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Abstract. 

This paper explores automatic recognition and semantic capture in vector graphics for 

graphical information systems. The low-level graphical content of graphical documents, such 

as a map or architectural drawing, are often captured manually and the encoding of the 

semantic content seen as an extension of this. The large quantity of new and archived 

graphical data available on paper makes automatic structuring of such graphical data 

desirable. A successful method for recognising text data uses statistical language models. 

This work will investigate and evaluate similar and adapted statistical models (Statistical 

Graphical Langauge Models, SGLM)  to graphical languages based on the associations 

between different classes of object in a drawing to automate the structuring and recognition 

of graphical data.  
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1. Introduction 

Graphical information systems are computerised systems used for storing, representing, 

manipulating, analysing and displaying graphical data. The increased used of graphical 

information systems has motivated research in the automatic structuring of graphical data and 

developing and applying graphical object recognition. That is, a vast amount of data archived 

by organisations is in graphical form (for example, diagrams, maps, technical drawings, and 

architectural plans). For this to be searched, analysed and synthesised automatically, it must 

be parsed and converted from simple graphics (points, lines, symbols, polygons) to 

semantically rich graphical information ("circuit-breaker", "building", "spark-plug", 

"extractor fan"). For computer systems to process such graphical data not only the geometry 

but also attribute data, describing the nature of the objects depicted must be stored. 
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This manual structuring into composite objects and addition of labelling attributes is a 

labour-intensive, expensive and error prone process. The successful automation of raster-

vector conversion plus the large quantity of new and archived graphical data available on 

paper makes the automation of feature extraction and structuring of graphical data desirable. 

Automation of the structuring and recognition of objects through statistical modelling for 

efficient and complete input into graphical information systems can form a solution to this 

complex problem.  

 

Statistical language models are a successful method for recognising text data. These models 

are derived from corpora of language-examples using the frequency and associations between 

words. This work will apply and evaluate similar and adapted statistical models (Statistical 

Graphical Langauge Models, SGLM)  to graphical languages based on the associations 

between different classes of object in a drawing to automate the structuring and recognition 

of graphical data.  

 

This paper describes the proposed research into the use and adaptation of SLM techniques to 

aid in the semantic analysis of graphical data for the purposes of recognition, indexing and 

retrieval. The derived graphical recognition system will be used for the development of an 

operation and maintenance information system for architectural plans within buildings and 

other facilities (Entropic Ltd)∗.  

 

2. Operation and Maintenance Information System 

An Operation and Maintenance (O&M) information system holds centrally all relevant 

information pertaining to the operation and maintenance of plant and equipment within 

buildings and other facilities. This information is presented through a multi-media web 

interface and consists of drawings, data sheets, operating instructions, parts listings, 

suppliers, installers, manufacturers and other details of all the service utilities. The 

information on each component is comprehensively cross-referenced using links between 

corresponding items in drawings, data sheets, photographs and so on. The system can be 

implemented for all sizes of installations but comes particularly suited for the infrastructure 

                                                      
∗ Entropic Ltd, are a SME located in County Kildare, Ireland and are exploring the provision of 
multimedia operation and maintenance information systems for building and plant facilities 
management. 
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management of large industrial or service sites. Current use includes a sports complex and 

large private dwellings.  

 

The Operation and Maintenance Information System allows a user to select an example 

object (simple or composite) and the software finds similar objects in the same or other 

drawings. The tool generates data structures that can be used to build multimedia linkages 

between objects, drawings and related information. The information is accessed through a 

standard web browser interface including navigation through hot-links and key-word search 

facilities. CAD drawings showing the location of utilities and services also act as browser 

navigational maps. In operation, the system’s main use concerns day-to-day operation and 

maintenance tasks, for example: 

• Retrieving plant operating and servicing instructions 

• Scheduling of maintenance tasks 

• Keeping records of maintenance done 

• Listing of spare parts 

• Locating rarely accessed equipment, plant and components 

• Generating service reports 

 

2.1. Problems of Data Capture and Construction 

A typical O&M system has to be compiled from information supplied by many 

manufacturers, architects, designers and contractors in a wide variety of formats: CAD 

drawings, data sheets, operating instructions, parts listings, details of suppliers, installers and 

manufacturers. Some are available digitally but many are paper documents. O&M systems 

commissioned so far have been constructed manually through digitising, structuring and 

linking this information appropriately.  

For the system to be economic, it is desirable to automate as much as possible of this 

compilation process. Automation possibilities include: 

• Recognition and labelling objects/components on drawings  

• Generating links through string matching 

• Compilation of databases of information from scanned text/drawings 

 

Once recognised and classified, these objects can be assigned unique identifiers in the 

system. This allows their inclusion in the search and navigation functions. Previous work 

evaluated the recognition and labelling of objects and components and drawings using shape 

[11] and structural descriptors [14]. As part of this project, for the automatic structuring and 
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recognition of technical data for a web-based multimedia O&M information system, an 

adapted SLM technique will be used. This work will also investigate if SGLM can be applied 

to improve recognition performance of shape and structural methods to provide an optimal 

solution to the problem of graphics recognition for architectural and engineering graphical 

domains.  

 

3. Graphical Object Recognition and SLMs 

Graphics recognition involves the recognition and structuring of geometry such as points, 

lines, text, symbols on graphical documents into meaningful objects for use in graphical 

information systems. Graphics recognition is a sub-field of pattern recognition and includes 

classification and recognition of graphical data based on shape description of primitive 

components, structure matching of composite objects and semantic analysis of whole 

documents. A sub-field of semantic analysis is to treat the graphical notation as analogous to 

textual language by, for example, constructing a graphics parser based on a formally defined 

grammar. 

 

Statistical language models have been used with natural language processing applications 

such as speech recognition and spoken language understanding. They are based on the 

analysis of a large corpus of text to construct a probabilistic contextual model for the 

occurrence of words (and/or larger structures). The model is used to increase the 

effectiveness of other recognisers.  

 

This work will investigate the use and adaptation of SLM techniques to aid in the semantic 

analysis of graphical data for the purposes of recognition, indexing and retrieval.  A number 

of techniques (n-gram models, hidden Markov models, part-of-speech tagging) will be 

adapted and evaluated for graphical data. A rational for their use will be formulated. A 

categorisation of the different domains of graphical data by form and content will be made. 

Software modules will be created to test and illustrate Statistical Graphical Language Model 

(SGLM) techniques' effectiveness on the architecture and engineering domain.  

 

The suggestion that this may be a valid approach is re-enforced by the similarities between 

textual and graphical notations [1]:  

• Both consist of discrete objects (words, graphical objects)  

• Objects have a physical form (spelling/pronunciation, shape)  

• Objects have a semantic component (meaning, graphical object label)  
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• Objects are classified according to function (part of speech, object class) 

• Objects are formed into larger components (sentences/paragraphs etc., regions/diagrams 

etc.). 

 

Depending on the nature of the graphical notation, this analogy can be very strong. For 

example, at one extreme, visual programming languages have precise grammars that can be 

used to create well-formed software tools to edit, check and translate valid programs. Other 

notations, while containing conventional symbols, are depictions of the real-world 

configuration of objects that has a much less structured syntax, although there is usually 

some underlying structure. For example [18], on a map a building needs access to a road that 

has connections to other roads, and so on. Part of the proposed research is to characterise the 

applicability of SLMs to each subject domain according to this underlying structure. Of 

course, there are differences between natural language and graphical notations: 

• Natural language is one-dimensional; graphics are usually two-dimensional. 

• Natural language is sequential - the meanings of sentences are determined by the order of 

their component words; graphical notations use more complex spatial relationships. 

• The vocabularies in natural language texts are generally larger than the symbol 

vocabulary of most graphical notations. 

 

The proposed research will assess how these differences affect the applicability of SLMs and 

how they can be incorporated into a SGLM. Also, SLMs will be investigated and evaluated 

on the problem of automatically recognising and interpreting graphical data on technical 

drawings for the development of an operation and maintenance information system for plans 

within buildings and other facilities. 

3.1 Statistical Language Models 

Statistical Language Models are estimates of probability distributions over natural language 

phenomena such as sequences of letters, words, sentences or whole documents. They were 

first used by Andrei A. Markov at the beginning of the 20th century to model letter sequences 

in Russian literature [13]. While this was a linguistic task, these methods were then 

developed as a general statistical tool. They have been primarily developed for natural 

language processing. Automatic speech recognition is arguably the area that has benefited the 

most from SLMs where they have proved quite successful [7]. A possible system architecture 

(to improve speech recognition) is shown in figure 1.  SLMs have also been used in the fields 
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of machine translation, optical character recognition, handwriting recognition, information 

retrieval, augmentative communication systems and many more [8]. 
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Figure 20 Typical speech recogniser. 

SLMs employ statistical estimation methods that make use of large corpuses of training data 

in the form of text. These corpuses can consist of thousands or millions of words from a 

language. In order to be as representative as possible of a language, a corpus usually has text 

from a wide variety of sources. For example, the derived Brown Corpus [13] consists of one 

million words taken from fifteen different categories such as legal text, scientific text and 

press reportage. A corpus can however be built to just include a particular sub-set of 

language, if so required for a particular task. Generally the larger the corpus the better it will 

be for statistical language modelling.  

 

3.1.1 N-gram models for SLM 

A SLM is simply a probability distribution P(s) over a sequence of words (or sentences or 

whole documents and so on). In practice it is impossible to know the probability so instead 

the estimate of the probability is used. This estimate is found by using the frequency of text 

within the training data. Generally a language model is represented as a conditional 

probability distribution of the next words to be seen, given the previous words, that is: 

 

),|( ii hwP  where ),...,,( 121 −= ii wwwh and iw is the ith word                                (1) 

 

The purpose of a SLM is to assign high probabilities to likely word sequences and low 

probabilities to unlikely ones. Different SLM models can be combined using techniques such 

as linear interpolation. N-gram models are the most widely used SLM technique. They use 

the previous n-1 words to predict the next word. Generally n is either 2 (a bi-gram), 3 (a tri-

gram) or 4 (a four-gram). A bi-gram model is looking for the probability )|( 1−ii wwP  and a 

tri-gram model is looking for the probability ),|( 21 −− iii wwwP . These probabilities are 

estimated by using relative frequency:  

)(/)()|( 111 −−− = iiiii wCwwCwwP                                                                          (2) 

and  

),(/),(),|( 11221 iiiiiiii wwCwwwCwwwP −−−−− =                                                     (3) 



ITB Journal 

Issue Number 10, December 2004                                                                                                                        Page 31 

 

where C is the frequency of the enclosed words in the training corpus. For example if a 

sentence starts with “I was walking the” a tri-gram model would use the two words “walking 

the” to predict the next word. This prediction is done using the training data corpus. The 

corpus is analysed for co-occurrences of words, in this case triples that start with “walking 

the”. The triples are sorted in terms of the frequency they appear in the training data, with the 

most frequent triple the one used for the prediction. To use this example, the training data 

may have the triple “walking the dog” as the most frequent triple that starts with “walking 

the” so the word “dog” is given as the prediction.  

 

There are other SLM techniques which are also used [15]. These include Decision Tree 

models [2] which assign probabilities to each of a number of choices based on the context of 

decisions. Some SLM techniques are derived from grammars commonly used by linguists. 

For example Sjilman et al. [16] uses a declarative grammar to generate a language model in 

order to recognise hand-sketched digital ink. Other methods include Exponential models and 

Adaptive models. [15] suggests that some other SLM models such as Dependency models, 

Dimensionality reduction and Whole Sentence models show significant promise. However 

this research will focus on the most powerful of these models the N-gram and its variants 

[18].  

 

There are problems that affect SLMs. One problem is the data sparseness problem. This 

problem is simply that a training corpus, no matter how big cannot cover all probabilities. 

These probabilities are then automatically assigned a zero value. So when a phrase occurs 

that has not been seen before, that is, it is not in the training data, its probability is zero. To 

solve this problem techniques are used that assign a 'non-zero probability' to 'zero 

probability'. This process is called Smoothing [13,7,8].  

 

3.1.2 Evaluation of SLM 

In order to compare SLMs common measures used. These are based on the concepts of 

relative entropy, cross entropy and perplexity [13]. Combined with the use of standard 

corpora and test data sets, they provide for the calculation of objective metrics for SLMs. 

 

Entropy is a measure of information in a random variable. It can be used as a metric to 

measure how much information there is in a particular grammar, and also to measure how 

well a given N-gram model will be able to predict the next object. Computing entropy 

requires that we establish a random variable X that ranges over a sequence of objects (the set 
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of which we will call χ ) and that has a particular probability function, call it )(xp the 

entropy of this random variable X is then 

 

�
∈

−=
Xx

xpxpXH )(log)()( 2                                                                                  (4) 

 

Entropy is measured in bits. The lower amount of the entropy we get the best model we have. 

The value of H2 is the perplexity. Perplexity can be thought of as the weighted average 

number of choices a random variable has to make [8]. It can be seen as a measure of the size 

of the set of words from which the next word is chosen from. Generally the lower the 

perplexity the better the model. 

 

3.2 Applying SLMs to Graphics 

The success of statistical language models has been due to the efficiency of these models and 

to the linear structure of natural language utterances and the underlying grammar (the 

semantic and syntactic relationships between adjacent words). In graphical data, there is no 

rigid grammatical structure. However, a quasi-grammatical pattern does exist (for example, 

vent-duct-fan or witch-wire-socket) and this suggests that the language model approach may 

have some validity. However, unlike natural language, these sequences have no inherent 

direction. 

 

Given the similarities between graphics and natural language, it seems reasonable that SLMs 

may have applicability to improve the classification of graphic objects as they do for natural 

language processing applications. On major difference is that, whereas language is naturally a 

one- dimensional sequence of symbols, graphics are inherently multiple-dimensional. 

Therefore, for direct application, it is necessary to extract one-dimensional sequence from the 

graphical data. One approach of doing that is to use adjacency relationships between objects 

on a drawing/document. Alternatively, the SLM theory can be extended to deal with two-

dimensional “sequences”. 

 

Within this work SLMs will be used to measure the frequency of each graphical objects 

context allowing a graphics recognition system to be constructed in a similar way used for a 

speech recognition system (figure 2). In figure 2 the system depicted would be used to extend 

the classification capabilities of other recognition methods for example, based on an object's 

shape. The image is vectorised, cleaned and topologically corrected to form polygons. A 
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recognition system produces probabilities for candidate classes of each object based in this 

case on their shape [11]. The SLM, built from analysis of another data set, uses the 

probabilities to construct “phrases” of objects. A shape recognition system produces 

probabilities for the candidate classes of each object. The statistical language model uses 

these probabilities to construct candidate “phrases” of objects and use the n-gram model built 

from a corpus to select the most likely candidate object class. 
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Figure 21 Possible graphical object recognition system with SGLM (see figure 1) 

 

4. Graphical Recognition System 

A main outcome of this work will be a software module that can be used and evaluated in the 

production process of O&M systems. Figure 3 shows the software configuration envisaged 

and the role of SGLM within this system. Digitised CAD drawings of the building/plant 

services will be processed to extract their component objects from which shape and structural 

descriptions are built. These feed into several description and matching algorithms, each of 

which produces one or more candidate categories to which each object may belong. A fusion 

algorithm produces an overall consensus decision giving a ranked list of candidate types. The 

SGLM module can then be used to improve the performance of the recognisers. 
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Figure 22 Graphical Shape Recognition System configuration 

 

4.1 Evaluating the SGLM system  

To evaluate the classification performance, precision, recall and accuracy (defined below) 

will be used. These notations are frequently used in information retrieval (IR) applications to 

evaluate statistical NLP models, and their use has crossed over into work on evaluating SLMs 

for many problems. Precision is defined as a measure of selected objects that the 

classification system got right. 
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fptp
tp

precision
+

=                                                                                               (5) 

 

Where tp (true positive) and tn (true negative) account for the cases the classification system 

got right and the wrongly selected cases in fp are called false positive. The cases in fn that 

failed to be selected are called false negative.  

 

Recall is defined as, the proportion of the target objects that the system selected. 

 

fntp
tp

lRecal
+

=                                              (6) 

 

Accuracy is defined as, the proportion of correctly classified objects. 

 

tnfnfptp
tntp

Accuracy
+++

+
=                                     (7) 

 

Fallout is a less frequently used measure. It is defined as the proportion of non-targeted items 

that were mistakenly selected and is defined as follows: 

 

tnfp
fp

fallout
+

=                                      (8) 

 

Intense evaluation of the system forms part of the overall research goal.  

 

5. Conclusion and Future Work 

Treating graphical notations as examples of language is well established and the use of 

syntactic grammars to generate or parse graphical is well known. Similarly, the development 

of statistical natural language models is advanced. However, the aim of this work is the 

application of statistical language models to graphical notations. By identifying graphical 

notations properties that make them suitable for these models, this research will offer a 

theoretical foundation for new methods of capturing, searching and analysing graphical data. 
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This work has relevance to sectors that collect, supply or use graphical data in digital form. 

There are enormous amounts of data in paper form, examples come from surveying, mapping, 

architecture, engineering and multimedia systems. Aside from the architectural and 

engineering domains identified for use in this work, it is envisaged that this research will 

result in software modules that can be used in various configurations for different application 

domains. For example, recognition and retrieval of graphical data for multimedia operations, 

automatically structuring geometry, detection and correction of errors in structure for 

graphics recognition.  
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