
Evaluating the Use of a General-Purpose Benchmark Suite
for Domain-Specific SMT-solving

Andrew Healy
∗

Dept of Computer Science
Maynooth University
Co. Kildare, Ireland

ahealy@cs.nuim.ie

Rosemary Monahan
Dept of Computer Science

Maynooth University
Co. Kildare, Ireland

rosemary@cs.nuim.ie

James F. Power
Dept of Computer Science

Maynooth University
Co. Kildare, Ireland

jpower@cs.nuim.ie

ABSTRACT
Benchmark suites are an important resource in validating
performance requirements for software. However, general-
purpose suites may be unsuitable for domain-specific pur-
poses, and may provide an incorrect indication of the soft-
ware performance.

This paper uses SMT-solvers (Satisfiability Modulo Theo-
ries) as a case-study. Taking deductive software verification
as a specific application domain for SMT-solvers, we present
an approach to quantifying the difference between general-
purpose and domain-specific benchmark suites. We show
that workload-based clustering of benchmark programs in-
creases the specificity of features tested by the suite com-
pared to the inherent hierarchy of a general-purpose suite.

CCS Concepts
•Software and its engineering → Software perfor-
mance; Software verification;

Keywords
Benchmarks; SMT solvers; software verification, profiling

1. INTRODUCTION
The use of benchmarking can provide useful indicators to
characterise the workload of a software system when com-
pleting a specific task and is an important element of non-
functional testing such as software performance engineering.

∗This project is being carried out with funding pro-
vided by Science Foundation Ireland under grant number
11.RFP.1/CMS/3068

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016,April 04-08, 2016, Pisa, Italy
c©2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851975

Ideally, the design and analysis of such suites should be sub-
ject to the same rigour as other artefacts of the software
testing cycle [7].

This paper addresses the construction and analysis of a do-
main specific benchmark suite. The context of our work is
that we have access to a very large general purpose bench-
mark suite (smt-lib for smt solvers), but we wish to bench-
mark programs in a particular sub-domain of application
(software verification). We have assembled a suite of pro-
grams to act as a benchmark suite for this domain-specific
purpose, and we wish to be able to quantify any difference
in the workload characteristics between our domain-specific
suite and the general-purpose suite.

smt-solvers extend sat-solvers by combining specialised de-
cision procedures for a range of logical theories; for example,
the Z3 smt-solver has specialised theories for bit-vectors,
arithmetic, quantifiers, uninterpreted functions, arrays and
other datatypes. The development of smt-solving tools has
seen significant advances in the past decade due, in part, to
the widespread utility of the tools in software engineering.
smt solvers are used in operations research, cryptology, ma-
chine learning and formal verification. The active smt-lib
community organises tool competitions, oversees the devel-
opment of a common input language, and collects the bench-
mark programs that provides the context for this paper.

smt-solvers are increasingly used in deductive software ver-
ification, but there is no standardised benchmark suite to
compare such verification systems. There is a wide variety
of specification and annotation languages for programmers
to choose from when declaring contracts and invariants for
their programs. This variety makes the comparative evalu-
ation of deductive software verification systems difficult [2].

2. EXPERIMENTAL SETUP
This section outlines the sequence of steps we took to select
the data and tools used in our experiments, and defines the
metrics used to distinguish between benchmark suites.

2.1 Selecting benchmark programs
In order to assemble a domain-specific benchmark suite for
software verification we made use of the examples in the
Why3 distribution [4]. Our selection of verification pro-
grams from the Why3 distribution was limited to programs
that, as much as possible, did not require the use of interac-

tive theorem provers such as Coq or Isabelle to verify fully.
We assembled a total of 116 of these verification programs,
which we refer to from now on as the verification (bench-
mark) suite.

Currently, the smt-lib benchmark repository consists of over
100,000 programs. At the highest level, the repository is or-
ganised into directories according to the logics which must
be supported by the prover in order to solve the problems
in that directory. We use these categories to partition the
suite in subsection 3.1.

Due to the high cost of instrumentation, for this study we
took 50 random samples from the entire smt-lib suite, with
each sample consisting of 116 programs (the same size as
the verification suite). This process resulted in a selection
of 5800 unique programs. We believe this sample is repre-
sentative of the workloads tested by the entire repository
due to the high degree of redundancy present in the entire
suite. Added to our selection of verification programs, our
suites consisted of 5916 programs in total.

The smt provers had to meet particular criteria: in order to
make use of the full range of programs included in the smt-
lib repository, the provers must implement as many logics
as possible. For the same reason, the tools were required
to be fully compliant to the second version of the smt-lib
language standard. Two smt provers were found to meet
these conditions: Z3 [5] and CVC4 [1]. Both these tools are
used by software verification systems in addition to Why3;
e.g. Boogie, Dafny, Spec# (Z3), and Cascade, Stardust,
GPUVerify (CVC4).

2.2 Feature Extraction and Profiling Method
One obvious way to compare the suites is to run the smt
solvers and measure the time taken to process each suite.
However, this would bias our survey to the features of the
particular architecture used in the experiments, such as op-
erating system, memory, disk and cache performance etc.
Instead we aimed to create a platform independent evalua-
tion that would not be affected by such details. To this end,
we regarded each of the smt solvers as if it were a virtual
machine, with the method calls acting as virtual machine
instructions. The result was a data set for the workloads
that were machine- and platform-independent.

To conduct the analysis we used the Callgrind tool from
the Valgrind project. For each program in the benchmark
suite we recorded the number of times each method of the
target smt solver was called, along with the total number of
method calls for the solver.

The total number of unique methods called (after filtering
out system calls) leads to very large feature vectors. To avoid
the “curse of dimensionality” [3], the number of features was
reduced using Principal Component Analysis (PCA), where
the number of dimensions remaining was chosen using a
maximum likelihood estimation method [9]. This process
increased the effectiveness of our distance measurement and
the K-means clustering algorithm employed in Experiment
2. When viewing the results, it should be borne in mind
that PCA significantly reduced the suites’ difference mea-
surement while maintaining their relative differences.

2.3 Metrics for benchmark suite design
The results discussed in Section 3 are characterised in terms
of a difference metric for benchmark programs, and a util-
isation metric for benchmark suites. This work follows the
methodology outlined by Dujmović [7].

2.3.1 Measuring workload difference
We characterise the workload for a given benchmark pro-
gram and solver as a feature vector of the proportion of
total calls to each method. We normalise the count of calls
to a proportional cost value, so that all costs sum to 1.

As the non-overlapping individual values for each method of
the program are known, we can use these values to find the
“white-box” difference between two programs A and B:

d(A,B) =
1

2

n∑
i=1

|c(A)
i − c

(B)
i |

Here n is the number of methods, ci is the proportion of
method calls to the ith method, and d(A,B) is a variation
on the Manhattan distance metric. The Manhattan or “city
block”method is preferred to the Euclidean distance because
the high number of zero-values in many dimensions would
distort the metric.

For all benchmark programs A and B we have 0 ≤ d(A,B) ≤
1, with d(A,B) giving a value of 0 for entirely similar work-
loads and 1 for those that are entirely different.

2.3.2 Measuring a suite’s utilisation
Calculating the distance metric d(A,B) for any two pro-
grams in the benchmark suite allows us to construct a 5916×
5916 distance matrix for each smt solver. For each experi-
ment, we then treat the verification suite and each subset of
the smt-lib as an individual suite. For each suite we used
the distance metric to calculate a centroid program profile
as the best representative of the suite.

The centroid was determined by first finding the maximum
distance from each program to any other in the suite and
then selecting the benchmark program for which this value
was minimal. We can then find the distance between two
suites by using their centroid programs in the white-box
difference formula.

Next we determined the size D and the maximum size Dmax

for each suite (again following Dujmović [7]):

• D is the diameter of the minimum hypersphere that
contains all programs in the suite, and is calculated as
twice the distance from the centroid to the furthermost
program from the centroid.
• Dmax is the maximum distance between a program

and every other program or group of programs.

Given the size D and the maximum size Dmax for each suite,
we can now calculate the suite’s utilisation of the program
space as a percentage: 100∗D/Dmax. Suites with low utilisa-
tion display a high degree of redundancy - i.e. many bench-
marks exercise the same features. Another way of interpret-
ing this figure is the “tightness” of the clustering around the
centroid.

Figure 1 Experiment 1: (a)
Centroid profiles of 49 suites
constructed according to the
organisation of the SMT-
LIB benchmark repository
compared to the centroids
of the verification suite and
the entire suite. (b) The
distance of the constructed
suites from the verification
suite

0.00 0.05 0.10 0.15
0

5

10

15

20

25

30

35

U
ti

lis
a
ti

o
n
 o

f
th

e
 p

ro
g
ra

m
 s

p
a
ce

 %

CVC4

0

5

10

15

20
CVC4

0.00 0.05 0.10 0.15

Z3

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Distance from verification suite

0

5

10

15

20
Z3

Average distance from other suites

N
u
m

b
e
r

o
f

su
it

e
s

3. EXPERIMENTAL RESULTS
Two experiments were devised to answer the questions:

RQ1: Guided by the given structure of the general-purpose
suite, does the verification suite bear a particular sim-
ilarity to any branch of this hierarchy?

RQ2: Can we reconfigure the general-purpose suite using
workload-based clustering to identify a suite with a
similar profile to our verification suite?

Data related to this work is available from our website.1.

The left side of Figures 1 and 2 contain a plot for each of
the two smt solvers, where each dot represents a benchmark
suite (actually, the centroid of the suite). The positions of
each verification suite and the centroid of all suites combined
are marked using a square and triangle respectively. The
horizontal axis measures the white-box distance between a
suite and the others (on average), and is thus a metric of
the distinctiveness of a given suite. Distance along the ver-
tical axis measures the utilisation for this suite, and gives a
metric for how varied the suite is in terms of workload, so
lower values indicate a more specialised suite. Note that the
utilisation figures for the entire suite and verification suite
are invariant for both experiments.

The right-side of each figure shows a histogram that depicts
the distances between the verification suite and each of the
other suites in the experiment. The height of the bar (ver-
tical axis) shows the number of benchmark suites at that
distance (horizontal axis) from the verification suite.

3.1 RQ1: Verification suite in relation to an
inherent hierarchy

If a large general-purpose benchmark suite is to be useful as
a resource to aid the development of domain-specific tools,
it should be structured in such a way that makes it clear
which benchmarks are relevant for the tool’s application do-
main. Experiment 1 intends to show whether any branch
of the smt-lib benchmark repository’s structure shows any
correspondence to the workload for the verification suite.

1http://www.cs.nuim.ie/˜ahealy/SAC2016

First, the directed acyclic graph of logic relationships was
converted into a hierarchical tree structure by duplicating
shared child nodes. Then suites of roughly the same size
as our collection of verification programs were created from
this new hierarchy through a simple greedy partitioning al-
gorithm. The metrics described in section 2.3 were then
obtained and plotted.

Figure 1(b) shows that distances from the verification suite
are generally very similar to each other. Taking the utilisa-
tion results from Experiment 2 as a guide, we see that the
inherent hierarchy represents a closer indication of workload
for CVC4 than it does for Z3.

For CVC4, the closest constructed clusters to the verification
workload were those from branches containing Quantifier-
Free Linear Integer and Real Arithmetic (QF LIA, QF LRA)
problems. For Z3, the closest clusters consisted of problems
that required the use of many logics (AUFLIRA). This may
account for the relatively high utilisation percentage for the
Z3 verification suite. We deduce that more decision proce-
dures are called during a software verification session on Z3
than CVC4.

3.2 RQ2: Re-clustering based on workload
Experiment 2 set out to determine whether we could re-
partition the general-purpose suite using behaviour-driven
clustering as an alternative to the somewhat arbitrary divi-
sions used in Experiment 1. We applied the K-Means clus-
tering algorithm which is widely used and very efficient on
large datasets. We choose 40 for the number of clusters in
order to make a comparison with the previous experiment.

In Figure 2, the clustered suites in both Z3 and CVC4 dis-
play a marked increase in average distance from each other.
This is an expected outcome of a workload-based clustering
method. The general gathering of suites towards the lower
end of the utilisation scale indicates that as the workload of
the suite becomes more specialised, less of the program is
being used. Again, relatively high utilisation for Z3’s veri-
fication suite indicates that this suite does not represent a
coherent workload cluster.

The number of suites to the right of Figure 2(b)’s horizontal

Figure 2 Experiment 2: (a)
Centroid profiles of 40 clus-
ters of programs compared
to those of the verification
suite and the entire suite.
(b) The distance of the clus-
tered suites from the verifi-
cation suite 0.00 0.05 0.10 0.15

0

5

10

15

20

25

30

35

U
ti

lis
a
ti

o
n
 o

f
th

e
 p

ro
g
ra

m
 s

p
a
ce

 %

CVC4

0

5

10

15

20
CVC4

0.00 0.05 0.10 0.15

Z3

0.00 0.02 0.04 0.06 0.08 0.10 0.12

Distance from verification suite

0

5

10

15

20
Z3

Average distance from other suites

N
u
m

b
e
r

o
f

su
it

e
s

axis indicates that workload-based clustering can identify
groups of programs that are significantly different to a ver-
ification workload. The technique did not identify a cluster
that is closer to the verification workload than those found
in the previous experiment, however.

3.3 Related Work
Demyanova et al. have used static profiling to calculate pro-
gram metrics for verification problems [6]. Since these are
used to classify programs, their work differs from ours, since
we evaluate a suite of programs by dynamically measuring
a solver’s performance.

Sherwood et al. present a method of combining a basic-
block sampling-based profiling technique with K-means clus-
ter analysis [10]. They use these methods in order to gain
an understanding of the behaviour of large programs across
computer architectures.

Our work has some similarities with that of Jones and Har-
rold [8], which sought to reduce the size of large regression
test suites using coverage criteria. However, their coverage
criterion is not directly comparable to the utilisation per-
centages shown in Figures 1a and 2a.

4. CONCLUSION
This paper has presented a systematic quantitative method
for the task-driven analysis and evaluation of a general-
purpose benchmark suite for domain-specific purposes. We
have used a platform-independent model to characterise what
constitutes a program’s workload, and concepts from cluster
analysis to help classify a large body of programs. We set
out to determine if a subset of the smt-lib repository could
be identified that could then be used as a surrogate for a
standard workload in deductive software verification.

Although we may not have found such a subset, we have
shown that workload-based clustering can be used to elimi-
nate programs irrelevant to this task. Such knowledge could
be particularly useful in the case of high-cost benchmarking.
We have also shown that following the smt-lib benchmark
directory structure yields more cohesive workloads for CVC4
than it does for Z3, but that Z3 makes use of a wide range

of its features when solving problems in the software verifi-
cation domain.

5. REFERENCES
[1] C. Barrett, C. L. Conway, M. Deters, L. Hadarean,

D. Jovanović, T. King, A. Reynolds, and C. Tinelli.
CVC4. In Computer Aided Verification, volume 6806
of LNCS, pages 171–177. Springer, 2011.

[2] D. Beyer, M. Huisman, V. Klebanov, and
R. Monahan. Evaluating Software Verification
Systems: Benchmarks and Competitions (Dagstuhl
Reports 14171). Dagstuhl Reports, 4(4):1–19, 2014.

[3] C. M. Bishop. Pattern recognition and machine
learning. Springer, 2006.

[4] F. Bobot, J.-C. Filliâtre, C. Marché, and
A. Paskevich. Why3: Shepherd your herd of provers.
In Workshop on Intermediate Verification Languages,
pages 53–64, 2011.

[5] L. De Moura and N. Bjørner. Z3: An efficient SMT
solver. In Tools and Algorithms for the Construction
and Analysis of Systems, volume 4963 of LNCS, pages
337–340. Springer, 2008.

[6] Y. Demyanova, T. Pani, H. Veith, and F. Zuleger.
Empirical software metrics for benchmarking of
verification tools. In Computer Aided Verification,
volume 9206 of LNCS, pages 561–579. Springer, 2015.

[7] J. Dujmović. Universal benchmark suites - a
quantitative approach to benchmark design. In
R. Eigenmann, editor, Performance Evaluation and
Benchmarking with Realistic Applications, pages
257–287. MIT Press, 2001.

[8] J. A. Jones and M. J. Harrold. Test-suite reduction
and prioritization for modified condition/decision
coverage. IEEE Transactions on Software Engineering,
29(3):195–209, 2003.

[9] T. P. Minka. Automatic choice of dimensionality for
PCA. In Advances in Neural Information Processing
Systems, pages 598–604. MIT Press, 2001.

[10] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. SIGOPS Oper. Syst. Rev.,
36(5):45–57, Oct. 2002.

