code. Represents a VM instruction as the address of the routine that
implements the instruction [Bell 1973]. In threaded code, the code for dispatching
the next instruction consists of fetching the VM instruction, jumping to the fetched
address, and incrementing the instruction pointer. This technique cannot be imple-
mented in ANSI C, but it can be implemented in GNU C using the labels-as-values
extension. Figure 2 shows threaded code and the instruction dispatch sequence.
Threaded code dispatch executes fewer instructions, and provides better branch
prediction (see Section 3).

Several interpreters use threaded code when compiling with GCC, and fall back
to switch dispatch if GCC is not available (e.g., the Ocaml interpreter, YAP, and
Sicstus Prolog).

2.2 Branch Target Buffers

CPU pipelines have become longer over time, in order to support faster clock rates
and out-of-order superscalar execution. Such CPUs execute straight-line code very
fast; however, they have a problem with branches. This is because branches are
typically resolved very late in the pipeline (stage n), but they affect the start of the
pipeline. Therefore, the following instructions have to proceed through the pipeline
for n cycles before they are at the same stage they would be if there was no branch.
We can say that the branch takes n cycles to execute (in a simplified execution
model).

To reduce the frequency of this problem, modern CPUs use branch prediction
and speculative execution; if they predict the branch correctly, the branch takes
little or no time to execute. The n cycles delay for incorrectly predicted branches
is called the misprediction penalty. The misprediction penalty is about 10 cycles
on the Pentium III, Athlon, and 21264, about 20 cycles on the earlier Pentium 4
processors with the “Williamette” and “Northwood” cores, and around 30 cycles
on the more recent Pentium 4 models with the “Prescott” core.

The most widely used predictor for indirect branches is the branch target buffer
(BTB). An idealised BTB contains one entry for each branch and predicts that the
branch jumps to the same target as the last time it was executed (see Figure 3).
The size of real BTBs is limited, resulting in capacity and conflict misses. Most
current CPUs have a BTB-style predictor, e.g. all desktop Pentiums, Athlon, Alpha
21264.

Better indirect branch predictors have been proposed [Driesen and Hölzle 1998;
1999; Kalamatianos and Kaeli 1999], and they would improve the prediction accu-
racy in interpreters substantially [Ertl and Gregg 2003b]. However, they have not
been implemented yet in widely available desktop or server hardware. Currently,
the only widely available processor which uses a two-level indirect branch predictor

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

6 · Kevin Casey et al.

Table I. BTB predictions on a small VM program.

BTB entry prediction actual BTB entry prediction actual

1 label: A switch A B br-A GOTO B

2 B switch B A br-B A A

3 A switch A GOTO br-A B GOTO

4 GOTO label switch GOTO A br-GOTO A A

Switch Dispatch Threaded Dispatch

VM program:

is the Intel Pentium M processor for laptop computers (see Section 8). For the
great majority of processors that continue to use a BTB, the software techniques
explored in this paper improve the prediction accuracy now, by a similar amount.

3. INTERPRETERS AND BTBS

Ertl and Gregg [2003b] investigated the performance of several virtual machine in-
terpreters on several branch predictors and found that BTBs mispredict 81%–98%
of the indirect branches in switch-dispatch interpreters, and 57%–63% of the in-
direct branches in threaded-code interpreters (a variation, the so-called BTB with
two-bit counters, produces slightly better results for threaded code: 50%–61% mis-
predictions).

What is the reason for the differences in prediction accuracy between the two
dispatch methods? The decisive difference between the dispatch methods is this:
A copy of the threaded code dispatch sequence is usually appended to the native
code for each VM instruction; as a result, each VM instruction has its own indirect
branch. In contrast, with switch dispatch all compilers we have tested produce a
single indirect branch (among other code) for the switch, and they compile the
breaks into unconditional branches to this common dispatch code. In effect, the
single indirect branch is shared by all VM instructions.

Why do these mispredictions occur? To illustrate this, Table I shows a fragment
of VM code representing a loop. It is assumed that the loop has been executed at
least once. The rest of the table depicts the behaviour of the BTB as it is accessed
after the execution of each VM instruction. These accesses are made upon the
completion of each VM instruction when a dispatch to the next instruction must
occur. In both the case of switch dispatch and threaded dispatch, the table shows
the entry in the BTB which is being accessed, the prediction made by the BTB
and finally the actual target at that point. In this way we can see easily when the
BTB makes an incorrect prediction, i.e. a branch misprediction.

With switch dispatch, there is only one indirect branch (br-switch, the switch
branch) and consequently there is only one BTB entry involved. When jumping to
the native code for VM instruction A, this BTB entry is updated to point to that
native code routine (br-switch=A). When the next VM instruction is dispatched,
the BTB will therefore predict target A; in our example the next instruction is B, so
the BTB mispredicts. The BTB now updates the entry for the switch instruction to
point to B (br-switch=B), etc. So, with switch dispatch, the BTB always predicts
that the current instruction will also be the next one to be executed, which in our
isolated example is never correct and is, in general, rarely correct.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 7

Table II. Improving BTB prediction accuracy by replicating VM instructions.

BTB entry prediction actual

1 label: A1 br-A 1 GOTO B

2 B br-B A2 A2

3 A2 br-A 2 B GOTO

4 GOTO label br-GOTO A1 A1

Threaded Dispatch

VM program:

On the other hand, in threaded code each VM instruction has its own indirect
branch and corresponding BTB entry 2 (instruction A has branch br-A and a BTB
entry for br-A, etc). So, when VM instruction B dispatches the next instruction,
the same target will be selected as on the last execution of B; since B occurs only
once in the loop, the BTB will always predict the same target: A. Similarly, the
branch of the GOTO instruction will also be predicted correctly (branch to A).
However, A occurs twice in our code fragment, and the BTB always uses the last
target for the prediction (alternately B and GOTO), so the BTB will never predict
A’s dispatch branch correctly.

We will concentrate on interpreters using separate dispatch branches in the rest
of the paper.

4. IMPROVING THE PREDICTION ACCURACY

Generally, as long as a VM instruction occurs only once in the working set of the
interpreted program, the BTB will predict its dispatch branch correctly, because
the instruction following the VM instruction is the same on all executions. But if
a VM instruction occurs several times, mispredictions are likely.

4.1 Replicating VM Instructions

In order to avoid having the same VM instruction several times in the working set,
we can create several replicas of the same instruction. We copy the code for the
VM instruction, and use different copies in different places. If a replica occurs only
once in the working set, its branch will predict the next instruction correctly.

To see how replication works, consider Table II which shows a similar VM code
fragment to that of Table I. This time however, there are two copies of the VM
instruction A namely, A1 and A2. Each of these copies has its own dispatch branch
and its own entry in the BTB (e.g. br-A1 for A1 and br-A2 for A2). Because A1 is
always followed by B, and A2 always followed by GOTO, the dispatch branches of
A1 and A2 always predict correctly, and there are no mispredictions after the first
iteration while the interpreter executes the loop (except possibly mispredictions
from capacity or conflict misses in the BTB).

In special circumstances, depending on the replication method chosen, and the
number of replicated instructions, it may be possible to inadvertently increase

branch mispredictions by adding replicated instructions. An example of this can
be seen in Table III. Once more, we use a similar (but slightly longer) VM code

2(assuming there are no conflict or capacity misses in the BTB)

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

8 · Kevin Casey et al.

Table III. Increasing mispredictions through bad static replication.

prediction actual prediction actual

1 label: A GOTO B label: A GOTO B1

2 B A A B1 A A

3 A B B A B1 B2

4 B A A B2 A A

5 A B GOTO A B2 GOTO

6 GOTO label A A GOTO label A A

VM program:

Original Code Modified Code

VM program:

Table IV. Improving BTB prediction accuracy with superinstructions.

BTB entry prediction actual

1 label: A br-A B_A B_A

2 B_A br-B_A GOTO GOTO

3 GOTO label br-GOTO A A

Threaded Code

VM program:

fragment to that of Table I. In this particular example though, the instruction B
will be replaced with two replicas (B1 and B2). In the original code of Table III, the
execution of two instances (VM instructions 1 and 5) of A caused a branch mispre-
diction, while the middle instance of A (VM instruction 3) has a correctly predicted
dispatch. In the modified code of Table III, all instances of A cause mispredictions.
The reason for this is that originally the first two instances of A were followed by
an instruction B, but now the two instances are followed by different versions of
B, causing the BTB to always predict the wrong target for A. This increases the
number of mispredictions caused by each iteration of this loop from two to three.

4.2 Superinstructions

Combining several VM instructions into superinstructions is a technique that has
been used for reducing VM code size and for reducing the dispatch and argument
access overhead in the past [Proebsting 1995; Piumarta and Riccardi 1998; Hooger-
brugge et al. 1999; Ertl et al. 2002]. However, its effect on branch prediction has
not been investigated in depth yet.

In this paper we investigate the effect of superinstructions on dispatch mispredic-
tions; in particular, we find that using superinstructions reduces mispredictions far
more than it reduces dispatches or executed native instructions (see Section 7.3).

To get an idea why this is the case, consider again the loop in Table II. The
indirect branch at the end of VM instruction A will mispredict each time. However,
if we can combine the sequence B A into the superinstruction B A (see Table IV)
then the outcome is very different. This superinstruction occurs only once in the
loop, and A now also occurs only once, so there are no mispredictions after the first
iteration while the interpreter executes the loop.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 9

5. STATIC VERSUS DYNAMIC APPROACHES

There are two different ways that replication and superinstructions can be used
to optimize an interpreter (see Figure 4). The primary difference between these
approaches is the point in time when the extra instructions (either replications or
superinstructions) are to be introduced, either at build-time or run-time. Each has
its own advantages and disadvantages.

5.1 Static Approach

data segment
VM Code

code segment
VM instruction routines

Machine code for iload
Dispatch next

Machine code for iload
Dispatch next

iload
iadd
iload
iload

Machine code for iadd
Dispatch next

data segment
VM Code

code segment
VM routine originals

Machine code for iload
Dispatch next

iload
iadd
iload
iload

Machine code for iadd
Dispatch next

data segment
VM routine copies

Machine code for iload
Dispatch next

Machine code for iadd
Dispatch next

Machine code for iload
Dispatch next

Machine code for iload
Dispatch next

Static Replication Dynamic Replication

Fig. 4. The static and the dynamic approach to implementing replication

In the static approach, the set of replicas and/or superinstructions is determined
at interpreter build-time. The interpreter writer may add additional instructions
to the VM manually, or use a macro processor or interpreter generator to create
them automatically (e.g., vmgen supports static superinstructions [Ertl et al. 2002]).
During VM code generation (at interpreter run-time) the interpreter front-end just
selects among the built-in replicas and/or superinstructions.

For static replication, two plausible ways to select the copy come to mind: round-
robin (i.e., always select the statically least-recently-used copy) and random. We
examined both approaches, and achieved better results for round-robin [Ertl and
Gregg 2006], so we use that in the rest of the paper. Our explanation for the better
results with round-robin selection is spatial locality in the code; execution does not
jump around in the code at random, but tends to stay in a specific region (e.g.,
in a loop), and in that region it is less likely to encounter the same replica twice
with round-robin selection. E.g., in our example loop we will get perfect branch
prediction (Table II) if we have at least two replicas of A and use round-robin
selection, whereas random selection might use the same replica of A twice and thus
produce 50% mispredictions.

An important question is how the interpreter front end should choose which su-
perinstructions to apply to a given basic block. With a given set of static superin-
structions there may be several different legal replacements of simple instructions
with superinstructions. In fact, this problem is similar to dictionary-based com-
pression of text using a static dictionary. The text compression literature [Bell et al.
1990] provides us with two standard approaches. The optimal algorithm uses dy-
namic programming to find the minimum number of (super)instructions for a given

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

10 · Kevin Casey et al.

basic block. A simpler and faster alternative is the greedy (maximum munch) al-
gorithm. We have implemented both in our Java interpreter (for details see our
technical report [Casey et al. 2005]) and found that there is almost no difference
between the results for greedy and optimal selection, but the optimal algorithm is
a little slower. For this reason we use the greedy algorithm in the rest of this paper.

5.2 Dynamic Approach

In the dynamic approach the replicas or superinstructions are created when the VM
code is produced at interpreter run-time. However, there must be some way to cre-
ate new executable code in the VM interpreter at run time. Piumarta and Ricardi
[1998] and Rossiand Sivalingam [1996] both independently proposed a strategy of
copying the executable code at run-time to implement dynamic superinstructions
which allows new executable code to be created in an architecture-neutral fashion,
and we use a similar approach. The main advantage is that the replicas and su-
perinstructions can be customized to a particular program. However, implementing
dynamic code copying is a little more complex than creating static copies of the
code, and the resulting code does not benefit from compiler optimizations that can
be applied to static superinstructions.

In a simple, unoptimized interpreter there is a section of executable code to im-
plement each VM instruction in the VM instruction set. With dynamic replication,
there is a separate copy of this executable code for every instance of every instruc-
tion in the program. This ensures that indirect branches (and, in the absence of
capacity and conflict misses, BTB entries) are never shared between different in-
stances of the same VM instruction. A disadvantage of this approach is that it
creates a lot of extra executable code but it does not reduce the number of indirect
branches to be executed. Instead, an indirect branch must be executed at the end
of each VM instruction, but there will normally be only one target of this indirect
branch (some instructions, such as VM branches, may have more than one target).

Dynamic replication is simple to implement. Each time the interpreter front-
end generates a VM instruction, it creates a new copy of the code for the VM
instruction and lets the threaded code pointer point to the new copy (see Figure 4).
The original copies of the code are only used for copying, and are never executed.
The front-end knows the end of the code to be copied by virtue of a label that is
placed there.

In contrast to replication, dynamic superinstructions greatly reduce the number
of dispatches in the program. A superinstruction is created for every basic block
in the program, which means that instruction dispatches only occur at the end
of a basic block. In addition, the dispatch code between VM instructions within
a basic block does not need to be copied, so dynamic superinstructions create
less code growth than dynamic replication. Furthermore, if more than one basic
block consists of the same sequence of VM instructions, only a single dynamic
superinstruction is created [Piumarta and Riccardi 1998]. Thus, there is substantial
code reuse, and the code growth is much smaller than that created by dynamic
replication.

One weakness of dynamic superinstructions is the sharing of executable code for
multiple identical basic blocks, because it makes the dispatch indirect branch at
the end of the superinstruction less predictable. This is especially true for basic

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 11

blocks that consist of only one or two VM instructions. Dynamic superinstructions
with replication solves this problem by having a separate dynamic superinstruction
for every basic block in the program. This is actually simpler to implement than
dynamic superinstructions alone, because it is no longer necessary to check for
multiple identical basic blocks. On the other hand, dynamic superinstructions with
replication requires significant code growth, typically almost as much as dynamic
replication alone.

A final variation is dynamic superinstructions larger than a basic block. This
is motivated by the desire to eliminate as many redundant dispatches as possible.
There is no particular reason why dynamic superinstructions must end at a basic
block boundary. In many cases the code from the previous basic block can simply
fall through to the current one. It is only necessary for a VM instruction dispatch
to take place in the case of a taken VM branch. This approach minimizes the
number of VM instruction dispatches, and may have a slight advantage in code size
compared to dynamic superinstructions with replication. To our knowledge, we are
the first to implement such a technique, so a detailed description of the necessary
implementation technique follows.

In order to achieve dynamic superinstructions longer than a basic block, one
must deal with VM code entry points (VM jumps into the middle of the dynamic
superinstruction) and conditional branches out of the dynamic superinstruction.
Two changes are required in order to achieve this.

Firstly, it is necessary to keep the increments of the VM instruction pointer even
if one does not copy the rest of the dispatch code; as a result, the VM code will
be quite similar to the dynamic replication case (whereas there will be only one
threaded-code pointer per superinstruction if one eliminates the increments). This
allows to continue the superinstruction across VM code entry points. Now, on a
VM jump to the entry point, the threaded code pointer at this place will be used
and result in entering the code for the superinstruction in the middle.

Secondly the dispatch for the fall-through path of a conditional VM branch can
be removed, as long as one introduces an additional dispatch for the branch-taken
path. In this way, if the branch is not taken, execution falls through to the next
instruction without an intervening (and redundant) branch. The only branch code
in such conditional code will be the branch that is executed only if the branch-taken
path is to be followed.

As a result of these two optimizations, all dispatches are eliminated, except dis-
patches for taken VM branches, VM calls and VM returns (see Figure 5).

One problem with the dynamic approach is that it can only copy code that is
relocatable; i.e., it cannot copy code if that code fragment contains a PC-relative
reference to something outside the code fragment (e.g., an Intel 386 call instruc-
tion), or if it contains an absolute reference to something inside the code fragment
(e.g., a MIPS j(ump) instruction). The architecture and the C compiler deter-
mine whether or not a VM instruction is relocatable; so, a general no-copying list
[Piumarta and Riccardi 1998] is not sufficient.

Our approach to this problem is to have two versions of the VM interpreter
function, one with some gratuitous padding between the VM instructions. We
compare the code fragments for each VM instruction of these two functions; if they
are the same, the code fragment is relocatable, if they are different, it is not.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

12 · Kevin Casey et al.

Machine Code for A
if (top-of-stack != 0) {
 ip = target
 Dispatch next
}
Machine code for B
Machine code for C
Machine code for return
Dispatch next

Basic block boundaries
but no dispatch

data segment
VM Code

data segment
VM routine copies

A
ifeq

target
B
C

return

Fig. 5. Superinstructions across basic blocks

The dynamic approach requires a small amount of platform-specific code; on
most architectures it needs only code for flushing the I-cache but, for example, on
MIPS it might have to ensure that the copies are in the same 256MB region as the
original code to ensure that the J and JAL instructions continue to work.

5.3 Comparison

The main advantage of the static approach is that it is completely portable, whereas
the dynamic approach requires a small amount of platform-specific code.

Another advantage of static superinstructions is that the compiler can optimize
their code across their component instructions, whereas dynamic superinstructions
simply concatenate the components without optimization. In particular, static
superinstructions can keep stack items in registers across components, and combine
the stack pointer updates of the components. In addition, static superinstructions
make it possible to use instruction scheduling across component VM instructions.
These advantages can also be exploited in a dynamic setting by combining static
superinstructions with dynamic superinstructions and dynamic replication.

Moreover, static replication and superinstructions also work for non-relocatable
code. However, at least for Gforth, the code for the frequently-executed VM instruc-
tions is relocatable on the x86 and Alpha architectures. For the JVM, instructions
that can throw exceptions are often non-relocatable (due to a relative branch to the
throw code outside the code for the VM instruction). In order to make these in-
structions relocatable in our implementation, we used an indirect branch instead of
the relative branch. This approach is also used in the SableVM [Gagnon and Hen-
dren 2001; Gagnon 2003; Gagnon and Hendren 2003] for the same reasons. Since
exceptions are thrown very infrequently, this had no measurable adverse effect on
performance. Indeed, given that exceptions are computationally costly operations
with their dispatch cost only representing a tiny fraction of that cost (a partic-
ularly low dispatch-to-real-work ratio), the additional cost of the indirect branch
approach is even less significant. Once this modification had been made, the most
frequently-executed JVM instructions were all relocatable. The implementation of
some JVM instructions involved calls to complex external functions that also made
the instruction non-relocatable. In such circumstances, the function call was made
using a function pointer, rendering the instruction relocatable. The target of this

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 13

call is always the same, so it is highly predictable.
Finally, the static approach does not need to pay the cost of copying the code

at run-time (including potentially expensive I-cache flushes), that the dynamic
approach has to pay. However, in our Forth implementation, this copying takes
5ms for a 10000-line program (190KB generated code) on a Celeron-800, so that
should usually not be a problem3.

The main advantage of the dynamic approach is that it perfectly fits replications
and/or superinstructions to the interpreted program, whereas the static approach
has to select one set of replications/superinstructions for all programs.

Another advantage of the dynamic approach is that the number of replications
and superinstructions is only limited by the resulting code size, whereas in the
static approach the time and space required for compiling the interpreter limit the
number of replications and superinstructions to around 1000 (e.g., compiling Gforth
with 1600 superinstructions requires 5 hours and 400 MB on a Celeron-800).

5.4 Java “quick” instructions

A serious complication in almost any implementation of the JVM is that some VM
instructions may have to perform initialization on the first time they are executed.
For example, the first time a getfield instruction is executed, the field to be fetched
must be resolved. The JVM implementation must check that such a field actually
exists; it must convert the text name of the field to an offset from the start of the
object; it must check the type of field to fetch; and finally it must fetch an item
of the appropriate size from the object and place it on the stack. On subsequent
executions, no such initializations are necessary, particularly if the type and offset
of the field can be cached. The most common solution is to introduce an optimized
(or “quick”) version of the instruction, which does not perform the initializations.
On the first time it is executed, the original (or “quickable”) instruction carries
out the initializations, caches any necessary data, and replaces itself with the quick
version. Thus, within the JVM implementation, the Java bytecode is modified at
run time. We refer to this process as “quickening”.

Quickening is relatively straightforward when one is dealing with bytecode or
direct threaded code. After running the quickable instruction for the first time,
we then can replace the index (in the bytecode case) or the address (in the direct
threaded case) of the quickable instruction with that of the corresponding quick
instruction. The substitution is not always known prior to the running the quickable
instruction for the first time. For example, there are several different quick versions
of the getfield instruction, each of which loads a different type of field. Thus, when
presented with the bytecode for a method, we do not know what some quickable
instruction will translate to until it has been executed for the first time.

Quick instructions complicate static replication and superinstructions. Quickable
instructions are too rarely executed to replicate. Instead we replicate the quick
versions, and choose among the replicas at the time the instruction is quickened.

3Actually, in comparison to plain threaded code, the copying overhead is already amortized by
the speedup of the Forth-level startup code, leading to the same total startup times (17ms on the
Celeron-800).

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

14 · Kevin Casey et al.

Static superinstructions are more complicated for two reasons. First, it would be
wasteful to have superinstructions that contain quickable component instructions.
These superinstructions would be executed only once, and then be replaced with
quick versions. Secondly, for a given quickable instruction, we do not know the
corresponding quick instruction until it has actually executed for the first time.
We may have a superinstruction that includes a quick getfield that loads a byte,
but not one that loads an integer, so we only know whether a sequence containing
such an instruction can be replaced by a superinstruction after quickening4. We
solved this problem by adding an additional step to the quickening process, which
checks whether the new quick instruction can participate in one or more static
superinstructions, and re-parses on that basis. Further details of an earlier version
of our static superinstruction implementation were described by Casey et al [2003].

Quickening also complicates dynamic replication. We do not create dynamic
replicas of quickable VM instructions. Instead, we treat them as non-relocatable
instructions and jump to the single copy in the base interpreter. In fact, most
of the quickable instructions are indeed unrelocatable, because they perform quite
complex operations. However, we also leave space in the copied executable code
for the quick version of the VM instruction. During quickening, the quick code is
patched into this space.

In a small number of cases, the executable code for different quick versions of a
single VM instruction has different lengths, but this does not matter for dynamic
replication. The executable code for each VM instruction ends with a dispatch, so
we simply jump over the gaps.

Our approach with dynamic superinstructions is similar to the one we use with
dynamic replication. When we find a quickable instruction in a sequence for which
we are creating dynamic superinstruction, we leave an appropriately sized gap.
Into the first memory locations of that gap we insert a copy of the executable code
to dispatch a VM instruction. This code dispatches to the quickable version of
the instruction. The quickening process replaces this dispatch code with the quick
version of the executable code, entirely filling the gap.

Quick instructions present some difficulties when parsing the sequences for su-
perinstructions. With standard static superinstructions (ie without any form of
dynamic code copying), we take the approach of re-parsing the method each time
an instruction was quickened. This is a relatively cheap option with respect to
runtime performance. When mixing static superinstructions with dynamic code
copying, we only parse a sequence for superinstructions when its count of quickable
VM instructions had reached zero (and in this case to also introduce copies of static
superinstructions into dynamic superinstructions).

4A simpler approach is used by the SableVM [Gagnon and Hendren 2003; Gagnon 2003] as part
of their preparation sequences (see Section 8). Specialised versions of quickable instructions are
introduced into the code by, for example, resolving the types of the field in getfield instructions
at the time that the bytecode is translated to threaded code. This allow the length of the gap
to be computed ahead of time, so no spurious nops need be introduced. This technique is not
specific to preparation sequences and could be incorporated into our method for creating dynamic
superinstructions to simplify the implementation.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 15

Table V. Comparison of running time of our base Java interpreter with various
JVMs on the SPECjvm98 benchmark programs.

Benchmark Our Base Hotspot Kaffe Hotspot Kaffe
interpreter interpreter interpreter mixed-mode JIT

javac 30.78 25.68 256.49 6.03 17.52
jack 17.77 17.60 126.33 4.19 15.75
mpeg 81.16 75.69 644.63 5.36 10.79
jess 27.13 19.29 247.02 2.75 18.02
db 59.70 46.47 397.11 13.67 21.79
compress 93.66 82.76 1186.74 7.05 7.19
mtrt 28.31 27.80 338.38 1.95 13.10

6. EXPERIMENTAL SETUP

We have conducted experiments using a simulator as well as experiments using
an implementation of these techniques. We used a simulator (for GForth only) to
get results for various hardware configurations (especially varying BTB and cache
sizes), and to get results without noise effects like cache or BTB conflicts, or (for
static methods) instruction scheduling or register allocation differences.

The effect on indirect branch mispredictions is similar in the simulated and real
implementations (although simplifying assumptions in our simulation environment
caused us to estimate a slightly larger number of conflict misses than we measured
on a similarly sized real BTB). Therefore, in this paper we mainly report results
from the implementation running on real processors, and we refer to the simulation
results only to clarify points that are not apparent from the real-world implemen-
tation results. An early version of this paper containing the simulator results is
available as a technical report [Ertl and Gregg 2006].

6.1 Implementation

We implemented the techniques described in Section 4 in Gforth, a product-quality
Forth interpreter and in CVM, an implementation of the Java 2 Micro Edition
(J2ME). For Gforth, we implemented static superinstructions using vmgen [Ertl
et al. 2002]; we implemented static replication by replicating the code for the (su-
per)instructions on interpreter startup instead of at interpreter build-time; in all
other respects this implementation behaves like normal static replication (i.e., the
replication is not specific to the interpreted program, unlike dynamic replication).
This was easier to implement, allowed us to use more replication configurations (in
particular, more replicas) and produced the same results as normal static replica-
tion (except for the copying overhead, and the impact of that was small compared
to the benchmark run-times). For our Java interpreter, we implemented static repli-
cation and superinstructions using Tiger [Casey et al. 2005], a Java implementation
and extension of vmgen. In the JVM case, static replication was implemented at
interpreter build time, because Tiger contains extensive support for compile-time
static replication.

We implemented dynamic methods as described in Section 5.2, with free choice
(through command-line flags) of replication, superinstructions, or both, and su-
perinstructions within basic-blocks or across them. By using this machinery with a
VM interpreter including static superinstructions we can also explore the combina-
tion of static superinstructions (with optimizations across component instructions)

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

16 · Kevin Casey et al.

Table VI. Benchmark programs used in Gforth

Program V ersion Lines Description

gray 4 754 parser generator
bench − gc 1.1 1150 garbage collector
tscp 0.4 1625 chess
vmgen 0.5.9 2068 interpreter generator
cross 0.5.9 2735 Forth cross − compiler
brainless 0.0.2 3519 chess
brew 38 29804 evolutionary programming

Table VII. SPECjvm98 Java benchmark programs

Program Description

201 compress modified Lempel − Ziv compression
202 jess Java Expert Shell System
209 db small database program
213 javac compiles 225, 000 lines of code
222 mpegaudio an MPEG Layer − 3 audio stream decoder
227 mtrt multithreaded ray − tracing program
228 jack a parser generator with lexical analysis

and the dynamic methods.
We do not eliminate the increments of the VM instruction pointers along with the

rest of the instruction dispatch in dynamic superinstructions. However, by using
static superinstructions in addition to dynamic superinstructions and replication
we also reduce these increments (in addition to other optimizations); looking at the
results from that, eliminating only the increments probably does not have much
effect. It would also conflict with superinstructions across basic blocks.

6.2 Machines

For the Gforth experiments we used an 800MHz Intel Celeron (VIA Apollo Pro
chipset, 512MB PC100 SDRAM, Linux-2.4.7, glibc-2.2.2, gcc-2.95.35). The reason
for this choice is that the Celeron has a relatively small I-cache (16KB), L2 cache
(128KB), and BTB (512 entries), so any negative performance impacts of the code
growth from our techniques should become visible on this processor. This Celeron
processor is based on the Pentium 3 processor, unlike some more recent processors
sold under the Intel Celeron brand which are based on the Pentium 4.

For comparison, we also present some results from a 2.26GHz Pentium 4 (North-
wood Core, 1GB DDR RAM, Linux-2.6.13.2, glibc-2.2.2, gcc-2.95.4). This proces-
sor has a trace cache of 12K micro-ops, an L2 cache of 512KB, and a BTB of 4096
entries.

The modified JVM used a 3GHz Pentium 4 (Northwood core, Intel 865PE chipset,
512 MB DDR 333, Linux-2.6.8, glibc-2.3.3, gcc 2.95) which, as above, has a trace
cache of 12K micro-ops, an L2 cache of 512KB, and a BTB of 4096 entries. Al-
though the P4 was capable of Hyper-threading (the name used by Intel for its

5Implementing dynamic superinstructions is more challenging in GCC 3.x due to certain opti-
mizations that re-order or re-arrange executable code. Full details of these issues can be found in
a bug report submitted to GCC. See bug number 15242 at http://gcc.gnu.org/bugzilla/. These
problems have been fixed in GCC 4.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 17

implementation of simultaneous multithreading), this was disabled in the BIOS to
prevent any difficulties with the performance counters.

All three processors allow measuring a variety of events with performance moni-
toring counters, providing additional insights into important issues.

6.3 Benchmarks

Table VI shows the benchmarks we used for our experiments with Gforth. The line
counts include libraries that are not preloaded in Gforth, but not what would be
considered as input files in languages with a hard compile-time/run-time boundary
(e.g., the grammar for gray, and the program to be compiled for cross), in so far as
we were able to differentiate between the two.

The benchmarks we chose to examine the effect of various optimisations on our
Java interpreter are from the SPECjvm98 suite, issued by the System Performance
Evaluation Corporation (SPEC). The programs used from the suite are listed in
Table VII.

7. RESULTS

In order to evaluate the various optimizations discussed in this paper, we present
data from both a Gforth and a Java interpreter in a variety of configurations.
We also present hardware counter results for both interpreters which assists in
determining the effect of these optimizations, particularly in relation to branch
misprediction and instruction-cache misses.

7.1 Interpreter variants

We compared the following variants of Gforth:

plain. Threaded code; this is used as the baseline of our comparison (factor 1).

static repl. Static replication with 400 replicas and round-robin selection.

static super. 400 static superinstructions with greedy selection.

static both. 35 unique superinstructions, 365 replicas of instructions and superin-
structions (for a total of 400).

dynamic repl. Dynamic replication

dynamic super. Dynamic superinstructions without replication, limited to basic
blocks (very similar to what Piumarta and Ricardi [1998] proposed).

dynamic both. Dynamic superinstructions, limited to basic blocks, with replica-
tion.

across bb. Dynamic superinstructions across basic blocks, with replication.

with static super. First, combine instructions within a basic block into static
superinstructions (with 400 superinstructions) with greedy selection, then form
dynamic superinstructions across basic blocks with replication from that. This
combines the speed benefits of static superinstructions (optimization across VM
instructions) with the benefits of dynamic superinstructions with replication.

We used the most frequently executed VM instructions and sequences from a
training run with the brainless benchmark for static replication and static superin-
structions. For the JVM implementation, we experimented with a wide variety of

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

18 · Kevin Casey et al.

basic block 1

basic block 2

basic block 3

Non-replicated code

Replicated code

Instruction Stream

i0 i1 s0 s1 i8 i9

i0 i1 i2 i3 i4 i5 i6 i7 i8 i9

s0= i2 i3 i4

s1= i5 i6 i7

Superinstructions:

Fig. 6. Adding static superinstructions across basic-blocks to dynamically replicated code

superinstruction selection algorithms. The scheme we finally used was to select
static superinstructions and static replicas separately for each benchmark. For ex-
ample, for compress, we made our selection by profiling all SPECjvm98 benchmark
programs except compress. We selected the most frequently statically appearing
sequences of VM instructions across all programs examined. For superinstructions,
we gave shorter sequences a higher weighting because they are more likely to appear
in other programs (for details see our technical report [Casey et al. 2005]).

We used 400 additional instructions for the static variants because it is a realistic
number for interpreters distributed in source code: it does not cost that much in in-
terpreter compile-time and compile-space, and using more gives rapidly diminishing
improvements.

The variants of our JVM we examined are identical to those listed above with
the exception of static both for reasons that will become apparent in Section 7.5.
Once more, and for the same reasons as before, we use 400 additional instructions
for the static variants. Instead, for the JVM result, we present an additional vari-
ant with static across bb, which is similar to with static super except that static
superinstructions were permitted to cross basic blocks. This meant we now had
to deal with the issue of side-entries, i.e. control flow into the middle of a static
superinstruction. The approach taken here was that, when a side-entry occurred,
we executed non-replicated instructions until the end of the superinstruction, and
then proceeded to execute replicated code once again. The tradeoff with this ap-
proach is that on one hand we can include many more static superinstructions in
our dynamically replicated code, but on the other hand, any time a side entry oc-
curs into a dynamically replicated static superinstruction, we revert to executing
non-replicated code (see Figure 6) for the duration of that dynamically replicated
static superinstruction.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 19

7.2 Speedups

In this section we present improvements in running time caused by the various
optimization techniques. The presented results are for complete benchmark runs,
including interpreter startup times, and the time required to apply replication and
superinstructions.

7.2.1 Gforth speedups. Figures 7 and 8 show the speedups these versions of
Gforth achieve over plain on various benchmarks. For the dynamic methods in
Gforth, superinstructions alone perform better than replication alone. However, the
combination performs even better, except for cross and brainless on the Celeron,
due to I-cache misses (on the Pentium 4 the combination is better for all bench-
marks). Performing both optimizations across basic blocks is always beneficial,
and using static superinstructions in addition helps some more (exception: brew,
because static superinstructions do not improve the prediction accuracy there and
because it executes more native instructions; this is an artifact of the implemen-
tation of superinstructions in this version of Gforth and does not transfer to other
interpreters or future versions of Gforth).

For Gforth, the dynamic methods fare better than the static methods (exception:
on brainless, static superinstructions do better than dynamic replication; that is
probably because the training program was brainless). For the static methods,
we see that static replication does better than static superinstructions, probably
because replication depends less on how well the training run fits the actual run.
A combination of replication and superinstructions is usually better, however (see
Section 7.5).

Overall, the new techniques provide very nice speedups on the Pentium over the
techniques usually used in efficient interpreters (up to factor 2.35 for static both

over plain, and factor 4.55 for with static super over plain), but also over existing
techniques that are not yet widely used (factor 1.39 for static both over static super

[Ertl et al. 2002] on bench-gc, and factor 1.34 for with static super over dynamic

super [Piumarta and Riccardi 1998]).

7.2.2 JVM speedups. For our JVM (Figure 9), the results are similar, with dy-
namic methods usually outperforming static methods. However, when executing
mtrt with dynamic methods, the number of I-cache misses is around ten times
higher than with static methods. As a result, for mtrt, static superinstructions
clearly outperform any dynamic method. In this benchmark, the dynamic method
that most closely matches static superinstructions is dynamic superinstructions.
This is what is expected since, of all the dynamic methods, dynamic superinstruc-
tions is the one which gives the least increase in I-cache misses.

When examining the dynamic methods in our JVM, we find similar results, in
that dynamic superinstructions outperform dynamic replication. However, when
allowing dynamic replication to extend across basic blocks, the tables are turned
and dynamic replication gives marginally better performance. This is due to the
reduction in branch-mispredictions (see Figures 12 and 13) and occurs despite an
increase in the I-cache miss count.

Overall, the speedups are not as spectacular as for Gforth, but are still apprecia-
ble. The best speedup we saw across all benchmarks was 2.76 over plain for with

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

20 · Kevin Casey et al.

0

1

2

3

gray bench-gc tscp vmgen cross brainless brew

S
p

ee
d

u
p

plain static repl static super static both dynamic repl

dynamic super dynamic both across bb with static super

Fig. 7. Speedups of various Gforth interpreter optimizations on a Celeron-800

0

1

2

3

4

5

gray bench-gc tscp vmgen cross brainless brew

S
p

ee
d

u
p

plain static repl static super static both dynamic repl

dynamic super dynamic both across bb with static super

Fig. 8. Speedups of various Gforth interpreter optimizations on a Pentium 4

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 21

0

1

2

3

jack mpeg compress javac jess db mtrt

S
p

ee
d

u
p

plain static repl static super dynamic repl dynamic super

dynamic both across bb with static super w/static super across

Fig. 9. Speedups of various Java interpreter optimizations on a Pentium 4

static across bb on compress. Of the static methods we examined, static super gave
the best performance with a speedup of 1.83 over plain on mpeg.

There are three main reasons for the disparity in performance improvements
between the Gforth and Java virtual machines. The first is that Gforth VM in-
structions tend to be simpler instructions. Consequently the dispatch-to-real-work
ratio of Gforth programs is quite high. On the other hand, Java VM instructions
tend to be more complex instructions. As a result, JVM programs tend to have
a fewer dispatches than Gforth programs for the same amount of work performed.
A second reason for the discrepancy between performance improvements has to do
with the fact that our optimizations are focussed on the interpreter portion of the
Java and Gforth virtual machines. However, while the Gforth VM spends almost
all of its time in the interpreter, the Java VM spends a considerable portion of its
time outside the interpreter, executing such tasks as garbage collection and byte-
code verification. A third reason is that in the Gforth VM, the topmost stack item
is cached in a register, reducing memory traffic in the interpreter. No correspond-
ing optimization is implemented in our Java VM implementation. The result of
these differences is that we have found that, across the seven Gforth benchmarks
used in this paper, an average of 16.54% of all executed (retired) real machine
instructions are indirect branches (on a Northwood-core P4). In contrast, across
the seven SPECjvm98 benchmarks (again on a Northwood-core P4), only 6.08%
of all executed real machine instructions are indirect branches. Thus, any of our
optimizations which reduce the number of branch mispredictions will have a greater
effect in Gforth programs.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

22 · Kevin Casey et al.

7.3 Other metrics

We take a closer look at the reasons for the speedups by looking at various other
metrics, using mostly performance monitoring counters.

cycles. (tsc) The number of cycles taken for executing the program; this is pro-
portional to the reciprocal of the speedup.

instructions. Executed (retired) instructions. The Pentium 4 splits a small num-
ber of complex Intel x86 instruction into simpler RISC-like micro-operations at the
time that they are loaded into the instruction cache. The performance counters on
this processor count micro-operations rather than x86 instructions, so these are the
numbers we present. However, for several of the benchmarks we have compared
the number of retired Pentium 4 micro-operations with the number of retired x86
instructions when the same program is run on a Pentium 3, and found that the
difference between the two is typically less than 1%.

indirect branches. Executed (retired) indirect branches are measured directly on
the Pentium 4.

mispredicted indirect. Executed (retired) indirect branch instructions that are
mispredicted. We use the same scale factor for this event as for indirect branches,
so one can directly see how many of the taken branches are mispredicted. We also
scale this event such that 1 misprediction corresponds to 20 cycles (the approximate
cost of a misprediction on a Northwood-core P4); this allows one to directly see
how much of the time is spent in mispredictions and compare this to, e.g., the time
spent in I-cache misses.

icache misses. Instruction fetch misses. Note the scale factor for these events;
they are much rarer than the others.

miss cycles. On the Pentium 4 there is no single counter that measures the cost
in cycles of an icache miss. The main reason is that the Pentium 4’s L1 icache is a
trace cache. A trace cache miss does not simply involve waiting for the next level
of memory to return the next instruction. The fetched instructions must be loaded
into the trace cache, a process that includes translating them from x86 instructions
to RISC micro-operations. Although there are a number of performance counters
relating to the trace cache, Intel has not released enough information to be able to
combine these counters into a single result. Zhou and Ross [2004] have estimated
that a Pentium 4 trace cache miss incurs a penalty of at least 27 cycles. In the
absence of a better measure, we have simply multiplied the number of icache misses
by 27, in order to estimate the number of cycles lost to icache misses.

code bytes. The size of the code generated at run-time, in bytes. Due to the way
we implemented static replication, one sees a few KB of code generated even for
some static schemes in the Gforth measurements (but not in the JVM where we
implemented true static replication).

Figure 10 show these metrics for Gforth running bench-gc, and Figure 11 shows
the corresponding metrics for Gforth running brew. The latter is our largest Forth
benchmark, so it may unveil effects from code growth that are not apparent with
smaller benchmarks (however, brainless and cross have a slightly higher proportion
of I-cache miss cycles, so the locality characteristics of a program do not necessarily
correlate with size).

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 23

The first thing to notice is that both the instructions and the indirect branches
count are the same for plain, static repl, and dynamic repl. Similarly, they are
the same for dynamic super and dynamic both. The reason is that (after startup,
with its negligible copying overhead) these interpreters execute exactly the same
sequence of native instructions, only coming from different copies of the code. So
the difference in cycles between these interpreters comes from the difference in
branch mispredictions, I-cache misses and other, similar effects (however, looking
at the data, we believe that other effects only play a negligible role).

Looking at the cycles and taken mispredicted metrics for the Forth benchmarks,
we see that mispredictions consume a large part of the time in the plain interpreter,
and that just eliminating most of these mispredictions by dynamic replication gives
a dramatic speedup (factor 3.07 for bench-gc). Our simulations show that the
remaining mispredicted dispatch branches are due to indirect VM branches (mostly,
VM returns), apart from capacity and conflict misses in the BTB [Ertl and Gregg
2006].

The static methods do not work as well: they do not reduce the mispredictions
as much, because they have to reuse VM instructions. Nonetheless, the speedup
is significant, especially given that static techniques are less complicated to imple-
ment.

Dynamic superinstructions without replication have a slightly worse prediction
accuracy than dynamic replication, because superinstructions are reused, but they
make up for this by executing fewer instructions, and (for brew) by causing fewer
miss cycles.

Looking at the instructions, we see that VM superinstructions do not reduce the
number of executed native instructions much. Both static and dynamic superin-
structions reduce this by similar amounts (apart from brew); dynamic superin-
structions eliminate more dispatch code (see also the effect on indirect branches),
whereas static superinstructions allow optimizations between component VM in-
structions. Across bb reduces the instructions a little more, and with static super

also a little more (exception: brew).
Looking at indirect branches, we get a similar picture as with instructions, ex-

cept that dynamic superinstructions reduce this metric much more than static su-
perinstructions. Also, across bb and with static super have the same number of
indirect branches (exception: brew), because with static super only changes what
goes on in a dynamic superinstruction, not how it is formed.

Indirect branches also indicates (and our simulation results [Ertl and Gregg 2006]
confirm) that the length of the average executed superinstruction is quite short for
static superinstructions (typically around 1.5 component instructions), but also
for dynamic superinstructions (around 3 component instructions). Also, across

bb does not increase the superinstruction length by much, because in Forth the
most frequent reason for basic block boundaries is calls and returns, and across

bb does not help there. Therefore we expect across bb to have a greater effect on
superinstruction length and on performance in other languages.

Figures 12 and 13 show the corresponding metrics for our Java interpreter running
the mpegaudio and compress benchmarks respectively. As with the Gforth results,
the instructions and indirect branches counts are the same for plain, static repl, and
dynamic repl. However the execution time is much lower for static repl, and dynamic

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

24 · Kevin Casey et al.

repl because of a large reduction in the number of indirect branch mispredictions.
In the case of compress, dynamic repl is almost a factor of three times faster than
plain, and this reduction is entirely attributable to reductions in indirect branch
mispredictions.

Static replication is much less successful in our Java implementation than for
Gforth. There are two main reasons for this. First, replicating instructions in our
JVM does not make all indirect branches more predictable. When we experimented
with adding small number of replicated VM instructions, we discovered that they
actually reduce the overall indirect branch misprediction rate [Casey et al. 2005].
The reason is that in our implementation, a couple of VM instructions (especially
local variable load VM instructions) account for a very large proportion of indi-
rect branch targets. If those VM instructions are replicated, the indirect branches
that jump to them become more polymorphic (i.e. they have a greater number of
common targets). With larger numbers of indirect branches, the overall effect is
positive — but not as positive as for Gforth where even small numbers of replicas
improve performance. The second reason for the poor performance of static repli-
cation is that it causes very large numbers of icache misses. As more replicas are
added the potential for icache thrashing arises.

In contrast, static superinstructions give much better results for our JVM imple-
mentation than for Gforth. There are two main reasons for this contrast. First,
basic blocks are longer in the Java benchmarks than in the Forth ones. The normal
programming style in Forth is to write large numbers of very short functions (or
words), so basic blocks are broken by large numbers of calls and returns. Secondly,
we put a great deal more effort into selecting suitable superinstructions for the Java
implementation. We evaluated a wide variety of strategies [Casey et al. 2005]. We
discovered the most practical approach was to examine a variety of other Java pro-
grams, and select sequences of VM instructions that appear statically frequently,
while favoring shorter sequences over longer ones.

7.4 Code growth

A frequent reaction to the proposal for replication is that the resulting code growth
will cause so many performance problems that the end result will be slower than the
original interpreter. An examination of the speedups (Figures 7, 8 and 9) should
convince everyone that this is not true, even on a CPU with small caches like the
Celeron (see Figure 7). Still, in this section we take a closer look at the code growth
and its effect on various metrics.

In the code bytes bars of Figure 11 we see that the dynamic-replication based
methods produce about 1MB of native code for Gforth running brew, with longer
superinstructions and static superinstructions reducing the code size a little. In
many environments this is quite acceptable for a 30000-line program (e.g., brew
also consumes 0.5MB of the Gforth data space containing threaded code and data).

The code bytes bars of Figures 12 and 13 show that the code growth from dy-
namic replication-based methods on our JVM is much larger. This is because these
are both large programs, and code is also replicated for the extensive Java class
library.

Dynamic superinstructions without replication reuse superinstructions a lot, re-
sulting in a generated code size of only 200KB for Gforth and 500k-800K in our

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 25

0.00

0.20

0.40

0.60

0.80

1.00

cycles
(*800M)

instrs
(*400M)

indirect
branches

(*40M)

indirect
mispredicted

(*40M)

icache
misses
(*250K)

miss cycles
(*800M)

code bytes
(*250K)

plain static repl static super static both dynamic repl

dynamic super dynamic both across bb with static super

Fig. 10. Performance counter results for bench-gc (Gforth) on a Pentium 4

0.00

0.20

0.40

0.60

0.80

1.00

cycles
(*100G)

instrs (*50G) indirect
branches

(*5G)

indirect
mispredicted

(*5G)

icache
misses
(*200M)

miss cycles
(*100G)

code bytes
(*1M)

plain static repl static super static both dynamic repl

dynamic super dynamic both across bb with static super

Fig. 11. Performance counter results for brew (Gforth) on a Pentium 4

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

26 · Kevin Casey et al.

0.00

0.20

0.40

0.60

0.80

1.00

cycles
(*250G)

instrs
(*125G)

indirect
branches
(*12.5G)

indirect
mispredicted

(*12.5G)

icache
misses

(*500M)

miss cycles
(*250G)

code bytes
(*4M)

plain static repl static super
dynamic repl dynamic super dynamic both
across bb with static super w/static super across

Fig. 12. Performance counter results for mpegaudio (Java) on a Pentium 4

0.00

0.20

0.40

0.60

0.80

1.00

cycles
(*250G)

instrs
(*125G)

indirect
branches
(*12.5G)

indirect
mispredicted

(*12.5G)

icache
misses

(*500M)

miss cycles
(*250G)

code bytes
(*4M)

plain static repl static super
dynamic repl dynamic super dynamic both
across bb with static super w/static super across

Fig. 13. Performance counter results for compress (Java) on a Pentium 4

JVM.
These size differences are also reflected in icache misses: the static methods have

very few misses, dynamic super some more, and the replication-based methods even
more; this is also reflected in the miss cycles.

However, the miss cycles consume only a small part of the total cycles in most
cases, and only in a few cases do they overcome the benefit obtained from better

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 27

Table VIII. Peak dynamic memory requirements (Mb) on various benchmarks

benchmark Hotspot (mixed mode) dynamic super across bb w/static across bb

jack 2.53 0.50 3.08 2.91
mpeg 0.32 0.67 2.71 2.58
compress 0.34 0.45 1.92 1.82
javac 2.63 0.80 4.42 4.22
jess 1.14 0.56 2.76 2.63
db 0.32 0.45 1.99 1.89
mtrt 0.74 0.51 2.40 2.29

prediction accuracy. In particular, hardware counter results from benchmarks on
the Celeron (not shown) demonstrated that dynamic both spends 23% of the cycles
on misses when running brainless (compared to 7.5% for dynamic super), result-
ing in a slowdown by factor 1.11; however, dynamic both is faster for most other
benchmarks on the Celeron, and for all benchmarks on the Pentium 4 (factor of
1.13 speedup for brainless).

So, unless one has reason to expect to run programs with particularly bad code
locality, we recommend using dynamic replication together with dynamic superin-
structions for general-purpose machines.

Another way of looking at the issue is to compare the code generated by our
replication methods to code generated by a native-code compiler6; it will typically
be larger than the native code by a small constant factor (the factor may be even
less than one if the native-code compiler uses loop unrolling, inlining, and other
code replicating optimizations); for most code I-cache misses are not a big issue, so
the code size resulting from replication is usually not a big issue, either.

In order to estimate the additional memory required by a JIT compiler, we used
the memusage command (from the glibc-utils package) to examine peak heap size
in Hotspot’s interpreter mode. We then ran the same VM in mixed mode and
measured the increase in peak heap size compared to interpreter mode. This gives
us an estimate of the additional memory requirements of the mixed-mode over the
interpreter mode. These results are presented in Table VIII. Although the Hotspot
results should be treated with some caution, due to the nature of estimation, it does
appear that at the very least, dynamic super appears to be competitive with the
Hotspot VM. Bearing in mind that code reuse in dynamic super is almost certainly
higher than that of the Hotspot VM (in mixed mode), this result is expected.
At the same time, the Hotspot VM only invokes the JIT on more commonly used
methods, so it is no real surprise that across bb and with static super across bb have
much higher memory requirements, since they create (or more precisely replicate)
executable code for all methods.

7.5 Balancing static methods

Figure 14 shows timing results for various combinations of static replication and
superinstructions in Gforth. Each line represents a given number of total additional
instructions, varying distributions between replication and superinstructions along
the X-axis.

6Unfortunately the native-code Forth and Java compilers we use do not report the size of the
generated code, so we cannot present exact empirical data here.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

28 · Kevin Casey et al.

100

150

200

250

300

350

400

450

500

0 10 20 30 40 50 60 70 80 90 100

%Superinstructions

C
yc

le
s

x
1E

+
06

0
25
50
100
200
400
800
1600

100 90 80 70 60 50 40 30 20 10 0

%Replicas

Fig. 14. Timing results for Bench-gc (Gforth) with static replications and superinstructions on a
Celeron-800; the line labels specify the total number of additional VM instructions

100.00

120.00

140.00

160.00

180.00

200.00

220.00

240.00

260.00

280.00

300.00

0 10 20 30 40 50 60 70 80 90 100

%Superinstructions

C
yc

le
s

x
1E

+0
9

100 90 80 70 60 50 40 30 20 10 0

%Replicas

0

50

100

200

300

400

Fig. 15. Timing results for mpegaudio (Java) with static replications and superinstructions on a
Pentium 4; the line labels specify the total number of additional VM instructions

We can see that the performance improves with the total number of additional
instructions, but approaches a limit of around 200M cycles.

We can also see that a combination of replication and superinstructions gives good
results; as long as we are not too close to the extreme points, performance is not
very sensitive to the actual distribution between replication and superinstructions.

In our Java interpreter, as with Gforth, we attempted to find an optimal mix
of static replications and static superinstructions. The results were quite different,
however. As seen in Figure 15, there appears to be virtually no benefit in adding
replications at the expense of superinstructions. As we noted in the section on static
replication, small numbers of static replicated instructions can make performance
worse. We see this most clearly when only 50 replications are added (with no static

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 29

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

0 10 20 30 40 50 60 70 80 90 100

%Superinstructions

In
d

ir
ec

t
B

ra
n

ch
 M

is
p

re
d

ic
ti

o
n

s
x

1E
+0

9

100 90 80 70 60 50 40 30 20 10 0

%Replicas

0

50

100

200

300

400

Fig. 16. Indirect Branch Misprediction results for mpegaudio (Java) with static replications and
superinstructions on a Pentium 4; the line labels specify the total number of additional VM
instructions

superinstructions). At this point, we can see from Figure 16 that the number of
branch mispredictions actually increases. The same effect is observed when only 100
replicated static instructions are added, but this time the effect is not so notable. We
examined the branch prediction and branch misprediction hardware counters and at
400 replications (with no superinstructions) the misprediction rate is approximately
27%. In contrast, when using 400 superinstructions, the misprediction rate increases
to 30%. However, the superinstruction approach requires only 60% of the executed
indirect branches that the replication approach needs, and as a result has only 66%
of the number of branch mispredictions.

7.6 Speed comparison with native-code compilers

In this section we look at how far the resulting interpreters are still from native-code
compilers.

The native-code Forth compilers we used are bigForth-2.03 and iForth-1.12. For
the data in this section we used Gforth-0.6.1, which gives slightly different speedups
from the version used earlier. We also use tscp-0.5. We only ran those benchmarks
that we could get to run on the different compilers easily. The benchmarks were run
on an Athlon-1200 (Linux-2.4.19, glibc-2.1.3). The results for Forth are in Table
IX. Drawing conclusions from such a small sample size (both compilers and bench-
marks) is dangerous, but the speed difference between interpreters and relatively
simple native-code compilers appears to be less than many people imagine.

Table X shows corresponding results for various JVM implementations, which
are run on the Pentium 4 based system described in Section 6.2. We compare the
speedups over plain using with static across bb, Kaffe 1.1.4 with the JIT3 engine,
and Sun Microsystem’s Hotspot client JVM 1.4.2-04-b05 in both interpreter and
mixed-mode. Once again the difference between our interpreter and the native code

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

30 · Kevin Casey et al.

Table IX. Gforth speedups of across bb
and two native code compilers over plain.

across bb bigForth iForth

tscp 2.98 5.13 3.51
brainless 2.49 2.73
brew 2.17 0.92

Table X. JVM speedups of w/static across bb, two native code compilers and an optimised
interpreter over plain.

w/static across bb kaffe JIT Hotspot (interpreter) Hotspot (mixed mode)

jack 1.12 1.13 1.01 4.24
mpeg 2.70 7.52 1.07 15.14
compress 2.76 13.02 1.13 13.28
javac 1.19 1.76 1.20 5.11
jess 1.41 1.51 1.41 9.87
db 1.39 2.74 1.28 4.37
mtrt 1.15 2.16 1.02 14.52

average 1.67 4.26 1.16 9.50

compilers is not the orders of magnitude one might expect. Comparing the results of
with static across bb to those speedups obtained from Hotspot in interpreter mode
shows the utility of these methods in optimising interpreters for better performance.
The outperforming of Hotspot in interpreter mode is a significant achievement
since it has a much faster run time system than CVM. The Hotspot interpreter is
also faster than our base interpreter. It is a dynamically-generated, highly-tuned
assembly language interpreter, and is able to execute bytecodes more quickly than
our portable interpreter written in C.

8. RELATED WORK

An earlier version of the work described in this paper appeared as [Ertl and Gregg
2003a]. The main difference is that the previous version presented only Gforth
results. In the current version we have confirmed that the techniques are also
useful for other virtual machines, such as the JVM. We have also solved a number
of JVM specific problems, especially those relating to quick instructions.

The earlier version of this research inspired some other work in this area. Sub-

routine threading [Berndl et al. 2005] has been proposed as a way of avoiding the
cost of indirect branches in VM implementations. Each VM instruction is imple-
mented with a C function. Instead of interpreting bytecode or threaded code, a
very simple just-in-time compiler generates executable code for a sequence of calls
to these functions. This eliminates indirect branches completely from the dispatch
of VM instructions, at the cost of some loss in simplicity and portability.

The accuracy of static conditional branch predictors has been improved with
software methods: branch alignment [Calder and Grunwald 1994] and code repli-
cation [Krall 1994; Young and Smith 1994; Young et al. 1995]. The present paper
looks at using software methods to improve the accuracy of the BTB, a simple
dynamic indirect branch predictor. Our code replication differs from replication for
conditional branch prediction in all aspects: our work addresses a dynamic indirect

branch predictor (the BTB) instead of a static conditional branch predictor. Repli-
cation for conditional branches works at compile-time and is based on profiling to

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 31

find correlations between branches to be exploited by replication, and no data is
affected; in contrast, our replication changes the representation of the interpreted
program at program startup time to decide the replicas to use.

There are a number of recent papers on improving interpreter performance
[Proebsting 1995; Ertl 1995; Piumarta and Riccardi 1998; Santos Costa 1999].
Software pipelining the interpreter [Hoogerbrugge and Augusteijn 2000; Hooger-
brugge et al. 1999] is a way to reduce the branch dispatch costs on architectures
with delayed indirect branches (or split indirect branches).

Romer et al. [1996] investigated the performance characteristics of several in-
terpreters. However, they used inefficient interpreters, and thus did not notice
that efficient interpreters spend much of their time on dispatch branches. In con-
trast, Ertl and Gregg [2003b] investigated the performance efficient interpreters, and
found that their running time was often dominated by indirect branch mispredic-
tions. They simulated the performance of various branch predictors on interpreters,
but did not investigate means to improve the prediction accuracy beyond threaded
code.

In addition to establishing the poor prediction rates of interpreter branches on
BTBs, Ertl and Gregg also showed that a processor with a two-level indirect branch
predictor can correctly predict most indirect branches in VM interpreters [Ertl and
Gregg 2003b]. Hardware two-level branch predictors combine the outcome of the
most recently executed indirect branches with the address of the indirect branch,
to form an index into a table of target addresses [Driesen and Hölzle 1998; 1999;
Kalamatianos and Kaeli 1999]. The first commercially available processor with a
two-level predictor is the Intel Pentium M [Gochman et al. 2003] for laptop comput-
ers. Details of the predictor are sketchy, but preliminary experiments show that it
does indeed correctly predict most indirect branches. At the time of writing, BTBs
continue to be the most widely used mechanism for predicting indirect branches,
particularly for desktop and server machines. It will probably take a long time
before two-level predictors are universally available.

More recently, a BTB which has been optimized just for running Java VMs has
been proposed [Li et al. 2005] which combines elements of a two-level predictor and
a standard BTB, and achieves similar prediction accuracies to a two-level predic-
tor. However, this hardware predictor is intended only for accelerating VMs, and
it is perhaps more likely that general-purpose two-level predictors will appear in
hardware before predictors aimed specifically at VMs.

Kaeli and Emma [1994; 1997], describe a case block table, a history-based branch
predictor specifically for switch-type statements. A table of previous branch tar-
gets is maintained, indexed by the operand to the switch statement (in our case the
opcode for a VM instruction). This will give almost perfect indirect branch predic-
tion for a switch-based interpreter. The case block table is designed specifically for
switch statements, so it is less general than a two-level predictor, but it provides
very high accuracy. To our knowledge, the case block table has not found its way
into commercially available general-purpose processors.

Papers dealing with superoperators and superinstructions [Proebsting 1995; Pi-
umarta and Riccardi 1998; Hoogerbrugge et al. 1999; Ertl et al. 2002] concentrated
on reducing the number of executed dispatches and sometimes the VM code size,
but have not evaluated the effect of superinstructions on BTB prediction accuracy

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

32 · Kevin Casey et al.

(apart from two paragraphs in the work of Ertl et al. [2002]). In particular, Piu-
marta and Riccardi invested extra work to avoid replication (in order to reduce code
size), but this increases mispredictions on processors with BTBs, usually resulting
in a slowdown.

The problem of creating dynamic superinstructions out of basic blocks which con-
tain quickable instructions has been tackled previously using preparation sequences

[Gagnon and Hendren 2003; Gagnon 2003]. In this approach, basic blocks which do
not contain any quickable instructions are used to construct dynamic superinstruc-
tions as per usual. For basic blocks that contain quickable instructions, a bytecode
routine (the preparation sequence) is added to the end of the method containing
the relevant block. The actual basic block in the bytecode is replaced with a stub
to call this preparation sequence, which performs the work of the basic block and
additionally, when all instructions in the basic block have been quickened, replaces
the stub in the bytecode with the address of this dynamic superinstruction.

This contrasts with our approach, where we leave an appropriately sized gap in
the dynamic superinstruction for the code for the quick version of the instruction.
This gap is partially filled by a copy of the VM instruction dispatch code, which
dispatches to the quickable version of the code. As part of the quickening process,
code for the quick version of the instruction is patched into this gap, replacing the
dispatch. Locks are used to avoid race conditions in the quickening process.

Preparation sequences are attractive, given that they provide a lock-free, thread
safe technique for dealing with quickable instructions when creating dynamic su-
perinstructions. However, preparation sequences solve a slightly different problem,
namely constructing dynamic superinstructions composed from single basic blocks.
Creating dynamic superinstructions that extend across basic block boundaries is a
more difficult problem. In particular, a basic block has only a single entry point, so
the threaded code can be updated to use the superinstruction with a single, atomic
store. A superinstruction extending across basic blocks must have multiple entry
points, because different parts of the superinstruction are targets for taken VM
branches (which are implemented with real machine indirect branches), so multiple
points in the threaded code must be updated. Thus, we must use a more complex
locking scheme, rather than the elegant lock-free preparation sequences.

A similar approach to preparation sequences was recently implemented in the
interpreter in the Cacoa Java VM [Ertl et al. 2006].

9. CONTRIBUTIONS

In this paper, we have looked at software ways to improve prediction accuracy of
interpreters on BTBs. The main contributions of this paper are:

—We propose a new technique, termed replication (Section 4.1), for eliminating
mispredictions.

—We evaluate this technique, as well as existing superinstruction techniques, and
the combination of these techniques with respect to prediction accuracy and
performance (Section 7).

—We introduce several enhancements of dynamic superinstructions (in addition to
replication), in particular: extending them across basic blocks; and a portable
way to detect non-relocatable code fragments (Section 5.2).

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 33

—We describe implementations of these techniques in interpreters for both Java
and Forth. There are a number of complicating factors in implementing these
techniques for Java, and we describe our solutions to these problems (Section
5.4).

—We empirically compare the static [Ertl et al. 2002] and dynamic [Piumarta and
Riccardi 1998] superinstruction techniques against each other (Section 7).

The use of these techniques can result in significant speedups for VM interpreters by
reducing the number of indirect branch mispredictions that occur during execution.

10. CONCLUSION

If a VM instruction occurs several times in the working set of an interpreted pro-
gram, a BTB will frequently mispredict the dispatch branch of the VM instruction.
We present two techniques for reducing mispredictions in interpreters: replicating
VM instructions, such that hopefully each replica occurs only once in the working
set (speedup up to a factor of 3.07 over an efficient threaded-code interpreter); and
combining sequences of VM instructions into superinstructions (speedup up to a
factor of 3.39). In combination these techniques achieve an even greater speedup
(up to a factor of 4.55).

There are two variants of these optimizations: The static variant creates the repli-
cas and/or superinstructions at interpreter build-time; it produces less speedup (up
to a factor of 2.35), but is completely portable. The dynamic variant creates replicas
and/or superinstructions at interpreter run-time; it produces very good speedups
(up to a factor of 4.30), but requires a little bit of porting work for each new plat-
form. The dynamic techniques can be combined with static superinstructions for
even greater speed (up to a factor 4.55).

The speedup of an optimization has to be balanced against the cost of imple-
menting it. In the present case, in addition to giving good speedups, the dynamic
methods are relatively easy to implement (a few days of work). Static replication
with a few static superinstructions is also pretty easy to implement for a particular
interpreter.

ACKNOWLEDGMENTS

We thank the PLDI 2003 referees for their helpful comments on an earlier version of
this work, and the anonymous reviewers of TOPLAS who helped us to greatly im-
prove this paper. The performance counter measurements were made using Mikael
Pettersson’s perfctr package and the papiex tool written by Philip J. Mucci.

REFERENCES

Bell, J. R. 1973. Threaded code. Commun. ACM 16, 6, 370–372.

Bell, T. C., Cleary, J. G., and Witten, I. H. 1990. Text Compression. Prentice-Hall.

Berndl, M., Vitale, B., Zaleski, M., and Brown, A. D. 2005. Context threading: A flexible and
efficient dispatch technique for virtual machine interpreters. In 3nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2005), 20-23 March 2005, San Jose,
CA, USA. 15–26.

Calder, B. and Grunwald, D. 1994. Reducing branch costs via branch alignment. In Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS-VI). 242–251.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

34 · Kevin Casey et al.

Casey, K., Ertl, A., and Gregg, D. 2005. Optimizations for a Java interpreter using instruction

set enhancement. Tech. Rep. TCD-CS-2005-61, Department of Computer Science, University
of Dublin, Trinity College, Dublin 2, Ireland. September.

Casey, K., Gregg, D., and Ertl, A. 2005. Tiger - an interpreter generation tool. In Interna-
tional Conference on Compiler Construction (CC 05). LNCS 3443. Springer Verlag, Edinburgh,
Scotland, 246–249.

Casey, K., Gregg, D., Ertl, M. A., and Nisbet, A. 2003. Towards superinstructions for Java
interpeters. In Proceedings of the 7th International Workshoop on Software and Compilers for
Embedded Systems (SCOPES 03), A. Krall, Ed. LNCS 2826. Vienna, Austria, 329–343.

Driesen, K. and Hölzle, U. 1998. Accurate indirect branch prediction. In Proceedings of the
25th Annual International Symposium on Computer Architecture (ISCA-98). 167–178.

Driesen, K. and Hölzle, U. 1999. Multi-stage cascaded prediction. In EuroPar’99 Conference
Proceedings. LNCS, vol. 1685. Springer, 1312–1321.

Ertl, M. A. 1995. Stack caching for interpreters. In SIGPLAN ’95 Conference on Programming
Language Design and Implementation. 315–327.

Ertl, M. A. and Gregg, D. 2003a. Optimizing indirect branch prediction accuracy in virtual
machine interpreters. In SIGPLAN ’03 Conference on Programming Language Design and
Implementation.

Ertl, M. A. and Gregg, D. 2003b. The structure and performance of Efficient interpreters. The
Journal of Instruction-Level Parallelism 5. http://www.jilp.org/vol5/.

Ertl, M. A. and Gregg, D. 2006. Optimizing Interpreters for Processors with Branch Target
Buffers. Tech. Rep. TCD-CS-2006-51, Department of Computer Science, University of Dublin,
Trinity College, Dublin 2, Ireland. September.

Ertl, M. A., Gregg, D., Krall, A., and Paysan, B. 2002. vmgen — a generator of efficient
virtual machine interpreters. Software—Practice and Experience 32, 3, 265–294.

Ertl, M. A., Thalinger, C., and Krall, A. 2006. Superinstructions and replication in the
Cacao JVM interpreter. Journal of .NET Technologies 4, 1, 31–38.

Gagnon, E. 2003. A portable research framework for the execution of Java bytecode. Ph.D.
thesis, McGill University.

Gagnon, E. and Hendren, L. J. 2003. Effective inline-threaded interpretation of Java bytecode
using preparation sequences. In Compiler Construction, 12th International Conference, CC
2003, Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2003, Warsaw, Poland, April 7-11, 2003, Proceedings. 170–184, volume 2622.

Gagnon, E. M. and Hendren, L. J. 2001. SableVM: A research framework for the efficient exe-
cution of Java bytecode. In Proceedings of the Java Virtual Machine Research and Technology
Symposium (JVM ’01). Monterey, California, USA, 27–39.

Gochman, S., Ronen, R., Anati, I., Berkovits, A., Kurts, T., Naveh, A., Saeed, A., Sper-

ber, Z., and Valentine, R. 2003. The Intel Pentium M processor: microarchitecture and
performance. Intel Technology Journal 7, 2 (May), 20–36.

Hoogerbrugge, J. and Augusteijn, L. 2000. Pipelined Java virtual machine interpreters. In
Proceedings of the 9th International Conference on Compiler Construction (CC’ 00). Springer
LNCS.

Hoogerbrugge, J., Augusteijn, L., Trum, J., and van de Wiel, R. 1999. A code compression
system based on pipelined interpreters. Software—Practice and Experience 29, 11 (Sept.),
1005–1023.

Kaeli, D. R. and Emma, P. G. 1994. Case block table for holding multi-way branches. US Patent
No. 5,333,283.

Kaeli, D. R. and Emma, P. G. 1997. Improving the accuracy of history-based branch prediction.
IEEE Transactions on Computers 46, 4, 469–472.

Kalamatianos, J. and Kaeli, D. 1999. Indirect branch prediction using data compression tech-
niques. Journal of Instruction Level Parallelism.

Krall, A. 1994. Improving semi-static branch prediction by code replication. In Conference on
Programming Language Design and Implementation. SIGPLAN, vol. 29(7). ACM, Orlando,
97–106.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

Optimizing Indirect Branch Prediction Accuracy in Virtual Machine Interpreters · 35

Li, T., Bhargava, R., and John, L. K. 2005. Adapting branch-target buffer to improve the target

predictability of Java code. ACM Transactions on Architecture and Code Optimization 2, 2
(June), 109–130.

Piumarta, I. and Riccardi, F. 1998. Optimizing direct threaded code by selective inlining. In
SIGPLAN ’98 Conference on Programming Language Design and Implementation. 291–300.

Proebsting, T. A. 1995. Optimizing an ANSI C interpreter with superoperators. In Principles
of Programming Languages (POPL ’95). 322–332.

Romer, T. H., Lee, D., Voelker, G. M., Wolman, A., Wong, W. A., Baer, J.-L., Bershad,

B. N., and Levy, H. M. 1996. The structure and performance of interpreters. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS-VII). 150–159.

Rossi, M. and Sivalingam, K. 1996. A survey of instruction dispatch techniques for byte-code
interpreters. Tech. Rep. TKO-C79, Faculty of Information Technology, Helsinki University of
Technology. May.

Santos Costa, V. 1999. Optimising bytecode emulation for Prolog. In LNCS 1702, Proceedings
of PPDP’99. Springer-Verlag, 261–267.

Smith, J. and Nair, R. 2005. Virtual Machines: Versatile Platforms for Systems and Processes.
Morgan Kaufmann.

Sun-Microsystems. 2001. The Java Hotspot virtual machine. Tech. rep., Sun Microsystems Inc.

Young, C., Gloy, N., and Smith, M. D. 1995. A comparative analysis of schemes for correlated
branch prediction. In 22nd Annual International Symposium on Computer Architecture. 276–
286.

Young, C. and Smith, M. D. 1994. Improving the accuracy of static branch prediction using
branch correlation. In Achitectural Support for Programming Languags and Operating Systems
(ASPLOS VI).

Zhou, J. and Ross, K. A. 2004. Buffering database operations for enhanced instruction cache
performance. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. ACM Press, Paris, 191–202.

Received October 2005; revised October 2006; accepted March 2007.

ACM Transactions on Programming Languages and Systems, Vol. X, No. X, Month Year.

