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Abstract We discuss the augmentation of a functional-programming language with a
derivative-taking operator implemented with forward-mode automatic differentiation (AD).
The primary technical difficulty in doing so lies in ensuring correctness in the face of nested
invocation of that operator, due to the need to distinguish perturbations introduced by distinct
invocations. We exhibit a series of implementations of a referentially-transparent forward-
mode-AD derivative-taking operator, each of which uses a different non-referentially-
transparent mechanism to distinguish perturbations. Even though the forward-mode-AD
derivative-taking operator is itself referentially transparent, we hypothesize that one can-
not correctly formulate this operator as a function definition in current pure dialects of
HASKELL.

Keywords Automatic differentiation · Applicative (functional) languages · Referential
transparency · Multiple transformation

1 Introduction

The ability to nest function invocation is central to functional programming. One would
be discontent with a language or implementation that would not allow one to use a nested
invocation of MAP to compute outer products.

OUTERPRODUCT f x y
�= MAP (λx . MAP (λy . f x y) y) x
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In an analogous fashion, one would expect to be able to write

MIN (λx . (f x) + MIN (λy . g x y)) (1)

given a definition for MIN that takes a suitable function R → R as its argument and returns
(an approximation to) a (local) minimum of that function. Correct processing of either of the
above requires correct handling of nested function invocation. In particular, the outer call to
MAP or MIN is passed an outer function that itself calls MAP or MIN on an inner function
that depends on the argument x of the outer function.

Suppose our implementation of MIN uses gradient descent. It would be desirable for
MIN, which takes f as a functional argument, to be able to use the derivative of f without
the caller’s knowledge. Thus, it would be advantageous for a system to provide a higher-
order function D that maps functions to their derivatives. With such a facility, (1) would
take the form

. . . D (λx . . . . D (λy . g x y) . . .) . . .

This requires that nested invocation of D operate correctly.
Automatic Differentiation (AD), and in particular forward-mode AD [14], is one estab-

lished method for computing derivatives and can be used to implement D. The remainder
of this paper discusses issues surrounding such an implementation, and uses D to refer to
the notion of a derivative-taking operator implemented using forward-mode AD. We hy-
pothesize that it is not possible to formulate a D that properly nests as a function definition
in current pure dialects of HASKELL. This is somewhat ironic, as while D can be imple-
mented using one of several alternate non-referentially-transparent mechanisms, D itself is
referentially transparent.1

The remainder of this paper elaborates on the above observations. We begin with a brief
overview of forward-mode AD in Sect. 2. We then show how to implement D as a procedure
definition in SCHEME, in a way that can properly nest. To do this we first construct an API to
the necessary data structures, in Sect. 3, and then use this machinery to build a forward-mode
AD engine and drive it using standard SCHEME procedure names via overloading, in Sect. 4.
This implementation uses only one non-referentially-transparent side effect. We discuss, in
Sect. 5, a number of alternate non-referentially-transparent mechanisms that suffice to im-
plement D. It is noted in Sect. 6 that, in certain cases, static analysis or program transfor-
mation can allow nested invocation of D without non-referentially-transparent mechanisms.
We give an example that utilizes nested invocation of D in Sect. 7. We conclude, in Sect. 8,
with a discussion of the history and implications of the desire to incorporate differentiation
into functional programming.

2 Forward-mode AD as nonstandard interpretation

Forward-mode AD computes the derivative of a function f at a point c by evaluating
f (c + ε) under a nonstandard interpretation that associates a conceptually infinitesimal per-

1There are subtle differences between D and the classical derivative-taking operator in mathematics. For

example, given the definition f x
�= if x = c then c else x the derivative of f at c is 1, yet D f c = 0. Like

all mathematical notions, classical differentiation is referentially transparent, since the derivative of a function
is defined on its extension rather than its intension. Furthermore, D is also referentially transparent in the
sense that if t1 and t2 are semantically equivalent, then D t1 and D t2 are also semantically equivalent. (Note
that the presence of the = predicate in the antecedent of the conditional in the definition of f does not license
β-substitution, because that predicate does not necessarily correspond to semantic equivalence.)
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turbation with each real number, propagates these augmented values according to the rules
of calculus [9, 10], and extracts the perturbation of the result. We use x + x ′ε to denote a
dual number [3], i.e. x with associated perturbation x ′, by analogy with the standard notation
a + bi for complex numbers.2 To see how this works, let us manually apply the mechanism
to a simple expression.

d

dx
x2 + x + 1

∣
∣
∣
∣
x=3

= D (λx . x × x + x + 1) 3

= E ((λx . x × x + x + 1) (3 + ε))

= E ((3 + ε) × (3 + ε) + (3 + ε) + 1)

= E ((9 + 6ε) + (3 + ε) + 1)

= E (13 + 7ε)

= 7

where E (x + x ′ε) �= x ′ and D f c
�= E (f (c + ε)) . This is the essence of forward-mode

AD.3

In order for this mechanism to correctly handle nesting, we must distinguish between dif-
ferent perturbations introduced by different invocations of D. One way to do this is to create
a hierarchy of dual-number types, distinguished by a distinct ε for each distinct invocation
of D. The components of a dual-number type created for a non-nested invocation of D are
reals, while the components of a dual-number type created for a nested invocation of D are
members of the dual-number type of the immediately surrounding invocation of D.

The intuition behind the necessity and sufficiency of such an extension is illustrated by
the following example.

d

dx

(

x

(

d

dy
xy

∣
∣
∣
∣
y=2

))∣
∣
∣
∣
∣
x=1

2Just as arithmetic on complex numbers a +bi can be defined by taking i2 = −1, arithmetic on dual numbers

x +x′ε can be defined by taking ε2 = 0 but ε �= 0. Implementations of complex arithmetic typically represent
complex numbers a + bi as Argand pairs 〈a, b〉, and similarly implementations of forward-mode AD typi-
cally represent dual numbers x + x′ε as tangent-bundle pairs 〈x, x′〉. Furthermore, just as implementations of
complex arithmetic typically overload the arithmetic primitives to manipulate complex numbers, implemen-
tations of forward-mode AD typically overload the arithmetic primitives to manipulate dual numbers. One
important difference between complex numbers and dual numbers is that while complex numbers can only
have real components, as used here components of members of a new dual-number type can be either reals
or members of an existing dual-number type.
3For expository simplicity, we limit our discussion of forward-mode AD to a special case, namely first deriva-
tives of univariate functions R → R. However, forward-mode immediately generalizes in two different ways.
First, vector functions can be handled with the same efficiency and mechanisms as scalar functions by adopt-
ing a directional derivative operator, which finds the directional derivative y′ : R

m of f : R
n → R

m at x : R
n

in the direction x′ : R
n by calculating (y1 + y′

1ε, . . . , ym + y′
mε) = f (x1 + x′

1ε, . . . , xn + x′
nε) using the

same nonstandard interpretation of f on dual numbers as in the scalar case. Second, a dual number can
be viewed as a power series that has been truncated at ε2. One can extend the notion of dual numbers to
allow higher-order terms, either by truncating at a higher order or by representing the coefficients of an in-
finite power series as a stream [5–8, 11, 12], thus computing higher-order derivatives. Nested invocation of
a first-order derivative-taking operator can also compute higher-order derivatives. However, nested invoca-
tion of a first-order derivative-taking operator can compute things that a single invocation of a higher-order
derivative-taking operator cannot.
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= D (λx . x × (D (λy . x × y) 2)) 1

= E εa ((λx . x × (D (λy . x × y) 2)) (1 + εa))

= E εa ((1 + εa) × (D (λy . (1 + εa) × y) 2))

= E εa ((1 + εa) × (E εb ((λy . (1 + εa) × y) (2 + εb))))

= E εa ((1 + εa) × (E εb ((1 + εa) × (2 + εb))))

= E εa ((1 + εa) × (E εb ((2 + 2εa) + (1 + εa)εb)))

= E εa ((1 + εa) × (1 + εa))

= E εa (1 + 2εa)

= 2

where εa and εb are introduced by the two distinct invocations of D. The accessor E is
defined as

E ε (x + x ′ε) �= x ′

and then D is defined as

D f c
�= E ε (f (c + ε))

in which ε is unique to each live invocation of D. As can be seen in the above example,
failing to distinguish εa from εb would lead to an incorrect result: (1 + εa)× (2 + εb) would
be interpreted as (1 + ε) × (2 + ε) = 2 + 3ε causing the above expression to evaluate to 3
instead of 2. Furthermore, even if we would distinguish εa from εb but erroneously take
εa × εb = 0 in a fashion analogous to ε2

a = ε2
b = 0 we would also obtain an incorrect result:

(1 + εa) × (2 + εb) would reduce to 2 + 2εa + εb causing the above expression to evaluate
to 1 instead of 2. Any implementation that did not posses a mechanism for properly distin-
guishing perturbations for different invocations of D or that failed to preserve nonzero cross
perturbations could not support nested invocation of D or nested invocation of functions like
MIN that utilize D.

3 An API for dual numbers

As we have seen, nested invocations of D require distinct ε values. The components of a
dual-number type created for a non-nested invocation of D are reals, while the components
of a dual-number type created for a nested invocation of D are members of the dual-number
type of the immediately surrounding invocation of D. If “multiplied out,” the resulting dual
numbers correspond to first-order multinomials where the ε values play the role of variables.
This can be seen as a table of real numbers indexed by subsets of the live ε values. If the
original nested structure is retained, we have a tree representation of depth n when there are
n nested invocations of D, with each level splitting on the presence of a particular ε value
in the key, and the fringe holding the real numbers. Such tree representations are tempting
because perturbations are often zero, and trees admit to a sparser representation where levels
corresponding to perturbations of zero are skipped.

We impose an ordering on the ε values such that if ε is generated by an invocation of
D nested inside the invocation of D that generated ε′, then ε′ ≺ ε. Trees representing dual
numbers can then obey the invariant that in a dual number x + x ′ε the x and x ′ slots are
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(define <_e <)

(define dual-number?
(let ((pair? pair?))
(lambda (p) (and (pair? p) (eq? (car p) ’dual-number)))))

(define (dual-number e x x-prime)
(if (zero? x-prime) x (list ’dual-number e x x-prime)))

(define epsilon cadr)

(define (primal e p)
(if (or (not (dual-number? p)) (<_e (epsilon p) e)) p (caddr p)))

(define (perturbation e p)
(if (or (not (dual-number? p)) (<_e (epsilon p) e)) 0 (cadddr p)))

(define generate-epsilon (let ((e 0)) (lambda () (set! e (+ e 1)) e)))

Fig. 1 A SCHEME implementation of the proposed API for dual numbers

either reals or dual numbers over some ε′ where ε′ ≺ ε, which improves efficiency. This is
maintained in exhibited code, but made use of only in tree-based implementations of the
following API for manipulating dual numbers:

DUALNUMBER? p returns true iff p is a dual number.

DUALNUMBER ε x 0
�= x

DUALNUMBER ε x x ′ �= x + x ′ε
EPSILON x + x ′ε �= ε

PRIMAL ε x
�= x when x is a real.

PRIMAL ε (x + x ′ε) �= x

PRIMAL ε (x + x ′ε′) �= x + x ′ε′ when ε′ ≺ ε.

PERTURBATION ε x
�= 0 when x is a real.

PERTURBATION ε (x + x ′ε) �= x ′

PERTURBATION ε (x + x ′ε′) �= 0 when ε′ ≺ ε.
GENERATEε returns a fresh ε such that all other live ε′ ≺ ε.

Figure 1 contains an implementation of this API in SCHEME.4 Note that the pat-
tern of usage,5 together with the above invariant, imply that PRIMAL ε (x + x ′ε′) and
PERTURBATION ε (x + x ′ε′) will never be called when ε ≺ ε′.

4 An implementation of D that supports nesting

Computing derivatives with dual numbers requires extensions of the arithmetic primitives.
For instance

(x + x ′ε) + (y + y ′ε) = (x + y) + (x ′ + y ′)ε

4All code examples from this paper are available from http://www.bcl.hamilton.ie/~qobi/nesting/.
5PRIMAL and PERTURBATION are only called in the definitions of lift-real->real, lift-
real*real->real, and primal* in Fig. 2 and in the variant definitions of derivative on pages 367–
368. In lift-real->real and primal*, all calls pass the ε of the second argument as the first argu-
ment. In lift-real*real->real, all calls pass the maximum ε of p1 and p2 as the second argument.
In derivative, the call passes the generated ε for that invocation as the second argument.

http://www.bcl.hamilton.ie/~qobi/nesting/
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(define (lift-real->real f df/dx)
(letrec ((self (lambda (p)

(if (dual-number? p)
(let ((e (epsilon p)))
(dual-number
e
(self (primal e p))
(* (df/dx (primal e p)) (perturbation e p))))

(f p)))))
self))

(define (lift-real*real->real f df/dx1 df/dx2)
(letrec ((self

(lambda (p1 p2)
(if (or (dual-number? p1)

(dual-number? p2))
(let ((e (if (or (not (dual-number? p1))

(and (dual-number? p2)
(<_e (epsilon p1) (epsilon p2))))

(epsilon p2)
(epsilon p1))))

(dual-number
e
(self (primal e p1) (primal e p2))
(+ (* (df/dx1 (primal e p1) (primal e p2))

(perturbation e p1))
(* (df/dx2 (primal e p1) (primal e p2))

(perturbation e p2)))))
(f p1 p2)))))

self))

(define (primal* p)
(if (dual-number? p) (primal* (primal (epsilon p) p)) p))

(define (lift-real^n->boolean f) (lambda ps (apply f (map primal* ps))))

Fig. 2 A mechanism for extending SCHEME procedures of type R → R, R × R → R, and R
n → boolean

to support dual numbers

Similarly, since ε2 = 0

(x + x ′ε) × (y + y ′ε) = (x × y) + (x × y ′ + x ′ × y)ε

Note that the x, x ′, y, and y ′ values in the above might themselves be dual numbers with a
different ε′ generated from an earlier invocation of D than that which generated ε.

In the general case, a unary function f : α → α with derivative f ′ : α → α is extended
to operate on dual numbers whose components are of type α as follows:

f (x + x ′ε) = (f x) + ((f ′ x) × x ′)ε

where × : α × α → α. Similarly, a binary function f : α × α → α whose derivatives with
respect to the first and second arguments are f1 : α×α → α and f2 : α×α → α respectively
is extended to operate on dual numbers whose components are of type α as follows:

f (x + x ′ε) (y + y ′ε) = (f x y) + ((f1 x y) × x ′ + (f2 x y) × y ′)ε

where × : α × α → α and + : α × α → α. The SCHEME code in Fig. 2 implements the
above mechanism in a fashion that will generate variants of functions that accept arguments
of any dual-number type in the hierarchy and will automatically coerce elements of a lower
type in the hierarchy to a higher type, as necessary, and treat native SCHEME numbers as
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(define pair?
(let ((pair? pair?))
(lambda (x) (and (pair? x) (not (dual-number? x))))))

(define + (lift-real*real->real + (lambda (x1 x2) 1) (lambda (x1 x2) 1)))

(define - (lift-real*real->real - (lambda (x1 x2) 1) (lambda (x1 x2) -1)))

(define *
(lift-real*real->real * (lambda (x1 x2) x2) (lambda (x1 x2) x1)))

(define /
(lift-real*real->real
/ (lambda (x1 x2) (/ 1 x2)) (lambda (x1 x2) (- 0 (/ x1 (* x2 x2))))))

(define sqrt (lift-real->real sqrt (lambda (x) (/ 1 (* 2 (sqrt x))))))

(define exp (lift-real->real exp (lambda (x) (exp x))))

(define log (lift-real->real log (lambda (x) (/ 1 x))))

(define sin (lift-real->real sin (lambda (x) (cos x))))

(define cos (lift-real->real cos (lambda (x) (- 0 (sin x)))))

(define atan (lift-real*real->real
atan
(lambda (x1 x2) (/ (- 0 x2) (+ (* x1 x1) (* x2 x2))))
(lambda (x1 x2) (/ x1 (+ (* x1 x1) (* x2 x2))))))

(define = (lift-real^n->boolean =))

(define < (lift-real^n->boolean <))

(define > (lift-real^n->boolean >))

(define <= (lift-real^n->boolean <=))

(define >= (lift-real^n->boolean >=))

(define zero? (lift-real^n->boolean zero?))

(define positive? (lift-real^n->boolean positive?))

(define negative? (lift-real^n->boolean negative?))

(define real? (lift-real^n->boolean real?))

Fig. 3 Overloading some SCHEME procedures that operate on reals with extensions that support dual num-
bers. Note that the overloaded +, -, *, /, and atan procedures are restricted to accept precisely two argu-
ments

elements of the base type in the hierarchy. Figure 3 contains code that uses the code in Fig. 2
to overload some numeric SCHEME primitives.

Given the code in Figs. 1, 2, and 3, a version of D that supports nesting can be imple-
mented as:

(define (derivative f)
(lambda (x)
(let ((e (generate-epsilon)))
(perturbation e (f (dual-number e x 1))))))
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The above exposition demonstrates how to implement D as a referentially transparent
defined function that allows nested invocation, in a purely functional style, through the use
of a single non-referentially-transparent mechanism: the side effect in GENERATEε .

5 Alternate mechanisms for generating epsilons

One can implement a D that allows nested invocation by using a non-referentially-
transparent mechanism to generate a new ε for each invocation of D. The implementation
in Fig. 1 represents ε values as integers and generates new ones using a non-referentially-
transparent side-effect mechanism to increment a global counter.

Whenever a dual number with a non-zero perturbation of ε cannot escape an invocation
of D that generates ε, the number of live ε values is bounded by the number of live invoca-
tions of D. This is guaranteed to be the case when one refrains from using non-referentially-
transparent language features, like side effects, dynamic scoping, locatives, generative types,
eq?, fluid-let, call/cc, dynamic-wind, throw, catch, block, return-
from, unwind-protect, etc., except to implement D. In such cases, one can fold the
generation of ε values into D as follows:

(define derivative
(let ((e 0))
(lambda (f)
(lambda (x)
(set! e (+ e 1))
(let ((result

(perturbation e (f (dual-number e x 1)))))
(set! e (- e 1))
result)))))

Alternatively, one can replace one non-referentially-transparent mechanism, side effects,
with another non-referentially-transparent mechanism, dynamic scoping via fluid-let,
which mutates a variable for a constrained dynamic extent. This can generate distinct ε

values for distinct dynamically nested invocations of D.

(define derivative
(let ((e 0))
(lambda (f)
(lambda (x)
(fluid-let ((e (+ e 1)))
(perturbation e (f (dual-number e x 1))))))))

When, additionally, the implementation uses a stack for activation records and it can be
guaranteed that activation records corresponding to nested function invocations will be allo-
cated at increasing addresses, one can alternatively use another non-referentially-transparent
mechanism, locatives:

(define (derivative f)
(lambda (x)
(let ((e (variable-address->integer x)))
(perturbation e (f (dual-number e x 1))))))
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In this variation, the alpha renaming that is performed by a typical programming-language
implementation as part of beta reduction distinguishes ε values generated by distinct invo-
cations.

An alternative to representing dual numbers as explicit trees would be to represent their
fringe as a (potentially sparse) association list indexed by path. For example, the nested
dual-number tree

((2 + 2εa) + (1 + εa)εb)

can be multiplied out as

2 + 2εa + εb + εaεb

which would be represented as the association list

{{} 	→ 2, {εa} 	→ 2, {εb} 	→ 1, {εa, εb} 	→ 1}
This strategy eliminates the need for ε values to be ordered by invocation depth, thus admit-
ting an implementation where ε values are unique but not ordered. An implementation of our
API for dual numbers that uses such a representation is shown in Fig. 4. This implements D
where ε values are represented as fresh pairs allocated by cons, a referentially-transparent
mechanism, in concert with eq?, a non-referentially-transparent mechanism, and is remi-
niscent of a (non-referentially-transparent) technique used in HASKELL called observable
sharing [2].

Yet another alternative strategy for representing dual numbers is to represent the ε val-
ues implicitly as types instead of explicitly as integers, using another non-referentially-
transparent mechanism, generative structure types, such as those available in PLT SCHEME

[4]. An implementation of this strategy is given in Fig. 5.
As noted by Alex Shafarenko (personal communication), the need to distinguish the dif-

ferent ε values introduced by different invocations of D is similar, in some ways, to the need
to distinguish different lambda-bound variables with the same name during beta reduction
to avoid capturing free variables. The latter is accomplished via the alpha renaming that is
performed by a typical programming-language implementation. However, as noted above,
the ε values are not represented as programming-language variables, since dual numbers
are represented as data structures, not terms. Thus the typical mechanism of alpha-renaming
does not suffice to implement a D that allows nested invocation.

Rewrite systems are often formulated in terms of rules that map source-term patterns to
target-term patterns. Such term patterns may contain pattern variables that range over terms.
If a pattern variable in the target pattern appears in the source pattern, it is bound, during
rewrite, to the subterm matching the pattern variable in the source term. If a pattern variable
in the target pattern does not appear in the source pattern, it is free. Some rewrite systems
take free pattern variables to denote the generation of a fresh variable in the term language.
This constitutes a form of alpha renaming. Unrestricted use of such a facility would not be
referentially transparent. However, one can formulate a D that is referentially transparent
and that allows nested invocation as a rewrite rule in such a rewrite system

D f c � E ε (f (c + ε))

where f , c, and ε are pattern variables.
A similar capability exists in PROLOG. Variables in the right-hand side of a clause that

do not appear in the left-hand side generate logic variables. These are implemented in a
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(define (<_e e1 e2) #t)

(define (some p l)
(and (not (null? l)) (or (p (car l)) (some p (cdr l)))))

(define (find-if p l)
(let loop ((l l))
(cond ((null? l) #f)

((p (car l)) (car l))
(else (loop (cdr l))))))

(define (remove-if p l)
(let loop ((l l) (c ’()))
(cond ((null? l) (reverse c))

((p (car l)) (loop (cdr l) c))
(else (loop (cdr l) (cons (car l) c))))))

(define (removeq x l)
(let loop ((l l) (c ’()))
(cond ((null? l) (reverse c))

((eq? x (car l)) (loop (cdr l) c))
(else (loop (cdr l) (cons (car l) c))))))

(define terms
(let ((pair? pair?))
(lambda (p)
(if (and (pair? p) (eq? (car p) ’dual-number))

(cadr p)
(list (cons ’() p))))))

(define (terms->dual-number terms)
(cond ((null? terms) 0)

((and (null? (cdr terms)) (null? (car (car terms))))
(cdr (car terms)))

(else (list ’dual-number terms))))

(define (dual-number? p)
(some (lambda (term) (not (null? (car term)))) (terms p)))

(define (dual-number e x x-prime)
(terms->dual-number
(append (terms x)

(map (lambda (term) (cons (cons e (car term)) (cdr term)))
(terms x-prime)))))

(define (epsilon p)
(car (car (find-if (lambda (term) (not (null? (car term)))) (terms p)))))

(define (primal e p)
(terms->dual-number
(remove-if (lambda (term) (memq e (car term))) (terms p))))

(define (perturbation e p)
(terms->dual-number
(map (lambda (term) (cons (removeq e (car term)) (cdr term)))

(remove-if (lambda (term) (not (memq e (car term)))) (terms p)))))

(define (generate-epsilon) (cons #f #f))

Fig. 4 Implementation of an alternate representation for dual numbers as sparse association lists of their
fringe elements indexed by path.

distinct fashion from those that do appear in the left-hand side. Proper implementation re-
quires both kinds of variables to be alpha renamed during resolution. Pure PROLOG, in-
cluding logic variables and their requisite alpha renaming, is referentially transparent. How-
ever, implementing a D that uses logic variables to distinguish ε values requires the use of
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(define (derivative f)
(lambda (x)
(let-struct bundle (primal tangent)
(define (dual-number x x-prime)
(if (zero? x-prime) x (make-bundle x x-prime)))

(define (primal p) (if (bundle? p) (bundle-primal p) p))

(define (perturbation p) (if (bundle? p) (bundle-tangent p) 0))

(define (raise-alpha->alpha f df/dx)
(let ((* *))
(lambda (p)
(dual-number
(f (primal p)) (* (df/dx (primal p)) (perturbation p))))))

(define (raise-alpha*alpha->alpha f df/dx1 df/dx2)
(let ((+ +) (* *))
(lambda (p1 p2)
(dual-number
(f (primal p1) (primal p2))
(+ (* (df/dx1 (primal p1) (primal p2)) (perturbation p1))

(* (df/dx2 (primal p1) (primal p2)) (perturbation p2)))))))

(define (raise-alpha^n->boolean f)
(lambda ps (apply f (map primal ps))))

(fluid-let ((+ (raise-alpha*alpha->alpha
+ (lambda (x1 x2) 1) (lambda (x1 x2) 1)))

(- (raise-alpha*alpha->alpha
- (lambda (x1 x2) 1) (lambda (x1 x2) -1)))

(* (raise-alpha*alpha->alpha
* (lambda (x1 x2) x2) (lambda (x1 x2) x1)))

(/ (let ((- -) (* *) (/ /))
(raise-alpha*alpha->alpha
/
(lambda (x1 x2) (/ 1 x2))
(lambda (x1 x2) (- 0 (/ x1 (* x2 x2)))))))

(sqrt (let ((* *) (/ /) (sqrt sqrt))
(raise-alpha->alpha
sqrt (lambda (x) (/ 1 (* 2 (sqrt x)))))))

(exp (raise-alpha->alpha exp exp))
(log (let ((/ /))

(raise-alpha->alpha log (lambda (x) (/ 1 x)))))
(sin (raise-alpha->alpha sin cos))
(cos (let ((- -) (sin sin))

(raise-alpha->alpha cos (lambda (x) (- 0 (sin x))))))
(atan (let ((+ +) (- -) (* *) (/ /))

(raise-alpha*alpha->alpha
atan
(lambda (x1 x2)
(/ (- 0 x2) (+ (* x1 x1) (* x2 x2))))
(lambda (x1 x2) (/ x1 (+ (* x1 x1) (* x2 x2)))))))

(= (raise-alpha^n->boolean =))
(< (raise-alpha^n->boolean <))
(> (raise-alpha^n->boolean >))
(<= (raise-alpha^n->boolean <=))
(>= (raise-alpha^n->boolean >=))
(zero? (raise-alpha^n->boolean zero?))
(positive? (raise-alpha^n->boolean positive?))
(negative? (raise-alpha^n->boolean negative?))
(real? (raise-alpha^n->boolean real?)))

(perturbation (f (dual-number x 1)))))))

Fig. 5 Implementation of D in PLT SCHEME using generative structure types
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a non-referentially-transparent extra-logical primitive to prevent unification of such logic
variables.

6 Eliminating run-time generation of ε values

Implementing a D that allows nested invocation requires that each nested invocation of
D have a new ε value. This can be done dynamically using a single non-referentially-
transparent mechanism. However static mechanisms can be used instead under special cir-
cumstances, namely when static analysis can determine sufficient information about the
dynamic call graph involving D to allow static allocation of ε values.

The static analyses and transformations can be manually simulated by a programmer. To
do this, one must expose ε as a parameter to D

D ε f c
�= E ε (f (c + ε))

and require the programmer to guarantee that each nested invocation of D is supplied with
a distinct ε and that these obey the ≺ invariant. In the general case, this requires that each
function, such as MIN, that calls D, directly or indirectly, also expose ε as a parameter. This
would be a serious violation of modularity and separation of concerns: in general, the caller
of a higher-order function like MIN should be oblivious to whether or not that higher-order
function uses D internally. Such a discipline would also make expressions involving the D
operator extremely fragile.

7 Example

The ability to nest invocation of D is useful in numerical simulation of physical sys-
tems, as is illustrated by the following example. Consider a charged particle traveling non-
relativistically in a plane with position x(t), velocity ẋ(t), initial position x(0) = (0,8), and
initial velocity ẋ(0) = (0.75,0). It is accelerated by an electric field formed by a pair of
repulsive bodies,

p(x;w) = ‖x − (10,10 − w)‖−1 + ‖x − (10,0)‖−1

where w is a modifiable control parameter of the system. The particle hits the x-axis at
position x(tf ). We use a textbook implementation of Newton’s method to optimize w so as
to minimize E(w) = x0(tf )2, with the goal of finding a value for w that causes the particle’s
path to intersect the origin.

We use Naive Euler ODE integration

ẍ(t) = − ∇x p(x)|x=x(t)

ẋ(t + �t) = ẋ(t) + �t ẍ(t)

x(t + �t) = x(t) + �t ẋ(t)

to compute the particle’s path, taking �t = 10−1. We use linear interpolation to find the
point where the particle hits the x-axis.
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Fig. 6 Plot of the path of a
charged particle at various points
during Newton optimization of
the parameter w controlling an
electric field to minimize the
distance between the particle’s
x-intercept and the origin

When x1(t + �t) ≤ 0

let: �tf = −x1(t)

ẋ1(t)

tf = t + �tf

x(tf ) = x(t) + �tf ẋ(t)

Error: E(w) = x0(tf )2

We use D to calculate ∇x p(x) and also to calculate the first and second derivatives of E

with respect to w when minimizing E using Newton’s method.

w(i+1) = w(i) − E′(w(i))

E′′(w(i))

Note that computing E invokes D to compute ∇x p(x) and thus computing E′ and E′′ involve
nested invocation of D. We start the minimization process at w(0) = 0 and terminate the
minimization when |E′(w(i))| < 10−1. The paths taken by the particle at each iteration of
the minimization process are shown in Fig. 6. Code that implements this example is given
in Fig. 7.

8 Discussion

It is quite natural to consider augmenting a functional-programming language with a
derivative-taking operator like D. Indeed, derivative-taking operators were used as a mo-
tivation for the lambda calculus.
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(define first car)

(define rest cdr)

(define (map-n f n)
(let loop ((i 0)) (if (= i n) ’() (cons (f i) (loop (+ i 1))))))

(define (reduce f l i)
(if (null? l) i (f (first l) (reduce f (rest l) i))))

(define (sqr x) (* x x))

(define (v+ u v) (map + u v))

(define (v- u v) (map - u v))

(define (k*v k v) (map (lambda (x) (* k x)) v))

(define (dot u v) (reduce + (map * u v) 0))

(define (distance u v) (let ((d (v- v u))) (sqrt (dot d d))))

(define (replace-ith x i xi)
(if (zero? i)

(cons xi (rest x))
(cons (first x) (replace-ith (rest x) (- i 1) xi))))

(define (gradient f)
(lambda (x)
(map-n
(lambda (i)
((derivative (lambda (xi) (f (replace-ith x i xi)))) (list-ref x i)))
(length x))))

(define x-initial ’(0 8))
(define xdot-initial ’(0.75 0))
(define w0 0)
(define error-tolerance 1e-1)
(define delta-t 1e-1)

(define (naive-euler w)
(let ((charges (list (list 10 (- 10 w)) (list 10 0))))
(define (p x)
(reduce + (map (lambda (c) (/ 1 (distance x c))) charges) 0))

(let loop ((x x-initial) (xdot xdot-initial))
(let* ((xddot (k*v -1 ((gradient p) x)))

(x-new (v+ x (k*v delta-t xdot))))
(if (positive? (list-ref x-new 1))

(loop x-new (v+ xdot (k*v delta-t xddot)))
(let* ((delta-t-f (/ (- 0 (list-ref x 1)) (list-ref xdot 1)))

(x-t-f (v+ x (k*v delta-t-f xdot))))
(sqr (list-ref x-t-f 0))))))))

(define (argmin-using-textbook-newtons-method f x)
(let loop ((x x) (i 0))
(let ((df-dx ((derivative f) x)))
(if (< (abs df-dx) error-tolerance)

x
(loop (- x (/ df-dx ((derivative (derivative f)) x))) (+ i 1))))))

(define (particle) (argmin-using-textbook-newtons-method naive-euler w0))

Fig. 7 An abbreviated version of the code that implements the charged particle path-optimization exam-
ple from Sect. 7. The unabbreviated code that produced Fig. 6 is available at http://www.bcl.hamilton.ie/
~qobi/nesting/

http://www.bcl.hamilton.ie/~qobi/nesting/
http://www.bcl.hamilton.ie/~qobi/nesting/
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It is, of course, not excluded that the range of arguments or range of values of a
function should consist wholly or partly of functions. The derivative, as this notion
appears in the elementary differential calculus, is a familiar mathematical example of
a function for which both ranges consist of functions. (Church [1], §4)

We have taken this example to heart and explored issues that arise when implementing D,
a derivative-taking operator that uses forward-mode AD. Interestingly, we found no way
to implement D in a pure lambda calculus, and a simple example6 seems to show that D
cannot be formulated in Church’s original untyped lambda calculus. We were, however,
able to implement D, which is itself pure, using any one of a variety of impure mechanisms.

Techniques roughly similar to those in Fig. 4 were used to implement a nestable ver-
sion of D in the undocumented internals of SCMUTILS, a software package accompanying
a textbook on classical mechanics [13]. On the other hand, previous implementations of
forward-mode AD in pure HASKELL [5–8, 11] do not include mechanisms that would sup-
port implementation of a nestable D. Indeed, we hypothesize that a nestable D cannot be
formulated as a function definition in current pure dialects of HASKELL.

While all known techniques for implementing a nestable D use non-referentially-
transparent mechanisms, D itself is referentially transparent. This motivates inclusion of D,
or similar functionality, as a primitive feature of pure functional-programming languages
whose intended uses include numeric computing.

Acknowledgements The authors thank Jerzy Karczmarczuk for many interesting discussions, and the
anonymous reviewers for their valuable suggestions.
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