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SUMMARY

LOTOS is one of the most recent formal description languages to appear and one of very few with a
standard definition. It has both a process algebra and an abstract data-type component, and these
facilities are used in combination to describe the behaviour of concurrent systems. The purpose of this
paper is to examine, in a tutorial style, what is involved in constructing and taking benefit from such
descriptions. The presentation is illustrated through the development of two formal descriptions for the
children’s game of pass-the-parcel. These descriptions and a concise summary of the main features of
LOTOS are given as appendices. Many of the points made in the paper apply equally well to other
process-oriented languages such as CCS and CSP.
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INTRODUCTION

The trend in system development over recent years has been towards the greater
use of formality in the expression of system specification and design. The advantages
of such an approach are well understood. 1,2 In particular, by constructing a formal,
mathematical description of a system, ambiguity is removed, the system described
can be analysed before it is built and once constructed can be verified against
the formal description. Also, it is possible to refine a formal description into an
implementation through a series of correctness-preserving transformations. 3’4

The purpose of this paper is to illustrate what, in practice, is involved in using a
formal description technique in the particular case of describing a concurrent system
in the ISO defined language LOTOS . 5’6 The discussion is based around the develop-
ment of two formal descriptions of the children’s game of pass-the-parcel. 7 This
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example has been chosen because the ‘system’ concerned is readily understood
and yet is sufficiently complex to suggest how computing applications, such as
communication protocols, might be described. The pass-the-parcel game is defined
informally in the first section of the paper. The second section gives a short introduc-
tion to LOTOS, followed by sections that present and assess two alternative styles
of LOTOS use. The paper concludes with a very brief discussion of how programming
representations can be derived from a LOTOS description and how LOTOS descrip-
tions can be compared formally for equivalence.

PASS-THE-PARCEL: NATURAL-LANGUAGE DESCRIPTION

It is usually convenient to develop an informal description of a system in natural
language before considering its formal definition. For example, a description of the
game of pass-the-parcel might be constructed initially as follows:

1. Children seated in a circle pass a parcel from one to another as music is played.
2. The parcel is wrapped in several layers of paper.
3. The music stops from time to time.
4. When the music stops the child holding the parcel unwraps one layer of paper.
5. If the present is uncovered by removing a layer of paper the game terminates;

otherwise the music is restarted and the parcel circulated once again.
6. The game is begun by an adult who passes the parcel to one of the children.
7. The parcel is circulated in a clockwise direction.
8. If two children have a hand on the parcel when the music stops, the child

receiving the parcel is assumed to have possession.
9. The game may be interrupted at any time by an adult calling everyone to tea.

Such natural-language descriptions are often criticized for their ambiguity and general
lack of precision, 2 and the above description is no exception! Some of the faults it
contains are identified later, but it may help to spend a few moments trying to spot
the problems at this stage.

One way to detect faults in a description is to turn its statements into a form
amenable to mathematical analysis—that is, to construct a formal model of the
system. Two formal models of the pass-the-parcel game are developed here. The
purpose of such models is to clarify and make precise selected key areas of a system
description. It is usually the functional aspects of a system that are described formally
with non-functional information left in natural language. Essentially, functional
requirements relate to what a system must do while non-functional requirements
identify constraints on an implementation . 2 For example, in the case of the pass-
the-parcel game the functional requirements are the rules of the game, and the non-
functional requirements would include a stipulation that the game should be enjoyed
by those playing it.

In what follows it is assumed that a full natural-language description is maintained
in parallel with any formal representations. In this way there exists a single coherent
system description that is available for general communication with a customer or
anyone else who needs to understand the system.
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LOTOS: A FORMAL DESCRIPTION LANGUAGE

There are a number of ways in which a formal description might be constructed.
One approach is to use variables to represent the state of a system and then define
system functions in terms of their effect on, or use of, these state variables.3,8 In
the case of the pass-the-parcel game, for example, the state might be represented
by three variables:

1. an indication of whether or not music is playing
2. the number of layers of paper on the parcel
3. the identity of the person holding the parcel.

System functions would include operations to stop and start the music and to pass
the parcel from one child to another. State-based modelling is mostly used for
describing sequential systems.

Another approach to formal modelling is to describe a system in terms of abstract
data types, 9–11 which identify functions for data manipulation and give them meaning
through a set of equations. The equations define interrelationships among the
functions. For the pass-the-parcel game the only data item is the parcel itself. A
data type representation of the parcel is given later in this paper. The data functions
are state-less in that all their inputs and outputs are parameters to the functions.
This means that each function is self-contained and therefore can be performed in
parallel with any other function. Hence data types can be used to describe aspects
of concurrent systems.

One of the most common approaches to the description of concurrent systems is
to concentrate on defining system behaviour, usually in terms of the actions or events
involved and the constraints on their order of occurrence. 12,13 For example, in the
pass-the-parcel game, events include the stopping of the music and the removal of
a layer of paper from the parcel. When describing the game, these two events would
be constrained to follow each other. Similar temporal ordering can be defined for
other game activities.

The LOTOS language 5,6 supports both a data type and an event ordering approach
to system description. More specifically, LOTOS, which is an acronym for Language
of Temporal Ordering Specification, provides

(a) an abstract data type (ADT) formalism, based on ACT ONE, 14 that can be
used to describe system data and the operations performed on it

(b) a process algebra formalism, based on CCS (Calculus of Communicating
Systems) 12 and CSP (Communicating Sequential Processes) 13 that can be used
to describe system behaviour.

LOTOS was developed to meet the specific needs of the OSI (Open System
Interconnection) community who use the language for the specification of protocols
and services. 15–17 Its definition is sufficiently general, however, to allow it to be
applied to most system descriptions. A concise summary of the language is given in
Appendix I, but its features are explained, where necessary, in the discussion that
follows. Other introductions to the language may be found in References 5 and 6.

In this paper most emphasis is given to the behavioral approach to formal
description. LOTOS is intended to be used to specify systems at a variety of levels
of abstraction from high-level abstract specifications to detailed models of system
components. This flexibility means that different LOTOS specifications will be
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written in different styles depending on their purpose. Various specification styles
have been discussed in the literature. 19’20 These tend to fall into two broad categories:
event-based and object-based styles. These styles are not mutually exclusive, and a
particular specification may contain different parts constructed in different ways.

With the event-based style, most emphasis is placed on defining the temporal
ordering of system events. With the object-based style the underlying concern is still
to define an event order but the description is structured as a collection of com-
ponents (processes and data types) corresponding to areas of responsibility in the
system being defined. The next two sections explain and illustrate each of these
descriptive styles in turn.

FORMAL DESCRIPTION: THE EVENT-BASED STYLE

The event-based style of formal description essentially seeks to define the behaviour of
a system in terms of the events in which it participates and the constraints on their
order of occurrence. In the pass-the-parcel game, for example, the events of interest
include the starting and stopping of music, the transfer of a parcel from one child to
another and the interrupting call to tea. Such events can, in general, be readily deduced
from the natural-language description of a system. Specific examples of event-based
styles 20 include the constraint-oriented style, which uses processes composed in parallel
to isolate the different constraints on permissible event sequences, and the slice style  21

which models sequences of permissible interactions propagating through the components
of a reactive system. The monolithic style is one that contains no internal process
structure but defines explicitly the permissible sequences of events. This style is rarely
used for complete specification construction due to its lack of structure, but it can be
a useful way to envisage small process definitions.

If the number of system events present is sufficiently small and their interrelation-
ship sufficiently obvious then a formal description can be produced directly. If not,
then it is usually helpful to construct a diagram outlining the relationships involved.
These diagrams may be informal, but formal notations are available. Concurrent
systems may, for example, be represented by Petri nets 22 or communicating finite-
state machines. 23 In the case of the pass-the-parcel game, for instance, the behaviour
may be described by a single finite-state machine as shown in Figure 1.

In the diagram the circles represent possible system states and the arcs represent
events that cause transitions among those states. All systems have an initial state
and at least one final state. The initial state in this case is identified at the top of
the diagram and the two possible end states are on the right, distinguished by double
circles. The diagram indicates that the call to tea can occur at any time, that the
parcel passes while music is playing and that once the music stops a layer of paper
is removed from the parcel, after which the game either terminates (because the
present has been found) or the parcel is returned to circulation.

Some attempts have been made to define a graphical version of LOTOS 24 to allow
specifications to be built in a diagrammatic form. It is also possible to define formal
transformations between descriptions, such as a state-transition diagram and a LOTOS
definition 25 to ensure consistency when transferring between representations.

The description of the game in LOTOS in an event-based style first identifies the
events involved:
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Figure 1.

specification
MusicStops,
behaviour

State-transition diagram for the pass-the-parcel game

PassTheParcel [ParcelSupplied, ParcelPassed, MusicStarts,
LayerRemoved, PresentFound, CallToTea]: exit

...
endspec

The events are named as event gates in the specification heading. The word exit, at
the end of the heading, indicates that the system described terminates. The remainder
of the specification defines the behaviour of the system in terms of the named events.
This can be achieved by first describing the main concern, that of passing the parcel,
and then constraining that activity appropriately. The passing of the parcel is defined
by a process, and other processes are linked to it to implement the constraints.
Processes are structured in a hierarchical fashion with the overall specification itself
being a process. Apart from minor (irritating!) syntactic differences a LOTOS process
has the same structure as the specification. For example, the main activity of passing
the parcel might be expressed as follows:

1. process Circulate [ParcelPassed, MusicStarts, MusicStops, LayerRemoved,
PresentFound]: exit :=

2. ( ParcelPassed;
3. Circulate [ParcelPassed, MusicStarts, MusicStops, LayerRemoved, PresentFound])
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4. []
5. ( MusicStops;
6. LayerRemoved;
7. (( MusicStarts;
8. Circulate [ParcelPassed, MusicStarts, MusicStops, LayerRemoved,

PresentFound])
9. []
10. ( PresentFound;
11. exit)))
12. endproc

This representation is consistent with the description given in Figure 1 except that
the calltotea event is not yet specified. It will be introduced shortly. Note the following
general points about the LOTOS notation shown:

1.

2.

3.
4.

Events (or actions, in general) that occur in sequence are combined using a
semicolon—the action prefix operator (e.g. lines 2, 5, 6, 7 and 10).
If at any time the next event to occur is indeterminate, the possible events and
subsequent actions are combined with a choice operator producing an
expression of the form b1 [] b2 (e.g. lines 4 and 9).
Looping behaviour is represented by recursive definitions (e.g. lines 3 and 8).
The end of a terminating process is marked by an exit (e.g. line 11).

A more precise definition of these and other operators is given in Appendix  I.
Thus, the circulation of the parcel is described as a choice between the passing of

the parcel ( ParcelPassed ) and a response to the music stopping ( MusicStops ). In the
latter case, a layer of paper is removed from the parcel ( LayerRemoved ) after which
the music starts again ( MusicStarts ) or the game terminates ( PresentFound ), depending
on whether or not paper remains on the parcel. Once the parcel is passed, or the
music restarted, the system returns to its original state, indicated by a recursive
instantiation of Circulate. Notice that with this approach to specification no distinction
need be made between describing sequential and concurrent systems. Events are
simply ordered, and where the order is partial there is potential for concurrent
behaviour. Note also that processes are being used to structure constraints rather
than identify concurrent behaviour.

The constraints that the parcel has first to arrive and that a call to tea can occur
at any time can now be added to the basic description of parcel passing. The
constraints can be defined by processes linked to the Circulate process using appropri-
ate operators. For example, a Prepare Parcel process may be linked to the Circulate
process using an enable operator >> to indicate that the Parcel Supplied event must
occur before the circulation of the parcel can begin:

PrepareParcel [ParcelSupplied]>>
Circulate [ParcelPassed, MusicStarts, MusicStops, LayerRemoved,
PresentFound]

The PrepareParcel process simply identifies the ParcelSupplied event, thus:

process PrepareParcel [ParcelSupplied]: exit: =
ParcelSupplied; exit

endproc
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process Tea [CallToTea]: exit :=
CallToTea; exit

endproc

can be linked to the PrepareParcel and Circulate processes using the disable operator
[> to indicate that the game may be interrupted at any time by a call to tea:

(PrepareParcel [...] >> Circulate [...]) [> Tea [CallToTea]

In general, the act of building such a model will often reveal problems in a natural-
language description. In this case, for example, there is an unspecified assumption
that music is playing initially—a fault that has been carried through to the diagram-
matic depiction of the system in Figure 1 and to the corresponding LOTOS descrip-
tion given above. In producing either of these representations the problem might
be noticed and corrected. The correction would be made to each representation
maintained. For example, the natural-language version might be extended with a
statement of the form:

10. Music is playing when the parcel is passed to the first child.

The corresponding adjustment to the LOTOS description can be achieved by intro-
ducing another constraint process, InitialMusic, thus:

(lnitialMusic [MusicStarts] >>
PrepareParcel [ParcelSupplied] >>

Circulate [ParcelPassed, MusicStarts, MusicStops, LayerRemoved,
PresentFound])

[> Tea [CallToTea]
where

process InitialMusic [MusicStarts]: exit :=
MusicStarts; exit

endproc (* Initial Music *)

In general, other less obvious problems are uncovered by animating the formal
description. For LOTOS this means exploring the event sequences that the descrip-
tion permits.

 26–29 Conceptually, the set of valid execution paths forms an action or
derivation tree. 6 For example, part of the tree for the LOTOS pass-the-parcel
description is shown in Figure 2.

Arcs denote events and nodes represent system states. Multiple arcs from a single
node identify a state from which one of several subsequent events may occur. In the
pass-the-parcel specification, for example, there are at least two arcs from each node
because the CallToTea event can occur at any time. Note that this is an infinite tree
because there is no requirement in the LOTOS description that the music should
ever stop.
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Figure 2. Partial action tree for the pass-the-parcel game

In many respects animating a LOTOS description is the same as program testing,
and so can be approached in much the same way and with the same objectives. 30

Specifications are usually explored bottom-up by first animating basic processes
whose behaviour is defined directly in terms of events; processes whose definitions
are derived from the basic processes can then be tackled and analysis proceed in the
same way up to the top specification level.

An animation of the full pass-the-parcel specification reveals that the MusicStops
event is offered immediately after the MusicStarts event, which means that a child
can retain the parcel and remove successive layers of paper until the present is
uncovered. In natural-language terms, the constraint to exclude this possibility might
be expressed as follows:

11. After removing a layer of paper from a parcel and failing to reveal the present,
a child must pass on the parcel immediately the music restarts.

As before, this restriction can be added to the LOTOS description using a constraint
process. However, the process required has a structure similar to Circulate so it is
preferable to modify Circulate directly by placing the event ParcelPassed immediately
after MusicStarts. Following such modifications it is of course necessary to repeat
the animation to ensure that the resulting behaviour is as required.

The formal description of the game in an event-based style is now complete and
may be found in full in Appendix  II. The LOTOS description is relatively short and
(for someone experienced in the language) would require little effort to produce.
Finding problems of the type illustrated above makes such an exercise well worth
while. However, the LOTOS description covers only part of the game definition,
ignoring, in particular, the parcel and the individual children. It is therefore tempting
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to extend it to include this additional detail. The extension introduces lower-level
concerns and so is analogous to refining a specification towards an implementation.

In general, refinement involves converting an abstraction description into versions
that are less abstract through a sequence of intermediate steps that add constraints
(implementation details) to the definition or take account of further requirements. 4

Each development step can be made in one of two ways:
1. produce a new description and prove it consistent with the preceding version;

or
2. transform one description into another by refining aspects of the first according

to a set of formal rules.
The second approach is more appealing because any form of proof tends to be
difficult and time-consuming. However, in practice, the first approach is often more
appropriate because it can be necessary to restructure a formal description as it is
refined. This is to be expected, as initial descriptions will focus on requirements,
whereas those closer to the implementation will tend to reflect the structure of the
system to meet the requirements. The next section illustrates this transition by
showing the development of a LOTOS description of the pass-the-parcel game in
an object-based style. This description includes details of the behaviour of each
individual child and the operations each performs on the parcel. However, as far as
possible, the set of events present in the event-based definition is carried across so
that the two descriptions can be compared more easily. The problem of ensuring
that the two descriptions are consistent is discussed in a later section.

FORMAL DESCRIPTION: THE OBJECT-BASED STYLE
The object-based style of formal description uses processes and data types to model
the recognizable entities in a system. For example, in the pass-the-parcel game the
entities are the music, the adult who starts the game, the children who play the
game, the adult who calls the children to tea and the parcel. This contrasts with the
focus on behaviour used to develop the object-based description. Object-based
specifications have an internal structure that reflects that of an actual implementation.
Specific styles in this category include the state-oriented style, 20 which uses state
variables passed as value parameters to recursive processes to represent subsystems.
Often semi-formal specifications use state-based models of physical devices, and so
a LOTOS specification can be produced to correspond with these. This style therefore
tends to be much more implementation-oriented. The resource-oriented style 20 is
even more implementation-specific as the physical resources available for implemen-
tation are directly modelled by LOTOS processes. The specifier models the individual
behaviour of each component and then composes these to define the overall behav-
iour of the system.

With the object-based approach it is often convenient to first construct an entity-
interaction diagram that identifies the entities and shows those that are interde-
pendent. Figure 3, for example, is a possible entity-interaction diagram for the pass-
the-parcel game. In this diagram the adults involved are, for convenience, identified
as a mother and a father, with their tasks assigned arbitrarily. The father waits for
the music to start (1) and then passes the parcel (2) to one of the children (3); the
children manipulate the parcel (4) in response to the stopping and starting of the
music (5); the mother may stop the game at any time (6, 7, 8).
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Figure 3. Entity-interaction diagram for the pass-the-parcel game

The entities in a system represent potential concurrent behaviour in that each
might have autonomy and interact with other entities by agreement. However, it is
possible to draw a distinction between active and passive entities and choose different
representations for each. For example, the father, mother, music and children are
conceptually active entities in the system and so may be represented by processes.
The parcel is a passive entity and so can be represented as a data type. This
classification is somewhat controversial and Milner, in particular, argues that it is
neither practical nor desirable to make such a distinction. 31 The parcel can indeed
be represented by a LOTOS process. However, its definition as a data type will be
given here to illustrate both this approach to formal description and its integration
with a process-algebra notation.

In general, a LOTOS specification is made up of

1. A set of environment parameters identifying
(a) named values that instantiate the definition
(b) possible interactions between the system specified and its environment,

defined by event gates
(c) data types in the specification taken from a data type library.

2. A hierarchy of process definitions describing the intended system behaviour in
terms of permitted sequences of events.

3. A set of data-type definitions describing the data manipulated by the processes.

In an object-based style of description, the events corresponding to process interac-
tion are usually hidden as far as possible. That is, each event is associated as closely
as possible with that part of the description in which its use is defined. Thus at the
top level of a LOTOS description the only event gates that need to be named are
those for external communication. In the case of the pass-the-parcel game, it can be
argued that there is external communication with the observer of the game and thus
that all events need to be named in the specification heading. Another interpretation
is that no events should appear in this position because the system described is self-
contained. This latter view will be used here as a contrast to the approach taken in
the preceding section. Thus the basic form of the specification would be as follows:
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specification PassTheParcel (ParcelSize: Nat, Players: Nat): exit
library NaturalNumber, Boolean endlib
behaviour . . .

endspec

The first line of the specification introduces two value parameters that help to make
the definition of the system more general: ParcelSize, denoting the number of layers
of paper on the parcel and Players, denoting the number of children playing the
game. Both parameters are natural numbers.

The second line of the specification identifies library types that are used:
NaturalNumber and Boolean. For natural numbers and Booleans, in common with
most data types, a distinction is made between the values, or sort, of each type and
its overall definition (this will include descriptions of the operations that can be
performed on values of that type). Natural numbers have a data-type name Natu-
ralNumber and a sort name Nat. The sort name for the Boolean type is Bool.

The behaviour expression for the game might be as follows:

[(Players Ie succ(0)) or (ParcelSize eq 0)] –> ( exit )
[]
[Players gt succ(0) and (ParcelSize gt 0)] -> (Game (ParcelSize, Players) [>
Mother)

This is a guarded-choice expression indicating that the game can only be played if
there are at least two children available and at least one layer of paper on the parcel
(two restrictions not mentioned explicitly in the natural-language description and
which should be added to it). Using the operations defined for NaturalNumber, the
value ‘ 1’ is denoted by succ(0), i.e. the successor of zero. If the game can be played,
the subsequent behaviour of the system is described by two processes: Game and
Mother, where Game describes the playing of the game and Mother describes the
action of the adult who calls the children to tea. The relationship between the two
processes is defined by the disabling operator that connects them, as in the event-
based specification. In this case, however, the interrupting event is internal to the
Mother process:

process Mother: exit : =
i; exit

endproc (* Mother *)

The action denotation i represents the call to tea, which is followed by a termination
exit. The action i is an internal event —one in which no other process participates
(this serves the same purpose as the τ event in CCS 12 ). Because of the disabling
operator connecting Mother to Game any event in Mother will cause the termination
of the Game process.

The definition of the Game process describes the behaviour and interaction of the
children, the music and the father who supplies the parcel. The parcel itself may be
defined at this point:
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1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

type ParcelType is NaturalNumber, Boolean
sorts Parcel
opns (* operations *)

NewParcel: Nat –> Parcel
Wrappers Remain: Parcel –> Bool
Unwrap: Parcel –> Parcel

eqns (* equations *)
forall n: Nat
ofsort Bool

WrappersRemain (NewParcel (0)) = false;
WrappersRemain (NewParcel(succ( n))) = true;

ofsort Parcel
Unwrap (NewParcel(0)) = NewParcel (0);
Unwrap (NewParcel(succ( n))) = NewParcel (n);

endtype (* ParcelType *)

The first line of the definition indicates that ParcelType is based on the definitions
of natural numbers and Booleans. The remainder of the definition has three parts:

1. line 2: the identification of a new sort — Parcel, a name for the values taken by
the type

2. lines 3–6: a set of operations (or functions) and their parameters (inputs to the
left of the arrow, outputs to the right), identifying what can be done with a parcel

3. lines 7–14: a set of equations defining properties of those operations—in effect,
the equations define what the operations mean.

A parcel is manipulated by three operations: New Parcel, which creates a parcel,
Wrappers Remain, which reports whether or not the present has been uncovered, and
Unwrap, which removes a layer of paper from the parcel. The properties of the
parcel operations are defined by accompanying equations. For example, one equation
(line 14) defines the Unwrap operation to be equivalent to the inverse of the successor
operation (succ) for natural numbers, and two others (lines 10 and 11) indicate that
WrappersRemain is true if the number of wrappers is non-zero. Note that the parcel-
type definition makes no statement about the implementation of a parcel, restricting
itself entirely to a set of abstract operations for its manipulation.

For the game itself, processes can be used to describe the behaviour of the father,
the music and the children. In essence, therefore, the behaviour expression of the
game takes the form:

Father  Children   Music

where the parallel bars indicate that the behaviour of these entities is concurrent.
The events shared by the processes must also be identified in the behaviour

expression. An event, in general, denotes the synchronization of two or more
processes and may involve the communication of one or more data values. In the
latter case the interaction is often referred to as a structured event. The Music process
is required to indicate when the music starts ( MusicStarts ) and stops ( MusicStops ).
The Children process accepts the parcel initially ( ParcelSupplied ), and responds to the
music stopping ( MusicStops ) and starting ( MusicStarts ). When the music stops a layer
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of paper is removed from the parcel (not modelled at this level), after which the game
either terminates, if the present has been uncovered ( PresentFound ), or continues if
layers of paper remain.

The events on which a process synchronizes are passed as event-gate parameters
in the instantiation of that process, and the events shared by particular processes
are identified in the parallel operators connecting those processes. For example,
assuming that the Children and Father processes synchronize using the event gate
Parcel Supplied, their connection would take the following form:

Father [MusicStarts, ParcelSupplied] (ParcelSize)
 [ParcelSupplied] 

Children [ParcelSupplied, MusicStarts, MusicStops, PresentFound] (Players)

The Father process also synchronizes with the Music process on the MusicStarts
event (music must be playing before the parcel is supplied), and the Children process
synchronizes with the Music process on the MusicStarts, MusicStops and PresentFound
events:

(Father [MusicStarts, ParcelSupplied] (ParcelSize)
 [ ParcelSupplied] 

Children [ParcelSupplied, MusicStarts, MusicStops, PresentFound] (Players))
 [ MusicStarts, MusicStops, PresentFound] 
Music [MusicStarts, MusicStops, PresentFound]

Note that the bracketing arrangements here are equivalent to

(Α [x]  B)  [ y]   C

The parallel operator is binary and associative. Linking groups of processes with a
parallel operator requires only one process on each side of the operator to synchron-
ize for each connecting event. Multi-way synchronizations can be achieved by naming
the same event in more than one parallel operator. Thus, in the above expression,
a three-way synchronization will occur for each event that is common to x and y;
process C will synchronize with either process A or process B on events exclusive to
y.

Returning to the pass-the-parcel example, it can be noted that the ParcelSupplied,
MusicStarts, MusicStops and PresentFound events, which are local to the Game process,
are hidden thus:

process Game (ParcelSize: Nat, Players: Nat): exit :=
hide ParcelSupplied, MusicStarts, MusicStops, PresentFound in...

endproc (* Game *)

Now consider the expression of the Father, Music and Children processes. The Father
process might take the following form:

process Father [MusicStarts, ParcelSupplied] (ParcelSize: Nat): exit : =
MusicStarts; ParcelSupplied ! NewParcel (ParcelSize); exit

endproc (* Father *)
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The father waits for the music to start and then supplies the parcel, represented by
the structured event shown. The corresponding acceptance of the parcel is denoted
thus :

ParcelSupplied? Parcel: Nat

In LOTOS, the ‘ ! ’ operation means that a single value is offered for synchronization,
whereas ‘ ? ’ means that a set of values is offered. Synchronization then occurs
whenever:

(a) two (or more) processes have identical event offers, or
(b) two or more processes have matching offers; that is, where the values offered

by one process are in the set of acceptable values offered by another—each
naming the same event gate; when several values are possible one is selected
randomly.

Thus, in LOTOS, the model of communication is one of values being agreed among
processes as distinct from being transmitted explicitly among them. (Note that
operators ‘ ! ’ and ‘ ? ’ should not be confused with those used in CSP, 13 where ‘ ! ’ is
read as output and ‘ ? ’ as input. )

It now remains to consider the definition of the Children and Music processes. The
process definitions must be constructed to handle clean termination (rather than
deadlock). For example, the Music process might take the following form:

process Music [MusicStarts, MusicStops, PresentFound]: exit : =
MusicStarts;
MusicStops;
((Music [MusicStarts, MusicStops, presentFound])
[]
(PresentFound; exit ))

endproc (* Music *)

Here the behaviour is simply to offer the MusicStarts and the MusicStops events until
the present has been found ( PresentFound ) leading to the termination of the process.

The modelling of the, children is considerably more difficult. Assuming that each
is represented separately, the following process might be used:

process Child [ParcelSupplied, Parcelin, ParcelOut, MusicStarts, MusicStops,
PresentFound] (Parcel From Father: Bool): exit : =

[ParcelFromFather]-> (* first child accepts parcel from father *)
(ParcelSupplied ? The Parcel: Parcel;
ParcelAction [ParcelSupplied, Parcelin, ParcelOut, MusicStarts, MusicStops,
PresentFound] (TheParcel))

[]
[not (ParcelFromFather) ]->

(( PresentFound; exit )
[]
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(Parcelin ? TheParcel: Parcel;
ParcelAction [ParcelSupplied, Parcelin, ParcelOut, MusicStarts, MusicStops,
PresentFound] (The Parcel)))

. . .
endproc (* Child *)

A child may either receive the parcel from another child or from the adult who
introduces the parcel into the circle. These two cases are distinguished by a Boolean
parameter ParcelFromFather, supplied to each instantiation of the Child process.
Regardless of the source of the parcel, the subsequent actions performed are identical
and defined by the process ParcelAction, thus:

process ParcelAction [ParcelSupplied, Parcelin, ParcelOut, MusicStarts,
MusicStops, PresentFound] (The Parcel: Parcel): exit :=

( ParcelOut ! The Parcel;
Child [ParcelSupplied, Parcelin, ParcelOut, MusicStarts, MusicStops,
PresentFound] (false))
[]

( MusicStops;
i; (* remove layer of paper *)
( let UnwrappedParcel: Parcel = Unwrap (TheParcel) in

( [Not (WrappersRemain (UnwrappedParcel) )]–>
(PresentFound; exit )

[]
[Wrappers Remain (Unwrapped Parcel)]- >

(MusicStarts;
ParcelOut ! UnwrappedParcel;
Child [ParcelSupplied, Parcelin, ParcelOut, MusicStarts, MusicStops,
PresentFound] (false))

) (* selection on WrappersRemain or not WrappersRemain *)
) (* scope of Unwrapped Parcel *)

) (* MusicStops selection *)
endproc (* ParcelAction *)

The parcel supplied as a parameter to this process is passed on to another Child
process using the gate ParcelOut. On receiving the parcel a child either passes it on
or, if the music has stopped, removes a layer of paper (denoted by an internal
event). If, as a result, the present is uncovered the end of the game is reported;
otherwise the child waits for the music to start ( MusicStarts ) and then puts the parcel
back into circulation.

The final part of the description to consider is the definition of the Children process.
This process is far from straightforward because:

(a) the number of Child processes needed is based on a value passed as a parameter
to the specification, and

(b) the Child processes share gates that effectively connect them in a circle.

The Child processes may be created by instantiating them one at a time as follows:
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process Children [ParcelSupplied, MusicStarts, MusicStops, PresentFound]
(Players: Nat): exit : =

hide FirstLink, NextLink in
(Child [parcelSupplied, FirstLink, NextLink, MusicStarts, MusicStops,
PresentFound] (true)
l[FirstLink, NextLink, PresentFound]l
StartChild [ParcelSupplied, FirstLink, NextLink, MusicStarts, MusicStops,
PresentFound] (succ (succ(0)), Players))
where
process child . . . endproc (* Child *)
process StartChild [ParcelSupplied, FirstLink, PreviousLink, MusicStarts,
MusicStops, PresentFound] (Identity: Nat, Players: Nat): exit :=

[Identity eq Players]-> (* last child *)
(Child [parcelSupplied, PreviousLink, FirstLink, MusicStarts, MusicStops,
PresentFound] (false))

[1
[Identity It Players] –> (* child other than the first or last instantiated *)

( hide NextLink in
Child [ParcelSupplied, PreviousLink, NextLink, MusicStarts,
MusicStops, PresentFound] (false)
l[NextLink, PresentFound]l
StartChild [ParcelSupplied, FirstLink, NextLink, MusicStarts,
MusicStops, PresentFound] (succ (Identity), Players))

endproc (* StartChild *)
endproc (* Children *)

A process StartChild is responsible for (recursively) instantiating the required number
of Child processes apart from the first one. The StartChild process is parametrized with:

(a) a gate PreviousLink used to connect the new Child process into the ring
(b) the ‘identity’ of the process instance to be created, namely a creation-order

number; the recursion terminates when the value of Identity matches the value
of Players supplied in the specification heading.

When the value of Identity is not equal to Players, a Child process is instantiated and
connected to its neighbours by setting its Parcelln and ParcelOut gates appropriately.
When the value of Identity is equal to Players a Child process is instantiated with its
connecting gates defined to complete the circle.

The description is now complete and shown in full in Appendix III. A number of
observations can be made at this point:

1. Modelling the parcel has been worth while, as the description involved is
abstract and yet serves as a good basis for an implementation.

2. Modelling children individually has not been easy and seems to yield little
benefit. In particular, the LOTOS description of individual behaviour is much
larger, more complex and considerably more difficult to understand than the
equivalent natural-language text. It is easy to imagine how the formal descrip-
tion might be improved by having LOTOS features that allow processes to be
instantiated and linked in a different way, but the description is still likely to
be relatively complex.
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3. The object-based description is clearly much larger than that of the event-based
description, but mostly this is because of the introduction of definitions for the
parcel and for each child who handles it. In fact, the two approaches applied
at the same level of detail would tend to yield definitions of comparable size.

4. LOTOS can be used effectively for the description of data and the ordering of
events. However, in its present form it cannot easily be used to express basic
timing constraints such as a limitation that a child should not hold a parcel for
more than a few seconds while music is playing, that a child should take only
a few seconds to remove a layer of paper or that the music should stop at
‘reasonable’ intervals.

Overall, the object-based approach to formal description tends to yield a definition
that is easier to understand than that produced by the event-based approach because
of the direct link between the structure of the system concerned and that of its
description. Event-based specifications have no such link, but they can be used
effectively, for example, to define an initial statement of requirements.

FROM FORMAL DESCRIPTION TO PROGRAM REPRESENTATION

A formal description of a system can serve as a precise statement of requirements
against which to build an implementation. In some circumstances it may also be
possible to use a formal description as a basis of software design. This is especially
true of the object-based approach to system description, as illustrated for LOTOS,
as it is similar to object-oriented design. It is thus possible to convert such descriptions
into one of a range of modern programming notations in a largely mechanical way.
In particular, there is a recognized correspondence between LOTOS data types
and the Ada package , 32 and both languages have a concurrency model based on
synchronized process (task) communication. For example, an Ada package corre-
sponding to the LOTOS ParcelType developed earlier might be expressed as follows:

package ParcelType is
type Parcel is limited private;
subtype ParcelRange is Integer range 0. .Integer Last;
function NewParcel (Size: ParcelRange) return Parcel;
function WrappersRemain (P: Parcel) return Boolean;
function UnWrap (P: Parcel) return Parcel;

private
Parcel is ParcelRange;
–  eqns (* equations *)
–  for all n: Nat

–  ofsort Bool

–  WrappersRemain (NewParcel(0)) = false;

–  WrappersRemain (( NewParcel(succ( n)))= true;
–  ofsort Parcel
–  Unwrap (NewParcel(0)) = NewParcel (0);

–  Unwrap (NewParcel(succ( n))) = NewParcel (n);
end ParcelType;

The main points to note here are:
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1. The operations in the LOTOS ParcelType definition have been realized by Ada
functions; in general it may be necessary to use procedures in cases where error
values need to be returned . 32

2. The sort of the ParcelType is defined as an Ada limited private type, which
imposes the required restrictions on the use of variables of this type, namely
that they can only be manipulated within the ParcelType package.

3. In Ada the representation of the parcel must be defined before
implementation—albeit in a private section; the representation used here is
simply the positive integer subrange.

4. The equations of the LOTOS data-type definition serve as documentation
for the ParcelType package and provide information on which to base an
implementation.

5. The equations have a special introductory character ‘ � which allows a compiler
to recognize the equations and possibly add implicit assertion code for the
defined functions.

Further details, and many more examples of the use of algebraic data types definitions
as specifications for Ada packages, may be found in Reference  32.

Event gates roughly correspond to Ada entries. Thus, for example, an Ada task
implementing the Music process might have a definition part of the form:

task Music is
entry MusicStarts;
entry MusicStopped;
entry PresentFound;

end Music;

In Ada, the communication of data values is handled by defining the names and
types of the values concerned in a formal-parameter list for each entry affected.
LOTOS event gates are more flexible in that they permit the number and type of
the communicated values to be defined implicitly in an event offer.

The LOTOS choice expression roughly corresponds to the select statement in
Ada. For example, the body of a Music task implementing the LOTOS Music process
might be expressed as follows:

task body Music is
Finished: Boolean : = False;

begin
accept MusicStarts;
while not Finished loop

delay random time;
accept MusicStops;
select

accept MusicStarts;
or

accept PresentFound do Finished : = True;
end select;

end loop;
end Music;
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Note that the recursive LOTOS definition has been converted into a looping structure
and that a random delay has been inserted (informally) to simulate the random
playing intervals of the music.

One important difference between the LOTOS and Ada communication mechan-
isms is that in LOTOS the partners in an event have equal status, whereas in Ada
the interaction is asymmetric—one task instigates an interaction, by making an entry
call, and the receiving task accepts the interaction. A consequence of this asymmetry
is that there are types of communication that can occur in LOTOS definitions but
that cannot be expressed directly in Ada. The interaction between the Music process
and each Child process is one example. As the MusicStops event is offered passively
by the Music process a Child process is obliged to make an entry call but this then
prevents the Child process from dealing with the arrival of the parcel. In general,
there is no systematic method of dealing with structural clashes of this type and each
must be considered separately as part of the refinement process. For LOTOS it has
been suggested that each description be translated into an intermediate restricted
form of the language, which would permit automatic translation to a target program-
ming form. 33,34

Further discussion of the relationship between LOTOS and Ada may be found in
Reference 35.

VERIFICATION

The preceding sections have discussed four different representations for the rules of
the childrens’ game of pass-the-parcel:

1. a natural-language description
2. a LOTOS description of part of the game expressed in an event-based style
3. a more detailed LOTOS description of the game expressed in an object-based

style
4. an outline of a simulation model for the game expressed in Ada.

These descriptions are intended to be ‘consistent’ with each other in that no one of
them contradicts any other, although some will contain greater detail than others.
Such consistency can be verified informally by the systematic comparison of the
descriptions using an inspection technique. 36 That is the only choice when comparing
the natural-language description with any of the others. At present, it is also the
only option when comparing LOTOS descriptions with Ada although, as discussed,
there is scope for automatically translating some aspects of LOTOS into Ada, thereby
limiting the amount of verification required.

The comparison of two LOTOS descriptions for consistency or equivalence can be
done formally, but automated assistance is required for descriptions of any practical
size, and the whole area is still very much the subject of research. The meaning of
a LOTOS description is captured by its derivation tree showing all possible behav-
iors. Thus verifying the equivalence of two LOTOS descriptions effectively means
comparing their derivation trees. Formally, a LOTOS description is a labelled
transition system (see Reference  37 and Appendix I ), and verification means compar-
ing two such systems according to an appropriate definition of equivalence.

‘Various types of
tions are required

equivalence have been proposed. 6 The strongest is where descrip-
to have identical derivation trees. In practice, however, a much
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weaker notion of equivalence, known as observational equivalence, is more commonly
used. Two descriptions are considered observationally equivalent if they cannot be
distinguished by external observation. This means that when comparing one descrip-
tion with a refinement that introduces new events, the new events can be ignored
as long as they do not affect externally-observed behaviour.

Note that the two LOTOS descriptions developed in this paper are not equivalent
in any recognized sense because:

1. The object-based model additionally allows for the possibility that the game
will not start if the parcel has no wrappers or there are not at least two children
available to play the game.

2. The single parcel passed event in the event-based model is expanded as multiple
events, each linking a distinct pair of communicating children.

A useful validation tool would therefore have to work round such differences,
probably under human guidance.

Some verification tools have been developed for LOTOS but these have tended
to be restrictive in various ways. Most commonly, the size and type of specifications
is limited because of the memory needed to hold LOTOS derivations .37’38 This
particular problem, however, has recently been alleviated through an ‘on the fly’
technique for verifying that avoids the need to construct full LOTOS derivations
initially. 39 Such tools are probably not adequate for routine use but they do demon-
strate what can be achieved, in principle.

There is also an additional (long-term) possibility. This is based around the
interface equation concept.  40 The idea here is that, in certain circumstances, it may
be possible to generate, automatically, a definition of the interface (difference)
between two given formal descriptions. Currently this theory has been developed
for CCS, but it could be applied to LOTOS since the semantic content of the process
algebras is similar. An interface equation is expressed in the form

(p|X)\A   q

where p and q are the given definitions and X is the definition to be derived. The
’|’ represents parallel composition and the ‘\A’ means that the set of actions, A, is
internal to p and X. (This corresponds to the LOTOS hide operator. ) The ‘  ’
denotes observational equivalence. Given certain restrictions, principally that the
descriptions can be represented by finite-state machines, it is possible to derive X
automatically. Thus, if p represents an object-based description and q an event-
based description, X defines how one is linked to the other. This work is in the
realms of long-term research but nevertheless holds some promise of additional
automation in the verification process.

CONCLUSION

This paper has illustrated how concurrent systems might be described using a process-
oriented formal description language and discussed how such systems might be
developed. Most emphasis has been placed on system description because it is
believed that that is where the greatest return for effort is to be obtained. The act
of constructing a formal model increases the developer’s understanding of a system
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and will often lead to the detection of errors masked in a natural-language descrip-
tion. These benefits justify the use of a formal model even if it is then largely ignored
in subsequent development. A high-level model, focusing on the most significant
aspects of a system, can be constructed with relatively little effort and provide a
good return for that effort. More detailed models are justifiable if they help with
system design and so form an integral step towards an implementation.

Languages such as LOTOS can be used to model software, the users’ interaction
with that software and even the process by which the software is produced. In
principle, such notations can support a ‘pencil and paper’ specification technique.
In practice, however, it seems likely that the provision of tools for the construction
and analysis of specifications will greatly enhance the acceptability of a formal
approach to description. Tools go hand-in-hand with methodology and so should
improve as a deeper understanding of the role of formal languages in system
development becomes clearer. The present paper has attempted to take a step
towards that goal.
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APPENDIX I: SUMMARY OF MAIN LOTOS FEATURES
The LOTOS language has two components:

(a) A process algebra based mainly on ideas used in CCS 12 and CSP. 13 This is
used to express the temporal behaviour of a system.

(b) An abstract data-type component based on the algebraic language ACT
ONE.  14 This is used to specify the data within a system in terms of their types
or sorts and the operations to construct and manipulate them.

In general, a system is described in LOTOS as a hierarchy of nested process and
type definitions.

The behaviour of a process is described by a behaviour expression. This is a
combination of atomic events (or actions) and the instantiation of processes linked
using operators provided by the language. Processes interact by sharing events,
which may involve the interchange of data. The events through which a process can
interact are declared as formal parameters in its definition—when a process is
instantiated, corresponding actual parameters are given. In a similar way data values
can be passed to processes through parameters. A process can be instantiated
recursively to specify repeated behaviour.

Two basic processes are built into LOTOS: stop and exit. These represent inactivity
and successful termination respectively. A special event δ is offered implicitly by
exit.



1090 D. W. BUSTARD ET AL.

A special event i is used explicitly to represent an action that does not involve
interaction with any other process. It is internal to the process in which it appears.

The meaning of LOTOS operators is defined formally within the ISO standard in
terms of their operational semantics. These are expressed as axioms and inference
rules based on a system of labelled transitions. Using these it is possible to derive
two things:

1.

2.

A behaviour expression’s initials, the set of possible actions in which it can
immediately take part. These actions are offered to the expression’s environ-
ment for interaction. They can be defined using a function with the following
signature:

initials: behaviour expression → set of events

The expression specifying the behaviour subsequent to the performance of one
of these initials. For an action to occur it must be accepted by a matching offer
in the environment. The effect of this is defined using axioms in the simple
cases of exit and action prefix expressions, plus inference rules to derive results
for more complicated behaviour expressions.

The semantics of each operator used in basic LOTOS are given below. In each
case they are first described informally. The formal axioms and inference rules
defining the effect of each operator within a behaviour expression are then given,
followed by the definition of the initials function derived from them. In the discussion
the following symbols are used:

(a)

(b)
(c)
(d)
(e)
(f)
(g)
(h)
(i)
(j)
(k)
(1)

The set operators for inclusion, exclusion, union and intersection ( ∈, ∉, ∪,
∩ ).
∅, the empty set.
B, B 1, B 2 are behaviour expressions.
g ∪ G where G is the set of user-defined actions.
i represents the unobservable internal action.
µ ∈ Act where Act = G ∪ { i }, i.e. the set of explicit actions.
S = [ g l.. gn ], a finite sequence of user-defined action-names.
δ represents successful termination.
g + ∈ G + where G + = G ∪ { δ }, i.e. the set of observable actions.
µ + ∈ A c t+ where Act + = Act ∪ { δ }, i.e. the set of all actions.
g/g' represents the replacement of occurrences of the name g by g'.
    = [ g l/g' 1.. . gn/g'n ] is a sequence of such replacements.  

Inactivity ( stop )

Stop defines a totally inactive process that cannot engage in any events. Therefore
there are no appropriate axioms or inference rules and the initials function returns
the empty set:

initials ( stop )  =  ∅
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Successful termination ( exit )

Exit represents successful process termination. It is defined as the offering of the
special event δ. If this offer is accepted by the environment the process becomes
inactive, equivalent to stop:

exit — δ → stop

This axiom can be read as ‘the process exit may perform the event δ and transform
into the process stop’. The initials of exit is the singleton set containing δ :

initials (exit) = { δ }

Action prefix (;)

Any behaviour expression can be prefixed by an action. For example µ; B means
that action µ is followed by (or prefixes) behaviour B. Action prefix is the basic
building-block from which sequences of actions can be composed into processes:

 µ; B—p → B
initials ( µ ; B ) = µ

Choice ([])

B 1 [] B 2 means that either the behaviour B 1 or B 2 can occur. The outcome
depends on the events offered by the environment unless the initial events of B 1
and/or B 2 are identical or involve the internal event i. In this case the choice is non-
deterministic between B 1 and B 2. Each choice can be guarded by a predicate; only
those events whose predicates evaluate to true are allowed to occur. The inference
rules for choice expressions state that if the initial action of either subexpression
occurs to produce a resulting behaviour expression (as shown above the horizontal
line). then the overall construct will perform the same action to produce the same
resulting expression (shown

B 1—  µ+ →  B l  ′
B 1 [] B 2— µ+  →  B l ′

B 2 — µ+ →  B 2 ′
B 1 [] B 2—µ+ → B 2'

below the line):

The initials of a choice expression is the union of the initials of the individual
subexpressions:

initials ( B 1[] B 2) = initials ( B l) ∪ initials ( B 2)

Parallel composition (|[  a,b ,...]|)

B 1   [ a,b,... ]  B 2 means that B 1 or B 2 occur in parallel and share, or synchronize
on, the events listed within the brackets. Two special cases of this operator have
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special symbols. Where no events are shared by the processes the events from each
are interleaved. This can be represented as  B 1  B 2. Where all events are shared,
the behaviour is represented by B 1  B 2. The implicit event in successful termination
δ is always shared between parallel processes. This means that behaviors composed
in parallel always terminate together.

There are three inference rules for parallel composition. The first two express the
effect of events that are not shared between processes (i.e. µ ∉ S ); the third those
that are ( g+ ∈ S ∪ { δ }):

B 1 – µ  B 1 ′,  M  ∉  S
B 1   S  B 2– µ B 1 ′   S   B 2

B 2—µ → B 2 ′ ,µ ∉ S
B 1   S   B 2– µ →  B l   S   B 2 ′

B 1– g+ B 1 ′, B 2 –g+ →   B 2 ′, g+  ∈  S ∪{ δ }
B 1  S  B 2–g+ →  B l ′   S   B 2 ′

initials ( B 1  S   B 2) = (initials ( B l) – S ) ∪ (initials ( B 2) –S )
∪ (initials ( B l) ∩  initials ( B 2) ∩ S )

Disabling ([>)

B 1 [> B 2 means that the behaviour B 1 will be interrupted and not resumed if an
event occurs in B 2. If B 1 terminates naturally before B 2 interrupts then the events
in B 2 never occur. This is expressed in three inference rules: for the occurrence of
an event in B 1, for the termination of B 1 and for the occurrence of an event in B 2.
The initials of a disable expression are the union of its two parts:

B 1 — µ B 1 ′
B 1[> B 2—µ →  B l ′ [> B 2

B 1— δ  →   B 1 '
B 1[> B 2— δ → B 1 ′

B 2 — µ + →  B 2 ′
B 1 [> B 2—µ+ →  B 2 ′

initials ( B 1[> B 2) = initials ( B l) ∪ initials ( B 2)

Sequential composition (>>)

B 1 >> B 2 signifies that when B 1 successfully terminates (represented by the special
event δ ) the behaviour B 2 is enabled. The δ event that triggers B 2 is not visible to
the environment and so is equivalent to an internal event i. Inference rules are
needed for the effect of a normal event in B 1 and that of B 1’s termination. The
initials of the compound expression are simply those of the enabling process:

B 1— µ  → B 1 ′
B 1 >> B 2— µ  →  B 1 ′ >> B 2
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B 1— δ → B l ′
B l >> B 2—i → B 2

initials ( B 1 >> B 2) = initials ( B l)

Hiding ( hide . . . in )
Hiding makes named events internal to a behaviour expression and thus unavail-

able for interaction with the environment, essentially giving them the characteristics
of the internal event i. Inference rules are stated as follows:

B — g → B' , g ∈ { g 1 . . .gn }
hide g 1 –gn in  B— i →  B'

B— ∝+→ B', µ { g 1... gn }
hide g 1...gn in B —µ+ →  B'

initials ( hide g l.. .gn in B ) = initials ( B ) i  /gn/.. .i  /gn

Process instantiation

Process instantiation is the main structuring tool within the behaviour part of a
LOTOS specification. It is used to decompose complex constructs into simpler
and more manageable units. Its use also allows the parametrization of behaviour
expressions and, by recursive instantiation, the specification of repetitive behaviour.
The effect of instantiating a process is that of substituting the instantiation by the
behaviour expression given in the process’s definition. All occurrences of events
given as formal parameters are replaced by the corresponding actual parameters.
Given a process definition

process P [ g' 1 . . .g'n] : = Bp endproc

process instantiation is expressed by the inference rule

Bp [ g 1 / g ′1 . . .gn/g'n ]— µ+ → B'
P [ g l . . .gn ]—µ+ →  B'

The effect of the renaming [ g l /g' 1.. .gn/g'n ] on a behaviour expression is given by two
inference rules:

The initials of a process instantiation are those of the behaviour expression in
the corresponding process definition renamed in line with the formal and actual
parameters:

initials ( P [ g l.. .gn ]) = initials ( Bp )[ g l /g' 1.. .gn/g'n ]
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Data types

The data-type component of LOTOS is a standard algebraic notation. Each data
type has a name, a sort name used to identify the values of the type, a set of
operations (introduced by the keyword opns ), defining the domain and range of the
operations defined within the type, and a set of equations (introduced by the keyword
eqns ), defining properties of the operations. In simple terms, the opns define the
syntax of the operations and the eqns define the semantics of the operations.

LOTOS provides no built-in data types—all data and operations must be defined
in the language. However LOTOS does provide for a library of types, and the ISO
definition for LOTOS includes a standard set of basic types including, for example,
natural number and Boolean.

APPENDIX II: PASS-THE-PARCEL SPECIFICATION IN CONSTRAINT-
ORIENTED STYLE

specification PassTheParcel [ParcelSupplied, ParcelPassed, MusicStarts,
MusicStops, LayerRemoved, PresentFound, CallToTea]: exit

behaviour
(lnitialMusic [MusicStarts] >>

PrepareParcel [ParcelSupplied] >>
Circulate [ParcelPassed, MusicStarts, MusicStops, LayerRemoved,
PresentFound])

[> Tea [CallToTea]
where

process InitialMusic [MusicStarts]: exit :=
MusicStarts; exit

endproc (* InitialMusic *)

process Prepare Parcel [ParcelSupplied]: exit : =
ParcelSupplied; exit

endproc (* PrepareParcel *)

process Circulate [ParcelPassed, MusicStarts, MusicStops, LayerRemoved,
PresentFound]: exit :=

( ParcelPassed;
Circulate [ParcelPassed, MusicStarts, MusicStops, LayerRemoved,
PresentFound])
[]

( MusicStops;
LayerRemoved;
(( MusicStarts;

Parcel Passed;
Circulate [ParcelPassed, MusicStarts, MusicStops, LayerRemoved,
PresentFound])
[]

( PresentFound; exit )))
endproc (* Circulate *)

process Tea [CallToTea]: exit :=
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CallToTea; exit
endproc (* Tea *)

endspec (* PassTheParcel *)

APPENDIX III: PASS-THE-PARCEL SPECIFICATION IN OPERATIONAL-
MODELLING STYLE

specification PassTheParcel (ParcelSize: Nat, Players: Nat): exit
library NaturalNumber, Boolean endlib

behaviour
[(Players Ie succ(0)) or (ParcelSize eq 0)]-> ( exit )
[]
[Players gt succ(0) and (Parcel Size gt 0)]-> (Game (ParcelSize, Players) [>
Mother)
where

process Mother: exit : =
i ; exit

endproc (* Mother *)

process Game (ParcelSize: Nat, Players: Nat): exit :=
hide ParcelSupplied, MusicStarts, MusicStops, PresentFound in
(Father [MusicStarts, ParcelSupplied] (ParcelSize)

 [ParcelSupplied] 
Children [ParcelSupplied, MusicStarts, MusicStops, PresentFound]
(Players))

 [MusicStarts, MusicStops, PresentFound] 
Music [MusicStarts, MusicStops, PresentFound]
where

type ParcelType is NaturalNumber, Boolean
sorts Parcel
opns (* operations *)

New Parcel: Nat –> Parcel
Wrappers Remain: Parcel –> Bool
Unwrap: Parcel –> Parcel

eqns (* equations *)
forall n: Nat
ofsort Bool

WrappersRemain (NewParcel (0)) = false;
WrappersRemain (NewParcel(succ( n))) = true;

ofsort Parcel
Unwrap (NewParcel(0)) = NewParcel (0);
Unwrap (NewParcel(succ( n))) = NewParcel (n);

endtype (* ParcelType *)

process Father [MusicStarts, ParcelSupplied] (ParcelSize: Nat): exit : =
MusicStarts; ParcelSupplied ! NewParcel (ParcelSize); exit

endproc (* Father *)
process Music [MusicStarts, MusicStops, PresentFound]: exit : =
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MusicStarts;
MusicStops;
((Music [MusicStarts, MusicStops, PresentFound])
[]
(PresentFound; exit ))

endproc (* Music *)

process Children [ParcelSupplied, MusicStarts, MusicStops, pre-
sentFound] (Players: Nat): exit :=

hide FirstLink, NextLink in
(Child [ParcelSupplied, FirstLink, NextLink, MusicStarts, MusicStops,
PresentFound] (true)
 [FirstLink, NextLink, PresentFound] 
StartChild [ParcelSupplied, FirstLink, NextLink, MusicStarts,
MusicStops, PresentFound] (succ  (succ(0)), players))
where
process Child [ParcelSupplied, Parcelin, ParcelOut, MusicStarts,
MusicStops, PresentFound] (ParcelFromFather: Bool): exit : =

[ParcelFromFather] –> (* first child accepts parcel from Father *)
(ParcelSupplied ? TheParcel: Parcel;
ParcelAction [ParcelSupplied, Parcelin, ParcelOut, MusicStarts,
MusicStops, PresentFound] (Theparcel))

[]
[not (ParcelFromFather)] –>

(( PresentFound; exit)
[]
(Parcel ? TheParcel: Parcel;
ParcelAction [ParcelSupplied, Parcelin, ParcelOut, MusicStarts,
MusicStops, PresentFound] (TheParcel)))

where
process ParcelAction [ParcelSupplied, Parcelin, ParcelOut,
MusicStarts, MusicStops, PresentFound] (TheParcel: Parcel):
exit : =

( ParcelOut ! TheParcel;
Child [ParcelSupplied, Parcelin, parcelout, MusicStarts,
MusicStops, PresentFound] (false))

[]
( MusicStops;

i; (* remove layer of paper *)
( let UnwrappedParcel: Parcel = Unwrap (TheParcel) in

( [Not (Wrappers Remain (Unwrapped Parcel))] ->
(PresentFound; exit )
[]
[WrappersRemain (UnwrappedParcel) −>

( MusicStarts; ParcelOut ! UnwrappedParcel;
Child [ParcelSupplied, Parcelin, ParcelOut, MusicStarts,
MusicStops, PresentFound] (false))

) (* selection on WrappersRemain or not WrappersRemain *)
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) (* scope of UnwrappedParcel *)
) (* MusicStops selection *)

endproc (* ParcelAction *)
endproc (* Child *)

process StartChild [ParcelSupplied, FirstLink, PreviousLink, MusicStarts,
MusicStops, PresentFound] (Identity: Nat, Players: Nat): exit :=

[Identity eq Players] -> (* last child *)
(Child [ParcelSupplied, PreviousLink, FirstLink, MusicStarts,

MusicStops, PresentFound] (false))
[]

[Identity It Players] –> (* child other than the first or last instantiated
*)

( hide NextLink in
Child [ParcelSupplied, PreviousLink, NextLink, MusicStarts,
MusicStops, PresentFound]
 [NextLink, PresentFound] 
StartChild [ParcelSupplied,
MusicStops, PresentFound]

endproc (* StartChild *)
endproc (* Children *)

endproc (* Game *)
endspec (* PassTheParcel *)
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