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Abstract— In this article we describe the use of a multi-
objective evolutionary algorithm for portfolio optimisation
based on historical data for the S&P 500. Portfolio optimisation
seeks to identify manageable investments that provide a high
expected return with relatively low risk. We developed a set of
metrics for qualifying the risk/return characteristics of a port-
folio’s historical performance and combined this with an island
model genetic algorithm to identify optimised portfolios. The
algorithm was successful in selecting investment strategies with
high returns and relatively low volatility. However, although
these solutions performed well on historical data, they were not
predictive of future returns, with optimised portfolios failing to
perform above chance. The implications of these findings are
discussed.

I. INTRODUCTION

The goal of an investor is to allocate their assets optimally
in a portfolio so that they maximise the returns on their
investment. The basic theory of portfolio optimisation was set
out by Markowitz in 1952 [1]. His principle argument was
that investors need to balance the objective of maximising
return with the risk involved, meaning that risky invest-
ments should provide higher returns. Markowitz proposed
that investors should select stocks, not only based on their
individual profiles, but on how they move together. Portfolios
that take co-movements into account will have a lower overall
risk profile, because a set of diversified uncorrelated stocks
are less likely to all move in the same direction at the same
time [2]. In contrast, including similar stocks in a portfolio
is risky because they have the tendency to fluctuate in the
same direction, thus increasing the overall volatility of the
portfolio.

II. EVALUATING PORTFOLIO PERFORMANCE

Standard practice for evaluating portfolio performance and
estimating future returns is to examine historical returns and
adjust for interest rates [3]. Historical averages present a
pertinent statistic for asset evaluation because they provide
unbiased estimates of future returns [4]. As a result, portfolio
testing typically involves the use of historical returns as a
proxy for expected returns [5].

Assuming estimates for expected returns are available,
then Markowitz’s model [1] can be used to maximise return
and minimise risk for a set of investment choices. However,
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this model is theoretical in focus, and impractical for dealing
with large numbers of assets [6]. It uses only mean and
variance to describe asset characteristics and is founded
on the assumption that returns are normally distributed, a
condition which is rarely satisfied in practice [7]. In addition,
the Markowitz model ignores most of the constraints faced by
investors [8]. Alternative techniques are required to deliver
high-quality solutions for real-world investment scenarios.

In the following study, our strategy was to use risk-return
characteristics to construct portfolios with the strongest in-
vestment potential. A key question which arose was how the
historical performance of a portfolio should be evaluated.
According to Modigliani and Modigliani [9], the financial
industry continues to rely almost exclusively on total return
for evaluating the historical performance of a portfolio, de-
spite the fact that this value completely ignores risk. Consider
Figure 1 below in which two time series are presented. In
both cases the portfolios yield an identical return of 12%.

Fig. 1. Two portfolios yielding a return of 12%.

However, portfolio B has a higher level of volatility, which
means that the returns earned in this case are more likely
to represent random variance, as opposed to an underlying
performance signal: the higher the standard deviation in daily
returns, the more likely it is that a portfolio will deliver a
given return by chance alone. In the case of Portfolio B, the
return is insignificant, because it does not strongly challenge
the random walk hypothesis. In the case of Portfolio A, the
lower volatility means that the return is less likely to have
been produced by chance, and thus more likely to persist
into the future.

Anybody walking into a casino has the opportunity to
trade capital for potential returns. For example, a $1 note
can be exchanged for a 10% chance of holding $10 or a



1% chance of holding $100 (assuming the casino offers fair
odds). Accordingly, the question that should be asked when
a portfolio delivers a particular return is whether that return
is over and above that which could have been achieved by
simply gambling: that is, whether the returns exceed the
cost of holding risk [9]. In sum, reliance on simple returns
can be misleading. What is needed is a rigorous means
of adjusting portfolio returns for the risk involved, so that
different portfolios can be directly compared.

A. Sharpe Ratio

The most commonly used measure of risk-adjusted return
is the Sharpe Ratio (SR), which takes into account the ratio
between the reward and the price variability to which the
investor was exposed. Here, the risk free rate (the amount
that could have been earned without holding any risk)
is subtracted from the total returns, and the remainder is
divided by the portfolio’s standard deviation, thus effectively
providing a measure of reward per unit of risk [10].

Given a portfolio yielding an overall return R and a risk-
free return Rf , with a sampled standard deviation s, then

SR =
R−Rf

s
.

The SR always refers to the differential between two
portfolios, in this case that between the risky investment and
the risk-free investment. The subtracted return reflects the
short position which must be taken to finance the acquisition.
To yield a positive SR, an investment must provide a greater
return than the cash or loan which is used to fund it [11].

B. Limitations of Sharpe Ratio

Exclusive reliance on the SR to differentiate between the
historical performance of different portfolios is problematic.
Over a given time period, some stocks will produce ex-
ceptional growth which is unsustainable in the longer run.
These exceptional increases may be due to fortuitous events,
such as a sudden technological breakthrough or the growth
of a speculative bubble. In particular, the more stocks that
are considered, the more likely it is that some will exhibit
unsustainable growth.

The problem with the SR metric is that strong growth
hides strong volatility, meaning that when short-term growth
subsides, an investment which previously appeared desirable
will have high risk without the compensating returns. For
example, for the period analysed in our study (July 2008 to
June 2011), the S&P 500 listed company Netflix registered
an exceptional 1500% increase, eclipsing all other potential
investments. This kind of growth is clearly unsustainable.
Indeed, the Netflix stock suffered a catastrophic 65% plunge
in its value in the three months that followed.

The SR fails to discriminate between fortuitous short-
term growth and robust growth founded on sustainable,
persistent conditions. The danger of relying on this metric
to optimise portfolios to historical data is that it tends to
favour a small set of high growth, high volatility stocks,
whose strong performance is unlikely to be sustained (see

[12]). Accordingly, the SR should not be relied on as a sole
measure of risk.

Indeed, there is no single metric that is the absolute correct
metric to use for assessing portfolio risk. All metrics involve
simplifications. Constructing an optimised portfolio based on
any single metric is not advisable, because the portfolios
that emerge are likely to be those that exploit weaknesses
and simplifications in the metric, as opposed to exhibiting a
genuine underlying performance signal. If the environment
changes, the context for narrowly optimised solutions will be
altered, and low risk solutions may become high risk [13].

Ideally, to enhance robustness and avoid overfitting, port-
folios should be optimised to satisfy the requirements of
multiple diverse risk measures. In light of this, we developed
a multi-objective evolutionary algorithm with parallel island
populations fitted to a selection of complementary metrics.
In the following section we describe the metrics used, and,
subsequently, the structure of the evolutionary algorithm.

III. METRICS

We developed four different metrics, each responding to
different aspects of a portfolio’s risk to return profile (see
Table II). The first metric is the SR, which provides an overall
risk to reward ratio.

To compensate for the SR’s bias towards unsustainable
high-growth investments, the second metric is more risk
averse. In this case, the portfolio’s risk-free adjusted return
is divided by its variance, that is, the square of the sampled
standard deviation. This metric penalises volatility more
heavily, thus favouring lower growth portfolios which are
more likely to exhibit sustainable growth.

One problem associated with both of these adjusted-risk
metrics is that they ignore any deviation in returns over the
time period. If we consider the two portfolios in Figure 2 we
see that both have identical returns over the period. Portfolio
B actually has the higher standard deviation (s = 1.36 versus
1.33), meaning that portfolio A has a higher SR. However,
to the human eye portfolio A seems more risky, because
it involves a strong upwards trend followed by a strong
downwards trend. These trends indicate that portfolio B is
responding to changeable short-term conditions, limiting the
accuracy with which its future performance can be predicted.
On the other hand, the growth evident in portfolio B is more
robust, suggesting that the set of supporting conditions is
more likely to persist into the future.

Because the SR is unaffected by any variability in the
consistency of returns, it overlooks an important element
of risk. To compensate for this we included two additional
metrics which take into account the distribution of returns.



Fig. 2. Two portfolios yielding a return of 9%.

Metric three measures the greatest fall between any two
successive points in a portfolio time series, adjusted for
risk-free return. This measure is expressed as the maximum
percentage that an investor would have lost if investing in
a portfolio at the worst possible moment during the time
period. In contrast to the first two metrics, the objective is to
minimise this value. Portfolios with high SRs derived from
lucky high-risk investments are more likely to incur sustained
falls than those exhibiting consistent growth.

Metric four is similar, but instead of measuring the max-
imum fall, it measures the maximum amount of time for
which a fall has been recorded, again adjusted for risk-
free return. This value represents the maximum amount of
time (expressed as a percentage of the total time period)
that an investor could have waited before seeing a positive
return on their investment, if they had invested at the worst
possible moment. Again, the objective is to minimise this
value. Portfolios with steadily increasing value will contain
shorter time periods where investors could be down on their
investment, whereas high-risk investments result in much
longer periods of negative return (see Figure 2).

The formulas for these metrics are given in Table II where
R is the return on the portfolio investment, Rf is the return
on a risk-free investment over the same time period, x is the
set of daily portfolio returns expressed relative to the risk-
free rate, and sx is the sampled standard deviation for that
time series. To put these metrics into context we computed
their values for portfolios A and B as shown in Figure 2.

Portfolio A Portfolio B
Metric 1 7.230 7.108
Metric 2 5.401 5.221
Metric 3 0.098 0.031
Metric 4 0.352 0.235

TABLE I
RISK METRIC VALUES FOR PORTFOLIOS IN FIGURE 2.

The values for metrics 1 and 2 indicate that the overall
returns are about seven times greater than the standard
deviation of the daily returns, and five times greater than the
variance. The values for metric 3 indicate that the biggest fall

between any two points is 9.8% for portfolio A and 3.1% for
portfolio B. The values for metric 4 indicate that the longest
period without a new record high is 35.2% of the time period
for portfolio A and 23.5% for portfolio B.

In sum, while metrics 1 and 2 reveal that both portfolios
have experienced strong growth, they fail to distinguish that
portfolio A’s value has exhibited greater overall fluctuation.
And while metrics 3 and 4 reveal that the value of portfolio
B has grown more consistently, they do not communicate
anything about the overall level of growth. A portfolio that
can simultaneously satisfy all of these metrics will exhibit
strong, steady growth and consistently low volatility.

IV. EVOLUTIONARY ALGORITHM

Evolutionary algorithms are a computational technique
inspired by Darwin’s theory of evolution and first popularised
by Holland [14]. The idea is that if the fittest individuals
in a pool of candidate solutions are continually selected to
produce the next generation, then the population is guided
towards regions of the search space with good solutions.

Each iteration of the evolutionary algorithm involves a
competitive selection process that gradually weeds out poorer
solutions. A small amount of mutation is also included to
mitigate against premature loss of diversity and stagnation
on restricted regions of the search-space.

Concept Formula Range
Metric 1 Return-to-

standard
deviation ratio

R−Rf

sx

> 0 indicates
positive return, <
0 indicates loss

Metric 2 Return-to-
variance ratio R−Rf

s2x

> 0 indicates
positive return, <
0 indicates loss

Metric 3 Maximum fall maxi<j(xi − xj) 0% indicates no
daily falls, 100%
indicates total
loss

Metric 4 Maximum dura-
tion of any fall

maxi(maxj{xi+1

< xi, . . . , xi+j ≤
xi})

0% indicates no
daily falls, 100%
indicates invest-
ment never re-
covers first day
value

TABLE II
DESCRIPTION OF RISK METRICS.

Evolutionary algorithms can quickly identify good solu-
tions to optimisation problems and have been successfully
applied to a number of areas in finance. For example, Allen
and Karjalainen [15] used genetic programming to derive
trading rules for the S&P 500 while Neely, Weller and
Dittmar [16] used evolutionary algorithms to develop trading
rules for foreign exchange markets (see [17] for a review of
evolutionary algorithms used in financial modelling).

A. Multi-objective optimisation

Of the four metrics outlined in the previous section, none
provides a perfect assessment of portfolio performance. All



involve simplifications, and, as a result, solutions fitted to
one metric in particular are likely to exploit weaknesses in
the metric, as opposed to exhibiting genuine performance.
Each of the metrics relate to different aspects of risk,
from standard deviation, to variance, to maximum falls, to
frequency of record highs. The mark of a robust solution
is that it should rank consistently highly on all of these
related measures. Multi-objective optimisation algorithms
attempt to solve problems that have multiple overlapping or
possibly competing objectives [13]. Such algorithms have
been applied in several areas of finance including, risk man-
agement, and portfolio management (see [18]). In particular,
multi-objective algorithms have been found to produce well-
balanced portfolio performance, outperforming any single
fitness algorithm [19]. An intuitive strategy for solving multi-
objective problems is to construct a single aggregate objec-
tive function which combines the different objectives into a
single formula, though the use of weightings [20]. However,
doing so simply creates a more elaborate unitary metric,
which is again susceptible to over-fitting. Our solution for
maintaining genetic diversity was to employ an island popu-
lation paradigm, with multiple genetic algorithms operating
in parallel and a migration process operating between islands.

B. Parallel evolutionary algorithms

Parallel genetic algorithms have been reported to yield
better performance than genetic algorithms which rely on
a single panmictic population [21]. Having multiple sub-
populations on separate ‘islands’ helps to preserve genetic
diversity, as it allows each island to explore a different
area in the solution space, mimicking the role of locality
on biodiversity. In our evolutionary algorithm, each island
operates a different fitness function corresponding to one
of the risk metrics in Table II. After a certain number of
generations, the fittest solutions are taken from each island,
and this new elite population is used to repopulate all of
the islands. The advantage of this system is that it preserves
genetic diversity while at the same time favouring robust
solutions that satisfy the requirements of a range of risk
metrics.

C. Algorithm Structure

Solutions are modelled as a series of weights, reflecting
the percentage allocation of investment for each of the stocks
in the S&P 500. Weights can either be positive or negative,
allowing the portfolio to be long or short on any stock.
The solution string is a series of 500 weights, the absolute
values of which are normalised to total 100%. To initialise
the population, solutions are created for each island using
randomised weights.

We experimented with several techniques for selection,
including fitness proportionate selection and tournament se-
lection. Tournament selection was identified as being the least
likely to lead to stagnation. Using this technique, a fixed-size
random sample is selected from the current population and
the fittest pair of solutions in the sample is recombined to
produce an individual in the next generation. The process

is repeated until a full population has been created from
the current generation (see [22]). The selection pressure of
tournament selection is directly linked to the size of the
tournament: the larger the size, the less likely it is that unfit
solutions will contribute to the next generation.

For the recombination process, we experimented with
averaging the weights between the two parents and random
point crossover. Random point crossover was found to be less
likely to lead to stagnation. Using this technique, two random
positions are chosen along which the parent solution strings
are divided. One portion of the string from one parent is then
joined with the portion of the string from the other parent,
creating a new individual with features of both parents.

Fig. 3. Selection and recombination processes.

The mutation rate of a genetic algorithm is often handled
as a global, external parameter which remains constant over
time. However, it may be desirable to reduce the number of
external parameters of a genetic algorithm, so that the range
of the search space and the manner in which it is searched
are not artificially constrained (see [23]).

Accordingly, three mutation parameters are included as
part of the solution string, which are themselves subject to the
mutation process. The first parameter encodes the percentage
probability of a solution being modified. The second param-
eter encodes the percentage probability of each individual
weight in the solution being modified, while the third encodes
the absolute magnitude of the random mutation.

A final component included as part of the genetic algo-
rithm is a process for eliminating insignificant weights. Each
additional investment included in a portfolio incurs a cost to
actively trade it. To make the portfolio simpler and more
manageable, the algorithm zeroes any investment weightings
of less than 0.2% (i.e. one five hundredth).

D. Evolutionary Process

A set of genetic algorithms are run in parallel, with
each island population being fitted to one of the four risk



metrics. After a set number of generations, the migration
process is triggered, whereby the fittest solutions on each
island are gathered together and this pool is used to re-
seed the populations of all of the islands, thereby enhancing
genetic diversity. Diagrams of the selection, recombination
and migration processes are shown in Figures 3 and 4.

Fig. 4. Migration process.

Once the genetic algorithm has completed a specified
number of generations, the fittest individual for each of the
four metrics is identified and a voting process is used to
select an overall champion. Each solution receives 4 points
for being ranked in first place by one of the metrics, 3
points for second, 2 points for third and a single point for
being ranked in last place. The solution gaining the highest
number of votes is chosen by the algorithm as the overall
fittest solution.

The input parameters to the program follow the syntax
(〈P 〉, 〈T 〉, 〈G〉, 〈N〉, 〈M〉), where P is the total seed popula-
tion across all of the islands, T is the tournament size, G is
the total number of generations, N is the number of islands
and M is the number of generations between migrations.

V. FINANCIAL DATA

The evolutionary algorithm was written in Python and
processed daily changes from the S&P 500 companies,
downloaded from the Yahoo! Finance website. The S&P
(Standards and Poor’s) 500 is an index of the stocks of the
top 500 publicly held companies that trade in either the New
York Stock Exchange or the NASDAQ, the two largest stock
exchanges by market capitalisation in the world.

In this study we used three years of daily price changes,
with the training data beginning on July 22nd 2008 and
finishing on January 1st 2011, and the test data covering
the period from January 1st to May 31st 2011. This sample
happens to coincide with the credit crunch and global finan-
cial crisis which ensued following the collapse of Lehman
Brothers, which filed for bankruptcy on September 15th
2008. The goal of the study was to investigate whether a
portfolio identified based on 30 months of historical data

could be held for the subsequent 5 months and be expected
to generate a profit above the risk-free investment rate. This
risk-free rate was defined as the returns on short-term US
Treasury bills for the period.

In conventional single period portfolio optimisation, port-
folios are allocated for a single upcoming period (see [1]).
In multi-period optimisation, the portfolio is rebalanced to
a specified allocation at the end of each period, a strategy
known as Constant Proportion (CP), or Constant Ratio Asset
Allocation (CRAAL) (see [24]). This maintains the relative
contribution of each asset in the portfolio. In light of the
length of the training period, we applied daily re-balancing
to prevent stocks with large increases from dominating the
portfolios.

VI. RESULTS AND DISCUSSION

The genetic algorithms were successful in identifying
portfolios which, in hindsight, delivered outstanding perfor-
mance. Had these solutions been available at the start of the
training period, they could have been leveraged against the
risk-free borrowing rate to provide very significant returns
(see Figure 5).

Generated By
Evaluated By Metric 1 Metric 2 Metric 3 Metric 4
Metric 1 0.133 0.508 .064 .174
Metric 2 0.063 0.291 .069 .301
Metric 3 0.011 0.058 .018 .326
Metric 4 -0.006 -0.049 .084 .356
Parallel 0.127 0.600 .040 .135

TABLE III
AVERAGE METRIC VALUES FOR 10 RUNS OF THE GENETIC ALGORITHMS

ON HISTORICAL DATA USING (〈P 〉, 〈T 〉, 〈G〉 AS (1000,5,100) FOR THE

INDIVIDUAL METRIC ALGORITHMS AND (〈P 〉, 〈T 〉, 〈G〉, 〈N〉, 〈M〉) AS

(1000, 5, 100, 4, 25) FOR THE MULTI-OBJECTIVE ISLAND ALGORITHM.

An overview of the performance of the various evolution-
ary algorithms, in isolation and in parallel is given in Table
III, as averaged over 10 runs. Each row refers to the average
of the top solutions produced by a specific fitnessfunction
and each column involves a different metric for evaluating
the performance of those solutions.

The results reveal that the parallel islands model was
extremely successful in enhancing the quality of the solutions
produced. The migratory system reduced the probability of
premature stagnation, and the use of multiple risk metrics op-
erating in parallel broadened the search space and facilitated
the identification of more robust solutions. On average, island
solutions had a SR that was nearly as good as solutions fitted
specifically to this metric (0.127 versus 0.133 respectively).
They also had the best average value for metrics 2 and 4
and the second best for metric 3. Interestingly, the solutions
optimised to metrics 2 and 4 did not, on average, produce the
fittest solutions for those metrics. This observation highlights
the importance of maintaining diversity in the population
pool and provides further support for the effectiveness of
multi-objective optimisation [19].



One of the central questions this study seeks to answer is
how well portfolio solutions optimised to fit historical data
perform on future data. We applied the solutions generated
by the islands algorithm to the test data, which covered
the subsequent five months of price changes. Performance
above the risk-free rate here would indicate that portfolios
optimised to historical data can be predictive of future
returns. Table IV shows the average performance on the
training and test data for the same 10 islands solutions used
in Table III.

Metric 1 Metric 2 Metric 3 Metric 4
Training 0.127 0.600 .040 .135

Test -0.117 -0.712 .031 .871

TABLE IV
AVERAGE PERFORMANCE ON TEST DATA OF THE FITTEST SOLUTIONS

GENERATED BY 10 RUNS OF THE PARALLEL EVOLUTIONARY

ALGORITHM.

In total, 8 of the 10 solutions generated negative returns
relative to the risk-free rate, resulting in a negative average
value for metrics 1 and 2. Because of these negative returns,
the maximum fall duration covered a significant portion of
the test period, resulting in a high average value for metric
4. The low average value for metric 3 reflects the fact that,
in general, the investments flat-lined during the test period.
There was no significant correlation for any metric between
training and test performance values. These results clearly
reveal that portfolios optimised to historical data fail to
sustain their performance into the future.

Figure 5 charts the performance of the fittest solution
identified for each metric. In every case, the value of the
investment can be seen to markedly flat-line at the transition
point. Because these portfolios include both long and short
investments in the S&P 500 companies, they are mostly
dollar neutral. Solutions consist of long investments on stocks
which steadily increased over the training period and short
investments on stocks which steadily decreased. These trends
have failed to continue into the test period, with the result
that the portfolios have reverted to neutral price fluctuations,
failing to match the risk-free rate and pushing the portfolios’
SRs into negative territory. Interestingly, the average daily
volatility decreased from 0.39 during the training period to
0.22 during the test period, reflecting the transition from
strong growth to stability.

The consistency in daily volatility between training and
test periods indicates that risk can be successfully reduced
by diversifying asset allocation: a diversified portfolio will
remain diversified because the characteristics which describe
the relationships between stock movements are enduring.
However, the results bring into question the assumption that
portfolios can be optimised for future growth. As evidence by
Figure 5, The historical performance identified by the genetic
algorithms is fluky as opposed to representing a persistent
characteristic of the portfolios generated.

Fig. 5. Performance of the fittest solutions identified for metrics 1, 2, 3
and 4.

The principle contributor to this overfitting is the large
number of free parameters that the solution strings can avail
of. For instance, the portfolios evaluated in Table IV contain
an average of 303 weighted investments. The more free
parameters available, the greater the extent to which random
noise can be manipulated to produce an apparent pattern.

Consider, for example, a situation where a set of time
series is generated by a random walk signal. The more
free parameters that are available, the more successfully
these random signals can be combined in a portfolio to
produce what appears to be a steadily increasing signal.
Yet, because the constituent components are entirely random,
the portfolio’s performance on future data will flat-line,
following the law of large numbers [25].

Effectively, it is the choice of free parameters that is doing
the work of creating the pattern, as opposed an intrinsic sig-
nal in the constituent time series. The more free parameters
that are available, the less significant is the identification of
a particular pattern.

The problem with the genetic algorithms used in this
study is that they fail to factor in how the number of
free parameters available diminishes the significance of the
resulting solutions’ performance. As a result, it is not certain
that the quality of the solutions exceeds that which could be
achieved through the manipulation of random signals.

VII. GENERAL DISCUSSION

The efficient-market hypothesis [26] proposes that the
instantaneous pricing of a security fully incorporates the
expectations of all market participants and hence any subse-
quent movement in price is random; no profit can be derived.

Recently, the validity of this hypothesis has been called
into question, with statistical support emerging for both
short and long-term inefficiency in global markets, and clear
evidence of speculative economic bubbles [27]. As a result,
financial investment companies are engaged in an ongoing
’algorithmic arms race’ to develop increasingly complex
automated strategies for extracting profit from securities
trading. It was estimated that by the end of 2010, approxi-
mately 53% of all trading in equities was carried out through
automated trading [28].

As knowledge of simpler strategies for exposing inefficien-
cies has entered the public domain, the bar for effective trad-
ing algorithms has continued to rise. Currently, hedge funds



use complex short-term mean-reversion portfolios involving
large numbers of securities and significant computational
infrastructure to derive profit.

As a result of this continuously rising standard, one would
expect any remaining inefficiencies in the market to be
difficult to identify. It may be the case that exploiting such
inefficiencies requires high-frequency trading, as opposed
to holding a portfolio over a period of months, as was
investigated in this study.

A. Adjusting for selection bias

The parallel multi-objective optimisation algorithm we
developed succeeded in identifying highly profitable low-risk
portfolios for the training period. Yet these portfolios failed
to produce risk-adjusted returns for subsequent test data.

These results highlight an important observation: it is not
only the performance of a portfolio that matters (i.e. risk
/ return) but also the manner in which it was constructed
or identified. No matter how convincing the historical per-
formance of a portfolio, this alone cannot be relied on to
predict performance in the future. For example, although
the solutions presented in Figure 5 might have seemed like
outstanding investments on January 1st 2011, the significance
of their performance is completely neutralised by the fact
that they have been specifically selected for this feature. As
well as being risk-adjusted, portfolio performance must be
adjusted for selection bias before it can be meaningfully
interpreted.

Counter-intuitively, the size of the search space that was
available during a portfolio’s construction has a direct bear-
ing on the significance of its performance. Consider the sit-
uation where an acquaintance tells you about an outstanding
portfolio manager who has generated substantial risk adjusted
returns for their clients over the past few years. The key
question that must be asked here is how the investment
opportunity has been identified. If it has been selected
from among a much larger group of potential investments
specifically because of its performance, then this serves to
lower the significance of its historical returns: the larger the
search space, the more likely a spuriously strong performance
signal will arise by chance.

Future work might involve adjusting fitness functions so
that they take into account the effect that free parameters
have on decreasing the significance of historical portfolio
performance. For example, solutions could be penalised for
the number of companies included in the portfolio. Each
additional asset would need to justify its inclusion by pro-
viding additional performance beyond that which could be
expected by chance, in light of the broadening of the search
space. Observations based on the optimisation of purely
random data could be used to adjust for selection-bias when
optimising real-world data.

B. Adjusting S&P 500 returns for selection bias

Given our findings, it is not possible to definitely rule
out the possibility that static long-term portfolios can deliver
real risk-adjusted returns. Further research is required to see

if strategies which adjust for selection bias might succeed.
Different time periods and stock markets should also be
investigated before conclusions are drawn.

However, it is worth noting that analyses of hedge fund
performance suggest that even complex investment strate-
gies fail to deliver risk-adjusted returns. For example, Lay
[29] observed that funds delivering the best performance in
one period seldom perform well in the subsequent period,
with the result that fund portfolios constructed using SRs
produce dismal results. Hedge funds use the latest technol-
ogy and advanced trading strategies to generate profits for
their clients. If any financial time series were to exhibit a
performance signal, one would expect hedge funds to fall
into this category, given their position at the pinnacle of
financial modelling and high frequency trading. Yet, the
inconsistency of hedge fund returns suggests that even the
performance of the most experienced fund managers using
the most sophisticated investment tools is no better than that
which could be achieved by gambling in a casino [29].

These observations seem to be at odds with the commonly
accepted wisdom that the stock market outperforms risk-
free assets over the longer term, as supported by the fact
that U.S. equities delivered an average of 4.3% real annual
return during the 20th century [30]. However, Jorion and
Goetzmann have argued that reliance on historical U.S. data
for long-term estimates of expected returns is a serious
problem [30]. They argue that such estimates are subject to
survivorship bias, in that the U.S. has been specifically iden-
tified by investors because of a historical level of economic
success which may not endure. They reveal that the high
equity premium obtained for U.S. equities during the 20th
century was the exception rather than the rule, with only a
0.8% return registered on average worldwide. Indeed, in the
first decade of the 21st century, the total real return on an
investment in the S&P 500 was -3.4%, even when taking
dividends into account. It may be the case that investors
who made significant profits from U.S. equities in the 20th
century were relying more on luck than on prescience. Jorion
and Goetzmann’s findings suggest that, as well as being
risk-adjusted, long-term historical returns from the S&P 500
should also be adjusted for selection bias.

VIII. CONCLUSION

In conclusion, we have developed a novel evolutionary
algorithm for optimising portfolio selection based on a multi-
objective analysis of historical data. Although the algorithm
successfully identified strong solutions, performance on test
data suggested that the significance of these solutions was not
above chance. Further study is required to ascertain whether
compensating for overfitting can facilitate the identification
of portfolios with a genuine risk-adjusted return.
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