
Framework for task scheduling in heterogeneous distributed

computing using genetic algorithms

Andrew J. Page and Thomas J. Naughton
Department of Computer Science, National University of Ireland, Maynooth,
County Kildare, Ireland. (email: andrew.j.page@nuim.ie)

Abstract. An algorithm has been developed to dynamically schedule heterogeneous
tasks on heterogeneous processors in a distributed system. The scheduler operates in
an environment with dynamically changing resources and adapts to variable system
resources. It operates in a batch fashion and utilises a genetic algorithm to minimise
the total execution time. We have compared our scheduler to six other schedulers,
three batch-mode and three immediate-mode schedulers. Experiments show that the
algorithm outperforms each of the others and can achieve near optimal efficiency,
with up to 100,000 tasks being scheduled.

Keywords: distributed computing, task scheduling, genetic algorithms

1. Introduction

Distributed computing is a promising approach to meet the increasing
computational requirements of scientific research. However, a number of
issues arise that are not encountered in sequential processing that, if not
properly handled, can nullify the benefits of parallelisation. We believe
that task scheduling is the most important of these issues because inap-
propriate scheduling of tasks can fail to exploit the true potential of a
distributed system due to excessive communication overhead or under-
utilisation of resources, and can offset the gains from parallelisation
. Thus it falls to one’s scheduling strategy to produce schedules that
efficiently utilise the resources of the distributed system and minimise
the total execution time. The problem of scheduling heterogeneous
tasks onto heterogeneous resources, otherwise known as the task al-
location problem, is an NP-hard problem for the general case (Garey
and Johnson, 1979).

Many heuristic algorithms exist for specific instances of the task
scheduling problem, but are inefficient for a more general case (Kasa-
hara and Narita, 1984). The use of Holland’s genetic algorithms (GAs)
(Holland, 1992) in scheduling, which apply evolutionary strategies to
allow for the fast exploration of the search space of schedules, allows
good solutions to be found quickly, and for the scheduler to be applied
to more general problems. Many researchers have investigated the use
of GAs to schedule tasks in homogeneous (Hou et al., 1994; Zomaya

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

paper31.tex; 28/02/2005; 15:13; p.1



and Teh, 2001) and heterogeneous (Ahmad et al., 2001; Maheswaran
et al., 1999; Theys et al., 2001; Zomaya et al., 2001) multi-processor
systems with notable success.

Unfortunately, assumptions are often made which reduce the gen-
erality of these solutions, such that scheduling can be calculated off-
line in advance and cannot change (Ahmad et al., 2001; Hou et al.,
1994; Theys et al., 2001; Zomaya et al., 2001), all communications times
are known in advance (Ahmad et al., 2001; Hou et al., 1994; Theys et al.,
2001; Zomaya et al., 2001), networks provide instantaneous message
passing (Zomaya and Teh, 2001), and that all processors have equal ca-
pabilities and are dedicated to processing tasks from the scheduler (Ah-
mad et al., 2001; Hou et al., 1994; Kasahara and Narita, 1984; Siegel
et al., 1996; Theys et al., 2001; Zomaya et al., 1998; Zomaya et al.,
2001; Zomaya and Teh, 2001; Zomaya et al., 1999). These assumptions
limit the generality of these scheduling strategies in real-world dis-
tributed systems. It would be more preferable to make no assumptions
about the homogeneity of the processors, or about the availability of
system resources.

In this paper, a scheduling strategy is presented which uses a GA to
schedule heterogeneous tasks on to heterogeneous processors to min-
imise the total execution time. It operates dynamically, allowing for
tasks to arrive for processing at arbitrary intervals, and considers vari-
able system resources, which has not been considered by other dynamic
GA schedulers.

Section 2 reviews related work and gives an overview of how a
GA operates. Section 3 describes our scheduling algorithm. Section 4
presents the results of our performance experiments and we conclude
in Section 5.

2. Related Work

There are many examples in the literature of artificial intelligence
techniques being applied to task scheduling (Ahmad et al., 2001; Hou
et al., 1994; Maheswaran et al., 1999; Siegel et al., 1996; Theys et al.,
2001; Zomaya et al., 1998; Zomaya et al., 2001; Zomaya and Teh,
2001; Zomaya et al., 1999). Meta-heuristic search techniques such as
GAs (Holland, 1992), tabu (Glover, 1986), and ant colony search (Col-
orni et al., 1992) are most applicable to the task scheduling problem
because we wish to quickly search for a near optimal schedule out of all
possible schedules. Efficient solutions have resulted from the use of GAs
in task scheduling algorithms (Ahmad et al., 2001; Hou et al., 1994; Ma-

paper31.tex; 28/02/2005; 15:13; p.2



initialise population of individuals
do to population{

crossover
random mutation
selection

}while(no individuals have met stopping conditions)

return fittest individual

Figure 1. Pseudo code for a genetic algorithm

heswaran et al., 1999; Siegel et al., 1996; Theys et al., 2001; Zomaya
et al., 1998; Zomaya and Teh, 2001; Zomaya et al., 1999).

A GA is a meta-heuristic search technique which allows for large
solution spaces to be non-deterministically searched in polynomial time,
by applying evolutionary techniques from nature (Holland, 1992). GAs
use historical information to exploit the best solutions from previous
searches, known as generations, along with random mutations to ex-
plore new regions of the solution space. In general, a GA repeats three
steps (selection, crossover, and random mutations) as shown by the
pseudo code in Figure 1. Selection according to fitness (efficiency in our
case) is a source of exploitation, and crossover and random mutations
promote exploration.

A generation of a GA contains a population of individuals, each of
which corresponds to a possible solution from the search space. Each
individual in the population is evaluated with a fitness function which
indicates the goodness of a solution. Selection takes a certain number
of individuals in the population and brings them forward to the next
generation. Crossover takes pairs of individuals and uses parts of each to
produce new individuals. The random mutation step swaps parts of an
individual to prevent the GA from getting caught in a local minimum.

Much work has been done on using GAs for static scheduling (Ah-
mad et al., 2001; Hou et al., 1994; Theys et al., 2001; Zomaya et al.,
2001), where schedules are created before runtime. However, the state
of all tasks and system resources must be known a priori and cannot
change. This limits these schedulers to specific problems and systems.

Dynamic GA schedulers (Maheswaran et al., 1999; Zomaya and
Teh, 2001; Zomaya et al., 1999) create schedules at runtime, with
knowledge about the properties of the system and tasks possibly not
known in advance. This allows for variable system and task properties
to be considered. Dynamic GA schedulers are thus more practical than
static schedulers for real-world distributed systems. Current dynamic
GA schedulers have been shown to produce near optimal schedules in

paper31.tex; 28/02/2005; 15:13; p.3



simulations (Zomaya and Teh, 2001; Zomaya et al., 1999), although
assumptions that have been made limit their generality. For example,
instantaneous message passing (Zomaya and Teh, 2001), homogeneous
processing resources (Zomaya and Teh, 2001; Zomaya et al., 1999),
variable communications costs and variable processing resources are
not considered (Zomaya and Teh, 2001; Zomaya et al., 1999).

3. Scheduling Algorithm

The algorithm presented in this paper is based on the state-of-the-art
homogeneous GA scheduler developed by Zomaya et al. (Zomaya and
Teh, 2001; Zomaya et al., 1999). We wish to schedule an unknown total
number of tasks for processing on a distributed system with a minimal
total execution time, otherwise known as makespan.

The processors of the distributed system are heterogeneous. The
available network resources between processors in the distributed sys-
tem can vary over time. The availability of each processor can vary over
time (processors are not dedicated and may have other tasks which
partially use their resources). Tasks are indivisible, independent of all
other tasks, arrive randomly, and can be processed by any processor in
the distributed system.

When tasks arrive they are placed in a queue of unscheduled tasks.
Batches of tasks from this queue are scheduled on processors during
each invocation of the scheduler. Each idle processor in the system
requests a task to process from the scheduler, which it processes and
returns. The scheduler contains a queue of future tasks for each proces-
sor, and when a request for work is received the task at the head of the
corresponding queue is sent for processing. We wish to avoid repeatedly
issuing the same task multiple times (e.g., a machine could be switched
off) because network resources are limited and processing resources are
not dedicated. To achieve this the processors do not contain a queue of
tasks.

Each task has a resource requirement which is measured in millions
of floating point operations (MFLOPs). The available processing re-
sources, or execution rate, of each processor is measured in MFLOPs
per second, which we write as Mflop/s. The execution rate is measured
using Dongarra’s Linpack benchmark (Dongarra et al., 1979). This is a
recognised standard used to benchmark systems for inclusion in the list
of Top 500 Supercomputers (Top 500 Super Computers, 2005). Avail-
able processing and network resources vary over time, so a smoothing
function is used to minimise localised fluctuations, thus allowing for a

paper31.tex; 28/02/2005; 15:13; p.4



Figure 2. Encoding of an individual representing mappings of tasks to processors

more realistic processing environment. A single processor is dedicated
to scheduling.

The queue of unscheduled tasks could contain a large number of
tasks and if all where to be scheduled at once, the scheduler could take
a long time to find an efficient schedule. To speed up the scheduler,
and reduce the chance of processors becoming idle, we only consider a
subsequence of the unscheduled tasks, which we call a batch. A larger
batch will usually result in a more efficient schedule (Zomaya and Teh,
2001). We must thus trade the batch size with running time. To do this
we dynamically set the batch size according to the estimated amount
of time until the first processor becomes idle.

3.1. Encoding

Each individual in the population represents a possible schedule for a
batch of tasks. Figure 2 shows the encoding used. Each character is
a mapping between a task and processor. Each character contains the
unique identification number of a task, with −1 being used to delimit
different processor queues, where Pi is processor i. Thus the length
(number of characters) of each schedule is N +M − 1, where N is the
number of tasks in the batch, and M is the total number of processors.

3.2. Fitness Function

A fitness function is used to measure the closeness of the makespan of
each individual in the population to a lower bound on the makespan.
The finishing time of each processor j is calculated as δj = Lj/Pj ,
where Lj is its previously assigned load in MFLOPs, and Pj is its
current processing power in Mflop/s.

A lower bound on the makespan is defined as

ψ =
N∑

i=1
ti

(
M∑

j=1
Pj

)−1

+
M∑

j=1
δj , where ti is the processing requirement

of task i in the batch (in MFLOPs) and where M and N are defined
in Section 3.1.

The difference between the makespan of individual i and the lower
bound on makespan is given by

paper31.tex; 28/02/2005; 15:13; p.5



Ei =


 M∑

j=1

∣∣∣∣∣ψ −
(
Lj,i +

N∑
y=1

((ty/Pj) + Γc
(y,j))

)∣∣∣∣∣
2



1
2

where Γc
(y,j) is the

communication cost of scheduling task y on processor j. The fitness
value of individual i is Fi = 1/Ei, and Fi = [0,∞]. A larger value
indicates a better or fitter schedule.

3.3. Selection, Crossover and Mutation

We choose to use the standard weighted roulette wheel method of selec-
tion which is widely used by previous researchers who have applied GAs
to task scheduling (Hou et al., 1994; Siegel et al., 1996; Zomaya and Teh,
2001). Each individual i in the population is assigned a slot between 0

and 1. The size of slot i is ςi = Fi ×
(

ρ∑
j=1

Fj

)−1

, where
ρ∑

i=1
ςi = 1 and

p is the number of individuals in the population. After the selection
process is complete, we use the cycle crossover method (Oliver et al.,
1987) to promote exploration as used in (Zomaya and Teh, 2001).

We have chosen to use two types of mutation to promote explo-
ration of the search space. Firstly we randomly swap elements of a
randomly chosen individual in the population. We allow the delimiters
between processor queues to be swapped, which allows for the lengths
of queues within an individual to be randomly mutated. Then we use
a re-balancing heuristic to mutate and improve the population.

The initial population is generated using a list scheduling heuristic,
as follows. A percentage of the tasks are randomly assigned to proces-
sors, with the remaining tasks being assigned to the processors that
will finish processing them the earliest. This leads to a well balanced
and randomised initial population.

3.4. Stopping Conditions

The GA will evolve the population until one or more stopping condi-
tions are met. The individual with the lowest makespan is selected after
each generation and if it is less than a specified minimum, the GA stops
evolving. The maximum number of generations is set at 1000, because
the quality of the schedules returned with more than that number does
not justify the increased computation cost (as in (Zomaya and Teh,
2001)). The GA will also stop evolving if one of the processors becomes
idle, in which case it will return the best schedule found so far.

paper31.tex; 28/02/2005; 15:13; p.6



3.5. Exponential Smoothing Function

A smoothing function is defined that finds a single representative value
for a sequence of values. As each new value is added to the sequence,
this representative value is updated. For the first i values of a sequence
of values a1, a2, . . ., this representative value would be denoted Γa

i , and
defined recursively as Γa

i = Γa
i−1 + ν(ai − Γa

i−1), where the smoothness
of the sequence of representative values is controlled by ν ∈ [0, 1], and
where we let Γa

0 = a1. The function allows one to vary the influence
of more recent sequence values on the representative value, from no
influence (ν = 0) to complete dominance (ν = 1). The smoothing
function is employed in several instances in our scheduler. In this paper,
we describe the application of the smoothing function to the first i
values of an arbitrary sequence x1, x2, . . . with the notation Γx

i .

3.6. Most into Least

An initial population is generated using the Most-Into-Least (MIL)
list scheduling heuristic, which has been successfully used in other GA
task schedulers (Correa et al., 1999; Greene, 2001). A random num-
ber of tasks, are assigned to processors in a round robin fashion. The
remaining tasks are then sorted, using Quicksort (Hoare, 1962), and
allocated in a round robin fashion to the processors which will finish
processing them the earliest, taking into account existing and assigned
tasks for each processor. This leads to a well balanced randomised
initial population.

3.7. Dynamic Batch Size

We wish to define batch sizes that are large enough so that the processor
hosting the scheduler is utilised fully (and to achieve low makespans),
but not too large that any processors become idle before the schedule
has been fully computed. The GA takes Θ(H2) time to create a sched-
ule, where H is the number of tasks in a batch (batch size). After the
pth batch has been scheduled, the first processor will become idle after
sp = minM

j=1(δj/Pj), where δj is the total processing time in MFLOPs
of the tasks waiting to be processed by processor j, and M is the

number of processors. We choose Hp+1 =
⌊(

Γs
p + 1

)1/2
⌋

as a simple

approximation of the optimal size for batch p+ 1. Once a schedule has
been assigned the batch size is recalculated.

paper31.tex; 28/02/2005; 15:13; p.7



4. Experiments

The scheduling algorithm described in Section 3 has been implemented
and applied to simulated data, with up to 50 heterogeneous processors,
and up to 100,000 randomly generated heterogeneous tasks. Each ex-
periment was repeated a number of times and an average result was
calculated for each point. We also implemented the original algorithm
that our algorithm is based on, developed by Zomaya et al. (Zomaya
and Teh, 2001), which is the current state of the art dynamic GA
task scheduler for homogeneous distributed computing. It was easily
adapted to work with heterogeneous processors by using Mflop/s as
the measure of the rate of execution rather than time. We compare
our scheduler to six other schedulers, and evaluate the results using
two different but related metrics, makespan and efficiency. Makespan
is the total execution time of a schedule. Efficiency is the percent-
age of the time that processors actually spend processing rather than
communicating or idling.

Tasks are scheduled across 50 heterogeneous processors with a pro-
cessing resource range of 10 to 100 Mflop/s. We assume that all of
the tasks arrive for processing at the beginning of the simulation, for
these experiments. A representative set of heterogeneous computing
task benchmarks does not exist as yet, as noted by Theys et al. (Theys
et al., 2001). We have decided to generate random sets of tasks for
scheduling using the Poisson distribution. We use randomly generated
task sets because: we wish to demonstrate the algorithms effectiveness
over a broad range of conditions, a set of heterogeneous computing
benchmark tasks do not exist, and it is not clear what characteristics
a ‘typical’ task would exhibit (Theys et al., 2001).

We have decided to use a population size of 20, which is known as
a micro GA (Chipperfield and Flemming, 1996) and used in (Greene,
2001; Zomaya and Teh, 2001; Zomaya et al., 1999), which speeds up
computation time without impacting greatly on the final result.

4.1. Other schedulers

We have also compared our scheduling algorithm against a number
of well known batch and immediate mode heuristic schedulers. An
immediate mode scheduler only considers a single task for schedul-
ing on a FCFS (first come, first served) basis while a batch mode
scheduler considers a number of tasks at once for scheduling. We will
compare our algorithm to three immediate mode and three batch mode
schedulers (Maheswaran et al., 1999; Theys et al., 2001).

paper31.tex; 28/02/2005; 15:13; p.8



The earliest first (EF) algorithm is an immediate mode scheduler.
When a task is presented for processing, the scheduler considers the
existing load on each processor and allocates the task to the processor
which will finish processing it the earliest. The EF algorithm uses the
available information about the task and the processors when making
a scheduling decision. It has a worst case complexity of Θ(M), where
M is the number of processors, when scheduling a single task.

The lightest loaded (LL) scheduler is an immediate mode scheduler
which allocates tasks to the processor with the lowest current load,
measured in our case as MFLOPs. It does not consider the size of a
task when scheduling it. It has a worst case complexity of Θ(M).

The round robin (RR) scheduler is the most basic of the immediate
mode schedulers used in these experiments, where tasks are assigned
to processors in a round robin fashion. No load or task information is
used when making a scheduling decision. It has a worst case complexity
of Θ(1).

The max-min (MX) scheduler is a batch mode heuristic scheduler.
It takes batches of tasks on a FCFS basis. These tasks are then sorted
according to task size in a descending order. The largest task is then
allocated to the processor that will finish processing it first (same as
EF). This is repeated until the batch is empty, after which another
batch is considered. The main aim of this scheduler is to have the
largest tasks scheduled as early as possible, with smaller tasks at the
end filling in the gaps. It has a complexity of Θ(max(M,nlogn)), where
n is the size of the batch.

The min-min (MM) scheduler is similar to the MX scheduler, except
tasks are sorted in ascending order according to size.

The scheduler proposed by Zomaya et al. (ZO) in (Zomaya and Teh,
2001) has been implemented for this paper. It is the current state of
the art homogeneous GA scheduler and the basis for our scheduler.
The ZO scheduler was easily converted from a homogeneous scheduler
to a heterogeneous scheduler by using the Mflop/s benchmark for task
sizes rather than time. It is a batch scheduler which uses GAs to create
schedules. We have validated our implementation of this scheduler by
reproducing some of the performance results in (Zomaya and Teh, 2001)
(not included here).

4.2. Setup

We simulated the performance of our scheduler against the performance
of six other schedulers, described in Section 4.1, for these experiments.
All of the tasks arrived for scheduling at the beginning of the simula-

paper31.tex; 28/02/2005; 15:13; p.9



tion. Each experiment was repeated 50 times and an average result was
calculated for each point on the resulting graphs.

We scheduled up to 100,000 heterogeneous tasks onto 50 heteroge-
neous processors. For these experiments each processor was assumed
to have a fixed execution rate, measured in Mflop/s. The aim of these
experiments is to show that predicting the communication costs in ad-
vance will improve the efficiency, compared to heuristics which adapt to
communication costs after they have been incurred. All schedulers were
presented with the same set of tasks for scheduling and all schedulers
have the same information available to them.

We have decided to use a population size of 20, which is known as
a micro GA (Chipperfield and Flemming, 1996) and used in (Zomaya
and Teh, 2001; Zomaya et al., 1999), which speeds up computation time
without impacting greatly on the final result.

4.3. Communication

We wish to show that our algorithm provides greater efficiency in
a system with variable communication costs. To demonstrate its ef-
fectiveness we vary the ratio of the task processing requirement to
communications costs, and measure the efficiency achieved. We fix the
available processing resources and the size of the batch, to allow for the
effect of communication costs to be demonstrated. We wish to schedule
100,000 tasks with a view to maximising the efficiency of the processing
resources in the distributed system.

Figure 3 shows that PN consistently provides schedules with greater
efficiency over all of the other scheduling algorithms. The horizontal
axis in Figure 3 is the mean communication cost for all communica-
tion links between all clients and the scheduler. Each communications
link has its own randomly generated mean cost, which is normally
distributed. The consideration of communication costs allows the im-
proved scheduler to estimate a communications cost when creating
a schedule, resulting in an overall improvement in efficiency of the
scheduler.

4.4. Task Size Distribution

We have randomly generated sets of tasks using a Poisson distribution
and varied the mean of the set. Each set contained 10,000 tasks. In
Figure 4 we can see that PN performs the best followed by MM, whilst
MX performs quite badly, when the mean is small. When the mean
is increased to 100 MFLOPs (see Figure 5) the batch schedulers all
perform well, whilst the immediate mode schedulers do not perform as
well.

paper31.tex; 28/02/2005; 15:13; p.10



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/time spent communicating

E
ffi

ci
en

cy

PN
EF
LL
MM
MX
ZO
RR

Figure 3. Efficiency of schedulers varying communication to task size ratio

5. Conclusion

A scheduling algorithm has been developed to schedule heterogeneous
tasks onto heterogeneous processors in a distributed computing system.
It provides efficient schedules and adapts to varying resource avail-
ability (processing resources and communication costs). The algorithm
also fully utilises the dedicated processor running the scheduler. The
GA employed a list scheduling heuristic to create a well-balanced ran-
domised initial population. The fitness function utilises the relative
error metric internally to find schedules with a low makespan. Roulette
wheel selection is used to exploit past results to direct the search for
efficient schedules. Cycle crossover promotes exploration of the search
space, with random swaps and random re-balancing of processor queues
within individuals perturbing this exploration.

The Figs. 3 through 5 show that our scheduler performs better than
the other schedulers. We can conclude that our scheduler gives better
performance over multiple different scenarios and would give consis-
tently better efficiency in unknown conditions compared to the other
techniques tested in this study. Our scheduler estimates the communi-
cation costs between each client and server using historical information,
so it can create better schedules and reduce the makespan. For the other

paper31.tex; 28/02/2005; 15:13; p.11



EF LL RR ZO PN MM MX
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
im

e

Figure 4. Makespan when task sizes have a Poisson distributed with a mean of 10
MFLOPs

EF LL RR ZO PN MM MX
0

2000

4000

6000

8000

10000

12000

14000

T
im

e

Figure 5. Makespan when task sizes have a Poisson distributed with a mean of 100
MFLOPs

paper31.tex; 28/02/2005; 15:13; p.12



schedulers, the effect of communication is only considered after tasks or
batches of tasks have been scheduled, leading to less efficient solutions.

The algorithm proposed in this paper consistently uses processors
more efficiently than the current state-of-the-art GA algorithms for the
same problem. It is more suitable for real-world use because it consid-
ers properties of distributed systems, such as variable communication
costs and variable availability heterogeneous processors, which other
algorithms for the task scheduling problem do not consider.

6. Acknowledgement

Support is acknowledged from the Irish Research Council for Science,
Engineering, and Technology, funded by the National Development
Plan.

References

Ahmad, I., Y.-K. Kwok, I. Ahmad, and M. Dhodhi: 2001, ‘Scheduling Parallel
programs using genetic algorithms’. In: A. Y. Zomaya, F. Ercal, and S. Olariu
(eds.): Solutions to Parallel and Distributed Computing Problems. New York,
USA: John Wiley and Sons, Chapt. 9, pp. 231–254.

Chipperfield, A. and P. Flemming: 1996, ‘Parallel genetic algorithms’. In: A. Y.
Zomaya (ed.): Parallel and Distributed Computing Handbook. New York, USA:
McGraw-Hill, first edition, pp. 1118–1143.

Colorni, A., M. Dorigo, and V. Maniezzo: 1992, ‘Distributed Optimization by Ant
Colonies’. In: Proceedings of the First European Conference on Artificial Life.
Paris, France, pp. 134–142, Elsevier.

Correa, R., A. Ferreira, and P. Rebreyend: 1999, ‘Scheduling multiprocessor tasks
with genetic algorithms’. IEEE Transactions on Parallel and Distributed Systems
10(8), 825–837.

Dongarra, J., J. Bunch, C. Moler, and G. Stewart: 1979, LINPACK Users Guide.
Philadelphia, USA: SIAM.

Garey, M. R. and D. S. Johnson: 1979, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York, NY: W. H. Freeman & Co.

Glover, F.: 1986, ‘Future Paths for Integer Programming and Links to Artificial
Intelligence’. Computers and Operations Research 13, 533–549.

Greene, W. A.: 2001, ‘Dynamic Load-Balancing via a Genetic Algorithm’. In:
13th IEEE International Conference on Tools with Artificial Intelligence. Dallas,
Texas, USA, pp. 121–129.

Hoare, C. A. R.: 1962, ‘Quicksort’. Computer Journal 5(1), 10–15.
Holland, J. H.: 1992, Adaptation in Natural and Artificial Systems. Cambridge, MA,

USA: MIT Press.
Hou, E., N. Ansari, and H. Ren: 1994, ‘A genetic algorithm for multiprocessor

scheduling’. IEEE Transactions on Parallel and Distributed Systems 5(2),
113–120.

paper31.tex; 28/02/2005; 15:13; p.13



Kasahara, H. and S. Narita: 1984, ‘Practical multiprocessing scheduling algorithms
for efficient parallel processing’. IEEE Transactions on Computers 33(11), 1023–
1029.

Maheswaran, M., S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund: 1999, ‘Dy-
namic Mapping of a Class of Independent Tasks onto Heterogeneous Computing
Systems’. Journal of Parallel and Distributed Computing 59(2), 107–131.

Oliver, I. M., D. J. Smith, and J. Holland: 1987, ‘A study of permutation crossover
operators on the traveling salesman problem’. In: Proceedings of the Second
International Conference on Genetic Algorithms on Genetic algorithms and their
application. pp. 224–230, Lawrence Erlbaum Associates, Inc.

Siegel, H. J., L. Wang, V. Roychowdhury, and M. Tan: 1996, ‘Computing with
heterogeneous parallel machines: advantages and challenges’. In: Proceedings
on Second International Symposium on Parallel Architectures, Algorithms, and
Networks. Beijing, China, pp. 368–374.

Theys, M. D., T. D. Braun, H. J. Siegal, A. A. Maciejewski, and Y.-K. Kwok:
2001, Mapping Tasks onto Distributed Heterogeneous Computing Systems Using
a Genetic Algorithm Approach, Chapt. 6, pp. 135–178. New York, USA: John
Wiley and Sons.

Top 500 Super Computers: 2005. http://www.top500.org.
Zomaya, A. Y., M. Clements, and S. Olariu: 1998, ‘A framework for reinforcement-

based scheduling in parallel processor systems’. IEEE Transactions on Parallel
and Distributed Systems 9(3), 249–260.

Zomaya, A. Y., R. C. Lee, and S. Olariu: 2001, ‘An Introduction to Genetic-Based
Scheduling in Parallel Processor Systems’. In: A. Y. Zomaya, F. Ercal, and S.
Olariu (eds.): Solutions to Parallel and Distributed Computing Problems. New
York, USA: John Wiley and Sons, Chapt. 5, pp. 111–133.

Zomaya, A. Y. and Y.-H. Teh: 2001, ‘Observations on using genetic algorithms
for dynamic load-balancing’. IEEE Transactions on Parallel and Distributed
Systems 12(9), 899–911.

Zomaya, A. Y., C. Ward, and B. Macey: 1999, ‘Genetic scheduling for parallel pro-
cessor systems: comparative studies and performance issues’. IEEE Transactions
on Parallel and Distributed Systems 10(8), 795–812.

paper31.tex; 28/02/2005; 15:13; p.14


