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Abstract— This paper presents a comparison of existing and
novel behavioral models targeted at the outphasing power
amplifier (PA) architecture. A comprehensive comparison of ten
modeling strategies is presented in the results. Novel techniques
for outphasing PAs, such as vector switched and dual path time
series, are also presented for the first time. Investigation of such
techniques was driven by the analysis of outphasing operation
at minimum output powers, demonstrating the generation of
frequency-dependent amplitude and phase deviations, which
can be difficult to characterize. The increased robustness was
achieved at the cost of additional complexity; for practical
implementation, time series coefficient reduction techniques were
also evaluated. The results of all modeling approaches are
experimentally validated for the wideband operation of an NXP
19-W GaN digital outphasing amplifier module. Considering
computational complexity and accuracy for system-level modeling
across all presented options, a subset of existing and new models
is identified as best suited for modeling outphasing PAs.

Index Terms— Behavioral model, outphasing, radio
frequency (RF) power amplifier (PA), Volterra.

I. INTRODUCTION

BEHAVIORAL models characterize complex nonlinear
systems, providing a simplified computational means to

include the nonideal effects in system-level simulations and
linearization analysis. This approximation of radio frequency
(RF) elements using appropriate algorithms can lead to a
dramatic reduction in simulation time, in turn enabling the
simulation of more complex transceiver systems; one such
example is active antenna arrays. It is also of great benefit in
system-level optimization, where large numbers of iterations
are required, for example, in genetic algorithms or partial
swarm optimization.

In most cases, RF power amplifiers (PAs) are nonlinear
circuits. If not checked, the characteristic behavior of nonlinear
PAs results in additional bit errors or unwanted spectral
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Fig. 1. Overview of digital outphasing amplifier with Chireix combiner used
in this paper, originally presented in [6].

behavior. The PA typically consumes more power than any
other single component within the base station transceiver.
Therefore, it has the largest impact on transmitter efficiency.
As such, amplifier topologies that can deliver increased effi-
ciency are an important area of research. Modern efficient
amplification systems, for example, envelope tracking [1],
Doherty [2], and outphasing [3], have increased complexity
in order to achieve more efficient operation compared with
the classical PA architectures [4]. As a result of this increased
complexity, circuit simulations of these newer PA architectures
incur lengthy simulation times, especially when wideband
modulated signals are applied as the input stimulus. Behavioral
modeling of these systems can offer orders of magnitude
reduction in simulation time. This in turn enables efficient
system-level simulation, particularly when considering the
distributed PA designs [5].

The concept of the outphasing amplifier is presented in [3]
and a digital implementation of the outphasing system is given
in Fig. 1. In this structure, an amplitude and phase modulated
signal S(t) is separated into two constant amplitude signals.
Equations (1)–(4) denote the conversion of the amplitude to a
phase shift inversely applied to the signal on each path

S(t) = A(t)e( j�(t)) (1)

ϕ(t) = arcos(A(t)/(2Amax)) (2)

S1(t) = Amaxe( j�(t))e( jϕ(t)) (3)

S2(t) = −Amaxe( j�(t))e(− jϕ(t)) (4)
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where Amax is half the maximum input amplitude, ϕ(t) is the
amplitude related phase shift, and �(t) is the phase angle of
the input signal. The Chireix combiner topology offers the
benefits of increased efficiency by operating both amplifiers
in saturation. Operating the amplifiers in deep saturation is
achieved with constant envelope modulated signals (3), (4).
Constant envelope operation in this way improves the effi-
ciency of the amplifier and negates the amplitude nonlinearity
introduced by both the driver and final amplification stages.

The modeling challenge for outphasing PAs is more com-
plex than classical PA structures. There are an increased
number of mechanisms that can negatively impact on the
output signal linearity. First, there are two distinct signal
conversion processes that occur, namely, signal component
separation and recombination. As highlighted in (3) and (4),
there are also two separate signal paths within the amplifier
structure each carrying unique signals. Gain, phase, and delay
mismatch can arise between the two separate signal paths in
the PA due to signal component separation or the difference
in the two physical signal paths. Similarly, the frequency
dependence of the load match between the two amplifiers and
the combiner can give rise to dynamic signal imbalance. While
models exist that can accurately describe static offsets, such as
gain and phase delay, at the center operating frequency, newer
models that encompass dynamic effects are only now being
explored.

In this paper, we use a digital outphasing amplifier devel-
oped at NXP semiconductors [6] and shown in Fig. 9, the
performance of which has been previously experimentally
demonstrated for both the static and dynamic operations. The
PA utilizes GaN transistors to implement efficient class-E
switching amplifiers. The module also includes a CMOS driver
stage; the inputs to the driver stage S1 and S2 are analog RF
signals. The input driver stage hard limits the signal converting
the analog signal to a pulsewidth (digital) representation of
the signals phase. As discussed in [6], the output-matching
network of the class-E amplifier is integrated into the Chireix
combiner reducing the number of reactive components, in turn
increasing output efficiency. The compact transformer-based
combiner has increased operational bandwidth compared with
a classical quarter-wave transmission line implementation.
In this paper, the nonlinear effects associated with the wide-
band operation are examined as a quad carrier WCDMA signal
is amplified from the outphasing system.

The resulting spectrum is shown in Fig. 2. In Fig. 3,
the input–output amplitude characteristics (AM–AM) and the
input–output phase characteristics relative to input ampli-
tude (AM–PM) are plotted. Presenting the characteristics
in this way highlights the nonlinear regions of a system.
In Fig. 2, the visible spectrum contains significant out-of-
band noise. The out-of-band noise is composed of nonlinearity
amplitude effects and both the linear and nonlinear memory
effects. Memory effects occur during the dynamic operation
of the amplifier. In classic amplifier topologies, this has been
attributed to parasitic within the device and biasing networks.
However, in the outphasing topology, memory effects also
result from path mismatch. In the Chireix combiner, these
effects are relatively larger at lower output powers.

Fig. 2. Measured spectrum of uncorrected outphasing amplifier with quad
carrier WCDMA signal, the figure demonstrates the relative noise level to the
output signal power of the PA.

Fig. 3. Visualizing the relationship of the input amplitude versus output
amplitude (AM–AM) and the input phase versus output phase as input
amplitude changes (AM–PM).

In [7], a vector switch Volterra approach is used to linearize
the NXP digital outphasing PA. This paper will extend on
the work in [7], with more in-depth analysis of each model
and enable a comparison with algorithms, which do not
lend themselves to amplifier linearization. The models are
evaluated with respect to characterization performance and
computational complexity with the aim of identifying the
optimum behavioral model for full system-level simulation.
To this end, ten behavioral models are evaluated, including
the first instance of a full dual path Volterra model applied to
an amplifier structure as a behavioral model. Further to this,
the Lasso algorithm is applied for the first time to reduce the
number of model coefficients needed in outphasing PA models.

The remainder of this paper is as follows. The source of the
outphasing amplifier memory at lower power operation due
to dynamic signal imbalance is discussed in Section II. The
current state-of-the art models for the outphasing architecture
are introduced in Section III, along with a novel multi-input
single-output (MISO) Volterra model for outphasing amplifier
characterization. Section IV introduces the Lasso algorithm as
a method of coefficient reduction. Section V will outline the
measurement process, model extraction, and modeling results.

II. MEMORY IN AN OUTPHASING AMPLIFIER

The outphasing PA requires balanced and calibrated signals
in order to achieve linear recombination. Several analytical
studies have been carried out [8], [9] demonstrating the impact



FINNERTY et al.: BEHAVIORAL MODELING OF OUTPHASING AMPLIFICATION SYSTEMS 4167

Fig. 4. Outphasing PA with Chireix combiner simulated in Agilent ADS.
Analysis of dynamic range and signal phase relative to outphasing angle
across frequency bandwidth of 100 MHz. The individual frequency steps are
12.5 MHz, opposing frequencies from the center frequency overlap. The center
frequency of the simulations is 2.14 GHz.

of imbalances in outphasing amplifiers on linear operation. The
main impact of an imbalance between the two signal paths is to
limit the minimum achievable output power this in turn results
in the loss of dynamic range. Fritzin et al. [10] directly relate
the loss of dynamic range at the center frequency to an increase
in nonlinearity, namely, an increase in ACPR. The assumption
so far is that the dynamic range of the system at the center
frequency is applicable to the outphasing system across the
frequency of operation. This is only the case if the operational
bandwidth of the system is relatively narrowband. The Chireix
combiner in its traditional configuration is a tuned circuit [3].
Gerhard and Knoechel [11] perform a series of measurements
on an outphasing amplifier employing a Chireix combiner
over the predicted operation bandwidth. They present mea-
surements demonstrating the variation of both outphasing
angle and common signal phase with frequency. These results
are replicated with a simulation of an outphasing PA and
shown in Fig. 4. As outphasing angle is directly related to
signal amplitude, the result is a deviation of both amplitude
(AM–AM) and phase (AM–PM) with frequency at low output
power. This is in line with the measurements of the digital
outphasing PA shown in Fig. 3. Such a deviation is commonly
referred to as memory in the analysis of a PA system.

As shown in Fig. 4, the effects are greatest at the lowest out-
put powers where perfect vector cancelation is required. As the
outphasing angle returns to higher output power regions,
the output returns closer to the ideal output. Simulation is
performed with a classical transmission line Chireix combiner,
using ideal load compensation components. While the digital
amplifier with the transformer-based combiner structure has a
wider operational bandwidth, the same effects are still present;
Fig. 5 shows the results for a sweep of outphasing angle

Fig. 5. Example of digital PA’s minimum achievable amplitude measured
across frequency, ±180 MHz.

across a frequency of ±180 MHz. Contrary to the extraction of
behavioral models for the classical PA architectures, a behav-
ioral model capable of characterizing the memory effects
experienced at low power is required for an outphasing PA.

III. BEHAVIORAL MODELS

Behavioral modeling is the characterization of a system
using a mathematical description, which is more compact and
less computationally expensive than a full system simulation
using equivalent circuit models. The outphasing PA is a
complex system to model using traditional circuit simulators
and therefore can greatly benefit from the computational
reduction offered by behavioral modeling. As outlined in
Sections I and II, the amplifiers operation and requirements for
linearity deviate from that of traditional PA operation. There-
fore, to generate an accurate outphasing amplifier model, these
deviations must be taken into account. Determining the oper-
ation of the outphasing amplifier has been examined in great
detail for static operation. Birafane and Kouki [9] extract both
the amplitude and phase distortions generated by a Chireix-
based outphasing PA. In this paper, the sources of nonlinearity
are investigated, highlighting in particular the difficulties for
low-power operation.

The signal component separator is assumed to be ideal for
all the models evaluated in this paper. Nonlinearity between
the input signals and the amplifier output is assumed to be
inherent in the DUT. This assumption is based upon the
small signal system being fully calibrated and the ampli-
fier being statically characterized at the center frequency
of operation; the resulting sweep returns a unique function
for SCS decomposition. The amplifier can, therefore, be
operated and subsequently modeled as an ideal outphasing
system.

This paper will analyze a number of current Volterra-based
amplifier models, namely, standard Volterra series, piecewise
Volterra series, and vector switched Volterra series. This paper
presents two novel amplifier models for the outphasing archi-
tecture, namely, vector switched Volterra using self-organizing
maps (SOMs) and MISO Volterra series. In addition, the
effectiveness of the Lasso method for coefficient reduction
leading to increased model efficiency is presented.
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A. Existing Behavioral Models

In [11], a proposed method uses a lookup table (LUT) to
modify the phase of the outphasing signals, to correct the
amplifier. The LUT takes signal phase and signal frequency
to find the correction factor for the output. The algorithm is
a function of both input amplitude and frequency. In [12],
a polynomial that maps input amplitude to phase correction
for each outphasing path is derived. This is expanded upon
in what is referred to as a direct outphasing model [13];
further, parameters that include amplitude and time delay are
also introduced into the model. A two-path model incorpo-
rating memory taps is presented in [14]. Landin et al. [14]
demonstrate the effectiveness of a memory capable model for
outphasing PA. These existing behavioral models will be used
to compare the proposed models in this paper.

1) Direct Outphasing Model: The direct outphasing model
in (5) has been presented previously in [13] as an accurate
and efficient model for an outphasing system. This system
directly models the outphasing system where ηi denotes the
coefficients of the gain function, λi denotes the coefficients of
the phase function, and �i is a delay factor that is applied to
each path. The parameters ηi and �i are used to remove path
mismatch from the system, λi is the coefficients to a polyno-
mial that alters phase in each outphasing path independently,
correcting phase mismatch and linearizing the output signal
simultaneously. Replicating the model in [13], the coefficients
were initialized using the coefficient extraction process as out-
lined and optimized using a genetic algorithm [15], processed
for 500 generations until optimization gradient approached
zero and sufficiently low mean squared error was achieved

y(n) = g1(s(tn − �1); η1)e
j p1(s(tn−�1);λ1)s1(tn − �1)

+ g2(s(tn − �2); η2)e
j p2(s(tn−�2);λ2)s2(tn − �2).

(5)

2) Amplitude Distortion Outphasing Model:
Landin et al. [14] present an outphasing amplifier model capa-
ble of characterizing frequency-dependent amplifier effects.
They describe the model as AM distortion model based
upon parallel Hammerstein function. The model is presented
in (6) and (7). In this model, a function uses the outphased
signals si (n) and the input signal magnitude ||s(n)|| to the out-
phasing paths. The model uses a parallel linear and nonlinear
function to accurately describe the frequency effects of both
the amplifiers and the output combiner

y(n) = g1(s(n); τ1)s1(n) + g2(s(n); τ2)s2(n) (6)

yi (s(n); γi ) =
Mlin∑

m=0

γi,0,msi (n − m) +
P∑

p=1

Mnonlin∑

m=0

× γi,0,msi (n − m)‖s(n − m)‖p. (7)

B. Classical Volterra Series Model

The Volterra series is a robust algorithm capable of estimat-
ing nonlinear memory effects and has been previously applied
to model and linearize power amplification systems [16].
To model the outphasing amplifier, the input is the signal to the
outphasing decomposition function, and this is a limiting factor

in the models ability to correct individual path mismatch. The
equation for the Volterra series is presented in (8), where
x̃(n) and ỹ(n) are the input and output complex signal samples
and h̃2p−1(q1, . . . , q2p−1) denotes the discrete time Volterra
kernels. P0 = 2P − 1 is the kernel order, M is the memory
depth, and ∗ denotes the conjugate transpose

ỹ(t) =
P0∑

p=1

M∑

q1=0

M∑

q2=q1

. . .

M∑

qp=qp−1

M∑

qp+1=0

M∑

qp+2=qp+1

. . .

M∑

q2p−1=q2p−2

× h̃2p−1(q1, q2, . . . , q2p−1)

p∏

j1=1

x̃(t − q j1)

2p−1∏

j2=p+1

x̃

∗ (t − q j2). (8)

C. Multiple-Input Single-Output Volterra Series

In [17], a method of identifying multi-input nonlinear
systems is presented. Using a complex nonlinear time series
expanded for an MISO system, a more comprehensive model
of the outphasing amplifier can be derived in comparison
to standard Volterra series. The MISO model was initially
developed in [17], and chosen for this application as the
structure can be arranged to resemble the physical layout
of the outphasing PA. As shown in Fig. 4 and (7) and (8),
a two path structure is mathematically similar to the out-
phasing amplification system, each Volterra series, h1 and h2,
is capable of modeling a single-input nonlinear system, as
outlined in Section III-A. The cross kernel is capable of mod-
eling the interaction between the two amplification paths and
the memory function of the power combiner. The capabilities
of a nonlinear time series have been extended for multi-
input systems by including cross terms that can describe the
interaction between the individual signal paths. As described in
the outphasing amplifier theory [3] and (1)–(4), each amplifier
interacts with the load. Given that there is finite isolation
between amplification paths and the reflection, which occurs
between the amplifiers and the load [11], each amplifier also
acts on one another. This interaction as well as crosstalk
distortion can be modeled using cross terms in a time series
MISO model

ỹ(n) =
P0∑

p=1

h̄ p[x̃(n)] (9)

ỹ(n) =
P0∑

p=1

h̄ p1[S̃1(n)] +
P0∑

p=1

h̄ p2[S̃2(n)]

+
P0−1∑

p=1

h̄ p12[S̃1(n)S̃2(n)]. (10)

Expanding a single-input single-output model for
a two-path implementation requires a time series in
both paths and an additional set of kernel coefficients for
cross products between each path. Equation (8) shows the
kernel composition of the two-path model, while it contains
significantly more weights than the single path Volterra series;
the additional complexity provides a more accurate model.
As stated in [17], the number of inputs does not limit the
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structure to a two input model; however, dimensionality will
dramatically increase with the number of inputs.

S1 is the input from path one of the outphasing amplifier,
and S2 is the input from path two. The polynomial extraction
of the input signal associated with Volterra series expansion
is indicated for each path as S̃1 and S̃2, h̄ p are the linear
weights applied to the series expansion signals S̃1 and S̃2. “∼”
indicates a vector of nonlinear, polynomial/Volterra inputs, and
“h̄” indicates the vector of linear weights. The cross terms of
the model h p12 consist of a square matrix. In line with the
model in [17], the matrix h p12 nonlinear components is one
order lower than the standard time series h1 and h2.

D. Segmented Volterra

An objective of this paper is to highlight the effects that
occur at lower output power levels for outphasing amplifiers.
At higher power, the spreading effect associated with memory
is less pronounced and a more traditional polynomial nonlin-
earity is dominant. It is this variation in characteristic perfor-
mance within the amplifier that has led to the investigation of
segmented modeling methods for single-input, single-output
modeling.

Nonlinear models using piecewise segmentation have been
successfully used in conjunction with both polynomial [18]
and time-series [19] functions for nonlinear modeling for PAs.
Afsardoost et al. [20] present an improvement to the previous
segmentation techniques. This process generates a 2-D feature
space where clustering is also called vector quantization. The
individual segments are analyzed and individual functions can
be extracted. As such, each segment can be characterized using
a reduced nonlinear order and memory depth compared with
characterizing all segments using a single function. A Volterra
series can be applied to each of the individual segments. A 2-D
feature space is generated using {mag(x(n)), mag(x(n−m))},
where x is the input signal, n is the current time step, and m
is a positive integer that generates a constant delay factor.
Afsardoost et al. [20] apply k-means clustering algorithm to
perform automated vector quantization.

1) Segmented Volterra Using k-Means: K -means is a com-
monly used technique for both clustering and segmentation.
The algorithm is applied to a multidimensional feature space
and partitions it into k clusters defined with hard boundaries.
At the center of each cluster is a point called a centroid.
To initialize the algorithm, the centroids are evenly distrib-
uted over the feature space. The centroids are iteratively
repositioned to find the center of the clusters in the feature
space. The algorithm iteratively updates the centroids position
using a distance metric between the centroid and the points
in its region. The algorithm continues until a predetermined
threshold of movement has been reached. The results are saved
in a codebook or LUT, which is later used as the quantization
function.

2) Segmented Volterra Using Self-Organizing Maps: SOMs
have been identified as a more robust clustering algorithm
when compared with K -means [21]. A special form of neural
networks, such as the SOM, can be implemented using a
numerical function or with cluster LUT method similar to

Fig. 6. SOM weights are highlighted in black, the input data feature space
is highlighted in gray. An example of SOM vector quantization for the input
data x(n). The weight locations are the centroids of the vector quantization
process.

the k-means algorithm. The structure of the SOM is outlined
in [22]. The vector switched approach has shown that the
segmentation of the time series algorithm can be beneficial,
improving the capability of behavioral models. In this paper,
the objective is to demonstrate that additional performance can
be gained through the optimization of the vector quantization
algorithm. An example for the input amplitude feature space
and the results from the clustering algorithm are shown
in Fig. 6.

The Kohonen algorithm, an unsupervised learning process,
is used to train the SOM as a vector quantization algo-
rithm. The optimization of the SOM is achieved by deter-
mining the fewest number of neurons capable of accurately
separating the feature space. A drawback to SOM is an
increase in computational complexity of the training algorithm.
In [23, eqs. (10) and (11)], a method to compare both K -means
and SOM directly is provided

SOM = O((N2 ∗ nO ) ∗ 2 + (N ∗ nO ∗ log(nO ))) (11)

KMEANS = O(nO ). (12)

In (11), N is the dimension of the feature space and nO is
the number of clusters in the feature space. For a comparison
of computational complexity eight centroids and it is a 2-D
feature space. The SOM has an increase in the computational
complexity of 12 times that for the K -means algorithm. This is
an increase per training iteration; however, the robustness of
the SOM means that the algorithm requires fewer iterations
to reach centroid stability. In this example, SOM required
25% fewer iterations compared with the K -means algorithm.
The net result is that the SOM is still more computationally
intensive; however, as the results in Section IV will show, this
leads to an increase in accuracy.

IV. TIME SERIES COEFFICIENT REDUCTION

Coefficient reduction tools enable the implementation of
efficient models, which can be easily interoperated without
sacrificing accuracy. With a large number of coefficients,
a system can be accurately modeled; however, overfitting
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Fig. 7. Visualization of the coefficient reduction with the Lasso function.
The gray points represent the full Volterra kernel. The black circles highlight
the chosen coefficients for the reduced model.

may be of concern. By ranking the model parameters in
the order of importance and selecting a sufficient number to
accurately model the system, the potential of overfitting can be
reduced. Applied to behavioral modeling, coefficient reduction
has a direct impact on computational complexity, reducing
the computational cost of the implemented model. This is
a desirable trait when applied to large modeling structures.
The Lasso is a robust high-performance method of parameter
reduction; the algorithm achieves this by utilizing a combined
method of regression and shrinkage. It has been shown that
when implemented with Volterra series, significant reductions
can be achieved [24] and for PA modeling, this can greatly
reduce the computation complexity to implement the resulting
model [25].

The Lasso time series definition is as follows: xt =
(xt,1, . . . , xtp)

T , where xt are the kernels of the input and yt

is the target output of the function. Some assumptions must
be made: the function targets (yt ) are independent and xtp is
normalized so that the mean of xtp is 0 and the mean of x2

t p
is 1. These are common to regression functions. The Lasso
estimate as defined in [26] is as follows:

(α̂, β̂) = arg min

⎧
⎨

⎩

N∑

t=1

(
yt − α −

∑

p

βpxtp

)2
⎫
⎬

⎭ (13)

s.t.
∑

p

|βp| ≤ k (14)

where the tuning parameter, k must be greater than zero, given
that the mean of yt is also zero. During the optimization of
parameters, the value of k is used to tune the algorithm to
find a compromise between model accuracy and number of
coefficients. In this paper, the optimization of k is performed
as outlined in [26]. A vector of reasonable values is analyzed
using the generalized cross validation technique [27]. The
vector consists of N values equally distributed from k0 to 0,
where k0 corresponds to the least squares solution with zero
shrinkage, and k0 = ∑ |β0

p|, where β0
p is the least squares

solution.
The optimum value of k is dependent on the characteristics

of the system being identified. PAs are largely deterministic
and in communications systems, the input and output data are
highly correlated. Given this application, the Lasso lends itself
well to reducing the number of coefficients while maintaining

Fig. 8. Outphasing test-bench.

Fig. 9. DUT-digital outphasing PA.

accuracy. In Fig. 7, coefficient reduction is visualized for a
full Volterra series.

V. MEASUREMENTS AND RESULTS

The measurement setup uses a pattern generation board
capable of driving a dual transmit chain DAC board; the DAC
can output a 16 b signals of bandwidths up to 614.4 MSPS.
The system is capable of generating dual wideband quadrature
signals, supplying the amplifier with inputs S1 and S2. Signal
capture is performed using Rohde and Schwarz FSQ vector
signal analyzer. Signals are captured and analyzed over a
bandwidth of 122.88 MHz. The system is calibrated to remove
the following:

1) quadrature signal imbalance;
2) local oscillator feed through;
3) amplitude imbalance between outphasing paths;
4) amplitude and phase ripple over frequency.
The offsets are for the signal generation system alone,

providing the amplifier with a frequency balanced and linear
input to ensure that the measurements only included nonlinear
effects from the DUT. The amplifier in Fig. 9 was fully
operational for a period of time prior to measurement to ensure
it was at steady state so that the drivers and the amplifier
were at a stable temperature. The amplifier is characterized
with a phase angle sweep to determine the maximum and
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Fig. 10. Dual path Volterra series accuracy (NMSE) is compared over
different model dimensions, each line represents the memory depth and each
data point represents the maximum nonlinear order.

minimum outphasing angles. These are stored in an LUT
and used to ensure that maximum dynamic range is achieved
during dynamic operation. No other offsets are applied to
the amplifier. To verify the generalization capabilities of the
models, two data sets were used, namely, a training set and a
test set. Both are quad carrier WCDMA signals, with 9–10 dB
peak to average power ratio. The signals were independently
generated using Agilent Advanced Design Systems.

Analysis was carried out in MATLAB (2013), utilizing a
Core i7 - 2600 CPU and 8 GB of memory. Signal conditioning
and all preprocessing steps applied before the final coefficients
are extracted. This includes piecewise and vector switched
segmentation based on the input signal only and coefficient
reduction based on the input and output signals. The time
series is split into a 50% train and 50% test set with 16 000 data
points in each. The final set of weights is extracted using least
squares estimation with QR decomposition [28]. The optimal
model dimensions were determined by sweeping model order,
number of memory terms, and number of segments. The range
of nonlinear order was swept from third to ninth order, using
only odd orders. The memory depth was swept from two
to six using all terms and the vector quantization segments
were swept from 5 to 20 using all terms. For each model, the
maximum accuracy occurred as a knee point, after which no
additional accuracy was observed. This is demonstrated with
an example in Fig. 10. In the cases where higher model dimen-
sions do not yield an appreciable performance increase, the
most computationally efficient model is chosen for evaluation.
Normalized mean-square error (NMSE) was used to determine
the best performing model. NMSE is outlined in (14). NMSE
is chosen as a figure of merit for the outphasing amplifier due
to the fact that the normalized error weights the effects of
memory and path mismatch at lower output powers, which is
difficult to characterize with the nonlinearity at high output
powers, which is relatively easy to characterize

MSE =
∑N

n=1 |dk(n) − yk(n)|2
N

(15)

NMSE =
∑N

n=1
|dk(n)−yk(n)|2

|dk |2
N

(16)

Fig. 11. Spectral plot of model test data.

Fig. 12. Spectral analysis of modeling error squared. The error is presented
in a linear scale.

ACEPR =
∫

adj |E( f )|2d f
∫

ch |D( f )|2d f
(17)

where dk is the measured signal and yk is the model output.
The accuracy of the models spectral estimation is carried out
using adjacent channel error power ratio (ACEPR) [29]. The
ACEPR calculation is outlined in (16). E( f ) is the Fourier
transformation of the model error and D( f ) is the Fourier
transform of the output signal. The results are presented in
Table I, which outlines training time for each model as well
as the final number of coefficients.

The error for each model is evaluated with a test data
set, and an independent data set from the training sequence.
Figs. 11 and 12 show the spectral accuracy of the behavioral
models. The results are, as expected, in line with the NMSE
results in Table I.

A. Volterra Series

The limitations of the Volterra series model have been
highlighted in the results in Table I and Fig. 11. The Volterra
series is the basis for each of these models; however, its
performance is fundamentally limited to narrowband charac-
terization, as seen in Fig. 11. It cannot model out-of-band
nonlinear beyond ±20 MHz, at which point the majority of
the distortion is associated with outphasing noise. Outphasing
noise is a function that varies with output power as seen in
Fig. 3 and highlighted in Section II.
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TABLE I

RESULTS FROM MODELING ANALYSIS

B. MISO Volterra Series

The multi-input Volterra model is comparable to the direct
outphasing model and the amplitude distortion model. These
models use the outphasing signals as an input and therefore
can model the nonlinear effects associated with a single path.
In comparison with the existing models, this novel two-path
Volterra model had additional cross terms as well as mem-
ory taps in each path that provide a more comprehensive
model when compared with the direct model. This is car-
ried out at the expense of increased computation in the
forward path. The results from Table I demonstrate that the
two-path model has increased accuracy when compared with
the direct outphasing model. However, it is not as accurate
as the amplitude distortion model. The dual input Volterra
model and the amplitude distortion model have comparable
performance when comparing spectral characteristics.

C. Segmented Volterra Series

There are three segmented time series models analyzed in
this paper: piecewise Volterra, K -means, and SOM vector
switched Volterra. Both vector switch models had an optimum
number of ten segments, while piecewise had an optimum
number of seven segments. Of the segmented models,
VSV SOM has an NMSE performance of −36.2 dB,
a clear advantage over the next best nonsegmented approach,
two-path Volterra with −31.1 dB. These results remove any
ambiguity from the model selection where the highest accu-
racy is required; a segmented approach appears to be the
best. The individual Volterra series used fifth-order nonlinear
components with three memory taps.

D. Lasso

The Lasso algorithm enabled an increase in computational
efficiency in the Volterra, dual input Volterra, and vector
switched Volterra models. The algorithm enabled a reduction
of coefficients by 68%, 90%, and 48%, respectively. The
remaining coefficients form a new amplifier model structure
in which accuracy is generally retained and in some circum-
stances increasing the models generality. In Table I, this is

demonstrated as Lasso models were able to achieve accuracy
within 1 dB NMSE of the original model. The tradeoff for
this reduction in coefficients is an increased model extraction
time.

VI. CONCLUSION

This paper has presented behavioral models for an outphas-
ing amplifier system operating with a multicarrier modulated
signal. Initial analysis outlines the nonlinear characteristic
which, we believe, limits the accuracy of existing behavioral
models. The models that are outlined in this paper target the
errors at low power output without compromising accuracy at
high output powers. Existing amplifier modeling techniques,
Volterra series and vector switched Volterra series, were ana-
lyzed, and it was demonstrated that a single-input topology
is capable of modeling an outphasing amplifier; however,
a standard time series cannot fully characterize the system.
Advancements on the vector switch approach demonstrate
the benefit that can be achieved through the optimization of
the vector quantization algorithm; the SOM algorithm has
been applied as a more robust solution. The comparison also
includes a novel two-path Volterra structure, which more
closely resembles the physical layout of the outphasing PA.
From Table I, it is evident that the multisegment Volterra
provides the most accurate outphasing amplifier model. This
is achieved by applying individual nonlinear memory time
series to different amplifier operating regions based upon
signal characteristics. Using signal amplitude as a method of
segmentation enables the characterization of the frequency
and amplitude-dependent nonlinear effects demonstrated
in Section II.

The MISO Volterra model provides modeling accuracy,
which matches or exceeds existing outphasing modeling strate-
gies. However, the number of coefficients greatly increases
with the dual input Volterra series. The Lasso algorithm
reduced the MISO Volterra structure to 23 coefficients, a
saving of 90% in computational load when implementing the
model, while maintaining a performance advantage over the
direct outphasing model, which requires 16 coefficients.



FINNERTY et al.: BEHAVIORAL MODELING OF OUTPHASING AMPLIFICATION SYSTEMS 4173

Depending on the system being implemented a tradeoff
of computation load and accuracy can be chosen, for single
amplifier systems and models requiring the highest level of
accuracy multisegment time series and in particular SOM
vector switch Volterra is the best option. However, in larger
transmitter system structures where computational complexity
is a concern, such as active antenna arrays, a two-path solu-
tion provides the best compromise. The amplitude distortion
model’s accuracy of the time domain signal is better at the
cost of additional coefficients. In the frequency domain, the
MISO Volterra series including the Lasso algorithm provides
comparable ACEPR performance to the amplitude distortion
model.

This paper presents and evaluates alternative modeling
strategies for the outphasing PA. As well as traditional
two-path modeling approaches, the capability of single
input–output behavioral models are examined. The aim of all
the models is to accurately describe the effects of dynamic
path mismatch. The models presented have the ability to
achieve increased characterization performance, lending to
more accurate behavioral-level system simulations.
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