An Optimized Java Interpreter for Connected Devices and
Embedded Systems’

Andrew Beatty, Kevin Casey, David Gregg and Andrew Nisbet
Department of Computer Science
Trinity College
Dublin 2, Ireland

{Andrew.Beatty, Kevin.Casey, David.Gregg, Andy.Nisbet}@cs.tcd.ie

ABSTRACT

The Java Virtual Machine (JVM) is usually implemented by
an interpreter or just-in-time (JIT) compiler. JITs provide
the best performance, but interpreters have a number of ad-
vantages that make them attractive, especially for embedded
systems. These advantages include simplicity, portability
and low memory requirements. In this paper we describe a
new interpreter core for CVM, Sun Microsystem’s JVM for
connected devices and embedded systems. The interpreter
core is portable and programmed in C. An interpreter gen-
erator is used to apply a number of optimisations automat-
ically to the source code. Experimental results show that
on benchmarks that spend almost all their time in the in-
terpreter (rather than the run time system) it is 28% to
58% faster than the original CVM interpreter, and is only
5% to 9% slower than the highly-sophisticated, hand-tuned,
assembly language interpreter in Sun’s desktop JVM.

Keywords
Java, Interpreter, Embedded System

1. MOTIVATION

The Java Virtual Machine (JVM) is usually implemented
by an interpreter or just-in-time (JIT) compiler. JITs pro-
vide the best performance, but interpreters have a number
of advantages that make them attractive, especially for em-
bedded systems. First, interpreters require much less mem-
ory than JITs, both for the interpreter itself and the Java
bytecode. For example, Hoogerbrugge et al. [8] found that
a bytecode representation of a program could be up to five
times smaller than the corresponding machine code. Many
embedded systems have small memories giving interpreters
a decisive advantage.

*This work was supported by Enterprise Ireland Research
Innovation Fund, Grant 1F/2001/350.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC ’03 Melbourne, Florida, USA

© 2003 ACM 1-58113-624-2/03/03...$5.00.

692

A second important advantage of interpreters is that they
can be constructed to be trivially portable to new archi-
tectures. In contrast, it can take many months to port the
back end of a JIT compiler. Portability means that the Java
interpreter can be rapidly moved to a new architecture, re-
ducing time to market. There are also significant advantages
in different target versions of the interpreter being compiled
from the same source code. The various ports are likely to
be more reliable, since the same piece of source code is be-
ing run and tested on many different architectures. A single
version of the source code is also significantly cheaper to
maintain. There are other parts of the JVM that are more
difficult to port (such as the Java Native Interface for calling
machine code functions), but many embedded JVMs, such
as Sun’s KVM [14] for mobile devices, have limited support
for these unportable features.

A third advantage of interpreters is that they are signif-
icantly smaller and simpler than JIT compilers. Simplicity
makes them more reliable, quicker to construct and easier to
maintain. When building a JIT compiler one must not only
debug the code for the compiler, but must often also debug
the code generated by the compiler. This is not an issue
for interpreters. A final smaller advantage of interpreters is
that they do not necessarily have to compile the bytecode
into another format before execution. Sun’s Hotspot mixed
mode compiler/interpreter JVM takes advantage of this by
only compiling code that has been shown to be frequently
executed. The compilation overhead for rarely used code
is often greater than the time needed to execute that code
on an interpreter. A similar strategy is used by Transmeta
for their Crusoe processor which emulates the x86 instruc-
tion set through a combination of interpreting and binary
translation.

Given these advantages, it is hardly surprising that Sun’s
JVMs for connected devices and embedded systems (CVM),
for mobile devices (KVM), and for smart cards (JavaCard)
are based on interpreters. Interpreters give the low memory
requirements and rapid portability that are important for
embedded systems. A weakness of using interpreters is that
they run most code much slower than JITs. The goal of our
work is to narrow that gap, by creating a highly efficient
Java interpreter.

In this paper we describe a new interpreter for the CVM.
The interpreter uses a number of optimizations, such as di-
rect threading and optimization of constant pool accesses.
The interpreter is complete and robust, in the sense that
it runs all programs that run within the reduced feature

typedef enum {
add /* ... %/
} Inst;

void engine()
{
static Bytecode program(] = { iadd /* ... ¥/ };

Bytecode *ip;
int *sp;

while (1)

switch (*ip++) {

case iadd:
sp[1]=sp{0]+sp[i];
sp++;
break;

/* ... */

}

Figure 1: Instruction dispatch using switch

set of the original CVM. Experimental results are presented
for the standard SPECjvm98 and Java Grande benchmarks,
which show the new interpreter is substantially faster than
the original CVM.

The rest of this paper is organized as follows. Section 2 de-
scribes the basic functioning of a virtual machine interpreter,
and the most important types of instruction dispatch. In
section 3 we describe the design and implementation of our
optimized interpreter core. Section 4 presents our experi-
mental evaluation of our work with respect to other small
JVMs. In section 5 we place our work in the context of
existing published research on optimized Java interpreters.
Finally, section 6 draws conclusions from our results.

2. VIRTUAL MACHINE INTERPRETERS

The Java Virtual Machine uses a stack-based bytecode
to represent the program. Interpreting a bytecode instruc-
tion consists of accessing arguments, performing the func-
tion of the instruction, and dispatching (fetching, decoding
and starting) the next instruction.

Instruction dispatch typically consumes most of the ex-
ecution time in virtual machine interpreters. The reason
is that most VM instructions require only a small amount
of computation, such as adding two numbers or loading a
number onto the stack, and can be implemented in a few
machine code instructions. In contrast, instruction dispatch
can require up to 10-12 machine code instructions, and in-
volves a time consuming indirect branch. For this reason,
dispatch consumes a large proportion of the running time of
most efficient interpreters [4].

Switch dispatch is the simplest and most widely used ap-
proach. The main loop of the interpreter consists of a large
switch statement with one case for each opcode in the JVM
instruction set. Figure 1 shows how this approach is imple-
mented in C.

Switch dispatch is simple to implement, but rather inef-
ficient for a number of reasons. First, most compilers pro-
duce a range check to ensure that the opcode is within the
range of valid values. In the JVM this is unnecessary, since
the bytecode verifier already checks that bytecodes are valid.
Secondly, the break is translated into an unconditional jump

typedef void *Inst;

void engine()

{
static Bytecode program{] = { iadd /% ... */ };
Bytecode *ip;
Inst dispatch_table = { &&nop, &&aload_null, };
int *sp;

goto dispatch_table[*ip++];

iadd:

sp[11=sp[0]+sp[1];

sp++;

goto dispatch_table[*ip++];

Figure 2: Instruction dispatch using token threading
in GNU C

typedef void *Inst;

void engine()

{
static void * program[] = { &&iadd /* ... */ };
Inst *ip;
int *sp;

goto *ip++;

iadd:
sp[1]=sp[0]+sp[1];
spt+;

goto *ip++;

Figure 3: Instruction dispatch using direct thread-
ing in GNU C

back to the start of the loop. Given that the loop already
contains a jump, it would be better to structure the loop as
a set of routines that jump to one another. A final source
of inefficiency results from there being only a single indi-
rect branch for dispatching instructions. On machines with
programmer visible pipelines, such as the Philips Trimedia
processor for embedded systems, it is difficult to overlap
this branch with other instructions [8]. On processors with
branch predictors, this branch is very unpredictable [4]

An alternative to using a switch statement is threaded
dispatch. Threaded dispatch is based on making explicit
the sequence of steps generated by a compiler to implement
a switch statement. Once these steps appear at the source
level, the programmer can optimize the code by removing
unnecessary work. Unfortunately, it is not possible to break
a switch statement into its component parts in ANSI C,
because there is no facility for goto statements that can
jump to multiple different locations. To implement threaded
dispatch, one requires a language with labels as first class
value, such as GNU C, the language accepted by the GCC
compiler.

Figure 2 shows how token threaded dispatch can be imple-
mented using GNU C. The range check has been eliminated,
as has the jump back to the dispatch routine at the end of
the code for each VM instruction. Instead, the dispatch

693

Instruction Interpreter Threaded code
definition generator interpreter
VM instruction
formats
Java application Bytecode
——— Threaded code
bytecode transiator

Figure 4: Structure of the Interpreter System

code is appended to the end of the code for each virtual
machine instruction. This increases the size of the inter-
preter slightly, although it is usually faster. Another effect
of replicating the dispatch code is that it allows the dis-
patch branch to be scheduled more efficiently with the code
to implement the bytecode instruction, and it also greatly
increases the prediction accuracy of the indirect branch on
processors with branch target buffers (45% versus 2%-20%
for switch dispatch) [4].

Much of the time in a token threaded interpreter is spent
in getting from the value of the opcode (the “token™) to the
address of the routine to execute for this opcode. Thus, the
opcode is loaded. This opcode is then used as an index into
an array of addresses, so it must be scaled (shifted left) and
added to the address of the base of the array. Finally, the
address at that location is loaded.

A more efficient alternative is to translate the bytecode
into a new format and replace the opcodes with the ad-
dresses of the routines that implement them. This scheme
is known as direct threading [1] (see figure 3). It reduces the
code to implement instruction dispatch to just three ma-
chine instructions on most architectures. Direct threading
is usually the fastest instruction dispatch scheme. It is the
most commonly used scheme where interpreter speed is im-
portant.

3. A JAVA INTERPRETER CORE

This section describes the core part of the interpreter,
which is responsible for executing the Java bytecodes. The
interpreter has been built into the CVM. CVM is an im-
plementation of the Java 2 Micro Edition (J2ME), which
provides a core set of class libraries, and is intended for use
on devices with up to 2MB of memory. Our new interpreter
replaces the existing interpreter in CVM.

Figure 4 shows the structure of our interpreter system.
It is important to note that we do not interpret Java byte-
code directly. Instead, the bytecode is translated into direct
threaded code. In the process we also apply optimizations to
make the threaded code easier to interpret. Also important
is that we do not write all the code of the interpreter our-
selves. Instead, we use the vmgen [5] interpreter generator
system, which produces an efficient interpreter from a spec-
ification of the behavior of each instruction. The following
subsections describe the major components in more detail.

3.1 Instruction Definition

The instruction definition describes the behavior of each
VM instruction. The definition of an instruction consists of
a specification of the effect on the stack, followed by C code

694

IADD (iValuel iValue2 -- iResult) 0x60
{

iResult
}

iValuel + iValue2;

Figure 5: Definition of IADD VM instruction

IFNULL (#aTarget aRef —-)
{
if (aRef == NULL) {
SET_IP(aTarget);
TAIL;
}
}

0xc6

Figure 6: Definition of a branch VM instruction

to implement the instruction. Figure 5 shows the definition
of IADD. The instruction takes two operands from the stack
(ivaluel,iValue2), and places the result (iResult) on the
stack.

We have made every effort to implement the instruction
definitions efficiently. For example, operands in the JVM are
passed by pushing them onto the stack. These operands be-
come the first local variables in the invoked method. Rather
than copy the operands to a new local variable area, we keep
local variables and stack in a single common array, and sim-
ply update the frame pointer to point to the first parame-
ter on the stack. To correctly update the stack and frame
pointer on calls and returns using this scheme, one needs to
compute several pieces of information about stack heights
and numbers of local variables. We compute this informa-
tion once at translation time, and thereafter the handling of
parameters during interpretation is more efficient.

Figure 6 shows the specification for a branch VM instruc-
tion. Normally, the interpreter generator adds the necessary
operations to dispatch the next VM instruction to the end of
the specification code. In this case, however, we have added
the keyword TAIL to the end of one direction of the branch.
Wherever the keyword TAIL appears, a separate copy of
the dispatch code is placed. In effect, this means that if the
condition is true, one copy of the dispatch code will be ex-
ecuted, whereas if it is false, a different copy will execute.
This is important because the dispatch code contains a com-
puted goto, which will become an indirect branch when the
interpreter is compiled. Two separate indirect branches are
easier to schedule efficiently on processors with programmer-
visible pipelines, and result in fewer branch mispredictions
on machines with a branch target buffer (BTB).

One complication in our instruction specification is that
it was originally designed for Forth. In this language, the
number of stack items produced and/or consumed by a given
VM instruction is always the same. Java has several VM in-
structions that consume a variable number of stack items,
however. For example, the instruction to create a multidi-
mensional array (MULTIANEWARRAY) takes a number of items
from the stack equal to the number of dimensions of the
array. Similarly, the various method invocation instructions
consume a number of stack items equal to the number of
parameters. We have overcome this problem by adding fea-
tures to manipulate the stack pointer directly.

3.2 Interpreter Generator

The interpreter generator vmgen (5] is a program which
takes in an instruction definition, and outputs an interpreter
in C which implements the definition. The interpreter gener-
ator translates the stack specification into pushes and pops
of the stack, adds code to invoke following instructions, and
makes it easy to apply optimizations to all virtual machine
instructions, without modifying the code for each separately.

There are a number of advantages in using an interpreter
generator rather than writing all code by hand. The error-
prone stack manipulation operations can be generated au-
tomatically. Optimizations can easily be applied to all in-
structions. For example, the fetching of the next instruction
could easily be moved up the code. It is also easy to have
both a threaded code and switch-based version of the inter-
preter. One need only add an option to the generator.

Specifying the stack manipulation at a more abstract level
also makes it easier to change the implementation of the
stack. For example, many interpreters keep one or more
stack items in registers. It is nice to be able to vary this
without changing each instruction specification. The gener-
ator also allows us to add tracing and profiling code trivially,
by defining macros. Furthermore, vmgen also automatically
generates a disassembler for: threaded code. Finally, the
generator produces functions for the bytecode translator to
write threaded code to memory in the correct format. These
functions can be used to automatically apply peephole opti-
mizations to the threaded code as it is generated (although
we do not currently take advantage of this feature).

3.3 The Bytecode Translator

The main goal of the translator is to remove complex and
expensive operations from the interpreter, and instead per-
form these operations once at translation time. The sim-
plest, and most important example of this is the translation
from bytecode to direct threaded code. The bytecode trans-
lator also replaces difficult to interpret instructions with sim-
pler ones. For example, we replace instructions that access
the constant pool, such as LDC, with more specific instruc-
tions and immediate, in-line arguments. We follow a similar
strategy with method field access and method invocation
instructions. When a method is first loaded, a stub instruc-
tion is placed where its threaded code should be. The first
time the method is invoked, this stub instruction is executed.
The stub invokes the translator to translate the bytecode to
threaded code, and replaces itself with the first instruction
of the threaded code.

In the process of translation, we rewrite the instruction
stream to remove some inefficiencies and make other opti-
mizations more effective. For example, the precise garbage
collector used by CVM requires that certain values nor-
mally kept in variables by the interpreter, such as the stack
pointer, are spilled to memory from time to time. To ensure
that the interpreter is never indefinitely in an unsafe state for
the garbage collector due to loops or recursion, these values
are spilled at method calls and at taken backward branches.
In original Java bytecode, checks for this spilling must be
made in the code for all branches, but in the threaded code
version we use separate forward and backward branch in-
structions.

Another simple optimization is based on the fact that
many instructions in the JVM take several immediate bytes
as operands. These are shifted and OR-ed together to form

695

a larger integer operand. We perform this computation once
at translation time, and use larger integer immediates in the
threaded code. A similar strategy is used for constant pool
accesses.

4. EXPERIMENTAL EVALUATION

Our basic thesis is that interpreters can be made very
much faster by applying modern compiler optimization tech-
niques to them, without the need to resort to assembly lan-
guage. To test this thesis, we compared the performance of
our interpreter to the performance of other small JVMs, us-
ing the SPECjvm98 [13] and Java Grande [2] benchmarks.
These benchmarks consists of several large programs with
real data, which are intended to be representative of a wide
range of Java applications.

Our interpreter was built into CVM, a small implementa-
tion of the Java 2 Micro Edition (J2ME) standard. It sup-
ports the full JVM instruction set, as well as full system-level
threads. We made a number of small additions to CVM to
enable it to run the SPEC benchmarks and to allow us to
safely compile it at a higher level of optimization than the
standard distribution. We compiled CVM with GCC 2.96
using the optimization flags “~04 -fomit-frame-pointer”.
In addition, we used the flag “-fno-gese (disable global
common subexpression elimination) on the file containing
the core of the interpreter, as GCC sometimes moves global
subexpressions to more frequently executed parts of the pro-
gram when control flow is complicated. The running times
are for a Pentium 4 based system running Red Hat Linux
version 7.3.

In addition to our interpreter, we also tested the original
interpreter that comes with CVM. This is a token threaded
interpreter, which uses GCC’s labels as values to implement
threaded dispatch (see section 2). It is also possible to con-
figure the original CVM to use switch dispatch. However,
this makes it 17% to 52% slower according to our measure-
ments. For this reason, no results for CVM with switch dis-
patch are presented. CVM offers a choice between a semis-
pace garbage collector, and a generational one. We used the
former for all our experiments, since it is slightly (1%-3%)
faster.

For comparison, we also measured the speed of the widely
used Kaffe JVM. Kaffe is a freely available, robust, highly
portable JVM which is available under the GNU General
Public License. A commercial version of Kaffe is sold for
use in embedded systems. It is important to note that the
results we present are for the public version not the commer-
cial one, although the two versions share much code. With
Kaffe, we tested both the interpreter and the JIT compiler.
The results show what can be expected from a simple, un-
optimized interpreter, and a small, portable JIT compiler.

Finally, we measured the performance of Sun Microsys-
tem’s desktop implementation of Java 2 Standard Edition
(J2SE) interpreter from the Hotspot Client VM. Hotspot
uses a sophisticated interpreter, coded in hand-tuned as-
sembly language. In addition to careful assembly language
programming, it uses a number of optimizations, such as
combining common sequences of bytecode instructions into
superinstructions [11], and processor (x86) specific optimiza-
tions for floating point operations. It also stores the top-
most elements of the stack in registers and uses a com-
plicated stack-caching [3] system for managing the various
states of the stack. To avoid code explosion due to stack

O = N W & O OO N @ © O

HKaffe int BCVM OCVM fastcore [JHotspot int BMKaffe JIT |

Figure 7: Running times of the benchmarks on various JVMs relative to our interpreter (CVM fastcore).

caching states, the machine code of the interpreter is gener-
ated in memory at run time. The result is that although the
Hotspot interpreter is fast, it is complicated and completely
unportable.

Figure 7 shows the running times of the benchmarks run-
ning on each of the implementations of the JVM, relative to
our interpreter (CVM fastcore, whose speed is always rep-
resented as 1). The most striking result is for the Kaffe
interpreter, which is on average 5.76 times slower than our
interpreter. The Kaffe interpreter is not at all optimized.
In particular, it resolves method names and constant pool
references every time they are used, rather than once, the
first time they are used. The Kaffe interpreter demonstrates
very well that it is easy to write a very inefficient interpreter.

The original CVM interpreter is an average of 31% slower
than our optimized interpreter. It does particularly well on
db, where it is only 16% slower. We investigated the reason
for this variance by profiling the code. We found that in the
original CVM, only 87% of the time for the db benchmark
is spent in the interpreter. The rest of the time is spent in
the run time system, on garbage collection, synchronization,
and native methods. In contrast 98.74% of the time for
mpeg and 99.89% of the time for compress is spent in the
interpreter. So although the speedup in the interpreter core
is similar across all programs, the overall speedup for db
is lower, since there is no change in the running time of
the run time system. For this reason, programs such as
compress (38% faster), mpeg (44% faster) and raytrace (71%
faster) give a better indication of the relative speeds of the
interpreter cores.

The Hotspot interpreter is on average 20.4% faster than
the version of CVM with our interpreter. There are two
main reasons for this. Firstly, Hotspot has a much faster
run time system than CVM. This can be seen especially
strongly in the db benchmark, which runs 34% faster on
Hotspot. The Hotspot run time system is large and sophis-
ticated, and would not be suitable for an embedded sys-

696

tem. Furthermore, much effort has been put into tuning
the Hotspot run time system as it is more widely used than
CVM. The second reason that Hotspot outperforms our ver-
sion of CVM is that the Hotspot interpreter is faster than
our interpreter. Its dynamically-generated, highly-tuned as-
sembly language interpreter is able to execute bytecodes
more quickly than our portable interpreter written in C.
The difference in speeds of the interpreter cores can be seen
by examining the benchmarks that spend most of their time
in the interpreter core: compress is 9.1% faster and mpeg is
5.2% faster on the Hotspot interpreter. Our interpreter is
actually a little (1.9%) faster on euler.

Finally, the Kaffe just-in-time (JIT) compiler is on aver-
age more than twice as fast as our version of CVM. In fact,
looking at the results for mpeg and compress shows that
it is four to eight times faster at executing bytecodes than
our interpreter. On other benchmarks, its poor run time
system slows it down to the extent that it is actually sub-
stantially slower than CVM on the jack benchmark. This
nicely demonstrates that a JIT compiler does not always
guarantee better performance than an interpreter. The run
time system is also important. Something that should also
be noted is that the Kaffe JIT compiler does not produce
especially fast code. In particular, the mixed-mode Hotspot
compiler/interpreter for desktop machines is usually more
than twice as fast. However, the Kaffe JIT compiler is sim-
ple, and similar to the commercial version, which is used in
embedded systems.

5. RELATED WORK

Recent important developments in interpreters include the
following. Interpreter generators simplify construction and
maintanance of interpreters and can allow automatic VM in-
struction combining [11] and stack optimizations [5]. Stack
caching [3] is a general technique for storing the topmost el-
ements of the stack in registers. Ertl and Gregg [4] showed

that interpreters (especially those using switch dispatch)
spend most of their time in branch mispredictions on modern
desktop architectures. Costa [12] discusses various smaller
optimizations.

The Sable VM [6] is an interpreter-based research JVM.
This interpreter is intended for desktop systems and uses a
run-time code generation system [10], not dissimilar from a
just-in-time compiler. Gregg et al. [7] presented a proto-
type interpreter based on the Cacao research JVM [9]. The
interpreter used an earlier version of vmgen, but was not de-
signed for embedded systems, could run only a handful of
programs, and did not support many language features, such
as multithreading. In contrast, the interpreter described in
this paper is a full implementation of the J2ME standard,
designed specifically for embedded systems, and runs all pro-
grams that we have tried.

Venugopal et al. [15] present an embedded JVM system,
which uses semantically enriched code (sEc). The sEc tech-
nique generates a custom JVM for each application. In ad-
dition, aggressive optimizations are applied to the program
to allow it to make the best use of the custom JVM features.
This tight coupling of the program and the interpreter al-
lows large speedups. The weaknesses of this approach are
that the code to be run must be available at the time the
JVM is created, and that the JVM is no longer general pur-
pose. In contrast the JVM described in this paper is fully
general purpose, and suitable for connected devices and em-
bedded systems that download and execute Java programs
from other sites.

6. CONCLUSION

We have described an efficient interpreter core for con-
nected devices and embedded systems. Our interpreter sys-
tem uses a generator to produce efficient code from a virtual
machine instruction specification. It translates the original
Java bytecode to threaded code, reducing the interpreter
overhead. The translator also computes constants, targets
and offsets at translation time, allowing us to simplify the
interpretation of many instructions, such as method invoca-~
tions.

Experimental results show that the original CVM virtual
machine is about 31% slower than CVM our interpreter core.
However, a substantial amount of that running time is spent
in the run-time system. On the mpeg benchmark, where al-
most all time is spent executing bytecodes rather than in
the run time system, the difference is 44%. Our interpreter
for embedded systems is competitive with the Hotspot in-
terpreter, a highly sophisticated, hand-tuned, assembly lan-
guage interpreter, with a much faster (and larger) run time
system. Hotspot is on average about 20.4% faster, but on
bytecode intensive benchmarks such as mpeg and compress
it is only 5%-9% faster. On average our version of CVM
is a factor of 5.76 times faster than the Kaffe interpreter,
and can even be competitive with the Kaffe JIT compiler
on some benchmarks.

7. REFERENCES
[1] J. R. Bell. Threaded code. Commun. ACM,
16(6):370-372, 1973.
[2)] M. Bull, L. Smith, M. Westhead, D. Henty, and
R. Davey. Benchmarking Java Grande applications. In
Second International Conference and Ezxhibition on

697

[3

[4]

[5]

(6]

(8]

[10]

[11]

(12}

(13]

the Practical Application of Java, Manchester, UK,
April 2000.

M. A. Ertl. Stack caching for interpreters. In
SIGPLAN ’95 Conference on Programming Language
Design and Implementation, pages 315-327, 1995.

M. A. Ertl and D. Gregg. The behaviour of efficient
virtual machine interpreters on modern architectures.
In Euro-Par 2001, pages 403-412. Springer

LNCS 2150, 2001.

M. A. Ertl, D. Gregg, A. Krall, and B. Paysan. vimgen
— A generator of efficient virtual machine
interpreters. Software-—Practice and Ezperience,
32(3):265-294, 2002.

E. Gagnon and L. Hendren. SableVM: A research
framework for the efficient execution of Java bytecode.
In First USENIX Java Virtual Machine Research and
Technology Symposium, Monterey, California, April
2001.

D. Gregg, A. Ertl, and A. Krall. Implementation of an
efficient Java interpreter. In Proceedings of the 9th
High Performance Computing and Networking
Conference, LNCS 2110, pages 613—-620, Amsterdam,
The Netherlands, June 2001.

J. Hoogerbrugge, L. Augusteijn, J. Trum, and

R. van de Wiel. A code compression system based on
pipelined interpreters. Software— Practice and
Ezperience, 29(11):1005-1023, Sept. 1999.

A. Krall and R. Grafl. CACAO - a 64 bit JavaVM
just-in-time compiler. In G. C. Fox and W. Li, editors,
PPoPP’97 Workshop on Java for Science and
Engineering Computation, Las Vegas, June 1997.
ACM.

I. Piumarta and F. Riccardi. Optimizing direct
threaded code by selective inlining. In SIGPLAN 98
Conference on Programming Language Design and
Implementation, pages 291-300, 1998.

T. A. Proebsting. Optimizing an ANSI C interpreter
with superoperators. In Principles of Programming
Languages (POPL ’95), pages 322-332, 1995.

V. Santos Costa. Optimising bytecode emulation for
Prolog. In LNCS 1702, Proceedings of PPDP’99,
pages 261-267. Springer-Verlag, September 1999.
SPEC. SPEC releases SPEC JVMO98, first
industry-standard benchmark for measuring Java
virtual machine performance. Press Release, August
19 1998.
http://www.specbench.org/osg/jvm98/press.html.
Sun Microsystems Inc. Java 2 Platform Micro Edition
(J2ME) Technology for Creating Mobile Devices, May
2000.

K. S. Venugopal, G. Manjunath, and V. Krishnan.
sEc: A portable interpreter optimizing technique for
embedded java virtual machine. In Second USENIX
Java Virtual Machine Research and Technology
Symposium, San Francsico, California, August 2002.

