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In this article we explore the relationship between learning and the conjunction fallacy. The

interpretation of the conjunction effect as a fallacy assumes that all observers share the

same knowledge, and that nobody has access to privileged information. Such situations

are actually quite rare in everyday life. Building on an existing model of surprise, we prove

formally that in the more typical scenarios, where observers are alert to the possibility of

learning from event outcomes, the conjunction rule does not apply. Scenarios which

have been engineered to produce the so-called conjunction “fallacy” (e.g., Tverksy and

Kahneman, 1983) often imply subjective uncertainty and hence the possibility of learning.

In Experiment 1 we demonstrate that when these scenarios are rephrased so as to

eliminate subjective uncertainty, the effect is mitigated. In Experiment 2 we demonstrate

that when subjective uncertainty is reduced by allowing participants to learn about

the mechanism behind a conjunction-inducing scenario, the conjunction effect again

diminishes. We conclude that the conjunction effect arises due to the unnaturalness of

interpreting verbal descriptions in terms of a situation in which all observers share the

same knowledge. Instead, when people hear descriptions of real world situations, they

are likely to assume that learning is possible, and that subjective rather than objective

uncertainty applies.

Keywords: conjunction fallacy, learning, probability theory, informativeness, randomness deficiency, surprise,

subjective uncertainty, subjective likelihood

1. INTRODUCTION

Every day, people deploy their knowledge to carry out a bewildering array of cognitive tasks,
ranging from motor tasks to perception, to reasoning and decision making. This knowledge is
tenuous. Not only are the facts themselves uncertain, but so too are the assumed causal models
that allow facts to be inferred in the first place. At any moment we may be faced by a surprising
revelation which requires us to fundamentally re-evaluate our representation of what we thought
was the case. As such, our knowledge is not set in stone, but continually modified, resulting in a
dynamic and ever changing mental representation of the world.

In this article we highlight the fact that there are two very different types of uncertainty, one
we refer to as “objective uncertainty,” which is shared by all observers and does not result in
any representational updating, and the other we refer to as “subjective uncertainty,” which is
asymmetric, and causes different people to learn in different ways. These two types of uncertainty
invoke different sets of probabilistic rules, a divergence which, we will argue, lies behind the
conjunction effect. Specifically, most scenarios in everyday life involve subjective uncertainty, for
which the conjunction rule does not hold.
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1.1. Objective Uncertainty
Objectively uncertain outcomes are those that involve pure
randomness, from which no learning takes place. Each event is
independent, and completely unconnected to the next.

When we roll a dice, for example, and observe the result, it
does not lead us to update our expectations for future rolls. We
already know everything about the dice. Such gambling tools
are designed to guarantee that everybody is equally uninformed.
Nobody can have privileged knowledge of a fair dice.

Over the last century, probability theory has emerged as
the ubiquitous approach for modeling objective uncertainty.
At its heart lies the assumption that all observers share the
same information: probabilities are expressed relative to a
fixed stochastic model, which is available to all observers. The
theory was formalized by Kolmogorov in the 1930s through the
notion of probability space, whereby a set of possible outcomes
is mapped to a number that represents its likelihood by a
probability measure function.

In this context, the concept of a repeated experiment, which
is central to the frequentist interpretation of probability, is
applicable. The uncertainty is objective in the sense that there is
a fixed stochastic model which processes randomness, and this
model can be sampled repeatedly without changing one’s beliefs
about the model. If we agree with all of these assumptions, then
a person who judges the sequence of coin tosses HTHHTH as
more likely than HHHHHH is reasoning fallaciously, since both
are equiprobable (Griffiths and Tenenbaum, 2004).

1.2. Subjective Uncertainty
The types of situations in which probability theory excels are
those for which a precise and reliable stochastic model can
be identified, leading to high confidence in the assumption of
independent outcomes. In other words, probability works for
situations involving objective uncertainty, where everybody is
equally uncertain as to what will happen next.

In economics and decision-making research, the term
“Knightian uncertainty” is used to describe the type of
uncertainty which results from reaching a fundamental limit to
knowledge (e.g., quantum decay; see Knight, 1921). Such barriers
ensure that future events are genuinely unpredictable, and hence
that all observers are equally placed to judge outcomes. Knightian
uncertainty is necessarily objective, as no observer can get an edge
over any other.

In the real world, however, situations involving Knightian
(i.e., shared) uncertainty are extremely rare. Instead, people
typically expect to learn from their observations, with each
individual learning at different rates, and holding different levels
of insight. Rather than assuming a fixed model of reality, people
are sensitive to any patterns that link outcomes together, thereby
suggesting the presence of a superior underlying explanatory
model (e.g., is there something I don’t know that other people
might know?; see Schmidhuber, 2009; Maguire et al., 2018). This
idea, that outcomes can be subjectively informative, clashes with
a core assumption of probability theory, namely that successive
outcomes should be treated as independent of each other.

When we henceforth use the terms “subjective” and
“objective” uncertainty in this paper, we are referring, not to the

holder of the uncertainty, but to the issue of whether outcomes
are viewed as dependent or independent. Ramsey (1926) for
instance, showed that the laws of probability can be satisfied by
a “subjective” idiosyncratic belief system. He suggested that the
degree of probability that an individual attaches to a particular
outcome can be measured by finding what odds they would
accept when betting on that outcome. As long as people’s internal
beliefs remain probabilistically coherent (e.g., the probability
of an event and its negation must sum to 1; see Coletti and
Scozzafava, 2002), then any such system will work. However,
when we use the world “subjective,” we are referring, not to
the personalization of probability in terms of belief (e.g., as per
Jeffrey’s, 2004 presentation of subjective probability), but to the
issue of learning from observation. Because it assumes outcome
independence, classical probability cannot be used to quantify the
likelihood of informative events.

For example, what if a tossed coin repeatedly shows heads
10, 100, or even 1,000 times in a row? Classical probability
theory says that 1,000 heads in a row is just as likely as any
other particular sequence of 1,000 coin tosses, so no need to
do anything. But in the real world, would we really accept this?
Would we be so confident as to maintain the assumption of
independence between coin tosses? The greater the deviation
from a typically random sequence, the more our faith in the
neutrality of the coin is tested. We know that somebody might
be tricking us. A repeated pattern of heads appears to leak
subjective information about some bias in the coin. This lack
of absolute faith in outcome independence reflects a source
of “subjective uncertainty” that is incompatible with classical
probability theory.

Even generative mechanisms which are strongly believed to
be random can produce sequences that expose latent subjective
uncertainty, and lead people to question the assumption of
independent outcomes. Such an event occurred in 2009 in the
Bulgarian national lottery, when the same set of six numbers
was drawn in two consecutive draws. An unprecedented record
number of 18 people shared the winnings from the second
draw, having correctly anticipated a repeat of the previous week’s
numbers. The officials of the lottery insisted that manipulation
was impossible and that it must have been a freak co-incidence.
Nevertheless, the Bulgarian minister of Physical Education and
Sport established a commission to investigate the incident,
indicating a lack of complete confidence in the randomness of
the draw. Maybe the balls were not equally weighted, maybe the
drum mechanism was defective, or maybe the lottery officials
were corrupt. In sum, the occurrence of the same set of
numbers on two consecutive occasions was so surprising that it
served to undermine confidence in the assumption of objective
uncertainty.

In classical probability theory, the probability distributions
themselves remain invariant. However, in the case of subjective
uncertainty, observers learn from outcomes and update their
expectations accordingly. The invariant in this case is a system
for extracting and processing the information derived from
observations. Adherence to a fixed stochastic model (i.e.,
assuming outcomes are independent of each other) precludes
any possibility of learning, a disposition which Baldi and Itti
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(2010) argue would be detrimental to survival if applied in the
real world. In contrast, observers have to be ready to change their
beliefs, which means they need to be receptive to the signals of
leaked subjective information, a phenomenon which has been
referred to as “surprise.”

2. SURPRISE

Both Baldi and Itti (2010) andMaguire et al. (2018) have provided
converging theories of surprise which model how people learn
from subjectively uncertain outcomes, one based on Bayesian
probability and the other on algorithmic information theory.

Whereas classical probability is founded on certainties and
fixed causal models, Bayesian probability instead focuses on
subjective uncertainties and inductive inference. It extends the
classical approach by viewing probability not as an objective
phenomenon, but as the state of knowledge of an uncertain
observer, a state which is therefore subject to refinement (see
Baratgin, 2015). It is an approach that has proved useful for
psychological modeling, having been applied to a wide range of
cognitive phenomena (e.g., Howson and Urbach, 1991; Pearl,
2001; Chater et al., 2006; Oaksford and Chater, 2007; Darwiche,
2009; Griffiths et al., 2010; Lee, 2011; Tenenbaum et al., 2011;
Barber, 2012).

Baldi and Itti (2010) use the Bayesian framework to deliver
a model which quantifies the surprisingness or “subjective
informativeness” of an observation. Specifically, they suggest that
the amount of information that a set of data contains relative to
an observer can be measured by the size of the effect the data has
on the observer. The amount of learning that has taken place is
quantified in terms of the relative entropy (i.e., Kullback-Leibler
divergence) between the prior and posterior distributions.

Experimental results have reinforced the value of Baldi and
Itti’s (2010) surprise notion. For example, they found that it yields
a robust performance in predicting human gaze across different
spatio-temporal scales, modalities, and levels of abstraction (Itti
and Baldi, 2005), while Schauerte and Stiefelhagen (2013) have
shown that it can also be applied to detect salient acoustic events.

One issue with Baldi and Itti’s (2010) formulation of surprise
is that computing it requires identifying a set of relevant
hypotheses. Maguire et al. (2018) provide a more generalized
theory of surprise based on algorithmic information theory (AIT;
see Li and Vitányi, 2008). Whereas Baldi and Itti’s (2010) model
expresses the informativeness of an observation relative to a
pre-defined set of competing hypotheses, Maguire et al.’s model
expresses subjective informativeness in terms of the universal
likelihood measure of randomness deficiency (see also Maguire
et al., 2014, 2016).

Maguire et al.’s (2018) idea is as follows: surprise is the
normalised difference between the probabilistic point of view,
which treats observations as independent (i.e., it assumes that
the uncertainty is objective), and the computational point of
view, which gives the shortest possible description of a set
of observations (i.e., it allows for the possibility of learning).
For example, from the probabilistic point of view the coin
tossing outcome string “HHHHHHHHHHHHHHHHHHHH”

requires 20 bits to encode, because each bit is independent.
However, from the computational points of view the string
can be succinctly described in terms of a computer program
which says “print 20 Hs.” Accordingly, the outcome of getting
20 heads in a row when tossing an unbiased coin is viewed
as surprising. Once we accept that outcomes are not always
independent of each other, the pattern of outputs can convey
information, leading us, for example, to conclude that a given
coin must be biased (see Maguire et al., 2018). The more the
probabilistic encoding deviates from the shorter computational
encoding, the greater the level of surprise. This framework is
consistent with explanation-based accounts of surprise (e.g.,
Maguire et al., 2011; Foster and Keane, 2015) and AIT-based
theories of interestingness (e.g., Dessalles’ Simplicity Theory,
Dessalles, 2006; Schmidhuber, 2009).

The surprise of a string x is a measure of the randomness
deficiency of the string relative to the length of its probability-
based encoding, i.e., S(x) = δ(x|p)/ log 1/p(x). It is a normalized
value between 0, 1 up to a logarithmic factor. This measure gives
us bits of surprise per bit of observation, in other words, the
proportion of the probability-based encoding that is superfluous
according to the computational point of view. The more an
observation can be compressed (i.e., the greater the discrepancy
between the probabilistic and computational points of view), the
greater the associated level of surprise.

Maguire et al. (2018) show that these two notions of surprise,
one Bayesian and the other AIT-based, converge at the limit.
Either system can be successfully used to model subjective
uncertainty. Nevertheless, Maguire et al. suggest that the AIT
approach may prove more amenable to modeling instantaneous
“hypothesis-neutral” surprise in open contexts, since it eliminates
the requirement of identifying and evaluating a set of competing
hypotheses. Instead, the level of surprise is baked into the
encoding scheme: the more succinctly the event can be described,
the more surprising it is.

2.1. Quantifying the Likelihood of
Surprising Outcomes
These theories of surprise (Bayesian and AIT-based) allow us
to quantify the subjective informativeness of observations, and
thus model how people reason about the likelihood of outcomes
that could potentially leak subjective information (i.e., surprising
outcomes; outcomes that involve learning).

In the case of a surprising lottery sequence such as the
Bulgarian example, the two possible explanations, “biased
draw” and “coincidence”, are incommensurable. In order to
apply probability theory, a single invariant model of reality
must be identified, which supports the notion of a repeated
experiment (Hohenberg, 2010). But assuming one of these
scenarios would be a mistake, because we don’t actually know
which one is the case.

The problem here is that outcomes can precipitate learning,
which alters the underlying probability distributions. Different
outcomes cause different learning, resulting in different
perspectives, so there is no single stable frame of reference
that can be used to compare and contrast potential outcomes
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(see Zhao and Osherson, 2010; Oaksford and Chater, 2013;
Hadjichristidis et al., 2014). Specifically, surprising outcomes
alter beliefs about the underlying model, rendering the notion
of a repeated experiment inapplicable. Without any objective
grounding relative to which the concept of independence can
be expressed, there is no agreement on what it is that should be
repeated.

One possibility is to use subjective informativeness as
a measure of likelihood. As clarified by Shannon (1948),
probability and information are the inverse of one another. The
likelihood of an event relative to an observer is the inverse of
how much information its occurrence would convey to that
observer. Shackle (1961) originally proposed that the likelihood
of events featuring an element of subjective uncertainty could
be quantified in terms of potential surprise, thus establishing
an inverse relationship between the concepts of surprise and
likelihood (Fisk, 2002; see also Christensen, 1979; Katzner, 1986;
Fisk and Pidgeon, 1997; Lagnado and Shanks, 2002; Tentori
et al., 2013). Our contribution to the approach of quantifying
likelihood in terms of surprisingness is to provide a formalized
measure of subjective informativeness. While Baldi and Itti’s
(2010) measure could equally be used, Maguire et al.’s (2018)
quantification is expressed on a scale of 0 to 1, just like
classical probability, thus lending itself naturally to such an
application.

Quantifying subjective informativeness secures a stable
perspective which restores the validity of the frequentist
perspective on which appraisals of likelihood depend. The
repeated experiment in this case is the act of being surprised.
Given the set of all observations, how frequently is it that an
observation forces a representational update of this magnitude?
In other words, “how frequently does an observation of this
type happen to make me this surprised; how frequently does it
communicate this amount of information to me personally?” For
situations involving asymmetric information, informativeness
and likelihood are observer-relative constructs, and differ from
person to person.

We contend that most of the reasoning about likelihood
that people do in everyday life is based on quantifications of
subjective informativeness. Very rarely, except when playing
games of chance, do people reason about the relative likelihood
of outcomes that involve objective uncertainty.

One interesting difference between judgements involving
objective and subjective uncertainty is that they do not follow the
same logical rules. In particular, while classical probability, which
assumes outcome independence, obeys the conjunction rule,
subjective likelihood, which recognizes patterns in outcomes,
does not.

Because additional conjunctive events can serve to reduce
randomness deficiency, thus increasing subjective likelihood,
the addition law of probability, P(A ∪ B) = P(A) +

P(B) − P(A ∩ B), no longer holds. For example, the coin
toss pattern HHHHTT features less randomness deficiency than
HHHH, even though the latter is more probable if we assume
informational symmetry. The fact that subjective likelihood
considers the informational content of an outcome relative to
an observer’s existing representation (as opposed to “objectively”

for all possible observers) adds an additional dimension which
undermines its monotonicity.

In the following section we formalize this result by
demonstrating that for every situation involving subjective
uncertainty there is a conjunction of events which is less
surprising (i.e., more subjectively likely) than either of its
constituents in isolation.

2.2. The Conjunction Rule Does Not Hold
for Subjective Uncertainty
We prove that given any hypothetical model p, there are always
two strings of events x, y, such that x is a substring of y but y has
higher subjective likelihood. The idea of the proof is that any long
enough typical string of events can always be decomposed into a
substring of events that carries greater subjective information.

Theorem 1. Let E1,E2, . . .Em be m independent events, and let
p be the associated computable probability measure function. Let
α > 0 be a surprise threshold. There exists a conjunction of events
A = A1 ∧ A2 ∧ . . . ∧ An with a constituent B (i.e., p(A) < p(B))
such that B is (p,α)-surprising (i.e., has a subjective likelihood of
<1) and A is (p,α)-typical (i.e., has a subjective likelihood of 1).

Proof.

Let E1,E2, . . .Em, p and α > 0 be as above. Without loss
of generality m = 2k and p can be seen as a probability
on strings of length k (each coding one event Ei) extended
multiplicatively i.e., p : 2k → [0, 1] is extended multiplicatively
by p(xy) : = p(x)p(y).

Let n be a large integer. Let y ∈ 2kn be a (p,α)-typical string.
y can be viewed as the concatenation of n strings of length k (i.e.,
the conjunction of n events). By the pigeon hole principle, there
must be such a string that occurs at least n/2k times. Denote this
string by s, and let l be the number of occurrences of s in y, i.e.,
l ≥ n/2k. Because y is (p,α)-typical, we have p(s) > 0. Thus
p(s) = 2−c for some c > 0. Let x be l concatenations of s. Because
p is extended multiplicatively, we have p(x) > p(y).

Let us show that x is (p,α)-surprising. To describe x it suffices
to describe l plus a few extra bits that say “print s l times.” Since l
can be described in less than 2 log l bits (by a prefix free program)
we have K(x) < 3 log l for n large enough. We have

− log p(x)− α = − log p(sl)− α = − log p(s)l − α

= −l log 2−c − α = cl− α > 3 log l > K(x)

≥ K(x|p∗)

for n large enough. Thus x is (p,α)-surprising, but y is not, which
ends the proof. The conjunction rule does not hold for subjective
likelihood.

In the remainder of the article we investigate whether evidence
in support of the so-called conjunction “fallacy” might instead
reflect the interpretation by participants of subjective uncertainty
in the experimental scenarios. Specifically, we investigate whether
rephrasing scenarios to be more objectively uncertain mitigates
the conjunction effect, and whether giving participants the time
necessary to “learn away” their subjective uncertainty mitigates
the conjunction effect.
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3. INVESTIGATING THE CONJUNCTION
EFFECT

Since the 1970s, the dominant view in psychology and behavioral
economics has been that humans are prone to making sub-
optimal decisions (see Kahneman, 2011). Support for this view
depends on the assumption that everyday reasoning should
conform to the ideals of probability theory. Where human
behavior has been found to deviate from that expectation,
participants’ decisions have often been interpreted as irrational.

A well-documented example of this supposed irrationality
is the conjunction effect, whereby people consistently rate a
conjunction as more probable than its constituents in isolation
(e.g., Tverksy and Kahneman, 1983; Bar-Hillel and Neter, 1993;
Fisk, 2002; Lagnado and Shanks, 2002; Sides et al., 2002; Sloman
et al., 2003; Stolarz-Fantino et al., 2003; Tentori et al., 2004;
Fisk et al., 2006; Crupi et al., 2008; Nilsson, 2008; Wedell and
Moro, 2008; Moro, 2009). Given its salience, the continuing lack
of a generally accepted explanation for the conjunction effect is
remarkable (Pohl, 2004; Nilsson et al., 2009; Jarvstad and Hahn,
2011).

Nilsson et al. (2009) identify three categories of proposed
explanations, namely the representativeness heuristic (Tverksy
and Kahneman, 1983; cf. Gavanski and Roskos-Ewoldsen, 1991),
misinterpretation of the language used (Hertwig and Gigerenzer,
1999; cf. Tentori et al., 2004;Wedell andMoro, 2008; Tentori and
Crupi, 2012), and the effectiveness of heuristics in noisy real-life
environments (e.g., Costello, 2009; Juslin et al., 2009).

All of these explanations assume that probability theory
provides the normative rules for quantifying likelihood. For
instance, even Juslin et al. (2009), who conclude that “the
axioms of probability theory may in the end afford little or
no benefit at all” (p. 870) still treat the conjunction effect as a
fallacy: “This is not to deny the normative status of probability
theory. Neither do we claim that it is logical or rational
per se to commit the conjunction error...it is an intellectual
embarrassment” (p. 870).

An alternative approach is to question the appropriateness
of probability theory itself in this context (see Oaksford and
Chater, 2001). Proponents of a “new paradigm of reasoning”
(see Oaksford and Chater, 2007; Over, 2009) argue that logic
is inadequate to account for performance in reasoning tasks,
as reasoners must use their everyday uncertainty reasoning
strategies, whose nature is probabilistic. For example, Cruz et al.
(2015) found that participants’ decisions were coherent under the
assumption that they interpreted natural language conditionals
as represented in Bayesian accounts of conditional reasoning,
but incoherent under the assumption that they interpreted
natural language conditionals in terms of elementary binary
logic.

As previously discussed, the use of classical probability
assumes that outcomes are independent of each other. While
artificial games of chance approach this ideal, virtually all of the
reasoning that takes place in everyday life involves subjective
uncertainty, where observers learn from their observations and
update their representations accordingly. Consequently, we do
not believe that classical probability provides the normative rules

for quantifying likelihood in the context of everyday human
decision-making.

We hypothesize that the scenarios employed by Tverksy
and Kahneman (1983) imply subjective uncertainty, thus
undermining the applicability of classical probability theory and
the conjunction rule. For example, results reported by Tentori
et al. (2013) suggest that the added conjunct must be “supportive”
of the original proposition, hinting that the conjunction
effect may be founded on the reduced surprisingness of the
conjunction, an effect they refer to as “inductive confirmation.”
When probability and confirmation are disentangled, the latter
systematically prevails as a determinant of the conjunction
fallacy (see also Politzer and Baratgin, 2016). If a conjunct
“confirms” the original proposition, then it renders the original
proposition less surprising, suggesting that the effect might be
related to surprise. Moreover, Fisk and Pidgeon (1998) found
that subjective probability judgements are significantly correlated
with judgments of potential surprise for conjunctive outcomes,
with a correlation value of−0.90 over a group of 45 statements.

In the following experiment we investigate if rephrasing
Tverksy and Kahneman’s (1983) classic scenario to reduce the
subjective informativeness of the outcomes can mitigate the
conjunction effect. Such a finding would suggest that, rather
than reasoning irrationally, people are instead correctly applying
the mechanics of subjective uncertainty to judge likelihood
in situations where they perceive themselves to be at an
informational disadvantage.

3.1. The Linda Problem
The most celebrated example of the conjunction effect involves
one of the scenarios developed by Tverksy and Kahneman (1983),
involving an individual named Linda.

Linda is 31 years old, single, outspoken, and very bright. She
majored in philosophy. As a student, she was deeply concerned with
issues of discrimination and social justice, and also participated in
anti-nuclear demonstrations.

1. Which is more probable?
a) Linda is a bank teller
b) Linda is a bank teller and is active in the feminist movement.

Tverksy and Kahneman (1983) reported that, when the two
possible outcomes are listed together as above, 85% of people
violate the conjunction rule by identifying b) as more probable.
Tverksy and Kahneman’s explanation of this response is
that people get confused by “representativeness.” Participants’
responses reflected the extent to which the descriptions matched
a stereotype, with a correlation of 0.98 between mean ranks of
probability and representativeness. Clearly, representativeness is
what people rely on to evaluate likelihood, rather than probability
theory (see Tversky and Kahneman, 1974). But is this actually a
fallacy?

In the Linda example, some information about Linda is
provided, but there is much about her that remains unknown.
What kind of person is Linda? Has she settled down since her
student days? Participants do not know the answers to these
questions, yet the experimenters might, since they are the ones
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referring to “Linda.” This scenario seems to imply the presence
of subjective uncertainty.

If we assume that the description of the Linda scenario is in
any way incomplete (e.g., the experimenters know something
about her that has not been stated), then the outcomes have the
potential to be subjectively informative, meaning that classical
probability theory cannot be applied. For example, if we find out
that Linda is a bank teller, we might infer that she has become
more conservative and has less time for activism, completely
altering our understanding of who she is. In contrast, hearing
that Linda is still active in the feminist movement suggests that
she holds the same beliefs as before. Because these two models
of Linda are incommensurable, there is no single objective model
relative to which classical probability (i.e., a repeated sample of
independent outcomes) can be expressed. The association with
representativeness noted by Tverksy and Kahneman (1983) may
simply reflect people’s use of subjective information for judging
likelihood in the face of subjective uncertainty about Linda.

3.2. Experiment 1
In order for the Linda scenario to be compatible with classical
probability theory, the outcomes must be interpreted as being
uninformative, or random, relative to the model of Linda. Instead
of being about Linda (subjective uncertainty), the uncertainty
in the scenario must be processed by the Linda (objective
uncertainty). This involves interpreting the details provided
about “Linda” as being a complete description of a stochastic
mechanism that processes randomness.

For example, in a study investigating the 2-4-6 task, Van
der Henst et al. (2002) hypothesized that most people fail the
task because it is presented in a conversationally misleading
way. Specifically, it seems as if the 2-4-6 instance of the rule
is a significant one, as opposed to a random one. In order
to undermine this interpretation, the experimenters shifted the
perspective by making the 2-4-6 appear to emerge from a
jackpot machine. Participants thus interpreted 2-4-6 as a random
selection from the set of all triples fulfilling the rule, which
significantly improved their performance at the task.

In order to achieve a similar shift in perspective, we qualified
the original Linda scenario so that the outcomes could be
interpreted as independent, random events produced by an
unchanging completely specified generative model, like the roll
of a dice, or the output of a jackpot machine.

3.2.1. Participants

One hundred and ninety-one undergraduate students from
Maynooth University participated voluntarily in this study.
These were all second year computer science students who had
previously taken introductory mathematics modules in logic,
calculus and algebra.

3.2.2. Materials and Procedure

The scenario in the qualified condition was presented as follows:
Some programmers run a filter on a large social media database.

They input the following randomly selected parameters.

1) university_degree= “philosophy”
2) marital_status= “single”

3) IQ > 130
4) name= “Linda”
5) age= 31

By chance, a single database record is returned by the filter.
Which is more probable?

a) The record states ‘occupation = “bank-teller” and
political_outlook= “feminist”’

b) The record states ‘occupation= “bank-teller”’

This qualification of the original scenario is compatible with
classical probability theory, because it clearly identifies the
description as a completely defined process for selecting a Linda
who is a random product of that stochastic model. The outcomes
“bank-teller” and “feminist” do not provide any information
about the Linda selection filter. All observers share the same
information about “Linda,” hence the conjunction rule holds.

The scenario in the original condition was presented as
follows, so as to be compatible with the information presented
in the qualified condition:

Linda is 31 years old, single, and has an IQ greater than 130.
Her university degree was in philosophy.

Which is more probable?

a) Linda is a bank teller and a feminist
b) Linda is a bank teller

Our hypothesis is that the above description invites the
interpretation of subjective uncertainty: Linda is a person,
she has more features than those stated in the description,
and the outcome provides subjective information about these
additional features. Accordingly, neither classical probability nor
the conjunction rule hold in this case. Probability is judged based
on how subjectively informative the outcomes are. Option a) is
less subjectively informative, hence more probable relative to the
observer. We therefore hypothesized that the conjunction effect
would be observedmore frequently in the original condition than
in the qualified condition.

Participants were randomly assigned either to the original
(n= 85) or qualified condition (n= 106) and selected one of the
two options, which were randomly ordered for each participant.
The task was carried out individually on a desktop PC and the
results were saved in a database.

3.3. Results and Discussion
In the original condition, 36% thought it was more probable that
Linda was a bank teller, and 64% rated the conjunction as more
probable. In the qualified condition, 61% thought it was more
probable that the selected Linda would be a bank teller, and 39%
rated the conjunction as more probable. A chi-square analysis
revealed a significant difference between the two conditions,
χ2
(1)

= 11.7, p < 0.001, thus supporting our hypothesis that

the conjunction effect would be observed less frequently in the
qualified condition.

These results reveal that the exact same description of
Linda can be interpreted in a different way when the context
in which it has been presented is qualified to suppress
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the interpretation of leaked subjective information. Without
qualification, participants are not sure what or who “Linda”
is; they experience subjective uncertainty. If the representation
of Linda is subjectively uncertain, then it is not possible to
describe the scenario in terms of a fixed stochastic model which
enjoys model-outcome independence. Finding out about Linda’s
occupation changes observers’ beliefs about the person, meaning
that the presented outcomes are not independent of each other.
Probability theory is not applicable in this instance, and the
conjunction rule does not hold.

In the qualified condition, the outcomes are random relative
to the model, and so the rules of classical probability theory
hold. The concept of “Linda” is presented, not as a person, but
as the output of a process for selecting a profile on a social
media database. In this context, the outcome of whether Linda
is a feminist or not tells us nothing about Linda the selection
process; the information is clearly objective. An equivalent
transform is achieved by Tverksy and Kahneman (1983) when
they convert their scenarios into the frequentist perspective by
asking participants how many individuals selected from a group
would match a conjunction of properties. To be clear, when data
is presented as frequencies, or as the single output of a stochastic
process, then the mechanism is objective, there is no possibility
of learning, and the conjunction rule applies. In contrast, Tverksy
and Kahneman’s original presentation of “Linda” invites the idea
of an individual for whom much information is hidden. Because
this scenario supports the possibility of learning, the conjunction
rule does not hold. We posit that the conjunction fallacy notion
which has been developed in the literature has been fueled by
a failure to appreciate this difference between objective and
subjective uncertainty.

3.4. Residual Conjunction Effect
If subjective uncertainty is eliminated by our qualification of the
Linda scenario, the question arises as to why 39% of participants
still demonstrated the conjunction effect in this condition. In
order to understand this residual anomaly we invited a sample
of participants to provide feedback regarding their decision.

Those who rated the conjunction as more likely reported
that they thought they were being asked to help decide which
of the two outcomes provided the closest match for the person
to whom the database record belonged. From their perspective,
the conjunction appeared less surprising, in other words, more
representative of an ideal Linda. They viewed the filter as an
incomplete description of a real person. In other words, these
participants assumed that they were dealing with subjective
uncertainty.

Despite our best efforts, a substantial portion of participants
still failed to interpret the description of Linda as a complete
specification of a selection process. Instead, they continued to
think of the description in terms of an incomplete representation
of an ideal, mired in subjective uncertainty (i.e., what does
Linda look like? what color is her hair? what does she like
to eat for breakfast?). Had they interpreted the description
as informationally complete, then there would have been no
question of some outcomes providing “better” matches than
others: every outcome would have been equally uninformative.
Instead, they viewed the outcomes as subjectively informative,

and, correctly given this interpretation, continued to rely
on surprisingness rather than probability theory to judge
likelihood.

These results illustrate just how counter-intuitive it is
to interpret a brief description of a person called Linda
as informationally complete. Participants taking part in a
psychological experiment expect that the experiment is designed
to test some aspect of how they naturally think and behave.
Accordingly, it makes sense for them to interpret the description
of Linda as if it was a natural everyday situation, presented in
the form of text for the sake of convenience. The description of a
person called Linda invites participants to think of a particular
person who has a personality and other idiosyncratic features,
which are known to others, yet subjectively uncertain.

In everyday life it is Linda the person that is relevant, and
never Linda the selection mechanism. The form of probability
that Tverksy and Kahneman (1983) advocate as representing
the reasonable, logical approach to dealing with uncertainty
overlooks the ubiquitous presence of subjective uncertainty in
everyday situations.

3.5. On Gambling and When to Bet
The idea that a conjunction can be more likely than either of
its constituents seems plain wrong. However, Fuchs et al. (2014)
point out that all of the rules governing the utility of likelihood
judgements are founded on a single requirement, known as
Dutch-book coherence. This form of coherence simply requires
that an observer’s likelihood assignments must never place them
in a position where they necessarily suffer a betting loss (Chater
et al., 2006).

Clearly, betting on a conjunction will never pay out as often as
betting on its constituents in isolation. Subjective likelihood thus
appears to violate Dutch-book coherency.

The key to resolving this apparent paradox is that betting
only takes place when bettors share the same information. In
situations involving asymmetric information, some competitors
will hold additional information that gives them an edge,
meaning that nobody is going to place a bet. Individuals who
are judging probability based on subjective uncertainty do not
bet, and do not expose themselves to a monetary loss. They
only use the judgment to make decisions for themselves. Indeed,
in an empirical study, Maguire et al. (2018) found that, in
situations involving subjective uncertainty, using surprisingness
tomake likelihood judgments leads people tomake decisions that
optimize their personal success.

When betting is taking place on the toss of a coin there is
complete transparency on the nature of the coin, how the coin
is going to be tossed and how the call of “heads” or “tails” will
be determined. In a fair bet, everyone shares the same objective
model of the mechanism that produces the random output, and
no outcome is subjectively informative. The outcome of the bet
never leads a bettor to update their understanding of how the
outcome was produced (or else they would not agree to pay up).
Given that there is independence between the model and the
outcomes it produces, classical probability theory can be applied.

However, in most everyday situations where likelihood
judgements must be made, knowledge of the generative
mechanism is not uniform among observers. Typically, people
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learn from their observations, adjusting their models in light
of what they experience. Because some people have access to
privileged information, betting is impossible in such situations.
Gambling only takes place when participants are confident
that everyone in the game experiences the same objective
uncertainty.

Tverksy and Kahneman’s (1983) Linda scenario does not
support betting. People assume that there are aspects of Linda’s
character that they are not aware of. They are not going to take
a bet against the experimenters, because, for all they know, the
experimenters might be personal friends of Linda. The Dutch-
book coherence supported in cases of asymmetric information is
of a “single-user” type, which applies only to observers sharing
the same idiosyncratic uncertainty (see Fuchs et al., 2014).

By contrast, the qualified Linda scenario in our experiment
supports betting. Here, the Linda scenario is no longer about
a particular individual called Linda, but rather constitutes a
definitive set of instructions for how a Linda will be selected.
Specifically, a Linda will be randomly selected from a social media
database to match the description of being 31 years old, single
etc. Betting makes sense in this case, as everybody agrees on the
model, the outcome is random relative to the model (i.e., nobody
has a privileged perspective), and hence no learning takes place.
No matter what emerges as the Linda’s current occupation, it will
not affect the bettor’s beliefs about the mechanism by which the
Linda was selected.

In sum, probability is the inverse of informativeness. When
a situation involves objective uncertainty, then everybody
identifies the same probabilities, the conjunction rule holds
and betting can take place. However, when information is
asymmetric, and subjective uncertainty applies, then different
people see different probabilities: outcomes can leak new
information, meaning that the conjunction rule no longer holds,
and betting does not take place.

3.6. Experiment 2
If it was feasible, we would replicate every experiment in Tverksy
and Kahneman’s (1983) study and, in each case, investigate
whether the conjunction effect is mitigated by rephrasing
scenarios to support the interpretation of objective uncertainty.
However, because most of their experimental scenarios invoke
specialized knowledge, they are not amenable to such rephrasing.
Ordinary participants are most unlikely to be experts in these
specialized areas. Because the scenarios invite participants to
interpret themselves as being at an informational disadvantage,
they suggest the use of subjective informativeness rather than
objective informativeness for evaluating likelihood.

For example, Sides et al. (2002), investigating whether betting
instructions would reduce the incidence of the conjunction
fallacy, posed once-off questions to participants that invoked
specialist knowledge on leukemia vaccines, cigarette taxes, and
jury selection procedures. Similarly, Tverksy and Kahneman
(1983) posed questions involving geopolitics, medical practice,
sports prediction and crime motives. Their scenario involving
pulmonary embolism, for instance, was posed to internists
taking a physician postgraduate course. Not being experts in
the field, these trainees would have interpreted the question as
one featuring the potential for learning: how surprised would

you be given this outcome; how much would you stand to
learn personally from this outcome? Nobody asks a trainee
for objective assessment of a tricky question. Instead, trainees
get asked questions for teaching purposes. Postgraduates are
learning a new skill; they should be expected to treat observations
as potentially informative, hence judging probability in terms
of subjective informativeness. This isn’t a mistake: it simply
acknowledges a position of informational disadvantage, with the
potential for representational updating to occur following an
observation.

Take as another example Tversky and Kahneman’s
Wimbledon scenario. Participants were asked to predict
what would happen in the 1981 final. “Which is more likely,” they
were asked “- that Borg will lose the first set, or that he will lose
the first set but win the match?” People who bet on sports assume
that they know as much about the event as anybody could
possibly know, that is, they assume that objective uncertainty
applies. This expert knowledge allows professional gamblers
to identify value bets. However, sports bettors only reach this
stage of objective uncertainty after years of studying a particular
game and its athletes. How many of Tverksy and Kahneman’s
93 subjects would have felt they knew enough about Bjorn Borg
to place a bet on one of his matches? Most likely zero. Hence,
those subjects, on being required to make a prediction about
the Wimbledon final, undoubtedly viewed themselves as being
in a position of informational disadvantage, undermining the
applicability of the conjunction rule.

For naive participants, the outcome of Borg losing the first
set but winning the match is more likely, because it conveys

less subjective information. This is not a fallacy, it is an
acknowledgement of not being an expert in sports betting.
Because such participants would never dream of placing a bet

on a Bjorn Borg match, there is no violation of Dutch-book
coherence: the conjunction is subjectively more likely; objective
probability does not apply. Specifically, if Bjorn Borg lost the

match, this would be surprising because Bjorn Borg is supposed
to be a great player. If this were to happen, naive observers
would have learned something about Bjorn Borg’s weaknesses.
Given Shannon’s observation that information and likelihood
are inversely associated concepts, Bjorn Borg losing is viewed
as more informative and less likely, as supported by the 72%

of participants in Tversky and Kahneman’s study who rated it
as more probable. In order for the scenario to be interpreted
as one involving objective uncertainty, Tverksy and Kahneman’s
experiment would have to be carried out with seasoned tennis

sports bettors. For these professional gamblers, neither outcome
is surprising: they’ve seen it all before and, no matter what
happens, they learn nothing new.

The only other experiment in Tverksy and Kahneman’s (1983)
study that could possibly be construed as involving objective
uncertainty is the one involving a dice. Tversky and Kahneman
asked participants to consider a dice with four green faces and
two red faces. Participants were asked if they would rather bet on

1) RGRRR
2) GRGRRR

or
3) GRRRR
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When awarded real payoffs, 65% of participants selected
Sequence 2 as most likely, while 62% selected it when the payoffs
were merely hypothetical. Sequence 1 can be obtained simply by
deleting the first G in sequence 2, therefore, according to the rules
of classical probability, the first sequence must be more likely.
This, of course, assumes that the scenario is interpreted as one
involving objective uncertainty. In this regard, there are several
mitigating factors.

Firstly, the inclusion of the third sequence, which is highly
unrepresentative, suggests that the question is targeting the
objectivity of the dice. Its inclusion hints that the sequences of
rolls should be evaluated for how much subjective information
they convey about the surprising possibility that the dice
is biased. Second, it’s not obvious that the second sequence
is contained in the first. Unless one goes counting and
matching letters, it’s not obvious that there is a conjunction
here. Tverksy and Kahneman (1983) themselves admit that
“the relation of inclusion between sequences 1 and 2 was
apparently noted by only a few of the subjects.” Finally, few
details are provided about how the experiment was carried
out. Could participants actually see a dice? Were they able to
inspect it? Did they roll it themselves? These are important
considerations as regards highlighting the objectivity of the
mechanism for deciding the outcome. In sum, it appears there
was minimal effort invested in emphasizing to participants that
the situation should be interpreted as one involving objective
uncertainty.

In the following experiment we replicated Tverksy and
Kahneman’s (1983) original red-green dice scenario in such a way
as to make it completely transparent that objective uncertainty
applied. We included only two options, the first relating to a
single rolling event, and the other relating to a pair of rolling
events. Most importantly, participants were free to repeat the
process 30 times, so that any expectations for learning could
be fully exhausted, leaving behind a state of clear objective
uncertainty.

Hogarth and Soyer (2011) investigated whether a range of
classic probability inference errors, including the Linda problem,
persist after participants are exposed to a real live version of the
problem with which they can experiment. They found that even
the statistically naive achieved accurate probabilistic inferences
after experiencing sequentially simulated outcomes. In line with
Hogarth and Soyer’s (2011) findings, our hypothesis is that, as
learning is exhausted, the incidence of the conjunction effect
should decrease.

3.6.1. Participants

One hundred and fifty-seven undergraduate students from
Maynooth University participated voluntarily in this study.
These were all second year computer science students who had
previously taken introductory mathematics modules in logic,
calculus and algebra. None of these students had participated in
Experiment 1.

3.6.2. Materials and Procedure

Before the process began, participants were introduced to a
computer simulated dice with four green faces and two red faces,
which they could roll by pressing a button. The experimenter

explained that, after making a prediction, participants would
roll the dice twice to see if the prediction was correct or not.
To incentivise focused decision-making, students were told that
the top 20 performers would earn bonus continuous assessment
marks. The question was posed as follows:

Which outcome do you wish to gamble on?

a) RED will be rolled second
b) GREEN will be rolled first, and RED will be rolled second

Participants selected an option by clicking a box on the screen.
They were also asked to select on a Likert scale “how confident
are you that you are playing the game well?.” The dice was
then rolled twice and the results displayed on the screen.
Participants were invited to repeat this process a total of 30
times, with the cumulative number of correct guesses being
tracked.

Participants carried out the task individually on a desktop
PC and the results were saved in a database. In the end, all
participants with 11 or more correct guesses were awarded the
bonusmarks, with the top performer achieving 15 correct guesses
out of 30.

3.6.3. Results and Discussion

In line with Tverksy and Kahneman’s (1983) results, there was
a notable conjunction effect on the first roll, with 96 out of 157
participants (61%) choosing the conjunction, while the other 61
(39%) gambled on the single red roll. This effect, however, quickly
diminished.

In total, the number of participants displaying the conjunction
effect dropped from 61% to 29% after 30 trials, with a continuing
downward trend. Over the same period, the percentage of
participants reporting the highest level of confidence increased
from 17% to 30%.

In order to determine whether a trend existed across
participants’ responses over time, a repeated measures ANOVA
was conducted. This revealed a significant difference in responses
for the 30 trials, F(29, 4524) = 3.666, p < 0.001, MSe = 0.172.
As expected this data displayed a linear trend, F(1, 156) = 29.701,
p < 0.001, MSe = 0.414, indicating that participants were more
likely to exhibit the conjunction fallacy in the initial stages of the
experiment than in the latter stages of the experiment.

A similar trend emerged in participants’ confidence ratings
over time. These differed significantly across the 30 trials
F(29, 4524) = 3.686, p < 0.001, MSe = 0.069. A linear trend
was also apparent here, F(1, 156) = 13.180, p < 0.001, MSe =

0.414, indicating that participants becamemore confident in their
responses over time.

Figure 1 shows how the proportion of participants selecting
the conjunction continued to fall with successive trials. It also
shows how the percentage share of participants selecting the
highest level of confidence in their choice continued to grow.

These results show that people quickly adjust to the mechanics
of objective uncertainty following a period of learning. Although
61% of participants failed to appreciate the applicability of the
conjunction rule based on the initial verbal description at the
start of the experiment, they successfully updated their stance
once the objectivity of the process was communicated through
repeated interaction with the system. In other words, learning
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FIGURE 1 | Change over trials in percentage of participants expressing

highest level of confidence and demonstrating conjunction fallacy.

about the process by actually carrying it out in practice served
to extinguish the conjunction effect.

These results strengthen our claim that Tverksy and
Kahneman’s (1983) conjunction effect can be explained in
terms of learning and subjective information. Figure 1 shows
clearly that the proportion of participants demonstrating the
fallacy drops over time. This change can only happen if people
are changing their opinions in some way, in other words,
if they are learning something. Furthermore, the fact that
participants’ confidence increases over time shows that their
uncertainty is of a subjective nature, and not strictly objective:
not only are participants learning from the outcomes, but they
know that they are learning. Because it assumes independence
between outcomes, classical probability excludes the possibility
of learning; the conjunction rule therefore does not hold while
learning is taking place. As per our hypothesis, the results
suggest that as learning becomes exhausted, the incidence of the
conjunction effect drops. This implies that the conjunction effect
observed here is not a fallacy; instead, it reflects the expectation
of learning. The conjunction effect is only a fallacy in cases where
participants are certain that they cannot learn anything, and
cannot improve their performance at the task any further.

The best way to eliminate subjective uncertainty is to allow
people to engage in a judgment task as many times as they
want, until they are utterly assured that there is nothing left
to be learned. Unfortunately, a hallmark of conjunction fallacy
inducing tasks is that they are not repeated: participants are asked
a given question a single time, raising the spectre of subjective
uncertainty. After 30 trials, nearly a third of our participants were
still demonstrating a conjunction effect. Additional research is
required to identify whether a true fallacy can ever be observed,
or whether the effect would drop to zero with sufficient trials.

Given that it quickly drops off as participants learn about
the task, the conjunction fallacy is unlikely to be observed in
practice. For example, it is unlikely that professional gamblers
could increase their winnings by exploiting the effect. The results
of Experiment 2 show that a few seconds of gambling is sufficient

for participants to adopt the correct model. Thus, the failure here
lies not in people’s ability to think rationally. Instead, it lies in the
inadequacy of verbal descriptions for communicating objective
uncertainty. When people read or hear words, they instead think
in terms of subjective uncertainty. Why?

We posit that, rather than exposing a blind spot in
human rationality, the conjunction effect simply reflects
the unnaturalness of objective uncertainty, especially when
communicated via words. Nearly all the decisions that people
make in everyday life are based on personal uncertainty, not
objective uncertainty. The idea that a diverse set of people
might share the same uncertainty is extremely unusual, and
only arises when contemplating mechanisms that are capable
of manufacturing randomness (perhaps explaining why the
mathematical methods of probability were only discovered in the
seventeenth century and not earlier). In everyday life, judgments
of likelihood, like judgments of informativeness, are nearly
always a personal construct (see Fuchs et al., 2014).

The idea that somebody would seek to communicate, through
words, the idea of a scenario involving objective uncertainty
is especially bizarre. People talk to each other to trade
information, hence conversation is dominated by situations
involving subjective information. In contrast, people are unlikely
to ever discuss situations involving objective randomness,
because there is nothing new to learn about such situations. If
your friend spent hours talking about unpredictable dice rolls,
or objective mechanisms for filtering people on a social media
database, you would quickly find yourself a new friend. Verbal
descriptions may simply be unsuited to communicating objective
uncertainty. Hogarth and Soyer (2011) found that participants
preferred to develop models by experimenting with a simulation
for themselves rather than accepting a verbal description given
by someone else. Further work by Haisley et al. (2010) has
shown that experience sampling improves both comprehension
and satisfaction with returns in investment decisions that involve
risk, suggesting that verbal descriptions often do not succeed in
communicating probabilistic models.

It is thus little wonder that people are prone to interpreting
Tverksy and Kahneman’s (1983) scenarios in terms of subjective
uncertainty. Most of these materials make a direct appeal to
asymmetric information, focusing on specialized situations in
which participants are not expert (e.g., geopolitics, medical
practice, sports prediction). The two exceptions in their study
are the Linda scenario and the dice scenario. Unfortunately, the
Linda scenario leads participants to imagine a person called Linda
with whom they are personally unfamiliar, rather than viewing
the description as a selection process for women. The only
scenario which genuinely supports the interpretation of objective
uncertainty is the dice one, and here the objective nature of
the uncertainty is disguised by (a) including an unrepresentative
sequence as a distractor (b) using long sequences to hide
the conjunction and (c) failing to allow participants sufficient
interaction with the dice. When these obfuscations are removed,
the conjunction effect quickly diminishes.

In sum, based on our results, we believe that previous
observations of the conjunction effect reflect, not a deficiency
of human logic, but the rational tendency to interpret verbal
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descriptions in terms of subjective uncertainty (i.e., as if some
knowledge is being communicated, and the listener is at an
informational disadvantage).

Admittedly, the experiments we have presented in this paper
are mere sketches whose results might well be compatible with
other competing explanations for the conjunction effect. Further
research is required to confirm our theory, specifically focusing
on the use of likelihood judgements in ecologically valid settings,
where tasks are repeated many times in succession, as they are
in real life. The main advantage of our theory is that it has
no psychological component: it does not make any assumptions
about the idiosyncracies of human behavior. Our theory simply
constitutes a mathematical model of how information should be
processed in order to optimize decision making in the context of
subjective uncertainty; the results of our experiments suggest that
people make decisions which reflect the optimal model. Given
that our theory is more parsimonious, we suggest that the burden
of proof should be placed on those theories that presume that a
psychological component is needed to explain the conjunction
effect.

4. CONCLUSION

Uncertainty is an intrinsic and omnipresent feature of the real
world environment. However, the type of uncertainty we deal
with in everyday life is unlike that involved in rolling a dice. We
do not assume that our observations are independent of each
other. Instead, we know that other people know things that we
don’t know. We accept the idea that different observers hold
different uncertainties, and we watch out for patterns that may
be subjectively informative. Accordingly, likelihood judgements
in the real world rarely, if ever, obey the conjunction rule.

The notion that the conjunction effect represents a fallacy
is firmly entrenched. However, our results suggest that the
error is not on the part of the participants, who are sensitive
to the subjective informativeness of the outcomes, but on
the part of the experimenters, who naively expect classical
probability, which assumes objective uncertainty, to apply
in real world situations. In everyday life, where subjective
uncertainty dominates, it is subjective informativeness rather
than classical probability which provides the correct approach for
decision-making.

Tverksy and Kahneman (1983) posed the following question:
“Why do intelligent and reasonably well-educated people fail to
recognize the applicability of the conjunction rule in transparent
problems?” In response, we have argued that, for most of
Tverksy and Kahneman’s scenarios, the conjunction rule does
not hold, because participants could potentially learn from
the outcomes. And for the one scenario that does involve
objective uncertainty, people quickly recognize the applicability
of the conjunction rule once they have exhausted the process of
learning.
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