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Abstract 

Type 2 diabetes is a chronic metabolic disorder primarily caused by a systemic insulin 

resistant state to which obesity is a major contributor.  Increasing visceral adipose tissue 

augments adipokine secretion provoking an enduring low-grade inflammatory response 

that negatively impacts on the insulin signalling cascade.  In an intervention study of a 

murine diet-induced model of type 2 diabetes, a novel compound, RTC-1, designed to 

reduce serum levels of one such adipokine, RBP, improved glucose handling and 

prevented weight gain.  This compound also had a direct positive effect on glucose 

uptake in vitro, independent of its predicted mode of action.  Through cellular analysis 

this study has established the mechanism by which this is achieved.  RTC-1 was found 

to inhibit complex I of the mitochondrial respiratory chain (NADH:ubiquinone 

oxidoreductase), leading to a likely increase in the AMP to ATP ratio and the 

consequential activation of the cellular energy regulator, AMPK.  This in turn 

stimulated the signalling pathway which enhanced the incorporation of the glucose 

transporter, GLUT4, into the plasma membrane.  RTC-1 was also found to prevent 

adipogenesis and induced osteogenesis in an AMPK dependent manner.  Additionally, 

RTC-1 was observed to provoke an increase in insulin sensitivity.   

In a separate project, the signalling capabilities of an orphan GPCR, GPR21, were 

investigated.  Knockout studies have suggested a role for this receptor in macrophage 

infiltration into adipose tissue to augment insulin resistance through an unknown 

mechanism.  Overexpression studies revealed GPR21 to be a constitutively active 

receptor, which couples Gαq type G proteins leading to the activation of the MAP 

kinases.  Overexpression of GPR21 markedly attenuated insulin signalling and
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promoted macrophage migration. Interestingly, the effect of GPR21 on insulin 

signalling lessened in the presence of increasing concentrations of serum, inferring the 

possibility of a native regulatory ligand.  Homology modelling and ligand docking 

studies led to the identification of a novel compound that interacted with GPR21.  Its 

effects offered the potential as an anti-diabetic therapy as it was found to regulate 

GPR21-induced macrophage migration and to counteract the influence of GPR21 on the 

insulin signalling pathway. 

 



 

 v 

Abbreviations 

	
ACC  Acetyl CoA carboxylase 

ADP  Adenosine 3’, 5’-diphosphate 

AICAR 5-Aminoimidazole-4-carboxamide ribonucleotide 

AID  Auto-inhibitory domain 

AMP   Adenosine 3’, 5’-monophosphate 

AMPK  AMP-activated protein kinase 

ANOVA  Analysis of variance 

ASK1  Apoptosis signal regulating kinase 1 

AS160  Akt Substrate of 160 kDa 

ATP   Adenosine 3’, 5’-triphosphate 

 

BMDM Bone marrow derived macrophage 

bp  Base pair 

BSA  Bovine serum albumin 

 

CaMKKβ Ca2+/calmodulin dependent protein kinase kinase beta 

cAMP  Cyclic AMP 

CBM  Carbohydrate binding molecule 

CBS  Cystathionine-beta-synthase 

cDNA  Complementary DNA 

CPM  Counts per minute



Abbreviations 

 vi 

CRTC2 CREB-regulated transcription co-activator 2 

CT  Crossing threshold 

Cys  Cysteine 

C-terminal COOH terminal 

 

DAG  1,2-diacylglycerol 

DD  Death domain 

DHPO  2-(3,4-Dihydro-2H-pyrrolium-1-yl)-3oxoindan-1-olate 

DMEM Dulbecco’s Modified Eagle’s Medium 

DMSO  Dimethylsulphoxide 

DNA  Deoxyribonucleic acid 

DPBS  Dulbecco’s phosphate buffered saline 

DPP-4  Dipeptidyl peptidase 4 

dsDNA Double-stranded DNA 

 

ECH1  Delta (3,5)-delta(2,4)-dienoyl-CoA isomerase 

ECL  Enhanced chemiluminescence 

EDTA  Ethylenediamine tetraacetic acid 

eGFP  Enhanced green fluorescent protein 

EGTA  Ethylene glycol tetraacetic acid 

ELISA  Enzyme-Linked Immunosorbent Assay 

eNOS  Endothelial nitric oxide synthase 

ER  Endoplasmic reticulum 

Erk  Extracellular signal regulated kinase 



Abbreviations 

 vii 

E. coli  Escherichia coli 

 

FADH2 Flavin adenine dinucleotide  

FBS  Foetal bovine serum 

FITC  Fluorescein isothiocyanate 

FoxO1  Forkhead transcription factor of O group 1 

FRET  Fluorescence resonance energy transfer 

 

g  Gravitational force 

G  Gram 

GAP  GTPase-accelerating protein 

GDP  Guanosine-5'-diphosphate 

GEF  Guanine nucleotide exchange factors 

GIP  Glucose-dependent insulinotropic polypeptide 

GLP-1  Glucagon-like peptide 1 

GLP-1R Glucagon-like peptide 1 receptor 

GLUT4 Glucose transporter type 4 

G protein Guanine nucleotide-binding protein 

GPCR  G protein coupled receptor 

GP-130 Glycoprotein 130 

GRK  G protein coupled receptor kinase 

GRP-1-GST  General receptor for phosphoinositides 1 containing a glutathione S-

transferase tag 

GSK3  Glycogen synthase kinase 3 



Abbreviations 

 viii 

GSV  GLUT4 storage vesicles 

GTP  Guanosine-5'-triphosphate 

GTPase  Guanosine triphosphatase 

 

h  Hour 

H  Hydrogen 

HDAC  Class IIa histone deacetylases 

HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid, N-(2- 

Hydroxyethyl)piperazine-N′-(2-ethanesulfonic acid) 

hERG Human ether-à-go-go-related gene 

HFD  High fat diet 

HFHS  High fat high sugar  

HMGR 3-hydroxy-3-methylglutaryl-CoA reductase 

HPLC  High performance liquid chromatography 

HRP  Horseradish peroxidase 

HRPT   Hypoxanthine guanine phosphoribosyltransferase 

HTRF  Homogeneous Time Resolved Fluorescence 

 

IBMX  Isobutylmethylxanthine 

IC50  Half maximal inhibitory concentration 

IFN-γ  Interferon-gamma 

IgG  Immunoglobulin G 

IKKβ  I-kappa-B kinase beta 

IL  Interleukin 



Abbreviations 

 ix 

iNOS   Inducible nitric oxide synthase 

IP1  Inositol 1-phosphate 

IP2  Inositoldiphosphate 

IP3  Inositol 1,4,5-triphosphate 

IP6  Inositol hexaphosphate 

IP6K  IP6 kinase  

IP7  Diphosphoinositol pentakisphosphate  

IRAK  IL-1 receptor-associated kinases 

IRS1  Insulin receptor substrate 1 

 

JAK  Janus kinase 

JNK  c-Jun N-terminal kinase 

 

kb   Kilo base 

kDa   Kilo Dalton 

KO  Knockout 

KRB   Krebs ringer buffer  

KRBG  Krebs ringer buffer containing glucose 

 

L   Litre 

LB  Lysogeny Broth  

LDL-C  Low-density lipoprotein cholesterol  

LE  Long exposure 

LKB1  Liver kinase B1 



Abbreviations 

 x 

LTB4  Leukotriene B4  

 

M  Molar 

MAP  Mitogen activated protein 

MAPK  MAP kinase 

MAPKK MAPK kinase 

MAPKKK MAPKK kinase 

MCP-1  Monocyte chemoattractant protein-1 

MEKK1 MAP/Erk kinase kinase 1 

mg  Milligram 

mGPG  Mitochondrial glycerophosphate dehydrogenase 

min  Minute 

MKK4/7 MAPK kinase 4/7 

ml  Millilitre 

mm  Millimetre 

mM  Millimolar 

MO25  Mouse protein-25 

mpc  Mitochondria pyruvate carrier 

mRNA  Messenger RNA 

MSC  Mesenchymal stromal cells 

mTORC Mammalian target of rapamycin complex  

Myc-tag 10 amino acid affinity tag with the sequence EQKLISEEDL 

MyD88 Myeloid differentiation factor 88 

Mϕ  Macrophage 



Abbreviations 

 xi 

NAD  Nicotinamide adenine dinucleotide 

NADH  Nicotinamide adenine dinucleotide with Hydrogen attached 

NF-κB  Nuclear factor kappa B 

ng  Nanogram 

NLRP3 NOD like Receptor 3 

nm  Nanometre  

nM  Nanomolar 

Nrf2  Nuclear Factor-Erythroid 2 p45–related factor 2 

N-terminal NH2 terminal 

 

PBS  Phosphate buffered saline 

PCR  Polymerase chain reaction 

PDK1  Phosphoinositide-dependent protein kinase 1  

PFKFB3 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 

PGC1α  Proliferator-activated receptor gamma co-activator 1 alpha 

PH  Pleckstrin homology 

PIP2  Phosphatidylinositol 3,4,5-bisphosphate 

PIP3  Phosphatidylinositol 3,4,5-triphosphate  

PI3K  Phosphatidylinositide 3 kinase 

PKA  Protein kinase A 

PKB  Protein kinase B 

PKC  Protein kinase C 

PLC  Phospholipase C 

pM  Picomolar 



Abbreviations 

 xii 

PMSF  Phenylmethylsulfonyl fluoride 

PPARγ  Peroxisome proliferator-activated receptor gamma 

PP2  Protein phosphatase 2 

PVDF  Polyvinylidenedifluoride 

 

qRT-PCR Quantitative Real Time PCR 

 

RBP  Retinol binding protein 

RGS  Regulators of G protein signalling 

RhoGEF Rho guanine nucleotide exchange factor 

RIP1  Receptor interacting protein 1 

RNA  Ribonucleic acid 

ROS  Reactive oxygen species 

RT  Room temperature 

RPM  Revolutions per minute 

RPMI-1640 Roswell Park Memorial Institute 1640 

 

SDS  Sodium Dodecyl Sulphate 

SDS-PAGE Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

SE   Short exposure 

SEM  Standard error of the mean 

Ser  Serine 

SH2  Src homology 2 

SGLT2  Sodium-glucose co-transporter 2 



Abbreviations 

 xiii 

SOC  Super optimal broth with catabolite repression  

SOCS  Suppressors of cytokine signalling 

SREBP1C Sterol regulatory element-binding protein 1C  

STAT  Signal transducers and activators of transcription 

STRA6 Stimulated by retinoic acid 6 

STRAD Sterile-20-related adaptor 

SUR  Sulfonylurea receptor 

SVF  Stromal vascular fraction 

SV40  Simian virus 40 

 

TAE   Tris-acetate-EDTA 

TAK1  TGF-beta-activated kinase 1  

TBS  Tris buffered saline 

TBST   Tris-buffered saline containing Tween-20 

TEMED  N, N, N’, N’-Tetramethylethylene-diamine  

TGR5  Takeda G protein coupled receptor 5 

Thr  Threonine 

TIFIA  RNA polymerase I-associated transcription factor  

TIR  Toll/IL-1 receptor 

TLR4  Toll like receptor 4 

TMB  3,3′,5,5′-Tetramethylbenzidine 
TNF-α  Tumour necrosis factor alpha 

TNP  N2-(m-(trifluoromethyl)benzyl) N6-(p-nitrobenzyl) purine 

TRADD Tumour necrosis factor receptor associated death domain 



Abbreviations 

 xiv 

TRAF  Tumour necrosis factor receptor associated factor  

TTR  Transthyretin 

Tyr  Tyrosine 

 

Ulk  Unc-51-like kinase 

UV  Ultraviolet 

 

v/v   Volume per volume  

 

w/v  Weight per volume 

 

ZDF  Zucker Diabetic Fatty  

 

αMEM  Minimal Essential Medium alpha 

β2AR   Beta-adrenergic receptor  

µCi  Microcurie 

µg  Microgram 

µl  Microlitre 

µm  Micrometre 

µM  Micromolar



 

 xv 

List of Figures 

Chapter 1  Introduction 

Figure 1.1 The insulin signalling pathway. ....................................................................... 5 

Figure 1.2 Adipose tissue in lean and obese states. .......................................................... 7 

Figure 1.3 The effects of TNF-α and IL-1β-mediated activation of IKKβ and JNK on 

the insulin signalling pathway. ................................................................................ 13 

Figure 1.4 MAPK signalling cascades. ........................................................................... 14 

Figure 1.5 Cross talk between the JAK-STAT pathway and the insulin signalling 

pathway. .................................................................................................................. 16 

Figure 1.6 Domain map of AMPK. ................................................................................. 22 

Figure 1.7 Model of AMPK activation. .......................................................................... 24 

Figure 1.8 The mitochondrial respiratory chain. ............................................................. 27 

Figure 1.9 The regulation of AMPK phosphorylation. ................................................... 30 

Figure 1.10 Downstream targets of activated AMPK. .................................................... 34 

Figure 1.11 The GRAFS Classification of GPCRs. ........................................................ 42 

Figure 1.12 GPCR signal transduction through G proteins. ........................................... 45 

Figure 1.13 Regulation of G protein activity. ................................................................. 46 

Figure 1.14 GPCR desensitisation. ................................................................................. 48 

Figure 1.15 Active and inactive states of GPCRs. .......................................................... 51 

 

Chapter 2  Materials and Methods 

Figure 2.1 Distribution of DNA ladder used with DNA electrophoresis. ....................... 71 

Figure 2.2 Distribution of molecular weight marker used with SDS-PAGE. ................. 79 



List of Figures 

 xvi 

Chapter 3  Elucidating the Mechanism of Action of A Novel Anti-Diabetic 

Compound 

Figure 3.1 The effect of RTC-1 on RBP:TTR complex formation. ................................ 92 

Figure 3.2 RTC-1 intervention study in a dietary-induced mouse model of type 2 

diabetes. ................................................................................................................... 94 

Figure 3.3 The direct effect of RTC-1 on glucose uptake in C2C12 muscle cells. ........ 95 

Figure 3.4 Concentration dependent effects of RTC-1 and metformin on glucose        

uptake. ..................................................................................................................... 99 

Figure 3.5 Time dependent effects of RTC-1 and metformin on glucose uptake. ........ 100 

Figure 3.6 The long-term effects of RTC-1-stimulated glucose uptake in cells washed 

free of the compound. ........................................................................................... 101 

Figure 3.7 The effect of the RTC-1 derivative, RTC-15, on glucose uptake. ............... 103 

Figure 3.8 The effect of RTC-1, RTC-15 and metformin on GLUT4 translocation. ... 105 

Figure 3.9 Time dependent effects of RTC-1, RTC-15 and metformin on AMPKα 

phosphorylation. .................................................................................................... 107 

Figure 3.10 The effect of rotenone on NADH:ubiquinone oxidoreductase activity. .... 109 

Figure 3.11 The effect of RTC-1, RTC-15 and metformin on NADH:ubiquinone 

oxidoreductase activity. ......................................................................................... 110 

Figure 3.12 The effect of RTC-1 on oxygen consumption in isolated mitochondria. .. 112 

Figure 3.13 The impact of RTC-1, RTC-15 and metformin on cellular ATP levels. ... 114 

Figure 3.14 The effect of the AMPK inhibitor, Compound C, on insulin, RTC-1,    

RTC-15 and metformin-induced glucose uptake. ................................................. 116 

Figure 3.15 Concentration dependent effects of RTC-1 on AMPK signalling. ............ 118 

Figure 3.16 Concentration dependent effects of metformin on AMPK signalling. ...... 119 



List of Figures 

 xvii 

Figure 3.17 Time dependent effects of RTC-1, RTC-15 and metformin on ACC 

phosphorylation. .................................................................................................... 121 

Figure 3.18 Time dependent effects of RTC-1, RTC-15 and metformin on AS160 

phosphorylation. .................................................................................................... 122 

Figure 3.19 Time dependent effects of RTC-1, RTC-15 and metformin on Akt 

phosphorylation. .................................................................................................... 124 

Figure 3.20 Time dependent effects of RTC-1, RTC-15 and metformin on Akt 

signalling. .............................................................................................................. 126 

Figure 3.21 The effect of wortmannin on insulin- and RTC-1-induced glucose      

uptake. ................................................................................................................... 128 

Figure 3.22 The effect of RTC-1, RTC-15 and metformin on PI3K activity. .............. 130 

Figure 3.23 The effect of RTC-1, RTC-15 and metformin on PIP3 production. ........... 131 

Figure 3.24 Glucose uptake analysis of the effect of RTC-1 and metformin on TNF-α-

induced insulin resistance. .................................................................................... 133 

Figure 3.25 Western blot analysis of the effect of RTC-1 and metformin on TNF-α-

induced insulin resistance. .................................................................................... 134 

Figure 3.26 The effect of RTC-1, metformin and TNF-α on the phosphorylation of the 

MAPKs. ................................................................................................................. 135 

Figure 3.27 The effect of RTC-1 on insulin-induced glucose uptake. .......................... 137 

Figure 3.28 The effect of RTC-1 on insulin-induced phosphorylation of the insulin 

signalling pathway. ............................................................................................... 138 

Figure 3.29 Visual analysis of the effect of RTC-1 and metformin on 3T3-L1 adipocyte 

differentiation. ....................................................................................................... 140 

Figure 3.30 The effect of RTC-1 and metformin on AMPKα and ACC phosphorylation 

in 3T3-L1 adipocytes. ........................................................................................... 141 



List of Figures 

 xviii 

Figure 3.31 Visual analysis of the effect of RTC-1 and metformin on fully differentiated 

3T3-L1 adipocytes. ............................................................................................... 142 

Figure 3.32 The effect of RTC-1 and metformin on AMPKα and ACC phosphorylation 

in fully differentiated 3T3-L1 adipocytes. ............................................................ 143 

Figure 3.33 Visual analysis of the effect of RTC-1 and metformin on murine MSC 

adipogenesis. ......................................................................................................... 145 

Figure 3.34 The effect of RTC-1 and metformin on AMPKα and ACC phosphorylation 

in murine MSC during adipogenesis. .................................................................... 146 

Figure 3.35 Visual analysis of the effect of RTC-1 and metformin on murine MSC 

osteogenesis. .......................................................................................................... 148 

Figure 3.36 The effect of RTC-1 and metformin on AMPKα phosphorylation in murine 

MSC during osteogenesis. ..................................................................................... 149 

Figure 3.37 Proposed mechanism of action of RTC-1. ................................................. 158 

 

Chapter 4  GPR21, A Novel Target for Obesity-Associated Type 2 Diabetes 

Figure 4.1 Gαq signalling. ............................................................................................. 161 

Figure 4.2 Analysis of the epididymal fat pads of chow fed and HFHS-fed mice. ...... 164 

Figure 4.3 Western blot analysis of GPR21 expression in various cell lines. .............. 165 

Figure 4.4 Optimisation of cell line transfection. ......................................................... 167 

Figure 4.5 GPR21 activity in HEK293T cells. ............................................................. 169 

Figure 4.6 The effect of the PLC inhibitor, U73122, on GPR21-induced IP1     

production in HEK293T cells. .............................................................................. 171 

Figure 4.7 The effect of GPR21 overexpression on the phosphorylation of the MAPKs 

in HEK293T cells. ................................................................................................. 173 



List of Figures 

 xix 

Figure 4.8 The effect of U73122 on GPR21-induced phosphorylation of the MAPKs in 

HEK 293T cells. .................................................................................................... 174 

Figure 4.9 Western blot analysis of the effect of GPR21 on insulin signalling in 

HEK293T cells. ..................................................................................................... 177 

Figure 4.10 The effect of serum on glucose uptake in HEK293T cells overexpressing 

GPR21. .................................................................................................................. 179 

Figure 4.11 Western blot analysis of the effect of serum on insulin signalling in 

HEK293T cells overexpressing GPR21. ............................................................... 181 

Figure 4.12 Western blot analysis of the effect of serum on GPR21-induced activation 

of the MAPKs in HEK293T cells. ........................................................................ 183 

Figure 4.13 IP1 production in HEK293T cells overexpressing GPR21 in response to 

FBS. ....................................................................................................................... 185 

Figure 4.14 Homology model of GPR21 incorporating the predicted binding site of a 

lead compound, GRA2. ......................................................................................... 187 

Figure 4.15 The effect of hit compounds on IP1 production in HEK293T cells 

overexpressing GPR21. ......................................................................................... 188 

Figure 4.16 Dose response analysis GRA2 on IP1 production in HEK293T cells 

overexpressing GPR21. ......................................................................................... 190 

Figure 4.17 Western blot analysis of the effect of GRA2 on the insulin signalling   

pathway in HEK293T cells overexpressing GPR21. ............................................ 193 

Figure 4.18 The effect of GRA2 on glucose uptake in HEK293T cells overexpressing 

GPR21. .................................................................................................................. 195 

Figure 4.19 The effect of GPR21 on RAW 264.7 migration towards 3T3-L1 adipocyte 

conditioned medium. ............................................................................................. 197 



List of Figures 

 xx 

Figure 4.20 The direct effect of GRA2 on the migratory capacity of RAW 264.7 cells 

overexpressing GPR21. ......................................................................................... 199 

Figure 4.21 Proposed role of GPR21 in the development of type 2 diabetes. .............. 207 



 

 xxi 

List of Tables 

 
Chapter 1  Introduction 

Table 1.1 Tissue distribution of AMPK subunits. ........................................................... 21 

Table 1.2 G protein families. ........................................................................................... 43 

Table 1.3 GPCRs and type 2 diabetes. ............................................................................ 52 

 

Chapter 2   Materials and Methods 

Table 2.1 Adherent cell lines. ......................................................................................... 63 

Table 2.2 Primers. ........................................................................................................... 72 

Table 2.3 Vectors. ........................................................................................................... 73 

Table 2.4 Polyacrylamide gels. ....................................................................................... 78 

Table 2.5 Western blotting antibodies. ........................................................................... 81 

 

Chapter 4   GPR21, A Novel Target for Obesity-Associated Type 2 Diabetes 

Table 4.1 Summarising the influence of GPR21 overexpression on protein   

phosphorylation. .................................................................................................... 184 

 

 

 
 
 
 
 
 
 
 
 



 

 1 

 

 

 

 
 
 
 
 
 
 

Chapter 1            

Introduction 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 1: Introduction 

 2 

1.1 Diabetes 
	
Type 2 diabetes accounts for more than 90 % of diabetic cases and has steadily become 

one of the greatest modern public health threats in terms of human, social and economic 

costs.  According to the World Health Organization (2014), 371 million people are 

currently estimated to suffer with the disease, while a staggering 552 million people are 

predicted to be affected by 2030.  The chronic complications of diabetes; diabetic 

retinopathy, nephropathy, neuropathy and macrovascular disease, contribute to the 

enhanced risk of morbidity and mortality in individuals with this condition.  In 2012, 

diabetes accounted for approximately 1.5 million deaths worldwide.   

Type 1 and type 2 diabetes develop as a consequence of defective production and action 

of insulin.  Type 1 diabetes is an autoimmune disease caused by a combination of 

genetic and non-genetic factors, which lead to the destruction of insulin secreting 

pancreatic β-cells.  Type 2 diabetes, however, is a progressive disease, primarily caused 

by insulin resistance.  The global prevalence of type 2 diabetes has been attributed to a 

rise in obesity associated with genetic, epigenetic and societal factors (Chen, Magliano  

and Zimmet, 2012).  In 2014, 39 % of adults worldwide were classed as overweight, 

approximately 13 % were obese, while the dangerous rise in childhood and adolescent 

obesity is further contributing to this epidemic (Singh et al., 2008, Reinehr, 2013, 

World Health Organization, 2014). 
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1.2 Insulin 
	
Under normal physiological conditions, insulin, along with its primary counter-

regulatory hormone glucagon, regulate blood glucose homeostasis through sophisticated 

signalling cascades (Aronoff et al., 2004).  Insulin is a peptide hormone synthesised in 

the β-cells of the islets of Langerhans in the pancreas, the biosynthesis and secretion of 

which is controlled by gene transcription, translation, post-translational modifications 

and regulatory factors that impact on its release from mature secretory granules.  While 

glucose is the primary regulator of insulin secretion, other factors including 

acetylcholine, amino acids, fatty acids, glucose-dependent insulinotropic polypeptide 

(GIP) and glucagon-like peptide-1 (GLP-1) can influence its release (Wilcox, 2005).  

As blood glucose levels rise above 3.3 mmol/l postprandially, insulin secreted by 

pancreatic β-cells binds to its plasma membrane receptor, present in all cells, to 

stimulate glucose uptake and inhibit glucagon secretion from pancreatic α-cells, thus 

preventing hepatic glucose production (Gerich, 1993).  

1.2.1 The Insulin Signalling Pathway 

Insulin initiates its action by binding to its receptor, a heterotetrameric membrane-

bound glycoprotein consisting of two extracellular α-subunits and two 

intramembraneous β-subunits linked by disulphide bonds (Fig. 1.1).  Upon binding the 

α-subunit, insulin induces a conformational change that allows ATP to interact with the 

intracellular face of the β-subunit, triggering the rapid autophosphorylation of the 

receptor at a number of tyrosine residues, including Tyr1150/1151 in the regulatory loop of 

the receptor (Tornqvist et al., 1987, Wilcox, 2005, Hubbard, 2013).  The 

phosphotyrosine-binding domain of insulin receptor substrates, such as insulin receptor 

substrate 1 (IRS1) then interact with the receptor, which in turn phosphorylates the 
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substrate at numerous tyrosine residues (White, 1997).  The phosphorylated tyrosine 

residues are recognised by the Src homology 2 (SH2) domain of the p85 regulatory 

subunit of the lipid kinase phosphatidylinositol 3 kinase (PI3K).  This interaction 

translocates PI3K to the plasma membrane where the activated catalytic subunit, p110, 

phosphorylates its substrate phosphatidylinositol 3,4,5-bisphosphate (PIP2) on the 3′ 

position of the inositol ring, producing the lipid second messenger phosphatidylinositol 

3,4,5-triphosphate (PIP3) (Shepherd et al., 1998, Pirola et al., 2004).  PIP3 recruits 

pleckstrin homology (PH) domain containing proteins such as phosphoinositide-

dependent protein kinase 1 (PDK1) and Akt, also known as protein kinase B (PKB), to 

the plasma membrane.  PDK1 then relays its signal potential by phosphorylating Akt at 

Thr308 in the catalytic domain, while mammalian target of rapamycin complex 2 

(mTORC2), which is activated by ribosomes in response to PI3K signalling, is believed 

to phosphorylate Akt at Ser473 in the carboxyl terminal hydrophobic domain (Zinzalla et 

al., 2011, Vadlakonda et al., 2013, Mackenzie and Elliott, 2014). 

Once activated, Akt can regulate glucose homeostasis through a multitude of signalling 

cascades.  Akt phosphorylates and deactivates glycogen synthase kinase 3 (GSK3) 

resulting in the activation of glycogen synthase, which leads to the conversion of 

glucose to glycogen (Rayasam et al., 2009).  Akt also suppresses forkhead transcription 

factor of O group 1 (FoxO1) transactivation, promoting its relocation outside of the 

nucleus, thereby inhibiting the expression of gluconeogenic genes and stimulating that 

of glycolytic genes (Zhang et al., 2006).  Furthermore, Akt directly influences glucose 

uptake through the Akt substrate of 160 kDa (AS160), also known as TBC1D4, 

phosphorylation of which facilitates the translocation of glucose transporter 4 (GLUT4) 

to the plasma membrane.  AS160 is a Rab GTPase-accelerating protein (Rab GAP).  

Rab proteins bind transport vesicles and influence their localisation based on its 
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nucleotide-bound state.  GLUT4 storage vesicles (GSV) are associated with a number of 

Rab proteins, which in their inactive GDP-bound state hold the vesicle in the cytosol.  

AS160, catalyses the hydrolysis of any bound GTP to GDP sustaining the Rab in its 

inactive state.  Akt phosphorylates AS160 at a number of key residues including Thr642 

and Ser588, leading to its dissociation from GSVs.  This allows GTP to associate with 

one or more Rab proteins to facilitate the trafficking of GSVs to the plasma membrane 

(Sano, 2003, Larance et al., 2005, Hutagalung and Novick, 2011).  Defects in this 

tightly regulated signalling cascade have been attributed to the development of type 2 

diabetes (Fröjdö et al., 2009). 

 

 

Figure 1.1 The insulin signalling pathway. 

 
Upon autophosphorylation triggered by the binding of insulin, the insulin receptor 

recruits and phosphorylates IRS1, which interacts with the p85 regulatory subunit of 

PI3K, targeting this enzyme to the plasma membrane where the p110 catalytic subunit 

generates PIP3.   PIP3 recruits PH domain containing proteins such as Akt and PDK1 to 

the plasma membrane.  Akt is then phosphorylated by the now activated PDK1, in 

conjunction with mTORC2.  Once activated, Akt can regulate glucose homeostasis by 

promoting glycogen synthesis, preventing gluconeogenesis and stimulating glucose 

uptake.  
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1.3 Obesity-Induced Inflammation 
 
Adipose tissue functions as a multicellular endocrine organ composed of adipocytes, 

stromal-vascular cells and immune cell populations.  The expansion of white adipose 

tissue associated with overnutrition leads to hypoxia, cell death, changes in fatty acid 

metabolism, altered adipose tissue specific cytokine (adipokine) secretion and pro-

inflammatory immune cell infiltration, which can lead to development of insulin 

resistance (McArdle et al., 2013).  Since visceral adipose tissue accumulates more pro-

inflammatory cells in obesity, it is more metabolically damaging than subcutaneous 

adipose tissue (O’Rourke and Metcalf, 2009).  As obesity progresses, adipocytes secrete 

chemotactic cytokines such as monocyte chemotactic protein-1 (MCP-1) and 

leukotriene B4 (LTB4) recruiting monocytes into the adipose tissue where they 

differentiate into macrophages (Osborn and Olefsky, 2012).    

1.3.1 Macrophage Infiltration into Adipose Tissue 
 
Macrophages infiltrating adipose tissue undergo polarisation, switching from the anti-

inflammatory M2 type subset to the pro-inflammatory M1 type subset under the 

influence of interferon-gamma (IFN-γ) as well as interleukin 17 (IL-17), secreted by 

resident pro-inflammatory T cells (Fig. 1.2) (Lumeng et al., 2007, Winer et al., 2009).  

M1 macrophages secrete a repertoire of pro-inflammatory cytokines including IL-1β, 

IL-6, and tumour necrosis factor-alpha (TNF-α) to further stimulate obesity-associated 

inflammation (Chawla et al., 2012).  Increased levels of circulating free fatty acids, 

produced as a consequence of augmented lipolysis, have also been reported to trigger 

macrophage secretion of the pro-inflammatory cytokines MCP-1, IL-6, IL-1β and TNF-

α in vitro (Nguyen et al., 2007).  Several studies have demonstrated the central role M1 

macrophages play in the promotion of insulin resistance, since deletion of this subset of 
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macrophages reduces adipose tissue inflammation and normalises insulin sensitivity 

(Patsouris et al., 2008). 

 

 

Figure 1.2 Adipose tissue in lean and obese states. 

 
In the lean state, M2 macrophages (M2 Mϕ) and regulatory T cells (Treg) reside in the 

adipose tissue and stem inflammation.  In the case of obesity, where adipocytes increase 

in number and in mass, the inflammasome is triggered by saturated free fatty acids and 

pro-inflammatory cytokines resulting in the secretion of MCP-1 to promote the 

infiltration of pro-inflammatory M1 macrophages (M1 Mϕ) into adipose tissue.  M1 

macrophages recruit effector (CD8+) and memory (CD4+) T cells, which release pro-

inflammatory cytokines further contributing to the development of insulin resistance 

(Kanneganti and Dixit, 2012). 
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1.4 Insulin Resistance 
	
Insulin resistance is characterised by a diminished capacity for insulin to act on its 

receptor in peripheral tissues, leading to hyperglycaemia and hyperinsulinaemia as 

pancreatic β-cells produce excessive amounts of insulin to control blood glucose 

homeostasis.  As the condition progresses, β-cell function deteriorates exacerbating 

hyperglycaemia, leading to the development of type 2 diabetes and its associated 

complications (Wilcox, 2005).  Augmented adipokine secretion associated with obesity 

is now recognised as a major cause of this pathophysiological defect. 

1.4.1 Pro-inflammatory Cytokines and Insulin Resistance 
	
Chronic low-grade inflammation induced by obesity negatively impacts on the insulin 

signalling pathway largely through the increased production of the pro-inflammatory 

cytokines IL-1β, IL-6 and TNF-α.   

1.4.1.1 IL-1β 
	
Pro-IL-1β is cleaved by caspase-1 to form mature IL-1β (Lopez-Castejon and Brough, 

2011) chronic exposure to which reduces IRS1 expression, leading to a decrease in 

AS160 phosphorylation and GLUT4 translocation in a manner dependent on the 

mitogen activated protein kinase (MAPK), extracellular signal related kinase (Erk) 

(Jager et al., 2007).  Receptor-mediated effects of IL-1β have been observed to trigger 

the activation of I-kappa-B kinase beta (IKKβ) (Section 1.4.1.4.1) and the MAPKs 

(Section 1.4.1.4.2), which negatively impact on the insulin signalling pathway.  

Furthermore, the NOD like Receptor 3 (NLRP3)-caspase-1 inflammasome, which 

induces caspase-1 activity to produce IL-1β (Martinon et al., 2002), also has been 

implicated in the development of insulin resistance.  A decrease in NLRP3 expression is 
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associated with improved insulin sensitivity, while NLRP3 deficient mice display 

decreased obesity-induced inflammation and an increase in insulin-stimulated 

phosphorylation of Akt (Vandanmagsar et al., 2011). 

1.4.1.2 IL-6 

A two to three-fold increase in circulating IL-6 is observed in obese and type 2 diabetic 

patients (Kern et al., 2001).  Exposure of HepG2 cells and primary murine hepatocytes 

to this pro-inflammatory cytokine has been found to inhibit insulin receptor signal 

transduction (Senn et al., 2002), through a mechanism now believed to involve the 

JAK-STAT signalling pathway (Section 1.4.1.4.3).  However, the effect of IL-6 on 

insulin signalling occurs with elevated levels of the cytokine only, as Wallenius and 

colleagues (2002), observed an obesogenic phenotype in IL-6 deficient mice, to which 

low doses of centrally administered IL-6 increased energy expenditure, demonstrating 

anti-obesity effects.  Carey and colleagues (2006), attributed this to the influence of IL-

6 on the cellular energy regulator AMP activated protein kinase (AMPK) (Section 1.5), 

as glucose disposal was enhanced in an AMPK-dependent manner in healthy humans 

exposed to recombinant IL-6.  

1.4.1.3 TNF-α 

TNF-α is by far the most well-established pro-inflammatory cytokine contributing to 

insulin resistance, with triple the amount of this protein secreted from the adipose tissue 

of obese subjects (Kern et al., 2001).  Neutralisation and deletion of TNF-α, which is 

also markedly upregulated in the adipose tissue of experimental models of obesity, has 

been found to significantly improve insulin sensitivity (Hotamisligil and Spiegelman, 

1994, Uysal et al., 1997).  Receptor-mediated effects of TNF-α have been observed to 

trigger the activation of IKKβ, the MAPKs and the JAK-STAT pathway to promote 
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insulin resistance making it the most prominent of the pro-inflammatory cytokines to 

impede the insulin signalling pathway.  

1.4.1.4 Cytokine Signalling and Insulin Resistance 
 
TNF-α and IL-1β transiently activate both IKKβ and the MAPK c-Jun N-terminal 

kinase (JNK), which have been directly implicated in the development of insulin 

resistance through multiple mechanisms (Fig. 1.3) (Solinas and Karin, 2010).  Ablation 

of IKKβ (Yuan et al., 2001) and JNK (Hirosumi et al., 2002) has been shown to protect 

mice from the development of insulin resistance.  Additionally, TNF-α and IL-6 can 

trigger the activation of suppressors of cytokine signalling 3 (SOCS3) through the JAK-

STAT pathway, deletion of which prevents obesity-induced insulin resistance in skeletal 

muscle (Jorgensen et al., 2013). 

1.4.1.4.1  IKKβ 
 
Phosphorylation of IKK at the β-subunit can be induced by the RIP1-TRADD-TRAF2 

complex formed at the death domain of the activated TNF-α receptor and through IL-1β 

signal transduction involving MyD88, IRAK and TRAF6 (Karik et al., 2004).  IKKβ 

has been proposed to phosphorylate IRS1 at multiple serine residues, which prevents 

insulin-induced tyrosine phosphorylation of its substrate, rendering the insulin 

signalling pathway inactive (Gao et al., 2002).  However, the primary role of IKKβ in 

the development of insulin resistance is believed to be through its influence on nuclear 

factor kappa B (NF-κB) to promote pro-inflammatory gene expression (Cai et al., 

2005).  
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1.4.1.4.2  MAPKs 
 
Downstream of TNF-α and IL-1β receptor activation, TRAF2 and TRAF6 also activate 

the MAPK cascade (Fig. 1.4) to trigger the phosphorylation of JNK.  Activation of 

MAP/Erk kinase kinase 1 (MEKK1) and apoptosis signal regulating kinase 1 (ASK1), 

leads to the stimulation of MAPK kinases 4 and 7 (MKK4/7), highly specific activators 

of JNK (Liu et al., 1996, Tournier et al., 2001).  Since JNK deficient mice display 

reduced expression of pro-inflammatory cytokines, this protein is believed to exacerbate 

metabolic inflammation through the phosphorylation of the downstream transcription 

factor c-Jun (Tuncman et al., 2006).  However, the most notable mechanism by which 

JNK induces insulin resistance is through the phosphorylation of IRS1 at Ser307, which 

prevents insulin from acting upon its substrate, impeding the insulin signalling cascade 

(Aguirre et al., 2000).   

 

The other MAPKs, which can be activated by TNF-α receptor signalling, p38 and Erk 

(Sabio and Davis, 2014), have also been observed to influence the insulin signalling 

cascade.  Mice lacking the δ isoform of p38 are protected from obesity-induced insulin 

resistance and oxidative stress-stimulated β-cell failure as a result of the increased 

activation of protein kinase D, a positive regulator of insulin secretion (Sumara et al., 

2009).  Furthermore, mice overexpressing p38α exhibit reduced insulin-stimulated IRS1 

tyrosine phosphorylation as a result of increased serine phosphorylation, while liver 

specific expression of dominant negative p38α in ob/ob mice has been found to improve 

glucose tolerance (Hemi et al., 2011). 

Pharmacological inhibition of Erk attenuates the effect of IL-1β on IRS1 (Jager et al., 

2007) and enhances the transcriptional activity of the redox sensitive transcription factor 
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Nuclear Factor-Erythroid 2 p45–related factor 2 (Nrf2), preventing oxidative stress-

induced insulin resistance (Tan et al., 2011).  However, an opposing role has been 

suggested for this MAPK, as inhibition of Erk has been found to promote insulin 

resistance in Drosophila as a result of decreased insulin receptor expression (Zhang et 

al., 2011). 
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Figure 1.3 The effects of TNF-α and IL-1β-mediated activation of IKKβ and JNK 

on the insulin signalling pathway. 

 

The TNF-α receptor undergoes trimerisation following ligand binding, allowing the 

scaffolding protein, receptor interacting protein 1 (RIP1), to initiate complex formation 

with the intracellular death domain (DD) of the receptor, the adaptor protein, TNF 

receptor associated death domain (TRADD), and TNF receptor associated factor 2 

(TRAF2).  In response to activation by IL-1β, the Toll/IL-1 receptor (TIR) domain of 

the IL-1 receptor interacts with the TIR domain of myeloid differentiation factor 88 

(MyD88), which transduces the signal to a family of IL-1 receptor-associated kinases 

(IRAKs).  IRAKs undergo phosphorylation by other IRAKs inducing the activation of 

TNF receptor-associated factor 6 (TRAF6).  Both TRAF2 and TRAF6 phosphorylate 

IKKβ and lead to the activation of the JNK MAPK cascade.  IKKβ and JNK provoke 

further expression of pro-inflammatory genes such as TNF-α, pro-IL-1β and IL-6 

through NF-κB and c-Jun respectively.  IKKβ and JNK also directly attenuate insulin 

signalling by phosphorylating IRS1 at serine residues, which prevents insulin-induced 

tyrosine phosphorylation of this protein. Adapted from (Karik et al., 2004). 
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Figure 1.4 MAPK signalling cascades. 

 
The three-tiered MAPK cascades can be activated by a multitude of factors including 

mitogens, cytokines, growth factors, cellular stresses and guanine nucleotide binding 

protein coupled receptor (GPCR) signal transduction.  An activate MAPK kinase kinase 

(MAPKKK) triggers a MAPK kinase (MAPKK) to specifically phosphorylate one of 

the MAPKs Erk, p38 and JNK.  Once activated MAPKs can target intracellular proteins 

or enter the nucleus to trigger transcription factor activation (Jeffrey et al., 2007). 
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1.4.1.4.3  SOCS3 

Cytokine binding to its receptor can also lead to the activation of the JAK-STAT-SOCS 

pathway, which negatively influences insulin signalling (Fig. 1.5).  TNF-α receptor 

stimulation leads to the recruitment of one or more Janus kinases (JAK), which 

phosphorylate the receptor, creating docking sites for signal transducers and activators 

of transcription (STAT) (Ehlting et al., 2007).  Upon phosphorylation STATs form 

homo- or heterodimeric complexes that translocate to the nucleus and activate the 

transcription of target genes.  Upon interaction with its ligand, the IL-6 receptor 

associates with the signalling receptor glycoprotein 130 (GP-130), which dimerises 

leading to the activation of the JAK-STAT pathway (Heinrich et al., 1998, Sommer et 

al., 2005).  TNF-α and IL-6-induced activation of this pathway can lead to the 

transcription of SOCS3 (O’Sullivan et al., 2007).  SOCS3 has been observed to bind 

Tyr960 of the insulin receptor, partially impairing receptor autophosphorylation.  As 

Tyr960 is a critical recognition site for IRS1, cytokine-induced activation of SOCS3 also 

suppresses IRS1 signalling, attenuating insulin-induced glycogen synthesis (Ueki et al., 

2004).  However, more recently Sachithanandan and colleagues (2010), demonstrated 

liver specific deletion of SOCS3 to improve insulin sensitivity yet promote lipogenesis 

leading to obesity, increased inflammation and the development of nonalcoholic fatty 

liver disease.  Furthermore, Pedroso and colleagues (2014), found that inactivation of 

SOCS3 improved insulin sensitivity, while having no effect on diet-induced obesity.  

These studies and countless others highlight obesity-induced type 2 diabetes as a 

multifactorial disease, to which the contributory factors may be differentially regulated 

in any given case, and therefore unlikely to be curtailed by targeting any one element 

alone.  
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Figure 1.5 Cross talk between the JAK-STAT pathway and the insulin signalling 

pathway. 

 

TNF-α and IL-6-induced receptor activation triggers JAK to phosphorylate the 

cytoplasmic domain of the receptor creating a docking site for STAT.  Once 

phosphorylated, STATs dimerise and enter the nucleus to activate the transcription of 

SOCS3.  SOCS3 inhibits tyrosine phosphorylation of IRS1 decreasing glucose uptake 

and glycogen synthesis and increasing gluconeogenesis.  
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1.4.2 Retinol Binding Protein and Insulin Resistance 
	
Retinol binding protein (RBP) facilitates the transport of hydrophobic retinol (vitamin 

A) from its primary storage site, the liver, to target tissues (Kanai et al., 1968).  Retinol-

bound RBP circulates in the bloodstream bound to transthyretin (TTR), which prevents 

the glomerular filtration and excretion of RBP due to the increased mass of the RBP-

TTR complex (Goodman, 1984, van Bennekum et al., 2001).  At the target tissue, 

retinol is transported across the cell membrane via the RBP receptor, stimulated by 

retinoic acid 6 (STRA6), which competes with TTR to bind RBP (Heller, 1975, 

Sivaprasadarao and Findlay, 1988a, 1988b, Kawaguchi et al., 2007).  STRA6 then 

mediates the transfer of retinol to the cellular retinol binding protein (Sundaram et al., 

1998).  As retinol-free RBP does not bind TTR, it is then easily excreted by the kidney. 

While liver is the primary site of RBP secretion, adipose tissue, amongst others, has 

also been found to contribute to circulating RBP levels (Tsutsumi et al., 1992).   

 

This adipokine has been implicated in the genesis of obesity-related insulin resistance as 

serum RBP levels are elevated in obese subjects.  Furthermore, the characteristic insulin 

resistant state of the adipose tissue specific GLUT4 knockout mouse is associated with 

a significant increase in adipose tissue secretion of RBP (Yang et al., 2005).  

Continuing on from this, Yang and colleagues (2005), found mice injected with 

recombinant human RBP to be insulin resistant and glucose intolerant, while RBP 

knockout mice displayed increased insulin sensitivity.  Additionally, treatment with 

fenretinide, a synthetic retinoid that inhibits RBP binding to TTR, promoting RBP 

excretion, was found to improve glucose tolerance in obese insulin resistant mice.  

However, fenretinide treatment also demonstrated beneficial effects in obese, insulin 

resistant RBP knockout mice, suggesting an RBP-independent response.  Nonetheless, 
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the improvement in glucose disposal associated with weight loss also correlates with a 

decrease in RBP levels, demonstrating the significant role this adipokine may play in 

obesity-related insulin resistance (Graham et al., 2006). 

 

Conflicting reports have emerged as to how RBP contributes to the development of 

insulin resistance.  Berry and Noy (2012), suggest retinol-bound RBP induces the 

phosphorylation of STRA6, which activates a JAK-STAT pathway, involving JAK2 

and STAT5, to upregulate SOCS3 expression, thereby inhibiting insulin signalling. 

However, when Muenzner and colleagues (2013), exposed control and STRA6 

overexpressing cells to RBP, in the presence or absence of retinol, no change in STAT5 

phosphorylation was observed.  Furthermore in mice overexpressing RBP in the liver, 

the increased serum levels of retinol-bound RBP were not associated with a change in 

SOCS3 mRNA expression in the adipose tissue.  Norseen and colleagues (2012), 

suggest RBP acts independently of STRA6 to incite an immune response that 

contributes to the development of insulin resistance.  Direct stimulation of adipose 

tissue macrophages with RBP led to an increase in IL-6, IL-1β, TNF-α and MCP-1 

expression and a reduction in the negative regulator of inflammation, peroxisome 

proliferator-activated receptor gamma (PPARγ).  This effect was triggered with retinol-

free RBP just as proficiently as with retinol-bound RBP.  RBP was also found to 

activate the NFκB, p38, Erk and JNK signalling pathways in macrophages.  RBP 

demonstrated a reduced effect on MCP-1 and IL-6 expression in JNK deficient 

macrophages and in Toll like receptor 4 (TLR4) deficient macrophages.  However, the 

effect of RBP was not completely inhibited, suggesting other signalling pathways may 

be involved in RBP-induced insulin resistance.  More recently Young and colleagues 

(2015), in this laboratory, found retinol-bound RBP to decrease levels of protein 
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phosphatase 1β, a regulator of the rate limiting enzymes involved in glycogen 

metabolism, in C2C12 muscle cells.  As a consequence of the observed decrease in 

glycogen synthase activity a detrimental effect on insulin stimulated glycogen 

production was observed.  The reduced ability to store glucose as glycogen and the 

attenuated capacity to utilise glycogen stores can contribute to the development of 

insulin resistance and may account for the influence of elevated RBP levels on this 

condition.   

1.4.3 Adipose Tissue Hormones and Insulin Resistance 
	
The perturbed release of hormones from adipose tissue has also been found to 

contribute to the pathogenesis of insulin resistance.  The secretion of resistin is 

markedly upregulated in murine models of genetic and diet-induced obesity and has 

been found to play a central role in the production of inflammatory molecules such as 

TNF-α and IL-6 through the activation of NF-κB (Codoñer-Franch and Alonso-Iglesias, 

2015).  Leptin release is also upregulated in obese subjects (Silha et al., 2003).  Under 

normal physiological conditions, leptin regulates energy balance by suppressing food 

intake and increasing fatty acid oxidation through the action of AMPK (Minokoshi et 

al., 2002, Klok et al., 2007).  However, with obesity, subjects are essentially resistant to 

the positive effects of leptin, as the increased levels of SOCS3 associated with obesity 

impair leptin-induced activation of AMPK (Yang et al., 2012).  Conversely, the 

expression of adiponectin is significantly decreased with obesity, this adipokine also 

enhances fatty acid oxidation through AMPK, suppresses TNF-α and IFN-γ production 

and improves insulin sensitivity (Carbone et al., 2012).  These hormones play a pivotal 

role in the regulation of energy homeostasis, the impact of both leptin and adiponectin 

on AMPK to maintain this balance, stresses the importance of this kinase in the 

regulation of a fundamental aspect of the type 2 diabetic phenotype.  
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1.5 AMP Activated Protein Kinase (AMPK) 
	
AMPK is a highly conserved metabolic master switch present in all eukaryotes, which 

responds to fluctuations in ADP:ATP and AMP:ATP ratios to restore energy 

homeostasis by regulating pathways involved in glucose metabolism, lipid metabolism, 

protein synthesis and mitochondrial biogenesis (Sanders et al., 2007, Xiao et al., 2011, 

O’Neill, Holloway and Steinberg, 2013).  Although cellular processes are driven by the 

hydrolysis of ATP to ADP and a free phosphate, adenylate kinases rapidly catalyse two 

ADP molecules to generate one ATP and one AMP molecule (Zeleznikar et al., 1990), 

giving great emphasis to this ratio as an indicator of energy status in times of enhanced 

cellular stress.   

1.5.1 AMPK Structure 
	
AMPK is a heterotrimeric kinase consisting of a catalytic α-subunit and regulatory β 

and γ subunits.  In mammals AMPK is encoded by seven genes for the specific isoforms 

of each subunit (α1, α2, β1, β2, γ1, γ2, γ3; α1, γ2 and γ3 isoforms also have splice 

variants) (Table 1.1) (Steinberg and Kemp, 2009, Viollet et al., 2010, Hardie, 2011).  

Combinations of the diverse isoforms lead to the formation of at least 12 different 

complexes which confer defined properties to the kinase in terms of localisation and 

signalling functions (Viollet et al., 2010).  The subunits of AMPK are generally 

unstable when expressed individually, with co-expression of all three necessary for 

kinase activity (Hardie, 2011). 
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Table 1.1 Tissue distribution of AMPK subunits. 

Subunit Tissue Distribution 

α1 Adipose tissue, lung, brain, liver, kidney, spleen, pancreas, heart, skeletal muscle 

α2 Heart, skeletal muscle, kidney, liver, brain, lung, adipose tissue, spleen, pancreas 

β1 Widespread 

β2 Skeletal muscle, heart 

γ1 Widespread 

γ2 Widespread; brain, placenta, heart, skeletal muscle  

γ3 Skeletal muscle 

 

Key:         High expression, low expression 

The catalytic α-subunit of AMPK is a 63 kDa protein containing a serine/threonine 

kinase domain.  The phosphorylation of Thr172 confers activation (Hawley et al., 1996, 

Stein et al., 2000), whereas that of Ser485 triggered by Akt and potentially through 

autophosphorylation, renders the kinase inactive (Horman et al., 2006, Hurley et al., 

2006).  The α-subunit also comprises an auto-inhibitory domain (AID) at the N-

terminus, while the C-terminus contains binding domains for the β and γ subunits.  The 

β-subunit has a central carbohydrate binding molecule (CBM) and a C-terminal region 

that binds the α and γ subunits.  The N-terminal region of the γ-subunit is followed by 

Bateman domains; regulatory adenine nucleotide-binding sites composed of four highly 

conserved cystathionine-beta-synthase (CBS) sequence repeats (Kemp, 2004).  The 

CBS motifs gather such that there are four sites where adenine nucleotides can 

potentially bind (Fig. 1.6).  
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Figure 1.6 Domain map of AMPK. 

The α and γ subunits come together at the β-subunit carboxy-terminal domain (β-CTD) 

to form the AMPK complex.  Image from (Hardie, Ross and Hawley, 2012). 
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1.5.2 AMPK Activation 
	
In its inactive state, AMPK is bound to ATP, until a change in cellular energy balance 

allows AMP to compete with ATP to occupy the kinase at the CBS1 and CBS3 sites, 

while ADP appears to bind to CBS3 only.  Nucleotide exchange at these two CBS 

motifs triggers a conformational change that provokes AMPK activation through three 

main mechanisms (Fig. 1.7) (Corton et al., 1994, Davies et al., 1995, Hawley et al., 

1996).  

1. Under moderate stress, AMP or ADP bind to CBS3 to promote the 

phosphorylation of Thr172 by upstream kinases, conferring more than 200-fold 

increased activity.   

2. The replacement of ATP at CBS3 also stimulates an association between the N-

terminal lobe of the kinase domain and the CBM of the β-subunit to protect 

against Thr172 dephosphorylation.  

3. Under more severe stress, AMP displaces ATP at CBS1 to allosterically activate 

previously phosphorylated AMPK, adding a further 10-fold activation status to 

the kinase.  

The CBS4 site contains a permanently bound AMP molecule, whereas CBS2 appears to 

be always vacant, potentially due to the lack of an aspartate residue which interacts with 

the ribose ring of a bound nucleotide in the other three CBS sites (Viollet et al., 2010, 

Hardie, 2011, Xiao et al., 2011, Carling and Viollet, 2015). 

In addition to IL-6, adiponectin and leptin as previously mentioned, pharmacological 

agents, hormones and cellular stresses such as glucose starvation, ischemia, hypoxia and 

exercise can all initiate specific signalling cascades that lead to the activation of AMPK. 
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Figure 1.7 Model of AMPK activation. 

(A) A mechanistic model for the activation states of AMPK governed by nucleotide 

binding, regulatory kinases and phosphatases.  As ADP can readily bind to the CBS3 

site, it can promote and maintain the phosphorylation of AMPK at Thr172.  However, 

ADP cannot bind to CBS1 and therefore cannot allosterically activate phosphorylated 

AMPK to trigger the greater than 2000-fold increase in kinase activity, emphasising the 

critical role AMP plays in the regulation of this protein.  (B) Predicted nucleotide 

concentrations under various levels of cellular stress.  Image adapted from (Hardie, 

Ross and Hawley, 2012). 
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1.5.2.1 Pharmacological Activation of AMPK 
	
A number of pharmacological agents have been reported to activate AMPK through 

direct and indirect mechanisms.  5-Aminoimidazole-4-carboxamide riboside (AICAR), 

which is phosphorylated into the AMP analog ZMP by adenosine kinase, was the first 

compound identified to directly activate AMPK.  ZMP mimics AMP as it binds the γ-

subunit of AMPK inducing allosteric activation, which facilitates the phosphorylation 

of Thr172 by upstream kinases (Sullivan et al., 1994, Corton et al., 1995).  PT1 

allosterically activates AMPK in vitro and is believed to interact with the α-subunit near 

the autoinhibitory domain to directly relieve autoinhibition (Pang et al., 2008).  

Salicylate (Hawley et al,. 2012) and the small-molecules A769662 (Scott et al., 2008) 

and 991 (Xiao et al., 2013), have also been observed to directly activate AMPK as they 

stabilise the AMP-induced interaction between the CBM of the β-subunit and the kinase 

domain of the α-subunit to protect against the dephosphorylation of Thr172.  Several 

activators of AMPK such as biguanides, of which metformin is the first line of 

treatment for type 2 diabetes (Bridges et al., 2014, Matsuzaki and Humphries, 2015), 

berberine (Turner et al., 2008) and the novel compound R419 (Jenkins et al., 2013) 

have been observed to indirectly activate AMPK by inhibiting complex I of the 

mitochondrial respiratory chain.  

1.5.2.1.1  Inhibition of NADH:ubiquione oxidoreductase 
	
The mitochondrial respiratory chain comprises five complexes, complex I 

(NADH:ubiquinone oxidoreductase), complex II (succinate:ubiquinone 

oxidoreductase), complex III (ubiquinol:cytochrome c oxidoreductase), complex IV 

(cytochrome c oxidoreductase) and complex V (ATP synthase) (Fig. 1.8).  Oxidative 

phosphorylation begins as electrons are donated from NADH to NADH:ubiquinone 
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oxidoreductase or from FADH2 to succinate:ubiquinone oxidoreductase.  

NADH:ubiquinone oxidoreductase establishes the proton gradient as it releases two 

hydrogen ions for every one electron across the matrix into the intermembrane space, 

while the other complexes release one hydrogen for every electron processed 

(Wikström, 1984).  Furthermore, ubiquinol:cytochrome c oxidoreductase and 

cytochrome c oxidoreductase form a supramolecular association with 

NADH:ubiquinone oxidoreductase, creating respirasomes which confer a kinetic 

advantage to NAD-linked respiration (Genova and Lenaz, 2014).   

Electrons are sequentially transferred to cytochrome c oxidoreductase where they 

interact with molecular oxygen and hydrogen ions to generate a water molecule.  The 

energy associated with the proton gradient is then exploited by ATP synthase to 

generate ATP from ADP and inorganic phosphate (Fernández-Vizarra et al., 2009).  

Inhibition of NADH:ubiquinone oxidoreductase perturbs this energy generation leading 

to a significant decrease in ATP synthesis, as NADH:ubiquinone oxidoreductase is 

believed to provide 40 % of the protons required for ATP production  (Efremov et al., 

2010).  The resultant build-up of ADP may then directly interact with AMPK, or is 

subject to the action of adenylate kinase to increase cellular AMP levels, all of which 

enhance AMPK activation. 
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Figure 1.8 The mitochondrial respiratory chain. 

Electrons generated from NADH and FADH2 are passed through the complexes of the 

mitochondrial respiratory chain with the aid of the carrier molecules, ubiquinone (Q) 

and cytochrome c (Cyt) leading to the reduction of molecular oxygen to water.  The 

energy liberated during respiration through the creation of the H+ gradient is used by 

ATP synthase to catalyse the condensation of ADP and inorganic phosphate (Pi) into 

ATP.  Inhibition of NADH:ubiquinone oxidoreductase leads to a significant decrease in 

energy production which is sensed by AMPK.  
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The naturally occurring phytochemicals quercetin and resveratrol also activate AMPK 

as they inhibit ATP synthase to alter cellular energy balance (Zheng and Ramirez, 

2000).  Numerous other natural and synthetic compounds with anti-diabetic and anti-

obesogenic properties have also been observed to influence AMPK activity including, 

DHPO (Kandadi et al., 2010), curcumin (Kim et al., 2010) and tangeretin (Kim et al., 

2012) however, the mechanism by which this occurs remains elusive.  

1.5.2.2 Exercise-Induced Activation of AMPK 
	
As well as through a decrease in ATP production, AMPK can be activated by an 

increase in ATP consumption through the more physiological condition of metabolic 

stress that is exercise.  The rise in cellular ADP and AMP as a consequence of intense 

muscle contraction and prolonged low impact exercise leads to the activation of one of 

the three AMPK complexes expressed in human skeletal muscle; α1β2γ1, α2β2γ1 and 

α2β2γ3 (Richter and Ruderman, 2009).  As the potent AMPK activator AICAR 

regulates glucose and lipid metabolism in a similar manner to contraction in skeletal 

muscle, AMPK is believed to mediate many of the beneficial effects of exercise (Merrill 

et al., 1997).  Furthermore, exercise induces the release of IL-6 which has been found to 

activate the kinase (Kelly et al., 2004).   

The leptin-receptor-deficient Zucker Diabetic Fatty (ZDF) rat displays the importance 

of AMPK and exercise in the management of the type 2 diabetic phenotype as treadmill 

training of the ZDF rat, which displays decreased AMPK activity, markedly improves 

glucose tolerance and insulin sensitivity (Becker-Zimmermann et al., 1982, Yu et al., 

2004).  Furthermore, AMPKβ1β2 (O’Neill et al., 2011) and AMPKα1α2 (Lantier et al., 

2014) skeletal muscle specific knockout mice have reduced exercise capacity while 

β1β2 knockout mice display significantly reduced contraction-stimulated glucose 
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uptake.  These studies also proposed a role for AMPK in exercise-induced stimulation 

of mitochondrial biogenesis to expand the mitochondrial network within muscle cells, 

increasing the capacity for aerobic ATP provision (Hood, 2009). 

1.5.2.3 Regulation of AMPK Phosphorylation 
	
Once bound by AMP or ADP the phosphorylation of AMPK at Thr172 can be regulated 

(Fig. 1.9). AMPK is primarily phosphorylated by a complex formed between liver 

kinase B1 (LKB1) and two accessory subunits, the pseudokinase sterile-20-related 

adaptor (STRAD) and the scaffolding protein, mouse protein-25 (MO25) (Hawley et 

al., 2003, Woods et al., 2003).  STRAD induces LKB1 relocalisation from the nucleus 

to the cytoplasm with the aid of the histone/protein deacetylase, sirtuin 1 (Lan et al., 

2008).  STRAD then stimulates the catalytic activity of LKB1 and promotes interaction 

with MO25, which stabilises the activation loop of LKB1 in a conformation necessary 

for it to catalyse the phosphorylation of AMPK (Zeqiraj et al., 2009).  Although tissue-

specific deletion of LKB1 has demonstrated the central role this protein plays in the 

phosphorylation of AMPK, kinase activation can also be modulated by Ca2+/calmodulin 

dependent protein kinase kinase β (CaMKKβ) in a Ca2+ dependent manner.  This action 

is particularly important in neurons, endothelial cells and T lymphocytes (Hawley et al., 

2005, Shackelford and Shaw, 2009).  Furthermore, the effects of leptin (Park et al., 

2013) and adiponectin (Lee and Shao, 2012) on AMPK activity are proposed to be 

mediated through the action of CaMKKβ.  

Other proteins that play a role in AMPK activity include the protein phosphatases 2 A 

(PP2A) and C (PP2C) (Davies et al., 1995), and the MAPKKK TGF-beta-activated 

kinase 1 (TAK1) (Momcilovic et al., 2006).  Both PP2A and PP2C suppress AMPK 

activity in the absence of ADP and AMP through dephosphorylation, while TAK1 has 
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been found to increase AMPK phosphorylation at Thr172 in vitro.  

 

 

Figure 1.9 The regulation of AMPK phosphorylation.  

Alterations in cellular energy balance lead to an increase in intracellular ADP that is 

promptly converted into ATP and AMP through the action of adenylate kinase.  The 

increasing levels of AMP and ADP displace ATP bound to the CBS domain of the γ-

subunit of AMPK.  The resultant conformational change allows AMPK to be 

phosphorylated at Thr172 within the activation loop of the α-subunit by the LKB1 

complex, CaMKKβ and TAK1.  ADP as well as AMP binding stabilises AMPK in an 

active conformation preventing its dephosphorylation by PP2A and PP2C.  Activated 

Akt stimulates AMPK phosphorylation at Ser485 to impede phosphorylation at Thr172. 
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1.5.3 Downstream Effects of AMPK Activation 
	
Once activated, AMPK restores cellular energy balance by switching on ATP 

generating pathways and switching off ATP consuming pathways, a response that has 

been found to counteract many of the cellular abnormalities of type 2 diabetes (Fig. 

1.10) (Kahn et al., 2005). 

1.5.3.1 Lipid Metabolism 
	
The primary role attributed to AMPK, which aided its discovery, was as a regulator of 

key enzymes involved in lipid metabolism (Munday et al., 1988, Hardie et al., 1989).  

Activated AMPK phosphorylates 3-hydroxy-3-methylglutaryl-CoA reductase 

(HMGCR) to suppress cholesterol synthesis, while AMPK-induced phosphorylation of 

acetyl-CoA carboxylase (ACC) influences fatty acid synthesis and oxidation.  

Phosphorylation of ACC at Ser79 halts its enzymatic activity leading to a decrease in 

malonyl CoA, a key substrate for fatty acid synthesis.  The fall in malonyl-CoA content 

leads to a subsequent increase in fatty acid oxidation by heightening carnitine 

palmitoyltransferase 1 in skeletal muscle (Winder and Hardie, 1996, Ruderman et al., 

1999).  AMPK also prevents the cleavage and activation of sterol regulatory element-

binding protein 1C (SREBP1C)-induced triglyceride synthesis (Li et al., 2011).  

1.5.3.2 Glucose Metabolism 
	
Consistent with a role in maintaining energy homeostasis AMPK exploits glucose 

metabolism, promoting catabolism and suppressing anabolism to restore cellular ATP 

levels.  AMPK converges with the insulin signalling pathway to promote glucose 

uptake through GLUT4 translocation in an AS160 dependent manner (Treebak et al., 

2006).  The CBM domain of the AMPK β-subunit has been postulated to facilitate its 
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interaction with glycogen-associated proteins such as glycogen synthase (Hardie et al., 

2012).  In fact, AMPK has been observed to phosphorylate glycogen synthase, 

inhibiting the process of glycogen synthesis in favour of glycolysis, yet whether this is 

dependent on a CBM-mediated interaction remains unclear (Bultot et al., 2012).  

AMPK also acts on 6-phosphofructo-2-kinase and 6-phosphofructo-2-kinase/fructose-

2,6-biphosphatase 3 (PFKFB3), a key regulator of the glycolytic enzyme 

phosphofructokinase-1 to inhibit the process of glycolysis (Marsin et al., 2000, 2002, 

Bando, 2005, Doménech et al., 2015).  Furthermore, AMPK reduces gluconeogenesis 

as it phosphorylates CREB-regulated transcription co-activator 2 (CRTC2) (Koo et al., 

2005), and Class IIa histone deacetylases (HDACs) (Mihaylova et al., 2011). 

1.5.3.3 Mitochondrial Biogenesis 

The expression of peroxisome proliferator-activated receptor-gamma co-activator 1 

alpha (PGC1α), which enhances the activity of mitochondrial gene transcription factors, 

can be augmented by AMPK-induced phosphorylation to stimulate mitochondrial 

biogenesis, promoting ATP production (Jäger et al., 2007). 

1.5.3.4 Protein Synthesis 

To maintain intracellular ATP levels, activated AMPK phosphorylates the RNA 

polymerase I-associated transcription factor (TIFIA), preventing the assembly of 

transcription complexes necessary for the synthesis of ribosomal RNA (Hoppe et al., 

2009).  In addition to this, AMPK phosphorylates key components of mTORC1; 

tuberous sclerosis 1 (Inoki et al., 2003) and the regulatory associated protein of mTOR 

(Gwinn et al., 2008) to suppress protein synthesis. 
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1.5.3.5 Autophagy 
	
As a consequence of reduced mTORC1 signalling, AMPK alleviates the inhibitory 

effect of the complex on unc-51-like kinase 1 (Ulk1) and Ulk2 to promote autophagy 

and mitophagy, the specific engulfment of damaged mitochondria by autophagosomes.  

AMPK has also been postulated to directly phosphorylate Ulk1/2, however, the results 

remain inconsistent (Alers et al., 2012).  

 

The impact of AMPK on autophagy demonstrates a cytoprotective response, 

modulating some of the damaging effects of type 2 diabetes (Gonzalez et al., 2011). 

Hyperglycaemia associated with type 2 diabetes, causes an imbalance in the antioxidant 

capacity of the cell leading to organelle damage.  The insulin secreting β-cells rely on 

autophagosomes to sequester and recycle misfolded pro-insulin, defective secretory 

granules and dysfunctional mitochondria to maintain normal cell function (Lee, 2014).  

Impairments in this system have been observed to attenuate these protective effects as 

hepatic suppression of the murine autophagy related gene 7 results in increased 

endoplasmic reticulum stress and insulin resistance (Yang et al., 2010).  
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Figure 1.10 Downstream targets of activated AMPK. 

AMPK regulates cellular energy balance by switching on ATP generating catabolic 

processes; glucose metabolism, fatty acid oxidation, mitochondrial biogenesis and 

autophagy and by switching off ATP consuming anabolic processes; fatty acid 

synthesis, triglyceride synthesis, cholesterol synthesis, protein synthesis, 

gluconeogenesis, glycogen synthesis and ribosomal RNA synthesis.  Image adapted 

from (Hardie, Ross and Hawley, 2012). 
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1.6  Therapeutic Interventions for Type 2 Diabetes 
	
Given the beneficial effects of AMPK on many of the hallmarks of type 2 diabetes, it is 

unsurprising that some anti-diabetic drugs target this kinase to regulate glycaemic 

control.  Although the beneficial effects of exercise and weight loss on insulin 

sensitivity are undisputed (Henriksen, 2002, Kopp et al., 2005), perseverance often 

proves difficult (Gage, 2012).  Failing dietary intervention, the AMPK activator 

metformin is the primary drug of choice to control type 2 diabetes, which may be used 

in conjunction with a range of other therapies if treatment goals are not met (Inzucchi et 

al., 2015). 

1.6.1 Metformin 
	
Anti-hyperglycaemic effects have been observed in response to many guanidine-

containing compounds. However, metformin is the only drug of its class, the 

biguanides, available as a therapeutic intervention, as the more potent effects of 

phenformin and buformin carry a higher risk for lactic acidosis (Rena et al., 2013).  

Metformin has been in use for over 50 years, however, some understanding of its 

mechanism of action has only been gained in recent years and remains an area of 

dynamic research.  The anti-diabetic effects of metformin originate with the suppression 

of hepatic gluconeogenesis and glucagon signalling and the promotion of glucose 

uptake.  Metformin is believed to enter the cell through the organic cation transporter 1, 

which demonstrates high levels of expression in the liver and kidney (Pernicova and 

Korbonits, 2014).  Metformin then inhibits NADH:ubiquinone oxidoreductase 

increasing cellular ADP and AMP, leading to the activation of AMPK and the 

consequential downstream effects (Rena et al., 2013).  However the glucose-lowering 

influence of metformin has also been observed to occur through an AMPK independent 
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mechanism.  Miller and colleagues (2013), proposed that metformin-induced increases 

in AMP inhibit adenylate cyclase to reduce the accumulation of cyclic AMP (cAMP), 

thus attenuating the signalling capabilities of glucagon.  Binding of glucagon to its 

receptor activates adenylate cyclase, consequently stimulating the cAMP dependent 

kinase, protein kinase A (PKA), to phosphorylate downstream targets that increase 

hepatic glucose production.  

In circumstances where metformin is contraindicated, gastrointestinal complications 

prove problematic (Bailey et al., 1996), or treatment goals are not met, one of the 

second line anti-diabetics may be prescribed, yet these often have more undesirable side 

effects. 

1.6.2 Thiozolidinediones 
	
Initially the thiazolidinediones were thought to activate PPARγ to modulate the 

transcription of essential genes involved in lipid metabolism, reducing pro-

inflammatory cytokines to attenuate insulin resistance.  However, like metformin the 

thiazolidendiones have been found to exert a cohort of their effects through the action of 

AMPK (LeBrasseur et al., 2006).  More recently, these compounds been found to bind 

to the mitochondria pyruvate carrier 1 (mpc1) and mpc2, to modulate the entry of 

pyruvate into the tricarboxylic acid cycle (Colca et al., 2013).  The thiazolidendiones 

may therefore regulate mitochondrial fatty acid synthesis and branched-chain amino 

acid levels to modulate insulin sensitivity, as a change in the supply of branched-chain 

amino acids has been proposed to activate mTOR, a negative regulator of insulin action 

and β-cell function. Side effects of this class of anti-diabetics include weight gain, 

osteoporosis, heart failure and increased low-density lipoprotein cholesterol (LDL-C) 

(Colca et al., 2014). 
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1.6.3 Sulfonylureas 
	
The sulfonylureas comprise the oldest anti-diabetic therapy.  However, these drugs have 

been phased out due to a high incidence of adverse reactions.  The second generation of 

sulfonylureas represent the next most commonly prescribed drugs after metformin for 

the treatment of type 2 diabetes.  These compounds bind to the sulfonylurea receptor 

(SUR), a major component of KATP channels in pancreatic β-cells, mimicking the effect 

of ATP binding to close the channels.  This depolarises the β-cell membrane, opening 

Ca2+ channels, which stimulates the fusion of insulin secretory vesicles with the cell 

membrane.  Sulfonylureas have also been observed to promote insulin secretion as they 

bind the exchange protein directly activated by cAMP, which interacts with the Rap1 

protein to increase vesicle fusion.  However, as a consequence of augmented insulin 

secretion, the sulfonylureas often cause hypoglycaemia, which is associated with an 

increased risk of cardiovascular events.  Furthermore, SUR isoforms are also found on 

cardiomyocytes and help mediate adaptations to cardiac ischemia by increasing K+ 

efflux, although this predisposes malignant ventricular arrhythmias.  Sulfonylureas may 

therefore confer antiarrhythmic properties but may enlarge infarct size (Thulé and 

Umpierrez, 2014). 

1.6.4 Metaglitinides 

The meglitinides function in a similar way, yet with a different molecular binding site to 

the sulfonylureas, as they close β-cell membrane KATP channels to promote insulin 

secretion.  These compounds have a shorter duration of action and thus a reduced but 

not eliminated risk of hypoglycaemia (Stein, Lamos and Davis, 2013). 
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1.6.5 α-Glucosidase Inhibitors 
	
The α-glucosidase inhibitors attenuate intestinal α-glucosidase to delay the absorption 

of consumed carbohydrates resulting in a reduction in blood glucose levels.  Side effects 

are minimal, however, gastrointestinal complications and frequent dosing regimes 

significantly reduce compliance (Stein, Lamos and Davis, 2013).   

1.6.6 Dopamine-2 Agonists 
	
The dopamine-2 agonist bromocriptine is believed to alter the hypothalamic circadian 

rhythm to offset an insulin resistant state. Taken within two hours of waking, 

bromocriptine reduces the increased prolactin levels typically associated with type 2 

diabetics in a state of fasting hyperglycaemia.  As a consequence, the dopamine-2 

agonist is believed to restore dopaminergic activity, decreasing plasma levels of 

glucose, triglycerides and free fatty acids.  Furthermore, bromocriptine reduces 

uncoupled inducible nitric oxide synthase (iNOS)- and endothelial NOS (eNOS)-

stimulated generation of reactive oxygen species to protect against atherogenesis in the 

high fat–fed spontaneously hypertensive rat.  It has been observed to also decrease 

major cardiac events in human subjects (Defronzo, 2011).  However, these anti-diabetic 

agents seem to exert a modest influence on glycaemic control with associated reports of 

nausea, dizziness, fatigue and rhinitis (Inzucchi et al., 2015).  

1.6.7 Sodium-Glucose Co-Transporter 2 Inhibitors 
	
The sodium-glucose co-transporter 2 (SGLT2) is solely expressed in the apical domain 

of the epithelial cells in the early proximal convoluted tubule of the kidney, where this 

protein couples the transport of glucose with sodium against a concentration gradient. 

SGLT2 inhibitors block the action of the transporters, enhancing the excretion of 
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glucose to improve glycaemic control.  Mild side effects include genitourinary 

infections, polyuria, hypotension and increased LDL-C and creatinine levels (Idris and 

Donnelly, 2009, Inzucchi et al., 2015). 

1.6.8 Amylin Agonists 
	
Amylin is a pancreatic β-cell glucoregulatory hormone, co-released with insulin.  Upon 

binding to its receptor, a GPCR in the brain, amylin reduces glucagon release from the 

pancreas, suppresses appetite and modulates gastric emptying.  The amylin agonist, 

pramlintide exhibits a similar biological effect to amylin. However, frequent 

administration is required and side effects including hypoglycaemia and gastrointestinal 

problems have been observed (Hay et al., 2015). 

1.6.9 Bile Acids Sequesterants 
	
The bile acids sequesterant, colesevelam binds bile acids in the intestine forming a 

complex that cannot be reabsorbed through the enterohepatic circulation. As a 

consequence bile acid synthesis increases, facilitated by the nuclear farnesoid X 

receptor, while incretin hormones are also augmented through the action of the GPCR, 

TGR5.  As a result, gastric emptying is delayed, hepatic glucose metabolism improves, 

insulin secretion is enhanced and glucose absorption is reduced.  Complications of these 

drugs include gastrointestinal complaints, an increase in triglycerides and compromised 

absorption of other medications (Hansen et al., 2014). 

1.6.10  Incretin Based Therapies 

As observed with bile acid sequesterants, targeting the incretin system is a promising 

approach to attenuate the effects of type 2 diabetes.  The incretin hormones GIP and 

GLP-1 are secreted in response to nutrients entering the gut.  Upon binding to their 
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receptors, GPCRs in β-cells, GLP-1 and GIP induce a signalling cascade to increase 

insulin secretion before being rapidly inactivated by dipeptidyl peptidase 4 (DPP-4). 

This effect is responsible for 50 – 70 % of insulin secretion, yet is markedly reduced 

and sometimes absent in subjects with type 2 diabetes.  The GLP-1 receptor agonists 

exhibit increased resistance to DPP-4 degradation to markedly improve insulin 

secretion, decrease glucagon release, delay gastric emptying and increase satiety 

(Garber, 2011).  However, as this is an injectable therapy, training is required and may 

be disconcerting. Apprehension also surrounds this therapy as cases of acute 

pancreatitis have been reported with implications for pancreatic cancer, while medullary 

thyroid tumors have been observed in animals (Nauck and Friedrich, 2013).  

The DPP-4 inhibitors reduce the degradation of both GIP and GLP-1.  However, the 

hypoglycaemic efficacy is less than that of GLP-1 agonists as concentrations cannot rise 

above physiological levels.  The DPP-4 inhibitors also demonstrate no effect on satiety 

or gastric emptying.  Concerns have been raised regarding the safety of these 

compounds as cases of acute pancreatitis and seronegative polyarthropathy have been 

reported (Tomkin, 2014). 
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1.7  Guanine Nucleotide Binding Protein Coupled Receptors 
	
The actions of dopamine-2, amylin, GIP, GLIP-1 and bile acids to modulate glycaemic 

control through the action of GPCRs emphasises the importance of these receptors in 

the regulation of a multitude of cellular functions that may contribute to the 

development of type 2 diabetes.  GPCRs comprise the largest protein superfamily in 

mammalian genomes, with more than 800 genes encoding for these versatile receptors 

in humans (Fredriksson et al., 2003).  GPCRs are characterised by the presence of seven 

membrane spanning α-helical segments separated by alternating intracellular and 

extracellular loop regions.  These membrane-bound receptors recognise a variety of 

extracellular stimuli, such as photons, ions, small molecules, peptides and proteins and 

propagate this signal potential across the membrane over a distance of 50 Å to elicit 

intracellular responses (Stevens et al., 2013).  With each GPCR highly specific to a 

particular signal, these receptors mediate most cellular responses to hormones and 

neurotransmitters, as well as being responsible for vision, olfaction and taste 

(Rosenbaum et al., 2009).  Based on their sequence and structural similarity, GPCRs are 

commonly divided into five families named Glutamate, Rhodopsin, Adhesion, 

Frizzled/taste receptor 2 and Secretin (GRAFS) (Fig. 1.11) (Fredriksson et al., 2003).   
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Figure 1.11 The GRAFS Classification of GPCRs. 

The GRAFS classification system places more than 800 human GPCRs into five major 

families: Rhodopsin (class A); Secretin and Adhesion (class B); Glutamate (class C); 

and Frizzled/taste receptor 2 (TAS2), based on their sequence and structural similarity.  

Image from (Stevens et al., 2013).  
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1.7.1 Guanine Nucleotide Binding Proteins 
	
Despite these resounding similarities, GPCRs employ diverse and complex regulatory 

processes to convey extracellular signals to the internal environment of the cell.  

Classically, GPCRs were solely believed to achieve this by coupling the binding of an 

agonist to the activation of multiple heterotrimeric guanine nucleotide binding protein 

(G protein) subtypes (Rosenbaum et al., 2009).  G proteins are composed of an αβγ 

trimer from the various combinations of the 21 α, 6 β and 12 γ subunits (Downes and 

Gautam, 1999).  The α-subunit is GDP-bound and complexed to a Gβγ heterodimer, 

which acts as a guanine nucleotide dissociation inhibitor, stabilising the protein in the 

inactive GDP-bound state (Higashijima et al., 1987).   Based on sequence similarity of 

the α-subunit, which confers similar downstream signalling mechanisms, G proteins are 

divided into four families (Table 1.2) (Strathmann and Simon, 1991, Kimple et al., 

2014).  

Table 1.2 G protein families. 

G protein family Family members Effector protein 

Gs Gs, Golf Adenylate Cyclase 

Gi Gi1, Gi2, Gi3, Go1, Go2, Gz. Gt, Ggust    Adenylate Cyclase 

Gq Gq, G11, G14, G15/16 Phospholipase C 

G12/13 G12, G13  RhoGEF 
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1.7.2 Canonical GPCR Signalling 
	
The binding of an agonist to a GPCR promotes a change in the relative positioning of 

transmembrane α-helices III and VI which leads to reorientation of the third 

intracellular loop of the receptor to uncover previously cryptic G protein binding sites 

(Wess, 1997, Kobilka, 2002).  The Gβγ heterodimer serves to target Gα to the 

membrane (Rehm, 1997) and present it to the receptor in the appropriate conformation 

(Oldham and Hamm, 2006, Smrcka, 2008).  Upon interaction, the receptor acts as a 

guanine nucleotide exchange factor (GEF), inducing the release of GDP from the α-

subunit of the G protein in favour of GTP.  The active GTP-bound α-subunit dissociates 

from the receptor and the Gβγ dimer to interact with effector proteins with 20 – 100 fold 

higher affinity than in their GDP-bound state (Hamm, 1998, Knall and Johnson, 1998). 

The now independent Gβγ dimer relays signals from the GPCR to a number of target 

proteins including; adenylate cyclase isoforms, phospholipase isoforms, ion channels, 

PI3K, and MAPKs (Khan et al., 2013).  The α-subunits of the Gs and Gi subfamily 

members regulate adenylate cyclase to stimulate (Gs) or inhibit (Gi) the production of 

cAMP, which influences PKA (Krebs, 1989).  Gαq activates phospholipase C (PLC) to 

modulate intracellular levels of 1,2-diacylglycerol (DAG) and inositol 1,4,5 

triphosphate (IP3) (Birnbaumer et al., 1990, Rhee, 2001).  DAG signals directly to 

protein kinase C (PKC) (Kishimoto et al., 1980), whereas IP3 binds to its receptor in the 

endoplasmic reticulum to trigger the release of Ca2+ (Berridge and Irvine, 1984).  

Gα12/13 stimulates the activation of Rho guanine nucleotide exchange factors 

(RhoGEFs) which initiate Rho-dependent signalling cascades through Rho-associated 

coiled-coil containing protein kinases (Hart et al., 1998, Siehler, 2009) (Fig. 1.12).  The 

activation of these secondary messengers imparts the signal potential of the GPCRs to 

regulate a multitude of specific cellular cascades throughout the cell (Offermanns, 
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2003).   

 

Figure 1.12 GPCR signal transduction through G proteins.  

Upon ligand binding a GPCR undergoes a conformational change to recruit and activate 

a specific G protein by exchanging GDP for GTP at the α-subunit.  The now 

independent Gβγ dimer targets specific effector proteins while the four classes of GTP-

bound Gα proteins transmit signal potential to family dependent target proteins.  
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1.7.3 GPCR Signal Termination 

The duration of one cycle of receptor activation of an effector can be dictated by the 

intrinsic guanosine triphosphatase (GTPase) activity of Gα as the hydrolysis of GTP to 

GDP promotes reconstitution and membrane localisation of the Gαβγ heterotrimer 

(Neer, 1995).  This step is often influenced by regulators of G protein signalling (RGS) 

that bind Gα and accelerate GTP hydrolysis (Fig. 1.13) (Siderovski and Willard, 2005, 

Oldham and Hamm, 2008). 

 

Figure 1.13 Regulation of G protein activity. 

Focusing on the G protein α-subunit, ligand occupied GPCRs act as GEFs, facilitating 

GDP release and the subsequent binding of GTP to activate the G protein.  RGS 

proteins act as GTPase-accelerating proteins (GAPs) for Gα, dramatically enhancing 

their core rate of GTP hydrolysis to terminate GPCR signal transduction.  
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However, GPCRs have been found to have more complex signalling behaviour beyond 

the control of G proteins alone.  To rapidly terminate activation, negative feedback 

loops uncouple GPCRs from heterotrimeric G proteins through covalent modifications 

of the receptor as a consequence of phosphorylation by intracellular kinases  

(Thompson and Findlay, 1984, Premont et al., 1995).  G protein coupled receptor kinase 

(GRK) association is promoted by Gβγ dimers (Daaka et al., 1997), whereas second 

messenger dependent kinases; PKA and PKC are stimulated by cAMP and IP3 as a 

consequence of Gαi/s and Gαq respective activation (Tobin, 2008).  The phosphorylated 

receptor has increased affinity for cytosolic cofactor proteins called β-arrestins, which 

more effectively uncouple the receptor from the G protein by sterically inhibiting 

interactions (Lohse et al., 1990).  The β-arrestin-receptor complex becomes associated 

with clathrin-coated pits which shape rounded vesicles in the cytoplasm for intracellular 

handling (Goodman et al., 1996).  The receptor can then be trafficked to lysosomes for 

degradation or to recycling endosomes which dephosphorylate and reprocess the GPCR 

back to the plasma membrane (Fig. 1.14) (Pierce et al., 2002). 
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Figure 1.14 GPCR desensitisation.  

(1) Ligand binding recruits a G protein to the GPCR, which becomes activated through 

receptor-induced exchange of GDP for GTP.  The free Gβγ dimer and Gα subunits 

signal to downstream effector proteins eventually initiating a negative feedback loop to 

desensitise the receptor to the bound ligand.  (2) Activation of PKA, PKC and GRK 

leads to GPCR phosphorylation and the recruitment of β-arrestin.  (3) The GPCR-β-

arrestin complex binds with high affinity to clathrin.  (4) Clathrin-coated pits lead to 

receptor internalisation. (5) The receptor is then processed by endosomes (Pierce et al., 

2002). 
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1.7.4 Non-Canonical GPCR Signalling 
	
Activation of GPCR signalling may also go beyond the classical function of coupling an 

agonist to a G protein to modulate a downstream effector.  Functional studies of the β-

adrenergic receptor (β2AR), the most well characterised GPCR, demonstrate 

constitutive activity of the receptor which can be blocked by an inverse agonist (Chidiac 

et al., 1994).  Furthermore, a β2AR mutant incapable of G protein activation was found 

to activate MAPK pathways in a β-arrestin dependent manner (Shenoy et al., 2006).  As 

this multifaceted behaviour has been observed for many different GPCRs (Pierce and 

Lefkowitz, 2001, Tao, 2008), a complex picture of GPCR activation has emerged, while 

the structural changes associated with activation may be similar, the mechanism by 

which these changes are evoked is quite different. 

1.7.5 Kinetics of GPCR Activation 
	
Natural and synthetic ligands acting on GPCRs are classified into full agonists, partial 

agonists, inverse agonists and antagonists.  A number of kinetic models have been 

developed to describe the response of a GPCR to ligand binding to transition between 

active and inactive states (Bouvier, 2013).   

 

In the classical two-state model (Leff ,1995) (Fig. 1.15A), GPCRs are thought to exist 

in equilibrium between two states; resting (R) and activated (R*).  In the absence of a 

ligand the equilibrium of most receptors favours the R state while few, like rhodopsin, 

demonstrating constitutive activity, lie in the R* state.  The efficacy of a ligand reflects 

its ability to alter the equilibrium between these two states (Kobilka, 2007).  Inverse 

agonists stabilise the R state favouring the transition toward inactive conformations to 

reduce the level of basal or constitutive activity below that of the resting receptor, while 
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agonists preferentially bind the active conformations to amplify receptor activity.  

 

In the three state model (Fig. 1.15B), in the absence of a ligand, the receptor is in an 

intermediate state (R*), showing some level of activity.  Inverse agonists favour 

inactive conformations (R), transitioning receptor equilibrium towards this state, 

whereas agonists favour active conformations (R**).  Full agonists maximally stimulate 

the biological responses of the receptor while partial agonists are unable to elicit full 

activity even at saturating concentrations.  Fully active conformations are promoted by 

GPCR coupling to multiple G proteins based on the specificity of the ligand (Leff et al., 

1997).  

 

A revised model (Fig 1.15C), proposes that the unliganded receptor is largely in an 

inactive conformation promoted by inverse agonists.  Agonists favour intermediate 

states (R*), while unique fully activated conformational states (R**, R## and R’’) are 

promoted by specific signalling effectors such as G proteins, kinases and β-arrestins 

(Kenakin, 2003).  Antagonists have equal affinity for inactive, intermediate and active 

states and therefore have no effect on the signalling potential of the receptor but can 

prevent other ligands from binding (Rosenbaum et al., 2009).  
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Figure 1.15 Active and inactive states of GPCRs. 

(A) The two state model of GPCR kinetics. (B) The three state model of GPCR kinetics. 

(C) The adapted three state model which considers agonist stabilisation of unique fully 

activated conformational states promoted by specific signalling effectors such as G 

proteins (R**G), kinases (R##K) and β-arrestins (R’’βarr).  Image adapted from 

(Bouvier, 2013). 
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1.7.6 GPCRs and Type 2 Diabetes 
	
The diverse GPCR superfamily plays a key role in the overall homeostasis of complex 

organisms making them important physiological regulators of many disease states.  The 

ability of GPCRs to transduce extracellular signals into intracellular effector pathways 

makes them appealing drug targets with 30 – 40 % of marketed drugs affecting these 

versatile receptors (Ma and Zemmel, 2002, Lappano and Maggiolini, 2011, 

Tautermann, 2014).  Moreover, the specific impact of GPCRs on immune responses, 

appetite, insulin secretion and energy homeostasis makes them attractive for the 

treatment of type 2 diabetes (Table 1.3).  In addition to targeting GPCRs with known 

ligands and downstream effects, several of the more than 140 orphan receptors (Tang et 

al., 2012), have been found to regulate key aspects of the diabetic phenotype, as 

evidenced by knockout and knockin studies (Matsuda and Aiba, 2004).  

 

Table 1.3 GPCRs and type 2 diabetes. 

GPCR Effects mediated by receptor References 
Adrenergic Receptors 
β2AR Regulates energy metabolism and glycogenolysis 

during exercise 
 

(Chruscinski et al., 1999) 

α-(2A)AR Contributes to defective insulin secretion in diabetic 
patients 

(Robertson et al., 1976) 
(Rosengren et al., 2010) 

Arginine Vasopressin Receptor 
AVPR2 Maintains water homeostasis; loss of function causes 

nephrogenic diabetes insipidus 
 

(van der Ouweland et al., 
1992) 

Bombesin Receptors 
NMBR Female specific role in the regulation of energetic 

homeostasis, with female KO mice partially resistance 
to diet-induced obesity  
 

(Paula et al., 2010) 

GRPR Regulates satiety and participates in the termination of 
meals 
 

(Ladenheim et al., 2002) 

BRS3 Regulates body weight, satiety and glucose/insulin 
homeostasis 
 

(Ohki-Hamazaki et al., 
1997) 
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Table 1.3 GPCRs and type 2 diabetes. 
 
GPCR Effects mediated by receptor References 
Cannabinoid Receptors 
GPR55 Increases calcium transients and insulin secretion 

stimulated by glucose 
 

(Romero-Zerbo et al., 
2011) 

CB1 Modulates the endocrine hypothalamic-peripheral 
endocrine axes to regulate appetite and energy balance 
 

(Ravinet Trillou et al., 
2004) 

CB2 Modulates Tnf and Ccl2 expression to promote insulin 
resistance and liver inflammation 
 

(Deveaux et al., 2009) 

Cholecystokinin Receptors 
CCK-AR Inhibits short-term food intake 

 
(Kopin et al., 1999) 

CCK-BR Regulates digestion and absorption 
 

(Nagata et al., 1996) 

Estrogen Receptors 
GPR30 Induces insulin secretion  (Sharma and Prossnitz, 

2011) 
Fatty Acid Receptors 
GPR41 Regulator of host energy balance through effects that 

are dependent upon the gut microbiota  
(Samuel et al., 2008) 
 
 

GPR43 Inhibits lipolysis, regulates plasma lipid profiles and is 
involved neutrophil chemotaxis 
 

(Ge et al., 2008) 

GPR40 Enhances glucose-stimulated  insulin secretion. 
Conflicting KO studies have showed this receptor to 
protect mice from obesity-induced hyperinsulinemia 
and exacerbate insulin resistance 
 

(Steneberg et al., 2005) 
(Shapiro et al., 2005) 
(Kebede et al., 2008) 
 

GPR84 Regulates IL-4 production by activated T lymphocytes (Venkataraman and Kuo, 
2005) 
 

GPR120 Induces secretion of GLP1 and GIP. Inhibits 
inflammatory signalling in macrophages 
 

(Oh et al., 2010) 

GPR119 Important for incretin and insulin secretion (Lan et al., 2009) 
Ghrelin Receptors 
GHS-R Stimulates growth hormone secretion, modulates 

glucose sensing and insulin sensitivity 
 

(Sun et al., 2008) 

GPR39 Regulates body weight and endocrine function  (Tremblay et al., 2007)  
(Holst et al., 2009) 
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Table 1.3 GPCRs and type 2 diabetes. 
 
GPCR Effects mediated by receptor References 
Glucagon Receptor 
GCGR Regulates insulin sensitivity and β cell function 

 
(Sørensen et al., 2006) 

Hydroxycarboxylic Acid Receptors 
GPR109a Mediates anti-lipolytic effects of ketone bodies, activates 

immune cells 
 

(Taggart et al., 2005) 

GPR109b Anti-lipolytic effects, activates immune cells 
 

(Ahmed et al., 2009) 

GPR81 Mediates anti-lipolytic effects of insulin 
 

(Cai et al., 2008) 

Incretin Receptors 
GLP-1R Regulates glucose production and the action of insulin 

 
(Ayala et al., 2010) 

GIPR Stimulates insulin release 
 

(Miyawaki et al., 2002) 

Lysophospholipid Receptors 
GPR12 Regulates weight gain and energy expenditure  (Bjursell et al., 2006a) 
Melanin Concentrating Hormone Receptors 
MCH1 Regulates insulin sensitivity and/or secretion via a 

mechanism not dependent on decreased body weight 
 

(Bjursell et al.,2006b) 

Melanocortin Receptors 
MC3R Regulates energy homeostasis playing a critical role in 

weight regulation 
 

(Lee et al., 2002) 

MC4R Regulates energy homeostasis and food intake 
 

(Huszar et al., 1997) 

Melatonin Receptors 
MT1 Regulates glucose metabolism. KO mice display increased 

insulin resistance 
 

(Contreras-Alcantara 
et al., 2010) 

GPR50 Regulates thermogenesis and torpor. ob/ob mice display 
reduced receptor expression 
 

(Bechtold et al., 
2012) 

Metastin Receptor 
GPR54 Regulates endocrine function, weight gain and energy 

expenditure primarily in female mice 
 

(Tolson et al., 2014) 

Muscarinic Acetylcholine Receptors 
M3 Regulates food intake. Mice lacking the receptor display 

reduced food intake, reduced body weight and low leptin 
and insulin serum levels 
 

(Yamada et al., 2001) 
 

Neuropeptide Receptors 
NPY 
Receptors 

Control appetite and regulate insulin secretion (Chamorro et al., 
2002) 
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Table 1.3 GPCRs and type 2 diabetes. 
 
GPCR Effects mediated by receptor References 
Neuropeptide Receptors 
Orexin 
receptors 
 

Regulate appetite (Rodgers et al., 
2002) 

GPR7 Regulates energy homeostasis in male mice. KO male mice 
develop adult-onset obese phenotype exacerbated with a 
HFD  
 

(Ishii et al., 2003) 

Orphan Receptors 
GPR21 Coordinates macrophage pro-inflammatory activity. KO 

mice have improved glucose tolerance, insulin sensitivity 
and a modest lean phenotype 
 

(Gardner et al., 
2012)  
(Osborn et al., 2012) 

GPR26 Regulates energy homeostasis; GPR26 deficiency in the 
hypothalamus is associated with high genetic susceptibility 
to the onset of obesity  
 

(Chen, Liu, et al., 
2012) 

GPR116 Regulates systemic energy homeostasis; adipose tissue 
specific KO mice displayed glucose intolerance and insulin 
resistance 
 

(Nie et al., 2012) 

Serotonin Receptors 
5HT2C Regulates appetite. KO mice are overweight as a result of 

abnormal control of feeding behaviour 
 

(Tecott et al., 1995) 

5HT1A Regulates satiety. The receptor agonist stimulates food 
intake in lean control rats but inhibits feeding in obese rats 
up to 6 months of age 
 

(Voigt et al., 2002) 

Somatostatin Receptors 
SSTR2 Regulates hypoglycaemia-stimulated glucagon and 

corticosterone release in diabetic rats 
 

(Yue et al., 2012) 

SST5 Regulates pancreatic insulin secretion and contributes to 
the regulation of glucose homeostasis and insulin 
sensitivity 
 

(Strowski et al., 
2003) 

UDP Glucose Receptors 
GPR105 Regulates insulin secretion and immune cell chemotaxis. 

Conflicting reports on the consequences of receptor 
deletion on insulin signalling 

(Xu et al., 2012) 
(Meister et al., 2014) 
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1.7.6.1 GPR21 
	
GPR21, an orphan GPCR has recently emerged as a novel target for the treatment of 

type 2 diabetes (Gardner et al., 2012, Osborn et al., 2012). Gardner and colleagues 

found GPR21 knockout mice fed on a high fat diet (HFD) to have a modest lean 

phenotype, increased insulin sensitivity, improved glucose tolerance and a reduction in 

pro-inflammatory markers when compared to wild type littermates.  In a simultaneous 

study, the Olefsky group (Osborn et al., 2012), reiterated these findings and proposed 

the involvement of GPR21 in coordinating macrophage pro-inflammatory activity in the 

context of obesity-induced insulin resistance.  In wild type mice, GPR21 mRNA was 

highly induced in the stromal vascular fraction (SVF) of adipose tissue from HFD mice 

but not in the lean counterparts, while knockout mice had a reduced percentage of M1 

macrophages in both control and HFD states.  Increased expression of GPR21 was 

observed in wild type M1 macrophages with lower expression in the anti-inflammatory 

M2 macrophages of the SVF.  Furthermore, the essential cytoskeletal reorganisation 

required for transmigration was absent in GPR21 knockout macrophages.  Overall, 

knockout mice demonstrated a decrease in pro-inflammatory gene expression and an 

increase in anti-inflammatory genes with a concurrent increase in insulin-stimulated Akt 

phosphorylation in liver and adipose tissue.  Moreover, wild type mice that received 

bone marrow transplantations from knockout mice demonstrated a similar phenotype to 

the GPR21 deficient mice.  Receptors such as GPR21 open new avenues for the 

discovery of next generation drugs to effectively treat obesity-induced type 2 diabetes.  
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1.8  Computational Drug Discovery 
	
A major challenge in targeting GPCRs for the development of novel anti-diabetic 

therapies is the lack of experimentally elucidated high-resolution crystal structures.  

This proves even more irksome in the case of orphan receptors for which no 

endogenous ligands have yet been identified.  However, advances in homology 

modelling and ligand docking studies have vastly improved the development of targeted 

therapies towards such GPCRs (Stockert and Devi, 2015). 

1.8.1 Homology Modelling 

Homology modelling involves the development of a model of a protein of interest based 

on its amino acid sequence and a template protein structure of related homologous 

proteins.  A template is chosen using a BLASTP search of the Protein Data Bank 

(www.rcsb.org) (Altschul et al., 1990) with three criteria considered, the structure 

resolution, ligand type and percentage sequence identity to the target (Xiang, 2006).   

As crystal structures are available for less than 20 unique receptors in the rhodopsin-like 

class, the family in which GPR21 resides, (Fredriksson and Schio, 2005, Latek et al., 

2013), it is very difficult to achieve a sequence identity above 30 % with most GPCRs.  

Therefore, when working with these receptors, it is more important to have a high 

sequence identity between the template and target in the conserved seven 

transmembrane region, as this is likely to be a ligand binding region, while decreased 

sequence similarity in the external loops should not affect the success of the model 

(Bhattacharya et al., 2013).  The use of multiple templates may also increase the rate of 

success in these challenging cases (Latek et al., 2013).  
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Once a template has been selected, the next step is to align it with the target to identify 

regions that may be a consequence of functional, structural or evolutionary relationships 

between the sequences using an alignment tool such as Clustal W (Larkin et al., 2007).  

It is then important to satisfy the spatial restraints of the model, more specifically the 

modelling of loops using a database of loops or by ab initio methods, to resolve regions 

of the target sequence that are not aligned to a template.  These regions are most 

susceptible to errors, especially when there is a low sequence identity between the target 

and template (Michalsky et al., 2003).  The resulting structure is then analysed with a 

range of computational tools to determine the quality of the model (Fanelli and De 

Benedetti, 2011). 

1.8.2 Molecular Docking 
	
When a satisfactory homology model has been constructed molecular docking can be 

employed to predict the predominant binding mode of a possible ligand with the 

protein.  In order to achieve this, it must be assumed that small molecules interact with 

the receptor and the binding site has been conserved in the template used to generate the 

model.  In the case of orphan receptors, blind docking can be undertaken with 

programmes such as LigPrep to prepare high quality, all atom, 3D structures which can 

be inputted into a docking tool such as Glide (Grid-based ligand docking with 

energetics) from the Schrödinger product suite (www.schrodinger.com).  The simplest 

approach to take is rigid-rigid docking where the protein and ligands are kept static.  

Glide searches for favourable interactions between the ligand and the homology model.  

Ranked ligands can then be screened through flexible docking to get a better 

representation of the possible interactions.  Once a clear picture is established, ligands 

can be altered to improve affinity and prevent clashes with the protein, and finally 

screened in a biological assay.  These methods have been successful in identifying 
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potent and selective ligands for numerous GPCRs (Evers and Klabunde, 2005, Dong et 

al., 2013, Jacobson 2013, Pappalardo et al., 2014, Stockert and Devi, 2015).  
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1.9 Aims and Objectives 
	
Type 2 diabetes is a multifaceted metabolic disorder developing as a consequence of 

distorted cellular signalling.  This project aimed to identify novel therapeutic avenues 

for the treatment of this disease by elucidating the underlying mechanism of action of a 

successful, novel anti-diabetic compound, RTC-1, and by exposing the signalling 

mechanisms of a recently identified target, GPR21. 

 
Solidifying the mechanism of action of a novel compound is essential to the 

development of a prospective therapy for type 2 diabetes.  RTC-1 was designed to clear 

serum RBP levels in an attempt to modulate the development of insulin resistance. 

However, in vitro analysis revealed the ability of this compound to stimulate glucose 

uptake, an effect its predicted mechanism of action would not account for.  Through 

cellular analysis, the effects of RTC-1 were explored in respect to key aspects modified 

with the development of type 2 diabetes, namely glucose uptake, insulin resistance, 

adipogenesis and osteogenesis.  While a comparative study with the most common anti-

diabetic therapy, metformin, gave context to the influence of RTC-1. 

 
In a separate study, the signalling capabilities of a novel diabetic target, GPR21, were 

investigated with the hope of regulating its proposed effect on macrophage migration.   

In order to fully appreciate this GPCR in the context of insulin resistance, the G protein 

to which GPR21 couples to amplify signal potential was assessed, while the 

downstream consequences of receptor activation on insulin signalling, glucose uptake 

and macrophage migration were explored.  In addition to this, the influence of a novel 

compound designed through a computational approach to bind GPR21 was evaluated to 

determine if attenuating the effects of the receptor could prevent the development of 

insulin resistance through a previously unexplored mechanism. 
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2.1 Materials 
	
All chemicals used were from Sigma-Aldrich unless otherwise stated.   

2.2 Cell Culture 
	
All cell culture materials and reagents were kept sterile and used in a Class II biological 

safety cabinet.  All cell lines were maintained at 37 °C in a sterile, humidified, 5 % CO2 

atmosphere.  Foetal Bovine Serum (FBS) and horse serum were heat inactivated at 56 

°C for 30 minutes prior to use, to inactivate complement. 

2.2.1 Culture of Adherent Cells 
	
Adherent cell lines (Table 2.1) were maintained in high glucose (4500 mg/ml) 

Dulbecco’s Modified Eagle’s Medium (DMEM) containing 100 µg/ml 

penicillin/streptomycin, 2 mM L-glutamine (complete medium) and 10 % (v/v) FBS.  

Cryo-preserved cells were rapidly thawed in a 37 °C water bath, washed with 10 ml 

complete medium containing 10 % (v/v) FBS and centrifuged to remove the cryo-

protectant, DMSO.  Cells were resuspended in complete medium supplemented with 10 

% (v/v) FBS and cultured in a T75 flask (Sarstedt) at 37 °C, in a humidified, 5 % CO2 

environment.  When 80 % confluency was reached, non-adherent cells were washed 

away with Dulbecco’s phosphate buffered saline (DPBS) (Gibco).  Remaining cells 

were detached from the flask by incubating with 0.25 % (v/v) trypsin-1 mM EDTA 

solution (Thermo Fisher Scientific), for 5 minutes at 37 °C.  Protease action was 

neutralised with the addition of complete medium supplemented with 10 % (v/v) FBS.  

Trypsin-EDTA was removed by centrifugation, cells were resuspended in complete 

medium with 10 % (v/v) FBS and counted using a haemocytometer.  Cells were seeded 

at an optimal density, as recommended by the supplier, and incubated at 37 °C with 5 % 
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CO2 until 80 % confluent.  Cells were then passaged once more, cryo-preserved or 

differentiated if required.  

Table 2.1 Adherent cell lines. 

Cell line Description Culture medium 
C2C12  Myoblast  High glucose DMEM (Thermo Fisher Scientific) 

 
cell line from  10 % FBS (Thermo Fisher Scientific) 

 
mouse skeletal  2 mM L-glutamine  (Thermo Fisher Scientific) 

 
muscle 100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 

   3T3-L1 Murine   High glucose DMEM (Thermo Fisher Scientific) 

 
pre-adipocytes 10 % FBS (Thermo Fisher Scientific) 

  
2 mM L-glutamine  (Thermo Fisher Scientific) 

  
100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 

   SH-SY5Y  Human  High glucose DMEM (Thermo Fisher Scientific) 

 
neuroblastoma  10 % FBS (Thermo Fisher Scientific) 

  
2 mM L-glutamine  (Thermo Fisher Scientific) 

  
100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 

   HEK293T Immortalised Human High glucose DMEM (Sigma-Aldrich) 

 
embryonic kidney 10 % FBS (Sigma-Aldrich) 

 
cell line containing 2 mM L-glutamine  (Thermo Fisher Scientific) 

 
the SV40 Large 100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 

 
T-antigen  

 
   BMDM Immortalised murine High glucose DMEM (Sigma-Aldrich) 

 
bone marrow 10 % FBS (Sigma-Aldrich) 

 
derived macrophage 2 mM L-glutamine  (Thermo Fisher Scientific) 

  
100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 

   J774 Murine BALB/cN  High glucose DMEM (Sigma-Aldrich) 

 
monocyte/macrophage 10 % FBS (Sigma-Aldrich) 

  
2 mM L-glutamine  (Thermo Fisher Scientific) 

  

100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 
 

CHO Chinese Hamster Ham’s F-12 Nutrient mixture (Sigma-Aldrich) 

 
Ovary cell line 10 % FBS (Sigma-Aldrich) 

  
2 mM L-glutamine  (Thermo Fisher Scientific) 

  
100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 

   COS-1 Kidney cell line from High glucose DMEM (Sigma-Aldrich) 

 
African green monkey 10 % FBS (Sigma-Aldrich) 

  
2 mM L-glutamine  (Thermo Fisher Scientifc) 

 
  100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 
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Table 2.1 Adherent cell lines. 

Cell line Description Culture medium 
A549  Human alveolar basal Ham’s F-12 Nutrient mixture (Sigma-Aldrich) 

 
epithelial cell line 10 % FBS (Sigma-Aldrich) 

  
2 mM L-glutamine  (Thermo Fisher Scientific) 

  
100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 

   HepG2 Human cell line from  High glucose DMEM (Thermo Fisher Scientific) 

 
a liver hepatocellular  10 % FBS (Thermo Fisher Scientific) 

 
carcinoma 2 mM L-glutamine  (Thermo Fisher Scientific) 

  
100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 

   MSC Murine mesenchymal  Minimal Essential Medium alpha (αMEM) (Sigma-Aldrich) 

 
stromal cells isolated 10 % FBS (Thermo Fisher Scientific) 

 
from the femur and 10 % Horse Serum (Gibco) 

 
tibia of 6 – 8 week old  2 mM L-glutamine  (Thermo Fisher Scientific) 

  female BALB/c mice  100 µg/ml penicillin/streptomycin  (Thermo Fisher Scientific) 
 

2.2.1.1 C2C12 Cell Culture and Differentiation 
	
C2C12 cells were purchased from Sigma-Aldrich (91031101), seeded at a density of 

2x103 cells/cm2 and maintained as described in Section 2.2.1.  When 80 % confluent, 

differentiation into myotubes was induced with complete medium supplemented with 2 

% (v/v) horse serum (Gibco) for 3 days.  Fully differentiated cells were washed once 

with DPBS and stimulated with various compounds in complete medium supplemented 

with 0.1 % (v/v) horse serum.  Rotenone (R8875-5G), metformin (04635) and 

wortmannin (W3144) were obtained from Sigma-Aldrich.  TNF-α (315-01A) was 

supplied by PeproTech and Compound C (171264) was from Merck Millipore.  Insulin 

(Sigma-Aldrich, I9278) stimulations were carried out in filter sterilised (0.2 µm) Krebs 

Ringer Buffer containing glucose (KRBG); 136 mM NaCl, 20 mM HEPES, 4.7 mM 

KCl, 1 mM MgSO4, 1 mM CaCl2, 4.05 mM Na2HPO4, 0.95 mM NaH2PO4, 5 mM 

glucose, pH 7.4.   
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2.2.1.2 3T3-L1 Cell Culture and Differentiation 
	
3T3-L1 cells were obtained from ATCC® (CL-173), seeded at a density of 2x104 

cells/cm2 and maintained as described in Section 2.2.1.  When 80 % confluent, 

differentiation into adipocytes was induced with complete medium supplemented with 

10 % (v/v) FBS, 10 µg/ml insulin, 0.5 mM IBMX and 1 µM dexamethasone.  After 2 

days, the medium was changed to complete medium containing 10 % (v/v) FBS and 10 

µg/ml insulin.  Every 2 days following, medium was changed to complete medium 

containing 10 % (v/v) FBS until 80 % of cells formed intracellular lipid droplets. 

Differentiated 3T3-L1 cells were stained for lipid accumulation as described by Kuri-

Harcuch and Green (1978).   Cells were washed twice with phosphate buffered saline 

(PBS) before fixing with 10 % (v/v) formalin for 20 minutes.  Cells were then washed 

three times with PBS and incubated for 20 minutes with filtered (0.2 µm) 1.5 mg/ml Oil 

Red O, prepared in 1:1 isopropanol:PBS.  Excess stain was removed by washing once 

with PBS and cells were visualised with an inverted light microscope.  To quantify lipid 

accumulation, Oil Red O was extracted with isopropanol and absorbance was measured 

at 520 nm with an ELx800TM microplate reader (Kasturi and Joshi, 1982). 

2.2.1.3 Murine Mesenchymal Stromal Cell (MSC) Culture and 

Differentiation 
 
MSC isolated from the femur and tibia of 6 – 8 week old female BALB/c mice were 

kindly donated as a live culture courtesy of Dr. Karen English.  Cells were maintained 

in complete αMEM supplemented with 10 % (v/v) FBS and 10 % (v/v) horse serum as 

described in Section 2.2.1 with an optimal seeding density of 1x105 cells/cm2.  When 80 

% confluent cells were differentiated into fat or bone cells.   
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Adipogenic differentiation was induced with MSC culture medium containing 5 µg/ml 

insulin, 50 µM indomethacin, 1 µM dexamethasone and 0.5 µM IBMX.  Fresh medium 

was added every 3 days for 21 days.  On day 21, cells were stained for lipid 

accumulation with Oil Red O (Section 2.2.1.2).   

 

Osteoblast differentiation was induced with MSC culture medium supplemented with 1 

mM dexamethasone, 20 mM β-glycerolphosphate, 50 µM L-ascorbic acid-2 phosphate 

and 50 ng/ml L-thyroxine sodium pentahydrate.  Fresh medium was added every 3 

days.  After 21 days, cells were stained for calcium deposition with Alizarin Red S 

prepared in dH2O (20 mg/ml).  Cells were washed twice with PBS before fixing with 10 

% (v/v) formalin for 20 minutes.  Cells were then washed three times with PBS and 

incubated with Alizarin Red S for 20 minutes.  Excess stain was removed by washing 

once with PBS and cells were visualised with an inverted light microscope.  Calcium 

deposition was quantified as described by Tavakol and colleagues (2012).  Alizarin Red 

S was extracted with 800 µl 10 % (v/v) acetic acid and agitated for 30 minutes at room 

temperature, cells were then scraped into a 1.5 ml tube and vortexed for 30 seconds.  

The solution was covered with 500 µl mineral oil, incubated for 10 minutes at 85 °C, 

then cooled on ice for 5 minutes.  Samples were centrifuged at 20,000 x g for 15 

minutes.  500 µl of the supernatant was added to 200 µl 10 % (v/v) ammonium 

hydroxide and absorbance was read at 405 nm on an ELx800TM microplate reader.    

2.2.2 Culture of RAW 264.7 Semi-Adherent Cells 
	
RAW 264.7 semi-adherent macrophages derived from murine blood were kindly 

donated as a live culture courtesy of Dr. Sinead Miggin.  When 80 % confluent, 

adherent cells were detached with a cell scraper, centrifuged and resuspended in DMEM 



Chapter 2: Materials and Methods 

 67 

supplemented with 10 % (v/v) FBS, 100 µg/ml penicillin/streptomycin and 2 mM L-

glutamine at a density of 3x104 cells/cm2.  

2.2.3 Culture of THP-1 Suspension Cells 
	
THP-1, a human monocyte cell line was kindly donated as a live culture courtesy of 

Prof. Paul Moynagh.  Cells were seeded at a density of 2x105 cells/ml in RPMI-1640 

supplemented with 100 µg/ml penicillin/streptomycin, and 10 % (v/v) FBS.  Flasks 

were tilted at a 45° angle in the CO2 incubator to provide an optimal environment for 

growth.  When a density of 8x105 cells/ml was reached, cells were sub-cultured by 

centrifugation and resuspension at a density of 2x105 cells/ml. 

2.2.4 Cryo-preservation of Mammalian Cells 
	
Following sub-culture, cell pellets were gently resuspended at a density of 2x106 cells in 

1 ml complete medium containing 10 % (v/v) FBS and 10 % (v/v) DMSO.  The cell 

suspension was transferred into Cryo-tubes (Nunc) and placed in a Mr. Frosty™ 

freezing container (Thermo Fisher Scientific) at -80 °C for 24 hours, which allowed a 

cooling rate of approximately -1 °C/minute.  Cryo-tubes were then placed in liquid 

nitrogen for long-term storage.   

2.3 Animals 
	
Male C57BL/6J mice, aged 4 weeks (n=6) provided by Charles River, Calco, Lecco, 

Italy, were maintained on a pellet diet for 1 week, then randomly divided into two 

groups: normal diet (control, n=3) or a high fat high sugar diet (HFHS, 45 % kcal fat, 35 

% kcal carbohydrates and 20 % kcal protein, n=3) for 16 weeks.  Animals were housed 

at the University of Turin in a temperature-controlled environment with a 12 hour 

light/dark cycle.  Mice were sacrificed by cervical dislocation, epididymal fat pads were 
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removed and snap frozen in liquid nitrogen.  Samples were received on dry ice and 

stored at -80 °C until required.  Protocols were approved by the ‘Animal Use and Care 

Committee’ of the University of Turin and subsequently by the ethics committee of the 

National University of Ireland, Maynooth (BSRESC-2014-008).  Protocols were in 

accordance with the European Directive 2010/63/EU on the protection of animals used 

for scientific purposes. 

2.4 Molecular Biology Methods 

2.4.1 RNA Isolation and cDNA Synthesis 

2.4.1.1 RNA Isolation 
	
Total RNA was extracted using TRIzol® Reagent (Invitrogen) according to the 

manufacturer’s protocol.  Tissue samples were homogenised in 1 ml TRIzol® using a 

handheld T10 Basic Homogeniser (IKA) and stored at -20 °C until required.  Samples 

were thawed on ice and 100 µl 1-bromo-3-chloropropane was added to each.  Samples 

were vortexed for 20 seconds and incubated at room temperature for 5 minutes.  

Samples were then centrifuged at 12,000 x g at 4 °C for 15 minutes resulting in the 

formation of three distinct layers.  The clear, aqueous upper layer containing the RNA 

was removed, ensuring the interphase containing DNA and the lower organic phase 

containing proteins were not disturbed.  RNA was precipitated with 500 µl isopropanol, 

samples were mixed by inversion, incubated at room temperature for 10 minutes and 

centrifuged at 12,000 x g at 4 °C for 15 minutes.  The resulting RNA pellet was washed 

twice with 1 ml 75 % (v/v) ethanol and centrifuged at 7,500 x g for 5 minutes at 4 °C.  

The supernatant was aspirated and the pellet was allowed to air dry before resuspension 

with 20 µl nuclease free water.  RNA concentration was determined using a Nanodrop 

2000 spectrophotometer (Thermo Fisher Scientific), which calculates absorbance at 260 
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nm and 280 nm.  A ratio between 1.8 and 2.0 indicated sufficient purity, samples 

outside this range were discarded and remaining samples were stored at -80 °C until 

required. 

2.4.1.2 DNase Treatment of RNA 
	
To recover RNA contaminated with genomic DNA, samples were treated with DNase I 

(Invitrogen) as outlined by the manufacturer.  1 µl of amplification grade DNase I and 1 

µl of 10X DNase I reaction buffer were incubated with 2 µg RNA for 15 minutes at 

room temperature.  1 µl 25 mM EDTA was added and samples were incubated in a GS1 

Thermal Cycler (G-Storm) at 65 °C for 10 minutes, followed by cooling on ice to 

inactivate the DNase.  RNA was then reverse transcribed into cDNA. 

2.4.1.3 First Strand cDNA Synthesis 
	
5X All-In-One RT MasterMix (Applied Biological Materials Inc.) was added to the 

RNA template and mixed by pipetting.  cDNA was synthesised by incubating samples 

in a GS1 Thermal Cycler (G-Storm) for 50 minutes at 42 °C. The reaction was 

terminated by heating samples at 85 °C for 5 minutes followed by chilling on ice.  

Samples were stored at -20 °C until required. 

2.4.2 Polymerase Chain Reaction (PCR) 

2.4.2.1 PCR to Confirm Synthesis of cDNA 
	
A PCR using primers specific to the house keeping gene HPRT (Table 2.2) was used to 

confirm synthesis of cDNA.  A reaction mix was set up in a 0.2 ml PCR grade tube 

containing: 
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5 µl 5X MyTaq Reaction Buffer (Bioline) 

0.5 µl Forward primer (4 pM) 

0.5 µl Reverse primer (4 pM) 

0.3 µl MyTaq DNA Polymerase (Bioline) 

17.7 µl Nuclease free H2O 

1 µl cDNA (500 ng) 

 

Samples were run in a GS1 Thermal Cycler (G-Storm) for 2 minutes at 95 °C followed 

by 40 cycles of 95 °C for 45 seconds, 58 °C for 45 seconds and 72 °C for 45 seconds.  

Samples were then incubated at 72 °C for 10 minutes followed by cooling on ice.  To 

visualise nucleic acid products, samples were run on a 0.8 % (w/v) agarose gel. 

2.4.2.2 Agarose Gel Electrophoresis of DNA 
	
0.8 % (w/v) agarose was dissolved in TAE buffer (40 mM Tris-acetate, 1 mM EDTA, 

pH 8.4) by heating in a microwave at a medium setting.  The solution was allowed to 

cool before the addition of the DNA visualisation agent, SYBR® Safe (Invitrogen, 

S33102), gels were left to set for 1 hour at room temperature prior to use.  Nucleic acid 

samples were mixed with a loading buffer (Thermo Fisher Scientific, R0631) and 

electrophoresed in TAE buffer at 100 volts constant.  DNA was visualised under UV 

light (254 nm) once sufficient migration and separation had occurred.  A 1 kb 

GeneRuler™ DNA ladder (Thermo Fisher Scientific, SM0313)  (Fig.  2.1) was used to 

estimate fragment length. 
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Figure 2.1 Distribution of DNA ladder used with DNA electrophoresis. 

 

2.4.2.3 Quantative Real Time PCR (qRT-PCR) 
	
Template cDNA was used for qRT-PCR with specific primers (Table 2.2) to detect a 

gene of interest using the following reaction mixture: 

 

5 µl Fast start Universal SYBR Green Master - ROX (Roche) 

1 µl Forward primer (4 pM) 

1 µl Reverse Primer (4 pM) 

2 µl Nuclease Free H2O 

 

The reaction mixture was added to a specialised optical 96 well plate (Applied 

Biosystems) along with 1 µl template cDNA at 500 ng and sealed with an optically clear 

adhesive cover.  The plate was incubated at 95 °C for 5 minutes in the Applied 

Biosystems Step One™ real-time PCR instrument, accumulation of gene-specific 

products was measured continuously by means of fluorescence detection over 40 cycles.  

Each cycle consisted of a denaturing step of 95 °C for 15 seconds, an annealing step at 



Chapter 2: Materials and Methods 

 72 

the appropriate temperature (Table 2.2) for 30 seconds, then extension at 72 °C for 30 

seconds.  This was followed by a melt curve cycle of 95 °C for 15 seconds, 55 °C for 15 

seconds and 95 °C for a final 15 seconds.  Intercalation of SYBR green into the dsDNA 

product was monitored after each step of primer annealing and elongation.  Melt curve 

analysis demonstrating one single melting peak eliminated the possibility of primer-

dimer associations, confirming the amplification of one specific product.  Relative 

quantification of target gene expression was evaluated using the delta Crossing 

Threshold (∆CT) method.  The Applied Biosystems Step One™ software generated the 

CT value for each sample, which records the cycle when sample fluorescence exceeds a 

chosen threshold above background fluorescence.  The ∆CT value was determined by 

subtracting the CT value of HPRT, the housekeeping gene, for each sample from the CT 

value of the target gene.  Fold change in the relative expression of the target was 

determined by calculating 2−(∆CTSample-∆CTControl). 

 

Table 2.2 Primers. 

Gene 
 

Forward Primer 5'-3' 
Reverse Primer 3'-5' 

Annealing 
Temperature (°C) 

HPRT 
 

AGGGATTTGAATCACGTTTG 
TTTACTGGCAACATCAACAG 

58 
 

TNF-α 
 

GGATGAGAAGTTCCCAAATG 
TGAGAAGATGATCTGAGTGTG 

 
57 
 

F4/80 
 

TTTCAAATGGATCCAGAAGG 
CAGAAGGAAGCATAACCAAG 

 
58.9 

 
 
 

2.4.3 Transformation of Competent Escherichia coli Cells 
	
Competent TOP10 E. coli cells supplied by Invitrogen (C4040-03) were transformed 

with plasmid DNA according to the manufacturer’s protocol by heat shock.  5 µl of 

plasmid DNA was added to 50 µl of competent cells and incubated on ice for 30 
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minutes.  Cells were incubated at 42 °C for 30 seconds then placed on ice again.  After 2 

minutes, 250 µl of pre-warmed (37 °C) SOC medium was added (5 % (w/v) tryptone 

0.5 % (w/v) yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 

20 mM glucose).  Cells were incubated at a 45° angle at 37 °C for 1 hour with constant 

shaking of 200 – 250 rpm.  Cells were then plated on Lysogeny Broth (LB) agar plates 

(1 % (w/v) tryptone, 0.5 % (w/v) yeast extract, 1 % (w/v) NaCl, 1 % (w/v) agar, pH 

7.0), with the appropriate antibiotic for selection and left at 37 °C overnight. 

 

All vectors used (Table 2.3) confer ampicillin or kanamycin resistance to E. coli 

transformants.  Ampicillin was added to both liquid and solid medium at a final 

concentration of 100 µg/ml for selection and maintenance.  Kanamycin was added at a 

final concentration of 50 µg/ml. 

Table 2.3 Vectors. 

cDNA 
Clone 

Vector 
 

Antibiotic 
Resistance 

5' Restriction 
Site 

3' Restriction 
Site 

Insert 
Size (bp) 

eGFP pcDNA3 Ampicillin XhoI XbaI 700 
GPR21 pCMV6-Entry Kanamycin Sgfl Mlul 1050 

Gαq pcDNA3.1+ Ampicillin KpnI XhoI 1085 
Gα14 pcDNA3.1+ Ampicillin KpnI XhoI 1075 

Gα15/16 pcDNA3.1+ Ampicillin KpnI XhoI 1130 

 

2.4.4 Small Scale Isolation of DNA from E. coli 

	
Successful colonies were isolated, transferred to 3 ml LB medium (1 % (w/v) tryptone, 

0.5 % (w/v) yeast extract, 1 % (w/v) NaCl, pH 7.0) with the appropriate antibiotic and 

incubated overnight at a 45° angle at 37 °C with shaking.  2 ml of each respective 

culture was centrifuged at 6,800 x g for 2 minutes and DNA was extracted from the 

bacteria using the GeneJET Plasmid Miniprep Kit (Thermo Fisher Scientific, K0503).  
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DNA concentration was assessed by reading absorbance at 260 nm and 280 nm using 

the Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific), where absorbance of 

1 unit at 260 nm is ~50 µg/ml.  The purified plasmid was then digested using the 

appropriate restriction enzyme to assess the presence of the desired insert. 

2.4.5 Diagnostic Restriction Digest 
	
To confirm production of plasmid DNA incorporating the gene of interest a diagnostic 

restriction digest was performed.  1 µg of plasmid DNA was digested using 0.5 µl of 

each restriction enzyme.  Enzymes were used at a final concentration of 0.1 U/µl, in 1X 

reaction buffer with 100 ng/ml bovine serum albumin (BSA) (Enzymes and buffers 

were supplied by New England Biolabs).  The reaction was incubated overnight at 37 

°C.  The digested plasmid was then electrophoresed using a 0.8 % (w/v) agarose gel as 

described in Section 2.4.2.2.  The relative structure of the plasmid could then be 

confirmed, based on the observed banding pattern.   

2.4.6 Large Scale Isolation of DNA from E. coli 

	
Plasmids were propagated by inoculating 50 ml LB medium containing the required 

selection antibiotic with 50 µl of the small scale E. coli culture (Section 2.4.4).  Cultures 

were grown at 37 °C for 16 hours with shaking.  Plasmids were purified using the 

S.N.A.P. Midiprep kit (Invitrogen, K1910-01), as per the manufacturer’s instructions.  

DNA was eluted with 750 µl sterile MilliQ water and DNA concentration was assessed 

using the Nanodrop 2000 spectrophotometer (Thermo Fisher Scientific) reading 

absorbance at wavelengths of 260 nm and 280 nm.  DNA was aliquoted and stored at    

-20 °C until required. 
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2.4.7 Preparation of Glycerol Stocks 
	
For long term storage, liquid cultures of E. coli transformed with the plasmid of interest 

were mixed with sterile glycerol (4:1, glycerol:E. coli) and frozen at -80 °C.   

2.5  Genetic Manipulation of Mammalian Cells 

2.5.1 Transient Transfection of HEK293T Cells 
	
Cells were transfected with eGFP plasmid DNA using Lipofectamine® 2000 

(Invitrogen) according to the manufacturer’s protocol and visualised on an inverted 

Olympus CKX41 fluorescent microscope to determine optimal transfection conditions.  

HEK293T cells were seeded at 2.5x105 cells/ml in a 6 well plate and allowed to adhere 

for 24 hours at 37 °C.  For each well of a 6 well plate 2 µg plasmid DNA, or 1 µg of 

each plasmid DNA if co-transfecting, was incubated with 250 µl Opti-MEM® (Gibco).  

4 µl Lipofectamine® 2000 was incubated with 250 µl Opti-MEM® in a separate tube for 

5 minutes at room temperature.  The Lipofectamine® 2000/Opti-MEM® and DNA/Opti-

MEM® mix were then combined.  After a 20 minute incubation at room temperature, 

the solution was added drop-wise to the cells and left for 24 hours at 37 °C to allow 

incorporation of the plasmid DNA.   

2.5.2 Transient Transfection of 3T3-L1 Cells 
	
Cells were transfected with eGFP plasmid DNA using Lipofectamine® 3000 

(Invitrogen) according to the manufacturer’s protocol and visualised with an inverted 

Olympus CKX41 fluorescent microscope to determine optimal transfection conditions.  

3T3-L1 pre-adipocytes were seeded at 1.25x105 cells/ml in a 6 well plate and allowed to 

adhere for 24 hours at 37 °C.  For each well of a 6 well plate, 2.5 µg plasmid DNA, or 

1.25 µg of each plasmid DNA if co-transfecting, was incubated with 125 µl Opti-
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MEM® (Gibco) and 10 µl P3000.  7 µl Lipofectamine® 3000 was incubated with 125 µl 

Opti-MEM® in a separate tube for 5 minutes at room temperature.  The Lipofectamine® 

3000/Opti-MEM® and DNA/P3000/Opti-MEM® mix were combined.  After a 5 minute 

incubation at room temperature the solution was added drop-wise to the cells.  Cells 

were left for 24 hours at 37 °C to incorporate the plasmid DNA then differentiated into 

adipocytes as described in Section 2.2.1.2. 

2.5.3 Transient Transfection of RAW 264.7 Cells 
	
Cells were transfected with eGFP plasmid DNA using Lipofectamine® 3000 to 

determine optimal transfection conditions.  RAW 264.7 cells were seeded at a density of 

5x105 cells/ml in a 6 well plate and allowed to settle for 24 hours at 37 °C.  Cells were 

transfected with 4 µg plasmid DNA or 2 µg of each plasmid DNA if co-transfecting, per 

well of a 6 well plate as outlined in Section 2.5.2.  

2.6 Biochemical Techniques 

2.6.1 Protein Extraction 
	
Cell culture vessels were placed on ice, medium removed and cells were washed three 

times with ice-cold PBS.  Cells were then scraped into 1 ml ice-cold PBS, transferred to 

a 1.5 ml tube and centrifuged at 650 x g for 5 minutes.  The PBS was aspirated and cell 

pellets were resuspended in HEPES lysis buffer; 50 mM HEPES pH 7.5, 150 mM NaCl, 

10 mM Na2HPO4, 50 mM NaF, 1 mM EDTA, 1.5 mM MgCl2, 2 mM Na3VO4, 1 mM 

Na4P2O7, 1X SigmaFAST protease inhibitor cocktail (Sigma-Aldrich), 10 % (v/v) 

glycerol, 1 mM PMSF and 1 % (v/v) Triton x-100.   

 

Frozen murine epididymal fat pads were homogenised in ice-cold HEPES lysis buffer at 

a ratio of 1:5 (w:v) using a T10 Basic handheld homogeniser (IKA).   
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Crude extracts were incubated for 1 hour at 4 °C with constant agitation.  Lysates were 

centrifuged at 17,000 x g for 10 minutes at 4 °C.  The insoluble pellet was discarded 

and the protein concentration of the supernatant was determined using the Pierce protein 

assay (Section 2.6.2.1).   

2.6.2 Protein Assays 
	
As some chemicals are known to react with the components of a protein assay, two 

different protein assays were employed, depending on the buffer used to isolate protein 

samples.  A standard protein curve was prepared using BSA at 0, 50, 100, 200, 400, 

600, 800, and 1000 µg/ml.  Samples were diluted as required and 10 µl of each sample 

or standard was used in triplicate in a 96 well plate.  Absorbance values obtained for 

each sample were compared to that of the standard curve to ascertain protein 

concentration. 

2.6.2.1 Pierce Protein Assay 
 
150 µl of the Pierce protein assay reagent (PN22660) was added to each standard and 

sample in a 96 well plate and incubated at room temperature for 5 minutes with 

agitation.  The plate was analysed using a BIO-TEK EL800 plate reader at 630 nm. 

2.6.2.2 Bicinchoninic Acid Protein Assay 
	
The bicinchoninic acid protein assay was carried out as described by Smith and 

colleagues (1985).  Copper sulphate was diluted 1:50 into bicinchoninic acid and 200 µl 

of this solution was added to each standard and sample in a 96 well plate.  The plate was 

incubated at 37 °C for 30 minutes and subsequently read using a BIO-TEK EL800 plate 

reader at 562 nm.   
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2.6.3 Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis 

(SDS-PAGE) 
 
SDS-PAGE was conducted using the Hoefer system according to the methods described 

by Laemmli (1970), to separate proteins by molecular mass weight.  Samples were 

diluted 1:4 in Laemmli buffer (300 mM Tris-HCl, 50 % (v/v) glycerol, 10 % (w/v) SDS, 

0.02 % (w/v) bromophenol blue, 10 % (v/v) β-mercaptoethanol, pH 6.8) and boiled at 

95 °C for 5 minutes before loading into the wells of an appropriate percentage 

polyacrylamide gel (Table 2.4) sufficiently covered with SDS running buffer (0.1 % 

(w/v) SDS, 25 mM Tris-Base and 192 mM glycine).  Samples of equal protein 

concentration were electrophoresed at 19 mA for approximately 2 hours along with a 

protein molecular weight marker (Thermo Fisher Scientific, SM1811)  (Fig.  2.2). 

 

Table 2.4 Polyacrylamide gels. 

Stock Solution 
 
 
 
 
 

10 % 
Resolving 
Gel – For 
proteins 
above  

30 kDa 

8 % 
Resolving 
Gel – For 
proteins 
above  

100 kDa 

6 % 
Resolving 
Gel – For 
proteins 
above  

200 kDa 

5 % 
Stacking 

Gel 
 
 
 

dH2O 4 ml 4.6 ml 5.3 ml 3.4 ml 

30 % acrylamide/bisacrylamide (ProtoGel) 3.3 ml 2.7 ml 2 ml 830 µl 

1.5 M Tris-HCl, pH 8.8 2.5 ml 2.5 ml 2.5 ml - 

1 M Tris-HCl, pH 6.8 - - - 630 µl 

10 % (w/v) SDS 100 µl 100 µl 100 µl 50 µl 

10 % (w/v) ammonium persulfate 100 µl 100 µl 100 µl 50 µl 

TEMED 4 µl 6 µl 8 µl 5 µl 

Total volume per gel 10 ml 10 ml 10 ml 5 ml 
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Figure 2.2 Distribution of molecular weight marker used with SDS-PAGE. 

2.6.3.1 Coomassie Brilliant Blue Staining 
	
To visualise proteins, SDS-PAGE gels were fixed for 15 minutes in 40 % (v/v) ethanol, 

10 % (v/v) acetic acid for 15 minutes with agitation, this was repeated once.  Gels were 

then incubated with agitation for a minimum of 2 hours with 40 % (v/v) ethanol, 10 % 

(v/v) acetic acid, 0.1 % (w/v) Coomassie Brilliant Blue G250 (Ams Biotechnology, 

17524).  Gels were destained for 5 minutes in 40 % (v/v) ethanol, 10 % (v/v) acetic acid 

then immersed in 20 % (v/v) ethanol, 10 % (v/v) acetic acid until completely destained.  

Gels were washed in dH2O before imaging. 

2.6.3.2 Semi-Dry Electroblotting 
	
Alternatively, separated proteins were transferred from SDS-PAGE gels onto a PVDF 

membrane (GE Healthcare) in a semi-dry transfer unit (Cleaver Scientific Ltd).  The 

PVDF membrane was pre-soaked in methanol, followed by ice-cold transfer buffer (48 

mM Tris-Base, 39 mM glycine, 0.375 % (w/v) SDS, 20 % (v/v) methanol) for 10 

minutes.  Gels were washed once with dH2O and soaked in ice-cold transfer buffer for 5 
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minutes before proteins were transferred to the membrane at 150 mA per gel for 30 

minutes.   

2.6.3.2.1  Western Blotting 
	
Membranes were blocked with 5 % (w/v) BSA or non-fat dry milk (Marvel) in Tris-

buffered saline containing Tween-20 (TBST); 150 mM NaCl, 20 mM Tris-HCl, pH 7.6, 

0.1 % (v/v) Tween-20 for 1 hour at room temperature to prevent antibodies binding 

non-specifically.  Membranes were subsequently incubated with a primary antibody at 

an optimised dilution (Table 2.5) overnight at 4 °C.  The membranes were washed 3 

times with TBST, 5 minutes each time, to remove unbound antibody, before incubating 

with the appropriate secondary antibody conjugated with HRP for 2 hours at room 

temperature.  Membranes were then washed 3 times, 5 minutes each, with TBST and 

incubated with enhanced chemiluminescence (ECL) (Roche, 11500694001) for 2 

minutes.  Immunoreactive protein bands were visualised on UltraCruz™ 

Autoradiography Film (Santa Cruz Biotechnology). 
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Table 2.5 Western blotting antibodies.    

Antibody Dilution Diluent Company  

Insulin Receptor β  1:1000 5% Milk TBST Abcam (ab69508) 

Phospho-Insulin Receptor β Tyr1150/1151 1:1000 5% Milk TBST Cell Signaling (3024) 

IRS1  1:1000 5% Milk TBST Cell Signaling (3407) 

Phospho-IRS1 Tyr612  1:1000 5% BSA TBST Life Technologies (44-816G) 

Akt  1:1000 5% BSA TBST Cell Signaling (9272) 

Phospho-Akt Ser473 1:1000 5% BSA TBST Cell Signaling (9271) 

AS160  1:1000 5% BSA TBST Cell Signaling (2670) 

Phospho-AS160 Ser588  1:1000 5% BSA TBST Cell Signaling (8730) 

Phospho-AS160 Thr642  1:1000 5% Milk TBST Cell Signaling (8881) 

AMPKα  1:750 5% BSA TBST Cell Signaling (2532) 

Phospho-AMPKα Thr172  1:750 5% BSA TBST Cell Signaling (2531) 

ACC 1:1000 5% BSA TBST Cell Signaling (3662) 

Phospho-ACC Ser79  1:1000 5% BSA TBST Cell Signaling (3661) 

JNK 1:1000 5% BSA TBST Cell Signaling (9258) 

Phospho-JNK Thr183/Tyr185 1:1000 5% BSA TBST Cell Signaling (4668) 

Erk 1:1000 5% BSA TBST Cell Signaling (4695) 

Phospho-Erk Thr202/Tyr204 1:1000 5% BSA TBST Cell Signaling (4370) 

p38  1:1000 5% BSA TBST Cell Signaling (9212) 

Phospho-p38 Thr180/Tyr182 1:1000 5% BSA TBST Cell Signaling (4511) 

β-actin 1:40000 5% Milk TBST Abcam (ab8226) 

Myc 1:5000 5% Milk TBST Cell Signaling (2276) 

GPR21  1:1000 5% Milk TBST Abcam (ab139654) 

F4/80 1:1000 5% Milk TBST Abcam (ab74383) 

Anti-Rabbit IgG HRP Conjugate 1:2000 TBST Dako (P0448) 

Anti-Mouse IgG HRP Conjugate 1:5000 TBST Promega (W4021) 
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2.6.3.2.2  Re-probing PVDF Membranes 
	
When optimising antibody concentrations or when investigating more than one protein, 

it was possible to reuse membranes once the initial primary antibody was removed.  

Membranes were incubated with Restore™ Western Blot Stripping Buffer (Thermo 

Fisher Scientific, 21059) for 15 minutes with agitation, and then washed 3 times for 5 

minutes with TBST to remove any remaining stripping buffer.  To determine complete 

removal of antibody, membranes were incubated with ECL and exposed to X-ray film.  

If the procedure was successful, membranes were washed once with TBST and re-

blocked in 5 % (w/v) BSA or milk in TBST for 1 hour at room temperature.  

Membranes were then probed with an alternative antibody following the procedure 

outlined in Section 2.6.3.2.1. 

2.6.4 PI3K Enzyme-Linked Immunosorbent Assay (ELISA) 
	
A PI3K ELISA (Merck Millipore, 17-493) was used to assess the direct effect of 

compounds on the activity of the four class I PI3Ks (p110α, p110β, p110γ and p120δ).  

All reagents used were supplied with the kit.  Each class I PI3K was incubated with 

each compound (1 µM wortmannin, 10 µM RTC-1, 10 µM RTC-15, 500 µM 

metformin) for 10 minutes at room temperature.  5 µl of the 5X kinase reaction buffer 

was added to each well of a glutathione coated 96 well plate followed by 5 µl (50 µM) 

PIP2.  5 µl of the kinase/compound mix was then added to the plate and incubated for 1 

hour at room temperature.  Wells containing no kinase acted as a buffer control, while 

wells containing no compounds acted as a positive control for kinase activity.  25 µl of 

biotinylated-PIP3/EDTA (diluted 1:18 in TBST) was added to each well, excluding 

buffer control wells, followed by 50 µl of the capture protein, general receptor for 

phosphoinositides (GRP-1) containing a glutathione-s-transferase (GST) tag, (diluted 
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1:1000 in TBST) and incubated for 1 hour at room temperature.  The plate was washed 

4 times with 200 µl TBST then incubated with 50 µl/well streptavidin-HRP conjugate 

(diluted 1:2000 in TBST) for 1 hour at room temperature.  Wells were washed 5 times 

with 200 µl TBST then incubated with 100 µl TMB for no more than 20 minutes in the 

dark.  When a blue colorimetric change appeared, the reaction was stopped with the 

addition of 100 µl/well of a stop solution included in the kit.  Absorbance was read at 

450 nm using a BIO-TEK EL800 plate reader.  To calculate the percentage of PIP3 

relative to the biotinylated-PIP3 tracer, the absorbance values of positive wells 

containing the tracer only were set to 100.  All other signals were divided by the 

biotinylated-PIP3 average then multiplied by 100 to show the relative percentage to the 

positive signal.  As the capture protein, GRP-1, binds either PIP3 generated as part of 

the kinase reaction or the biotinylated-PIP3 tracer, a lower signal was indicative of 

higher kinase activity.   

2.7 Functional Assays 

2.7.1 Analysis of NADH:ubiquinone oxidoreductase Activity 

2.7.1.1 Isolation of Mitochondria from Rat Liver 
	
Mitochondria were isolated from rat liver as outlined by Chappell and Hansford, (1972).  

The liver was washed three times with ice-cold isolation buffer (250 mM sucrose, 5 

mM Tris-HCl, 1 mM EGTA, pH 7), then minced in fresh, ice-cold isolation buffer and 

transferred to a glass potter (Potter S Homogeniser, Sartorius).  A Teflon pestle was 

used at 1,600 rpm to homogenise the liver in an ice-bath.  The resulting homogenate 

was centrifuged at 750 x g for 5 minutes at 4 °C, the supernatant was retained and 

centrifuged at 12,000 x g for 10 minutes at 4 °C.  The resulting pellet was resuspended 

in ice-cold isolation buffer supplemented with 2 % (w/v) fatty acid free BSA and 



Chapter 2: Materials and Methods 

 84 

centrifuged at 12,000 x g for 10 minutes at 4 °C.  Supernatant was discarded and the 

pellet was resuspended in a minimal volume of isolation buffer.  Mitochondrial 

concentration was determined using the bicinchoninic acid procedure (Section 2.6.2.2).  

Mitochondria were stored at -20 °C until required. 

2.7.1.2 NADH:ubiquinone oxidoreductase Activity 
	
Immediately before the assay, mitochondria were diluted in a hypotonic buffer (25 mM 

K2HPO4, 5 mM MgCl2) and permeabilised with three cycles of freezing in liquid 

nitrogen and thawing at room temperature.  The assay was carried out in a temperature 

controlled Shimadzu UV-2550 UV-VIS spectrophotometer, at 30 °C in a 1 ml cuvette 

(Spinazzi et al., 2012).  Permeabilised mitochondria were incubated with 50 mM 

K2HPO4 pH 7.5, 3 mg/ml fatty acid free BSA, 300 µM KCN and 100 µM NADH, 

baseline activity was measured at 340 nm for 1 minute.  The reaction was initiated with 

the addition of 60 µM ubiquinone and the resulting decrease in absorbance was 

followed for 3 minutes.  Varying concentrations of compounds of interest were then 

added and absorbance was measured for a further 3 minutes. To determine the 

percentage activity of NADH:ubiquinone oxidoreductase, the slope of the line obtained 

with the addition of ubiquinone was divided by the slope of the line produced with the 

addition of the compound to be tested.  This value was then expressed as a percentage 

relative to the value calculated for the vehicle control, DMSO, and the protein 

concentration of the mitochondrial sample.  Specificity of the assay was confirmed with 

the addition of rotenone, a known inhibitor of NADH:ubiquinone oxidoreductase. 

2.7.2 Analysis of Intracellular ATP Levels 
	
A luminescent ATP detection assay (Abcam, ab113849) was performed according to 

the manufacturer’s instructions.  C2C12 cells were cultured in a black, clear bottomed 
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96 well plate at a density of 1x103 cells/100 µl.  Differentiated cells were stimulated 

with compounds of interest for various time points in triplicate.  Rotenone was used as a 

reference inhibitor, as it is known to significantly decrease ATP levels.  ATP standards 

were also prepared in the 96 well plate, in triplicate, with concentrations ranging from 

250 pM to 10 µM.  Cells were lysed with the addition of 50 µl of a detergent solution 

and incubated for 5 minutes at room temperature on an orbital shaker at 700 rpm.  50 µl 

of reconstituted substrate buffer (containing D-luciferin and luciferase) was added to the 

cells and incubated in the dark for 15 minutes on an orbital shaker at 700 rpm before 

luminescence was read on BMG labtech plate reader.  ATP concentration was 

determined via the ATP standard curve. 

2.7.3 Analysis of Glucose Transport 

2.7.3.1 Radioactive Glucose Uptake 
	
Cellular glucose uptake was measured by scintillation counting of cellular [3H]-2-

deoxyglucose with slight modifications to the method described by Yun and colleagues 

(2009).  Cells were washed once with Krebs Ringer Buffer (KRB); 136 mM NaCl, 20 

mM HEPES, 4.7 mM KCl, 1 mM MgSO4, 1 mM CaCl2, 4.05 mM Na2HPO4, 0.95 mM 

NaH2PO4, pH 7.4 warmed to 37 °C.  Cells were then incubated with 1 µCi/ml [3H]-2-

deoxyglucose (PerkinElmer, NET328A001MC) in KRB at 37 °C for 10 minutes.   To 

terminate the assay cells were washed 3 times with ice-cold KRB, then lysed in 0.1 % 

(w/v) SDS at 37 °C for 30 minutes.  Cell lysates were diluted 1:4 in β-scintillation fluid 

(Beta-Plate Scint, PerkinElmer).  Cellular incorporation of [3H]-2-deoxyglucose was 

quantified by a 1450 Microbeta Liquid Scintillation Counter (PerkinElmer), which 

expressed results in counts per minute (CPM).  Total protein content of each sample 
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was determined by the bicinchoninic acid procedure (Section 2.6.2.2) to define results 

as CPM/mg. 

2.7.3.2 Flow Cytometry Analysis of GLUT4 Translocation  
	
C2C12 myotubes were dissociated with trypsin-EDTA solution as described in Section 

2.2.1.  Trypsin-EDTA was neutralised with complete medium containing 10 % (v/v) 

FBS and cells were centrifuged at 300 x g for 5 minutes.  Cell pellets were resuspended 

in Fc buffer (PBS containing 1 % (w/v) BSA and 1 mM EDTA), counted and further 

diluted to yield a density of 1x105 cells/100 µl.  Cells were pre-incubated with 1 µl 

Mouse BD Fc Block™ (BD Biosciences, 553142) for 30 min at 4 °C to prevent non-

specific binding.  Samples were divided into two tubes, 5 µl anti-GLUT4 (Santa Cruz 

Biotechnology, SC-1606) was added to one sample set.  The other sample set served as 

the negative control, used to monitor non-specific binding of the secondary antibody, 

and was incubated with buffer alone.  Cells were incubated for 30 minutes at 4 °C then 

washed by centrifuging at 300 x g for 5 minutes and resuspending the pellet in 100 µl 

Fc buffer.  All samples were incubated with 1.2 µl anti-goat IgG-FITC (Sigma-Aldrich 

F7367) for 30 minutes at 4 °C and washed twice before analysis by flow cytometry with 

an Accuri® C6 Flow Cytometer (BD Biosciences).   

2.7.4 Homogeneous Time Resolved Fluorescence (HTRF) Assays 

2.7.4.1 PIP3 HTRF Assay 
	
A PIP3 HTRF assay (Merck Millipore, 17-495) was used to establish the effect of 

compounds of interest on the production of PIP3 in differentiated C2C12 cells.  After 

stimulation, cells were incubated with 500 µl 0.5 M trichloroacetic acid for 5 minutes 

on ice to precipitate cellular debris.  The cell suspension was centrifuged at 17,000 x g 

for 5 minutes at 4 °C, and the resulting pellet was washed with 500 µl 5 % (v/v) 
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trichloroacetic acid, 1 mM EDTA.  Neutral lipids were extracted by incubating the 

pellet with 1 ml 2:1 methanol:chloroform for 10 minutes at room temperature followed 

by centrifugation at 17,000 x g for 5 minutes at 4 °C.  This step was repeated once.  

Acidic lipids were then extracted by incubating the pellet with 500 µl 40:80:1 

chloroform:methanol:12 M HCl for 15 minutes at room temperature.  180 µl chloroform 

was added to each sample followed by 320 µl 0.1 M HCl.  Samples were vortexed, then 

centrifuged at 17,000 x g for 5 minutes at 4 °C resulting in the formation of two distinct 

layers.  The lower phase was transferred to a clean tube and 30 µl of methanol 

containing 0.1 M ammonium hydroxide was added.  Samples were dried in a vacuum 

evaporator and resuspended in 60 µl lipid recovery buffer supplied with the HTRF kit.  

To aid the resuspension process, samples were vortexed for 30 seconds then sonicated 

in a cooled sonication bath for 15 seconds.  The PIP3 detection solution was prepared as 

outlined in the manufacturer’s instructions and incubated at room temperature for 30 

minutes in the dark.  Standards and samples were added to a black 96 well plate in 

triplicate (25 µl/well) followed by 25 µl of the detection solution, the plate was sealed 

and incubated at room temperature for 4 hours with agitation.  The plate was then read 

on a BMG labtech plate reader with excitation at 340 nm and measurements of emission 

at 615 nm and 665 nm.  The fluorescence resonance energy transfer (FRET) ratios (665 

nm/615 nm) were converted to PIP3 concentrations by interpolating values from the 

PIP3 standard curve. 

2.7.4.2 IP1 HTRF Assay 

Cellular inositol 1-phosphate (IP1) levels were measured using an IP-one HTRF assay 

kit (Cisbio, 62IPAPEC) (Trinquet et al., 2006).  Sub-confluent HEK293T cells were 

detached from the cell culture dish by trypsinisation (Section 2.2.1) and resuspended in 

the appropriate volume of the assay stimulation buffer (10 mM HEPES, 1 mM CaCl2, 
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0.5 mM MgCl2, 4.2 mM, KCl, 146 mM NaCl, 5.5 mM glucose, 50 mM LiCl, pH 7.4) 

warmed to 37 °C, to achieve a concentration of 6x106 cells/ml.  7 µl of the cell 

suspension was added to each well of a white half volume 384 well plate (Greiner, 

781080) along with 7 µl of the compound to be tested, prepared at a 2X concentration.  

Triplicate samples were incubated at 37 °C for 2 hours.  3 µl IP-one-d2 conjugate  

(diluted 1:20 in IP-one lysis buffer) was added to each well followed by 3 µl anti-IP-one 

cryptate Tb conjugate (diluted 1:20 in IP-one lysis buffer), and incubated in the dark for 

1 hour at room temperature.  The plate was read on a BMG labtech plate reader with an 

excitation at 340 nm and emissions at 615 nm and 665 nm respectively.  The FRET 

ratios (665 nm/615 nm) were converted to IP1 concentrations by interpolating values 

from an IP1 standard curve.  

2.7.5 Macrophage Migration Assay 
	
RAW 264.7 cells were detached from the culture vessel using a cell scraper and 

centrifuged at 600 x g for 5 minutes.  Cell pellets were resuspended in complete DMEM 

supplemented with 2 % (v/v) FBS at a density of 5x105 cells/ml.  750 µl of 2 % (v/v) 

FBS DMEM was added to a well of a 24 well plate and a 6.5 mm Transwell® insert 

with a 5.0 µm pore polycarbonate membrane (Corning®) was placed into the well.  250 

µl of the cell suspension was added to the upper chamber of the Transwell® insert and 

cells were incubated at 37 °C for 1 hour to acclimatise.  Medium was removed from the 

lower chamber and replaced with 3T3-L1 adipocyte conditioned medium, cells were 

then incubated for 4 hours at 37 °C.  To determine the migratory capacity of the cells, 

medium was removed from the Transwell® insert, which was subsequently washed 

twice with PBS then incubated in cold (-20 °C) methanol for 5 minutes to fix the 

migrating cells.   The polycarbonate membrane was then removed from the Transwell® 
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insert using a scalpel and incubated with 0.05 % (w/v) crystal violet dissolved in 0.1 M 

disodium tetraborate, pH 9.0 containing 2 % (v/v) ethanol for 20 minutes.  The 

membrane was washed three times with PBS before the crystal violet stain was eluted 

using 10 % (v/v) acetic acid with a 5 minute incubation.  The resulting solution was 

transferred to a 96 well plate and absorbance was read at 560 nm on an ELx800TM 

microplate reader.     

2.8  Statistical Analysis 
	
Data are presented as mean ± the standard error of the mean (SEM).  The unpaired 

Student’s t-test was used to determine significance between two experimental groups.  

One-way analysis of variance (ANOVA) with a post-hoc Tukey test was used to 

determine significance among three or more groups.  One-way ANOVA with a post-hoc 

Dunnett test was used when comparing two or more groups to a control group.  

GraphPad Prism® 5 software was used to carry out the analysis.  Significance was 

denoted as p < 0.05; *, p < 0.01; **, p < 0.001; ***. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 90 

 

 
 
 
 
 
 

3 Chapter 3           

Elucidating the Mechanism 

of Action of a Novel        

Anti-Diabetic Compound 

	
	
	
	
	
	
	
	



Chapter 3: Elucidating the Mechanism of Action of a Novel Anti-Diabetic Compound  

 91 

3.1 Introduction 
	
The emerging limitations of current anti-diabetic strategies stress the need for novel 

therapeutics with well-defined mechanisms of action (Rochester and Akiyode, 2014).  

This study focuses on securing the mode of action of a novel compound, RTC-1 (Fig. 

3.1A), which demonstrated anti-diabetic properties in a murine dietary-induced model 

of type 2 diabetes. RTC-1 was developed following on from work conducted by 

Campos-Sandoval and colleagues (2011), where novel retinoid analogues were found to 

interrupt RBP interactions with TTR and STRA6 in a superior way to fenretinide in 

vitro.  This action holds potential as an anti-diabetic therapy as we propose that 

unbound RBP may be readily excreted, thus preventing the proposed negative effects of 

the protein on the insulin signalling pathway.  Through in silico screening of 

commercial databases, Dr. Gemma Kinsella found RTC-1, a non-retinoid compound, to 

interact with RBP.  Surface plasmon resonance analysis (Fig. 3.1B) then demonstrated 

the ability of this compound to inhibit RBP-TTR interactions, prompting in vivo 

analysis of the effects of the compound on the type 2 diabetic phenotype.  
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Figure 3.1 The effect of RTC-1 on RBP:TTR complex formation. 

(A) Structure of RTC-1.  (B) His-tagged RBP was immobilised on the surface of a 

sensor chip and exposed to retinol and TTR. The complex formation causes a change in 

the mass on the sensor chip resulting in a change in resonance units.  The addition of 10 

µM RTC-1 or fenretinide, both led to a decrease in this response, indicative of a 

disruption to the formation of the RBP:TTR complex.  SPR analysis was carried out in 

the University of Leeds by Prof. Colin Fishwick’s research group. 
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In an intervention study carried out by Dr. Clara Redondo, HFD-fed C57BL/6 mice 

exhibited reduced insulin sensitivity (Fig. 3.2A) and glucose tolerance (Fig. 3.2B), 

whereas HFD-fed mice that received 0.04 % (w/w) RTC-1 relative to the diet (~1 

mg/mouse/day), displayed improved glucose handling, not significantly different to that 

of the chow fed control mice.  Although there were no changes to food intake between 

mice on the HFD and the HFD supplemented with RTC-1, those receiving the novel 

compound maintained the bodyweight recorded at the time of RTC-1 administration, 

while those on the HFD alone continued to gain weight (Fig. 3.2C).  Given this effect, 

in vitro analyses of RTC-1 were conducted to give further insight into the potential of 

the novel compound as a pharmacological strategy for the treatment of insulin 

resistance and type 2 diabetes.  RTC-1 was found to dramatically increase glucose 

uptake in C2C12 muscle cells, an effect the action of the compound on RBP would not 

account for (Fig. 3.3). 
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Figure 3.2 RTC-1 intervention study in a dietary-induced mouse model of type 2 
diabetes. 

Mice received a HFD of 5450 kcal/kg for 16 weeks (n=16).  HFD-fed mice were then 

randomly divided into two groups with one cohort receiving a HFD supplemented with 

0.04 % (w/w) RTC-1 for a further 16 weeks (n=8).  (A) Mice fed either normal chow, 

HFD or HFD with RTC-1 were injected with a bolus of insulin and serum glucose 

levels were monitored for 2 hours.  (B) Mice were also injected with a bolus of glucose 

and serum glucose clearance was monitored for 2 hours.  (C) Total body weight was 

recorded for the duration of the experiment.  Images were kindly provided by Dr. 

Darren Martin. 
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Figure 3.3 The direct effect of RTC-1 on glucose uptake in C2C12 muscle cells. 

	
C2C12 myotubes were stimulated with 10 µM RTC-1 or an equal volume of the vehicle 

control, DMSO, in complete medium supplemented with 0.1 % (v/v) horse serum for 16 

hours. Glucose uptake was measured via scintillation counting of cellular [3H]-2-

deoxyglucose.  Data presented as mean ± SEM are representative of multiple 

independent experiments performed in triplicate.  Using the unpaired Student’s t-test 

GraphPad Prism® 5 software demonstrates significance at p < 0.01; **. 
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In an attempt to establish the mechanism of action of this compound, a variety of targets 

known to positively impact the type 2 diabetic phenotype were investigated.  RTC-1 

displayed no effect on well-known diabetic targets such as GLP-1R or PPARγ nor did it 

induce secretion of insulin or GLP-1 from INS-1e and NCI-H716 cell lines respectively 

(Martin et al., 2016).  In a cell toxicity profile RTC-1 demonstrated no adverse reaction 

in vivo, it did not induce cell death in rat hepatocytes nor did it affect the hERG channel, 

a recognised preclinical safety test (Priest et al., 2008).  These results highlighted RTC-

1 as a promising anti-diabetic therapeutic, however in order to further develop this 

compound investigations into its precise mechanism of action were paramount.    

 

The observed effect of RTC-1 on glucose handling, weight gain and potentially energy 

balance suggested that AMPK may be a prime candidate through which RTC-1 could 

exert its effects.  AMPK is a central regulator of energy homeostasis that responds to 

increases in cellular AMP and ADP (Hardie et al., 1998).  Once activated, AMPK 

restores cellular energy balance by switching on ATP generating pathways such as 

glucose transport and fatty acid oxidation and by switching off ATP consuming 

pathways such as fatty acid synthesis and gluconeogenesis.  As altered glucose and lipid 

metabolism are central to type 2 diabetes, several anti-diabetic drugs are thought to 

target AMPK to alleviate this pathophysiology, including metformin, the current 

standard for the treatment of this disease (Coughlan et al., 2014, Inzucchi et al., 2015).  
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3.2  Aims and Objectives 
	
The current study aimed to elucidate the mechanism of action of RTC-1 and the 

consequential effects on glucose uptake, insulin resistance, adipogenesis and 

osteogenesis using various in vitro analysis approaches.  In order to demonstrate a 

structure-activity relationship, a derivative of RTC-1, RTC-15, was analysed in the 

preliminary stages of this study. The effects of these novel compounds were also 

compared to that of metformin, the leading medication in the treatment of type 2 

diabetes, to gain insight into their effectiveness as a novel pharmacological approach for 

the treatment of insulin resistance and type 2 diabetes.  
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3.3 Results 

3.3.1 RTC-1 Demonstrates a Dramatic Effect on Glucose Uptake  
	
As skeletal muscle accounts for up to 80 % of glucose uptake (Thiebaud et al., 1982), 

the C2C12 myoblast cell line, isolated from mouse skeletal muscle, was chosen to 

compare the effect of RTC-1 on glucose transport to that of insulin and metformin.  

Stimulation of differentiated C2C12 myotubes for 16 hours with increasing 

concentrations of RTC-1 led to a progressively significant increase in glucose uptake, as 

determined by the cellular levels of [3H]-2-deoxyglucose (Fig. 3.4A).  [3H]-2-

deoxyglucose, a derivative of glucose was used to monitor glucose uptake, as unlike 

glucose, it cannot be metabolised by the cell.  Following stimulations of cells with 1 

µM, 10 µM and 100 µM RTC-1, a meaningful increase in glucose uptake was evident 

and comparable to that of an acute insulin challenge (30 minute incubation with 100 nM 

insulin).  The action of metformin, although significant at 1 µM and 10 µM was only 

equivalent to a 100 nM insulin stimulation at concentrations above 100 µM (Fig. 3.4B).  

Based on these results optimal concentrations of RTC-1 (10 µM) and metformin (500 

µM) were selected to examine the influence of the compounds on glucose uptake over 

time.  Both RTC-1 (Fig. 3.5A) and metformin (Fig. 3.5B) led to an increase in glucose 

uptake, becoming significant at 4 hours, with the effect of RTC-1 surpassing that of 

metformin at the 6 hour time point.  Given this dramatic impact of RTC-1 on glucose 

transport, the long-term response to the compound was then evaluated.  Glucose uptake 

was stimulated in C2C12 myotubes with the addition of 10 µM RTC-1 for 16 hours.  

Cells were washed free of the compound and changes to glucose uptake were then 

examined.  At 6 and 12 hours post RTC-1 removal a significant increase in glucose 

uptake was observed.  Although this effect lessened at 24 and 48 hours, basal glucose 

levels were surpassed (Fig. 3.6).   
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Figure 3.4 Concentration dependent effects of RTC-1 and metformin on glucose 
uptake.   
 
C2C12 myotubes were stimulated with varying concentrations of (A) RTC-1 or (B) 

metformin for 16 hours in complete medium supplemented with 0.1 % (v/v) horse 

serum.  As a positive control, cells were incubated with 100 nM insulin in KRBG for 30 

minutes.  Glucose uptake was measured via scintillation counting of cellular [3H]-2-

deoxyglucose.  Data presented as mean ± SEM are representative of two independent 

experiments performed in triplicate.  One-way ANOVA with a post-hoc Dunnett test 

using GraphPad Prism® 5 software demonstrates significance at p < 0.05; * and p < 

0.001; ***. 
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Figure 3.5 Time dependent effects of RTC-1 and metformin on glucose uptake. 

 

C2C12 myotubes were stimulated for various times points ranging from 1 hour to 6 

hours with optimal concentrations of (A) RTC-1 (10 µM) and (B) metformin (500 µM) 

in complete medium containing 0.1 % (v/v) horse serum.  Changes in glucose uptake 

were evaluated via scintillation counting of cellular [3H]-2-deoxyglucose. Data 

presented as mean ± SEM are representative of three independent experiments 

performed in triplicate each time.  One-way ANOVA with a post-hoc Dunnett test using 

GraphPad Prism® 5 software demonstrates significance at p < 0.05; * and p < 0.01; **. 
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Figure 3.6 The long-term effects of RTC-1-stimulated glucose uptake in cells 
washed free of the compound. 

 
C2C12 myotubes were stimulated with 10 µM RTC-1 in complete medium 

supplemented with 0.1 % (v/v) horse serum for 16 hours, then washed free of RTC-1 

with DPBS and incubated with fresh medium.  Changes in glucose uptake were 

evaluated via scintillation counting of cellular  [3H]-2-deoxyglucose at 6, 12, 24 and 48 

hours post medium change.  Data presented as mean ± SEM are representative of two 

independent experiments performed in triplicate each time.  One-way ANOVA with a 

post-hoc Dunnett test using GraphPad Prism® 5 software demonstrates significance at p 

< 0.05; * and p < 0.01; **. 
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3.3.2 RTC-1 and its Derivative, RTC-15, Induce GLUT4 

Translocation 
	
In order to investigate the structure-activity relationship of RTC-1, a large number of 

compounds with alterations to the original structure of RTC-1 were tested for their 

capacity to induce glucose uptake.  Stimulation of C2C12 myotubes with 10 µM of one 

derivative, RTC-15 (Fig. 3.7A), led to a significant increase in glucose uptake, similar 

to the action of 100 nM insulin.  However, the response to RTC-15 did not exceed that 

observed with RTC-1 (Fig. 3.7B).   
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Figure 3.7 The effect of the RTC-1 derivative, RTC-15, on glucose uptake. 

 

(A) Structure of RTC-15. (B) C2C12 myotubes were incubated with 10 µM RTC-1 or 

10 µM RTC-15 in complete medium containing 0.1 % (v/v) horse serum for 6 hours.  

Cells were also stimulated with 100 nM insulin in KRBG for 30 minutes, as a positive 

control.  Glucose uptake was measured via scintillation counting of cellular [3H]-2-

deoxyglucose.  Data presented as mean ± SEM are representative of multiple 

experiments, performed in triplicate each time.  One-way ANOVA with a post-hoc 

Dunnett test using GraphPad Prism® 5 software demonstrates significance at p < 0.01; 

** and p < 0.001; ***.  
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As GLUT4 is the primary modulator of glucose uptake in response to insulin 

stimulation (Pessin et al., 1999), and has also been implicated in AMPK-induced 

glucose transport (Kurth-Kraczek et al., 1999), the effect of these novel compounds on 

GLUT4 translocation was investigated.  Under basal conditions, GLUT4 resides in 

intracellular storage vesicles until signalled to redistribute to the plasma membrane to 

facilitate increased uptake of glucose (Larance et al., 2008).  Through flow cytometry 

analysis, a significant increase in plasma membrane associated GLUT4 was observed in 

C2C12 cells stimulated with 10 µM RTC-1 or 10 µM RTC-15.  Cells incubated with 

500 µM metformin exhibited a level of GLUT4 cell surface expression similar to those 

exposed to the vehicle control, DMSO (Fig. 3.8).     
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Figure 3.8 The effect of RTC-1, RTC-15 and metformin on GLUT4 translocation.  

 

C2C12 myotubes were stimulated with 10 µM RTC-1, 10 µM RTC-15, 500 µM 

metformin or an equal volume of DMSO for 4 hours in complete medium containing 

0.1 % (v/v) horse serum.  Cells were incubated with a GLUT4 specific antibody 

followed by a FITC conjugated secondary antibody (red line).  As a control, cells were 

stained with the secondary antibody alone (black line).  Cells were analysed using flow 

cytometry with 10,000 events recorded.  (A) Data are presented in histograms of mean 

fluorescence intensity, representing two separate experiments.  (B) A bar chart 

represents the average percentage of membrane-associated GLUT4 relative to cells 

incubated with the fluorescent secondary antibody alone.  One-way ANOVA with a 

post-hoc Dunnett test using GraphPad Prism® 5 software demonstrates significance at p 

< 0.01; **. 
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3.3.3 RTC-1 and RTC-15 Activate AMPK 
	
Given the effects of RTC-1 and RTC-15 on GLUT4 translocation, the next step was to 

examine the activation status of AMPK (Mu et al., 2001).  Phosphorylation of the 

catalytic α-subunit of AMPK at Thr172 was investigated in response to RTC-1, RTC-15 

and metformin, as phosphorylation at this residue is a recognised indicator of AMPK 

activation (Hawley et al., 1996, Stein et al., 2000).  After a 15 minute incubation, 10 

µM RTC-1 moderately induced the phosphorylation of AMPKα in C2C12 myotubes; 

this became amplified at 45 minutes and plateaued (Fig. 3.9A).  An increase in the 

phosphorylation of AMPKα was observed at 45 minutes post stimulation in response to 

10 µM RTC-15, this was augmented at 2 hours and the phosphorylation status of the 

kinase remained elevated for the duration of the time course (Fig. 3.9B).  A 500 µM 

metformin incubation augmented AMPKα phosphorylation after 15 minutes, 

phosphorylation increased again at 45 minutes and was sustained throughout the 

remainder of the time course (Fig. 3.9C).    
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Figure 3.9 Time dependent effects of RTC-1, RTC-15 and metformin on AMPKα 

phosphorylation. 

 

C2C12 myotubes were stimulated with (A) 10 µM RTC-1, (B) 10 µM RTC-15 or (C) 

500 µM metformin for 15 minutes up to 6 hours in complete medium with 0.1 % (v/v) 

horse serum.  Cells were lysed, subjected to SDS-PAGE and immunoblotted with 

antibodies against phospho-AMPKα Thr172 and native AMPKα.  β-actin was used as a 

loading control.  Data are representative of multiple independent experiments.   
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3.3.4 RTC-1 and RTC-15 Inhibit NADH:ubiquinone oxidoreductase 

Activity  
 
To determine if the effect of these compounds was as a result of a direct interaction with 

AMPK or of a regulating mechanism upstream of the protein, the influence of RTC-1 

and RTC-15 on the activity of NADH:ubiquinone oxidoreductase in mitochondria was 

investigated.  As metformin is believed to instigate its influence on AMPK in this way 

(Owen et al., 2000), the impact of the RTC compounds was again compared to that of 

metformin.  Before each assay the activity of mitochondria isolated from rat liver was 

assessed ± the addition of rotenone, a potent NADH:ubiquinone oxidoreductase 

inhibitor that obstructs NADH oxidation by blocking the ubiquinone binding site of the 

enzyme (Degli Esposti, 1998).  Using a temperature controlled spectrophotometer, 

NADH:ubiquinone oxidoreductase activity was initiated, and monitored, with the 

addition of 60 µM ubiquinone.  As more NAD+ was produced from NADH to generate 

a proton gradient a decrease in absorbance was observed, as NAD+ does not absorb at 

340 nm.  With the addition of 1 µM rotenone, the solution began to absorb again at 340 

nm, an indication of a decrease in NAD+ production (Fig. 3.10A).  The effect of a 

compound on NADH:ubiquinone oxidoreductase was determined by comparing activity 

before and after addition, relative to the vehicle control, DMSO (Fig. 3.10B).   

 

Utilising the same method, the addition of RTC-1 (Fig. 3.11A) and RTC-15 (Fig. 

3.11B) to disrupted mitochondria produced a dose-related inhibition of 

NADH:ubiquinone oxidoreductase activity.  This assay also allowed the IC50 of the 

compounds to be calculated; 27 µM for RTC-1 and 104 µM for RTC-15.  There was no 

apparent effect with metformin until the addition of the highest soluble concentration, 

10 mM (Fig. 3.11C).   
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Figure 3.10 The effect of rotenone on NADH:ubiquinone oxidoreductase activity. 

 

(A) Baseline activity of NADH:ubiquinone oxidoreductase in isolated mitochondria 

was measured at 340 nm for 1 minute.  The addition of 60 µM ubiquinone led to the 

oxidation of NADH to NAD+.  DMSO (black and red lines) demonstrated little effect on 

this process, while 1 µM of the specific NADH:ubiquinone oxidoreductase inhibitor, 

rotenone (blue and green lines), prevented the oxidation of NADH. (B) A bar chart 

represents the average percentage activity of NADH:ubiquinone oxidoreductase relative 

to the vehicle control, DMSO.  Using the unpaired Student’s t-test GraphPad Prism® 5 

software demonstrates a significant decrease in activity at p < 0.05; *. 



Chapter 3: Elucidating the Mechanism of Action of a Novel Anti-Diabetic Compound  

 110 

 
Figure 3.11 The effect of RTC-1, RTC-15 and metformin on NADH:ubiquinone 

oxidoreductase activity. 

 

Mitochondria isolated from rat liver were incubated with (A) RTC-1, (B) RTC-15 and 

(C) metformin at various concentrations. The effect of the compounds on 

NADH:ubiquinone oxidoreductase was determined by comparing activity before and 

after addition, relative to the vehicle control, DMSO.  Data are presented as mean ± 

SEM of at least three independent experiments.   A nonlinear regression curve of log 

[inhibitor] v response was calculated using GraphPad Prism® 5 software.  This 

estimated an IC50 value at 27 µM for RTC-1 and 104 µM for RTC-15, as indicated by 

the dashed line. 
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In a separate study carried out by Dr. Conor Breen, the effect of RTC-1 on oxygen 

consumption was examined to determine if the action of the compound was limited to 

NADH:ubiquinone oxidoreductase.  Intact rat liver mitochondria were incubated with 

an air-saturated medium (20 mM Tris-HCl, 80 mM KCl, 5 mM MgCl2, 0.5 M KH2PO4, 

pH 7.4) and oxygen consumption was monitored with a Clark electrode (Fig. 3.12).  

The complex I substrate (160 mM glutamate, 40 mM sodium malate) stimulated oxygen 

consumption as electrons from NADH entered the respiratory chain via 

NADH:ubiquinone oxidoreductase.  This increase was augmented with the addition of 

ADP, however 10 µM RTC-1 inhibited the process.  RTC-1 demonstrated no effect on 

complex II of the mitochondrial respiratory chain (succinate:ubiquinone 

oxidoreductase), as oxygen consumption was restored with the addition of 0.5 mM 

sodium succinate which provides electrons for succinate:ubiquinone oxidoreductase, 

bypassing NADH:ubiquinone oxidoreductase. 
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Figure 3.12 The effect of RTC-1 on oxygen consumption in isolated mitochondria.   

 

Isolated rat liver mitochondria were monitored for changes in oxygen consumption 

using a Clark electrode.  Glutamate/malate was used as a substrate to increase NADH 

levels.  The addition of 10 µM RTC-1 resulted in a drop in oxygen consumption, which 

was rescued with the complex II substrate, succinate.  Image kindly provided by Dr. 

Conor Breen. 
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As RTC-1 appeared to target NADH:ubiquinone oxidoreductase alone, the mode of 

action which impacts AMPK is believed to be due to the resultant decrease in ATP 

levels.  Using a luminescent ATP detection kit to look at cellular ATP levels directly, 

there was no apparent effect with C2C12 muscle cells when exposed to rotenone, RTC-

1, RTC-15 or metformin for 30 minutes (Fig. 3.13A).  However after 1 hour, a dramatic 

reduction in cellular ATP was observed with the addition of 25 µM rotenone.  A 

decrease in cellular ATP levels, although not significant, was also seen in cells 

incubated with 10 µM RTC-1 and 10 µM RTC-15, while 500 µM metformin 

demonstrated no effect on ATP levels (Fig. 3.13B).  RTC-1, RTC-15 and metformin all 

provoked a modest decrease in cellular ATP 4 hours post stimulation, again not 

statistically different from basal concentrations (Fig. 3.13C).  
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Figure 3.13 The impact of RTC-1, RTC-15 and metformin on cellular ATP levels. 

 

C2C12 myotubes were stimulated with 10 µM RTC-1, 10 µM RTC-15, 500 µM 

metformin or 25 µM rotenone in complete medium with 0.1 % (v/v) horse serum for 

(A) 30 minutes, (B) 1 hour and (C) 4 hours.  A luminescent ATP detection assay 

(Abcam, ab113849) was used according to the manufacturer’s instructions to monitor 

changes in ATP levels.  Data presented as mean ± SEM are representative of two 

independent experiments each performed in triplicate.  One-way ANOVA with a post-

hoc Dunnett test using GraphPad Prism® 5 software demonstrates significance at p < 

0.05; * and p < 0.001; ***. 
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3.3.5 RTC-1 and RTC-15-Induced Glucose Uptake is Dependent on 

AMPK Activation 
 
To confirm AMPK as the effector protein by which RTC-1 elicited its effects on 

glucose metabolism in vivo, C2C12 myotubes were incubated with the specific AMPK 

inhibitor, Compound C, at 10 µM for 1 hour prior to the addition of 10 µM RTC-1, 10 

µM RTC-15 or 500 µM metformin.  RTC-1, RTC-15 and metformin all significantly 

increased glucose uptake in C2C12 cells, the effect of which was dramatically 

attenuated by Compound C (Fig. 3.14).  Compound C failed to inhibit insulin-induced 

glucose uptake, demonstrating the selectivity of the inhibitor.   
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Figure 3.14 The effect of the AMPK inhibitor, Compound C, on insulin, RTC-1, 

RTC-15 and metformin-induced glucose uptake. 

 

C2C12 myotubes were incubated with 10 µM Compound C or an equal volume of the 

vehicle control, DMSO, in complete medium supplemented with 0.1 % (v/v) horse 

serum for 1 hour.  Cells were then stimulated with 100 nM insulin for 30 minutes or 10 

µM RTC-1, 10 µM RTC-15 and 500 µM metformin for 4 hours.  Glucose uptake was 

measured via scintillation counting of cellular [3H]-2-deoxyglucose.  Data presented as 

mean ± SEM are representative of three independent experiments performed in 

triplicate each time.  One-way ANOVA with a post-hoc Dunnett test using GraphPad 

Prism® 5 software demonstrates significance at p < 0.01; ** and p < 0.001; ***. 
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3.3.6 RTC-1 and RTC-15 Activate the Downstream Effector Proteins 

of AMPK; AS160 and ACC 
 
The activation of AMPK initiates a series of signalling events culminating in the uptake 

and oxidation of substrates important for ATP synthesis such as glucose. AS160 

mediates GLUT4 translocation to facilitate glucose uptake when phosphorylated at a 

number of residues, with Thr642 and Ser588 of particular importance (Sano, 2003, 

Geraghty et al., 2007, Schweitzer et al., 2012). Activated AMPK also leads to a 

decrease in ATP-consuming biosynthetic processes such as lipid synthesis through the 

phosphorylation of ACC at Ser79  (Park et al., 2002). 

Downstream of AMPK activation, RTC-1 was found to influence these main effector 

proteins of cell metabolism.  In a dose response experiment, a 16 hour stimulation of 

C2C12 muscle cells with 10 nM RTC-1 induced the phosphorylation of AMPKα and of 

AS160 at Thr642, which was enhanced with increasing concentrations of the compound.  

Phosphorylation of AS160 at Ser588 was also seen to increase in response to a 10 nM 

stimulation, albeit to a lesser extent.  RTC-1 triggered ACC phosphorylation moderately 

at 10 nM, with a more pronounced effect seen at concentrations of 100 nM and above 

(Fig. 3.15).  In response to metformin, the phosphorylation of AMPKα was augmented 

by a 16 hour, 10 nM stimulation of C2C12 myotubes, with phosphorylation peaking in 

response to 1 mM.  Metformin demonstrated little effect on the phosphorylation of 

AS160 at Thr642, while phosphorylation at Ser588 increased with a 1 mM stimulation.  

An increase in ACC phosphorylation was also observed at concentrations above 10 nM 

metformin (Fig. 3.16).  
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Figure 3.15 Concentration dependent effects of RTC-1 on AMPK signalling. 

 

C2C12 myotubes were stimulated with varying concentrations of RTC-1 (10 nM – 100 

µM) for 16 hours in complete medium containing 0.1 % (v/v) horse serum.  Cells were 

lysed, subjected to SDS-PAGE and immunoblotted with antibodies against phospho-

AMPKα Thr172, phospho-AS160 Thr642 and Ser588, phospho-ACC Ser79, native 

AMPKα, AS160 and ACC.  β-actin was used as a loading control.  Data are 

representative of two independent experiments.   
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Figure 3.16 Concentration dependent effects of metformin on AMPK signalling. 

 

C2C12 myotubes were stimulated with varying concentrations of metformin (10 nM – 

10 mM) for 16 hours in complete medium containing 0.1 % (v/v) horse serum.  Cells 

were lysed, subjected to SDS-PAGE and immunoblotted with antibodies against 

phospho-AMPKα Thr172, phospho-AS160 Thr642 and Ser588, phospho-ACC Ser79, native 

AMPKα, AS160 and ACC.  β-actin was used as a loading control.  Data are 

representative of two independent experiments.   
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In a time course study, 10 µM RTC-1 (Fig. 3.17A), 10 µM RTC-15 (Fig. 3.17B) and 

500 µM metformin (Fig. 3.17C) all led to an increase in ACC phosphorylation 

corresponding to the phosphorylation pattern of AMPKα (Fig. 3.9). 

Time course analysis of AS160 demonstrated a 10 µM exposure to RTC-1 (Fig. 3.18A) 

to increase the phosphorylation status of AS160 at Thr642 within 15 minutes and at 

Ser588 at 45 minutes.  Phosphorylation at both residues diminished to basal levels after 2 

hours and increased again at the 6 hour time point.  A similar, although less intense 

profile of phosphorylation was observed in cells stimulated with 10 µM RTC-15 (Fig. 

3.18B).  Conversely, 500 µM metformin increased the phosphorylation of AS160 at 

both residues maximally within 15 minutes.  The phosphorylation at Thr642 diminished 

to basal levels at 2 hours, with the more pronounced phosphorylation at Ser588 

resembling basal activity at 45 minutes (Fig. 3.18C).  The pattern of AS160 

phosphorylation associated with RTC-1 and RTC-15 did not reflect that of AMPKα at 

the early times points, suggesting that these compounds may influence another regulator 

of AS160, the obvious candidate being Akt.  
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Figure 3.17 Time dependent effects of RTC-1, RTC-15 and metformin on ACC 

phosphorylation. 

 

C2C12 myotubes were stimulated with (A) 10 µM RTC-1, (B) 10 µM RTC-15 or (C) 

500 µM metformin for 15 minutes up to 6 hours in complete medium containing 0.1 % 

(v/v) horse serum.  Cells were lysed, subjected to SDS-PAGE and immunoblotted with 

antibodies against phospho-ACC Ser79 and native ACC.  Data are representative of 

three independent experiments.  

 

 



Chapter 3: Elucidating the Mechanism of Action of a Novel Anti-Diabetic Compound  

 122 

 
Figure 3.18 Time dependent effects of RTC-1, RTC-15 and metformin on AS160 

phosphorylation. 

 

C2C12 myotubes were stimulated with (A) 10 µM RTC-1, (B) 10 µM RTC-15 or (C) 

500 µM metformin for 15 minutes up to 6 hours in complete medium containing 0.1 % 

(v/v) horse serum.  Cells were lysed, subjected to SDS-PAGE and immunoblotted with 

antibodies against phospho-AS160 Thr642 and Ser588 and native AS160.  Data are 

representative of three independent experiments. 
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3.3.7 RTC-1 and RTC-15 Activate Akt 
	
The addition of 10 µM RTC-1 (Fig. 3.19A) to C2C12 myotubes resulted in a rapid 

increase in Akt phosphorylation within 15 minutes, this lessened after 30 minutes, 

subsiding to basal levels at 45 minutes and decreased further at 4 hours.  Similarly, 10 

µM RTC-15 (Fig. 3.19B) promptly increased Akt phosphorylation at 30 minutes, which 

sustained a high level of activity until the 4 hour time point.  Conversely, 500 µM 

metformin led to a progressive decrease in Akt phosphorylation over time (Fig. 3.19C). 
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Figure 3.19 Time dependent effects of RTC-1, RTC-15 and metformin on Akt 

phosphorylation. 

 

C2C12 myotubes were stimulated with (A) 10 µM RTC-1, (B) 10 µM RTC-15 or (C) 

500 µM metformin for 15 minutes up to 6 hours in complete medium containing 0.1 % 

(v/v) horse serum.  Cells were lysed, subjected to SDS-PAGE and immunoblotted with 

antibodies against phospho-Akt Ser473 and native Akt.  Data are representative of three 

independent experiments.   
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In an extended time course study, stimulation of C2C12 cells with 10 µM RTC-1 (Fig. 

3.20A) and 10 µM RTC-15 (Fig. 3.20B) led to a noticeable increase in Akt 

phosphorylation within 1 minute, which became saturated at 5 minutes and declined 

over the remainder of the time course.  This pattern was also reflected in the 

phosphorylation of AS160 in response to RTC-1 and RTC-15.  Both compounds led to 

an increase in AS160 phosphorylation after 1 minute, yet this effect began to diminish 

at Ser588 after 30 minutes and at Thr642 after 45 minutes in response to RTC-1.  RTC-15-

induced phosphorylation of AS160 subsided at Thr642 and at Ser588 after 45 minutes.   

Phosphorylation of AS160 at Thr642 returned at 6 hours and after 2 hours at Ser588 in 

response to RTC-1.  RTC-15 restored AS160 phosphorylation at Thr642 after 4 hours, 

with phosphorylation of AS160 at Ser588 augmented once more at the 6 hour time point.  

Again 500 µM metformin led to a decrease in Akt phosphorylation over time, appearing 

inhibitory at 2 hours.  Stimulation with metformin led to an increase in AS160 

phosphorylation at Thr642 and at Ser588 to a lesser extent after 1 minute, which 

diminished over time (Fig. 3.20C).   
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Figure 3.20 Time dependent effects of RTC-1, RTC-15 and metformin on Akt 

signalling. 

 

C2C12 myotubes were stimulated with (A) 10 µM RTC-1, (B) 10 µM RTC-15 or (C) 

500 µM metformin for 1 minute up to 16 hours in complete medium containing 0.1 % 

(v/v) horse serum.  Cells were lysed, subjected to SDS-PAGE and immunoblotted with 

antibodies against phospho-Akt Ser473, phospho-AS160 Thr642 and Ser588, native Akt 

and AS160.  β-actin was used as a loading control.  Data are representative of two 

independent experiments.   
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In an attempt to understand the role of this early phosphorylation of Akt in RTC-1-

stimulated glucose uptake, differentiated C2C12 cells were incubated with an inhibitor 

of Akt activity, wortmannin, for 1 hour prior to the addition of 10 µM RTC-1.  As a 

control, the effect on insulin-induced glucose uptake was also evaluated.  Pre-treatment 

with 1 µM wortmannin reduced basal glucose uptake and prevented insulin-stimulated 

glucose transport in C2C12 myotubes.  Wortmannin appeared to attenuate RTC-1-

induced glucose uptake at the early time point of 15 minutes, which corresponded to the 

activation of Akt.  At 1 hour, RTC-1 overcame the effects of wortmannin, returning 

glucose uptake to basal levels.  Glucose uptake increased again at 4 hours post RTC-1 

stimulation in the presence of wortmannin, and significantly so at 16 hours (Fig. 3.21). 
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Figure 3.21 The effect of wortmannin on insulin- and RTC-1-induced glucose 

uptake. 

 

C2C12 myotubes were treated with 1 µM wortmannin or an equal volume of the vehicle 

control, DMSO, in complete medium containing 0.1 % (v/v) horse serum for 1 hour.  

Control cells were incubated with 1 µM wortmannin for 17 hours to represent the 

effects of long-term exposure.  Cells were then stimulated with 100 nM insulin for 30 

minutes or 10 µM RTC-1 for 15 minutes up to 16 hours.  Glucose uptake was measured 

via scintillation counting of cellular [3H]-2-deoxyglucose. Data presented as mean ± 

SEM are representative of at least three experiments performed in triplicate each time.  

One-way ANOVA with a post-hoc Dunnett test using GraphPad Prism® 5 software 

demonstrates a significant increase in glucose uptake at p < 0.05; * p < 0.01; ** and p < 

0.001; ***.  A significant decrease in glucose uptake at p < 0.05 is indicated by #. 
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3.3.8 RTC-1 Does Not Directly Influence PI3K, the Major Regulator 

of Akt Activity 
 
As PI3K lies directly upstream of Akt, the effect of the compounds on this regulator of 

Akt activation was evaluated.  Using a PI3K ELISA, in which the capture protein, GRP-

1, binds PIP3 generated as part of the kinase reaction or the biotinylated-PIP3 tracer, 

wherein a lower signal was indicative of increased PI3K activity.  Wortmannin (1 µM), 

used as a control, diminished PI3K activity with p110α, p110δ and p120γ.  However, 

RTC-1 (10 µM), RTC-15 (10 µM) and metformin (500 µM) did not alter PI3K activity 

with the four class I PI3Ks, p110α, p110β, p110δ and p120γ (Fig. 3.22). 

As basal kinase activity appeared low in this assay, the direct effect of the compounds 

on PIP3 production was next examined.  Lipids were extracted from C2C12 myotubes 

stimulated with 1 µM wortmannin, 100 nM insulin, 10 µM RTC-1, 10 µM RTC-15 or 

500 µM metformin and cellular PIP3 abundance was determined using a HTRF PIP3 

assay.  No change was detected upon exposure to RTC-1, RTC-15 or metformin.  

Insulin provoked an increase in PIP3, while wortmannin significantly reduced cellular 

PIP3 concentration (Fig. 3.23).   
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Figure 3.22 The effect of RTC-1, RTC-15 and metformin on PI3K activity.  

 

Each kinase isoform (A) p110α, (B) p110β, (C) p110δ and (D) p120γ was incubated 

with each compound (1 µM wortmannin, 10 µM RTC-1, 10 µM RTC-15, 500 µM 

metformin) for 10 minutes at room temperature then processed according to PI3K 

ELISA (Merck Millipore, 17-493).  Data are presented as mean ± SEM, n=4.  One-way 

ANOVA with a post-hoc Dunnett test using GraphPad Prism® 5 software denotes 

significance at p < 0.05; *, with an increase in relative percentage to biotinylated-PIP3 

(B-PIP3) characteristic of reduced kinase activity. 
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Figure 3.23 The effect of RTC-1, RTC-15 and metformin on PIP3 production. 

 

C2C12 myotubes were incubated with 1 µM wortmannin, 100 nM insulin, 10 µM RTC-

1, 10 µM RTC-15 or 500 µM metformin for 1 hour.  Lipids were extracted and cellular 

PIP3 abundance was determined using a HTRF PIP3 assay (Merck Millipore, 17-495).  

Data are presented as mean ± SEM, n=4.  One-way ANOVA with a post-hoc Dunnett 

test using GraphPad Prism® 5 software denotes significance at p < 0.05; *. 
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3.3.9 RTC-1 Prevents TNF-α-Induced Insulin Resistance in C2C12 

Muscle Cells 
 
The powerful anti-diabetic effects of RTC-1 in vivo prompted exploration into the 

bearing this compound may have on an in vitro model of insulin resistance.  Treatment 

of C2C12 myotubes with 40 ng/ml TNF-α prevented insulin-induced glucose uptake, a 

response that could be attenuated with the addition of 10 µM RTC-1 (Fig. 3.24A).  500 

µM metformin improved glucose uptake following a 2 hour exposure to TNF-α, 

although not to the same extent as RTC-1 (Fig. 3.24B).   

 

In parallel with this, TNF-α prevented insulin-induced phosphorylation of IRS1, Akt 

and AS160 at Thr642 and Ser588, all of which were counteracted by the addition of 10 

µM RTC-1 (Fig. 3.25A).  Although the response of the insulin signalling pathway to 

TNF-α was modest, the effect of metformin on this system appeared weak, echoing the 

outcome of the glucose uptake assay (Fig. 3.25B).   

 

As TNF-α is known to provoke the inhibition of insulin signalling through the action of 

JNK, the influence of the compounds on the phosphorylation of JNK and the other 

MAPKs was assessed.  RTC-1 did not impede TNF-α-induced phosphorylation of JNK, 

Erk or p38 (Fig. 3.26A).  In contrast, metformin counteracted the influence of TNF-α on 

the three MAPKs investigated (Fig. 3.26B).  
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Figure 3.24 Glucose uptake analysis of the effect of RTC-1 and metformin on TNF-

α-induced insulin resistance. 

 

C2C12 myotubes were incubated with 40 ng/ml TNF-α for 2 hours in complete medium 

supplemented with 0.1 % (v/v) horse serum ± (A) 10 µM RTC-1 or (B) 500 µM 

metformin for a further 4 hours.  Cells were then stimulated with 100 nM insulin for a 

final 30 minutes.  Changes to glucose uptake were evaluated by measuring cellular 

[3H]-2-deoxyglucose content.  Data presented as mean ± SEM are representative of at 

least three experiments performed in triplicate.  Using the unpaired Student’s t-test 

GraphPad Prism® 5 software demonstrates a significant increase in glucose uptake at p 

< 0.01; ** and p < 0.001; ***.   
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Figure 3.25 Western blot analysis of the effect of RTC-1 and metformin on TNF-α-

induced insulin resistance. 

 

C2C12 myotubes were incubated with 40 ng/ml TNF-α for 2 hours in complete medium 

supplemented with 0.1 % (v/v) horse serum ± (A) 10 µM RTC-1 or (B) 500 µM 

metformin for a further 4 hours.  Cells were then stimulated with 100 nM insulin for a 

final 30 minutes.  Cells were lysed, subjected to SDS-PAGE and immunoblotted with 

antibodies against phospho-insulin receptor β Tyr1150/1151, phospho-IRS1 Tyr612, 

phospho-Akt Ser473, phospho-AS160 Thr642 and Ser588, native insulin receptor β, IRS1, 

Akt and AS160.  β-actin was used as a loading control.  Data are representative of two 

independent experiments.   
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Figure 3.26 The effect of RTC-1, metformin and TNF-α on the phosphorylation of 

the MAPKs. 

 

C2C12 myotubes were incubated with 40 ng/ml TNF-α for 2 hours in complete medium 

supplemented with 0.1 % (v/v) horse serum ± (A) 10 µM RTC-1 or (B) 500 µM 

metformin for a further 4 hours.  Cells were then stimulated with 100 nM insulin for a 

final 30 minutes.  Cells were lysed, subjected to SDS-PAGE and immunoblotted with 

antibodies against phospho-JNK Thr183/Tyr185, phospho-Erk Thr202/Tyr204, phospho-p38 

Thr180/Tyr182, native JNK, Erk and p38.  β-actin was used as a loading control.  Data are 

representative of two independent experiments. 
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3.3.10  RTC-1 Compliments the Action of Insulin 
	
In an effort to elucidate the mechanism by which RTC-1 ameliorated insulin-induced 

glucose transport in the presence of TNF-α, the effect of the compound on insulin-

stimulated glucose uptake alone was evaluated.  Both insulin and RTC-1 produced a 

marked increase in glucose uptake in C2C12 muscle cells.  The combination of RTC-1 

and insulin surpassed the response to these molecules alone (Fig. 3.27).   

 

To determine if RTC-1 was demonstrating insulin sensitising properties, the impact of 

the compound on insulin-induced phosphorylation of the insulin signalling pathway was 

examined.  As expected, insulin stimulation alone amplified the phosphorylation of the 

insulin receptor, IRS1, Akt and AS160 in C2C12 myotubes.  There was no indication of 

RTC-1 altering the phosphorylation status of the insulin receptor, IRS1 or Akt in cells 

incubated with the compound alone. However, RTC-1 augmented AS160 

phosphorylation at Thr642 and at Ser588, presumably via AMPK activation at this later 

time point.  In cells stimulated with RTC-1 followed by insulin, no significant change 

was seen in the phosphorylation of the insulin receptor or IRS1 when compared to the 

action of insulin.  However, an increase in the phosphorylation of Akt and of AS160 at 

Thr642 and at Ser588, beyond that of insulin stimulation alone, was seen following 

treatment with RTC-1 and insulin (Fig. 3.28). 

 



Chapter 3: Elucidating the Mechanism of Action of a Novel Anti-Diabetic Compound  

 137 

 
Figure 3.27 The effect of RTC-1 on insulin-induced glucose uptake. 

 

C2C12 myotubes were stimulated with 10 µM RTC-1 for 4 hours in complete medium 

containing 0.1 % (v/v) horse serum, cells were then incubated with KRBG ± 100 nM 

insulin for 30 minutes.  Changes to glucose uptake were established by measuring the 

cellular levels of [3H]-2-deoxyglucose.  Data are representative of two independent 

experiments presented as mean ± SEM.  One-way ANOVA with a post-hoc Tukey test 

using GraphPad Prism® 5 software indicates a significant increase in glucose uptake at 

p < 0.05; * and p < 0.001; ***.   
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Figure 3.28 The effect of RTC-1 on insulin-induced phosphorylation of the insulin 

signalling pathway. 

 

C2C12 myotubes were stimulated with 10 µM RTC-1 for 4 hours in complete medium 

containing 0.1 % (v/v) horse serum, cells were then incubated with KRBG ± 100 nM 

insulin for 30 minutes.  Following this, cells were lysed, proteins separated by SDS-

PAGE and immunoblotted with antibodies against phospho-insulin receptor β 

Tyr1150/1151, phospho-IRS1 Tyr612, phospho-Akt Ser473, phospho-AS160 Thr642 and 

Ser588, native insulin receptor β, IRS1, Akt and AS160.  β-actin was used as a loading 

control.  Data are representative of two independent experiments.   
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3.3.11  RTC-1 Prevents Adipogenesis 
	
As RTC-1-treated mice exhibited a reduction in weight gain, the influence of the 

compound on the process of adipogenesis was examined in vitro to further explore this 

effect.  In the 3T3L-1 preadipocyte cell line induction medium caused extensive 

morphological changes resulting in the accumulation of intracellular lipid droplets.  

Using Oil Red O as an aid to visualisation, RTC-1 was seen to potently inhibit the 

process of adipogenesis when added at the time of induction (Fig. 3.29A).  Conversely, 

metformin demonstrated little effect on adipogenesis, which the quantification of the 

Oil Red O stain revealed to be insignificant (Fig. 3.29B).  Western blot analysis was 

then employed to determine if AMPK played an influential role in this observation 

through the action of ACC, as inhibition of this regulator of fatty acid synthesis, which 

can be achieved through AMPK-induced phosphorylation, has been found to inhibit 

adipogenesis (Cordonier et al., 2015).  Incubation of 3T3-L1 cells with RTC-1 for the 

duration of the differentiation process augmented AMPKα and ACC phosphorylation.  

A moderate increase in the phosphorylation of AMPKα and a considerable increase in 

ACC phosphorylation was observed in cells stimulated with metformin (Fig. 3.30).   

 

The influence of the compounds on fully differentiated 3T3-L1 adipocytes was then 

investigated.  Both RTC-1 and metformin instigated a slight decrease in lipid 

accumulation as visualised by Oil Red O staining (Fig. 3.31A).  However, 

quantification of the stain revealed no significant change in lipid content in response to 

the compounds when compared to the vehicle control, DMSO (Fig. 3.32B).  At the 

protein level, the phosphorylation status of AMPKα and ACC, were marginally 

increased in response to RTC-1 and metformin when compared to differentiated 3T3-L1 

adipocytes incubated with DMSO (Fig. 3.33).   
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Figure 3.29 Visual analysis of the effect of RTC-1 and metformin on 3T3-L1 

adipocyte differentiation. 

 

3T3-L1 preadipocytes were cultured in control medium or adipogenic medium in the 

presence or absence of 10 µM RTC-1 or 500 µM metformin.  Medium was changed 

every 48 hours.  (A) Lipid accumulation was visualised after day 8 of differentiation by 

Oil Red O staining.  Images are representative of two independent experiments.  Cells 

were visualised with a x100 magnification.  (B) Total lipid content was quantified by 

eluting the Oil Red O stain with isopropanol and measuring absorbance at 520 nm.  

One-way ANOVA with a post-hoc Tukey test using GraphPad Prism® 5 software 

denotes significance at p < 0.001; ***. 
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Figure 3.30 The effect of RTC-1 and metformin on AMPKα and ACC 

phosphorylation in 3T3-L1 adipocytes. 

 

3T3-L1 preadipocytes were cultured in control medium or adipogenic medium in the 

presence or absence of 10 µM RTC-1 or 500 µM metformin.  Medium was changed 

every 48 hours.  On day 8, cells were lysed, subjected to SDS-PAGE and 

immunoblotted with antibodies against phospho-AMPKα Thr172, phospho-ACC Ser79 

and native AMPKα and ACC.  β-actin was used as a loading control.  Data are 

representative of two independent experiments. 
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Figure 3.31 Visual analysis of the effect of RTC-1 and metformin on fully 

differentiated 3T3-L1 adipocytes. 

 

Fully differentiated adipocytes were stimulated with 10 µM RTC-1 or 500 µM 

metformin.  Medium was changed every 48 hours.  (A) Lipid accumulation was 

visualised microscopically with a x100 magnification using an Oil Red O stain.  Images 

are representative of two independent experiments.  (B) Total lipid content was 

quantified by eluting the Oil Red O stain with isopropanol and measuring absorbance at 

520 nm.  One-way ANOVA with a post-hoc Tukey test using GraphPad Prism® 5 

software denotes significance at p < 0.001; ***. 
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Figure 3.32 The effect of RTC-1 and metformin on AMPKα and ACC 

phosphorylation in fully differentiated 3T3-L1 adipocytes. 

 

3T3-L1 preadipocytes were cultured in control medium or adipogenic medium.  Fully 

differentiated adipocytes were stimulated with 10 µM RTC-1 or 500 µM metformin, 

with fresh medium added every 48 hours.  On day 8, cells were lysed, subjected to 

SDS-PAGE and immunoblotted with antibodies against phospho-AMPKα Thr172, 

phospho-ACC Ser79 and native AMPKα and ACC.  β-actin was used as a loading 

control.  Data are representative of two independent experiments. 
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To determine if this response translated into other cell types, murine MSC, which 

readily differentiate into fat cells given the appropriate conditions, were incubated with 

RTC-1 or metformin throughout the differentiation process.  MSC incubated with 

adipogenic medium containing DMSO underwent morphogenesis with the formation of 

large intracellular lipid droplets.  RTC-1 reduced the capacity of MSC to differentiate 

into adipocytes, while cells incubated with metformin exhibited intracellular lipid 

droplets similar to the control (Fig. 3.33A).  Quantification of the stain demonstrated the 

significant influence of the adipogenic medium on MSC differentiation, an effect that 

RTC-1 markedly reduced, metformin however, demonstrated less force (Fig. 3.33B).  

Analysis of the AMPK pathway revealed that 10 µM RTC-1 impacted on the 

phosphorylation of both AMPKα and ACC substantially, while 500 µM metformin 

exhibited little effect (Fig. 3.34). 
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Figure 3.33 Visual analysis of the effect of RTC-1 and metformin on murine MSC 

adipogenesis. 

 

MSC isolated from the femur and tibia of 6 – 8 week old female BALB/c mice were 

cultured in control medium or adipogenic medium in the presence or absence or 10 µM 

RTC-1 or 500 µM metformin for 21 days.  (A) Lipid accumulation was visualised 

microscopically with a x100 magnification using an Oil Red O stain.  Images are 

representative of three independent experiments.  (B) Total lipid content was quantified 

as described in Section 2.2.1.2.  One-way ANOVA with a post-hoc Tukey test using 

GraphPad Prism® 5 software denotes significance at p < 0.05; *. 
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Figure 3.34 The effect of RTC-1 and metformin on AMPKα and ACC 

phosphorylation in murine MSC during adipogenesis. 

Murine MSC were cultured in control medium or adipogenic medium in the presence or 

absence or 10 µM RTC-1 or 500 µM metformin for 21 days.  Cells were lysed, 

subjected to SDS-PAGE and immunoblotted with antibodies against phospho-AMPKα 

Thr172, phospho-ACC Ser79 and native AMPKα and ACC.  β-actin was used as a 

loading control.  Data are representative of two independent experiments. 
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3.3.12  RTC-1 Augments MSC Osteogenesis 
	
To ensure RTC-1 did not negatively alter other lineages of cellular differentiation the 

effect of the compound on MSC bone differentiation was also examined.  Visualisation 

of Alizarin Red S demonstrated the modest response of MSC to the process of 

osteoblast differentiation when compared to undifferentiated cells (Fig. 3.35A). 

However, quantification of the stain revealed a significant increase in mineralisation in 

cells incubated with the osteogenic medium (Fig. 3.35B).  While metformin appeared to 

marginally increase the process of differentiation, cells incubated with RTC-1 assumed 

the osteogenic morphology more readily, which quantification of the stain revealed to 

be significant.  As the activation of AMPK is known to positively regulate osteoblast 

mineralisation (Kanazawa et al., 2009), the role of RTC-1 and metformin in augmenting 

the phosphorylation of this effector protein was investigated.  Differentiated control 

cells displayed increased phosphorylation of AMPKα when compared to 

undifferentiated cells, while cells stimulated with metformin marginally improved the 

level of activity, RTC-1 was found to augment this response considerably (Fig. 3.36). 
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Figure 3.35 Visual analysis of the effect of RTC-1 and metformin on murine MSC 

osteogenesis. 

 

Murine MSC were cultured in control medium or osteogenic medium in the presence or 

absence or 10 µM RTC-1 or 500 µM metformin for 21 days.  (A) Calcium deposition 

stained with Alizarin Red S was visualised microscopically with a x100 magnification.  

(B) Total mineral deposition was quantified as described in Section 2.2.1.3.  One-way 

ANOVA with a post-hoc Tukey test using GraphPad Prism® 5 software denotes 

significance at p < 0.001; ***, n=3. 
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Figure 3.36 The effect of RTC-1 and metformin on AMPKα phosphorylation in 

murine MSC during osteogenesis. 

 

Murine MSC were cultured in control medium or osteogenic medium in the presence or 

absence or 10 µM RTC-1 or 500 µM metformin for 21 days.  Cells were lysed, 

subjected to SDS-PAGE and immunoblotted with antibodies against phospho-AMPKα 

Thr172 and native AMPKα.  β-actin was used as a loading control.  Data are 

representative of three independent experiments.   
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3.4  Discussion 
	
This study has delved into the underlying mechanism by which RTC-1 restored normal 

glucose disposal, augmented insulin sensitivity and prevented weight gain in a murine 

diet-induced model of type 2 diabetes.  The structure of this novel compound has been 

demonstrated to be central to its activity as a derivative of RTC-1, RTC-15, produced 

similar results to the parent compound in vitro.  Comparing the action of this novel 

compound to that of metformin, RTC-1 demonstrated very superior effects in amending 

some of the many in vitro representations of the pathophysiology of type 2 diabetes. 

3.4.1 Consequences of RTC-1-Induced Inhibition of NADH: 

ubiquinone oxidoreductase Activity 
	
Both RTC-1 and RTC-15 have been found to inhibit NADH:ubiquinone oxidoreductase 

activity with respective IC50 values of 27 µM and 104 µM.  Although metformin is 

believed to directly stimulate glucose uptake through AMPK, activated by the inhibition 

of NADH:ubiquinone oxidoreductase (Owen et al., 2000), it failed to significantly alter 

NADH:ubiquinone oxidoreductase activity at the concentrations assayed.  Studies 

carried out by Jenkins and colleagues (2013), found metformin to be a weak inhibitor of 

NADH:ubiquinone oxidoreductase, with an IC50 of 27 mM.   In line with this finding, 

Bridges and colleagues (2014), observed metformin to be the weakest of the five 

pharmacologically relevant biguanides in attenuating complex I catalysis, demonstrating 

an IC50 of 19.4 ± 1.4 mM in bovine heart mitochondria, 22.6 ± 4.3 mM in Pichia 

pastoris mitochondria and 60.7 ± 8.5 mM in the mitochondria of E. coli.  As these 

predicted IC50 values exceed the maximal soluble concentration possible in the assay 

employed in this study, it is unsurprising that metformin did not appear to perturb 

NADH:ubiquinone oxidoreductase activity.    
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The action of RTC-1 appears to be restricted to NADH:ubiquinone oxidoreductase as 

oxidative phosphorylation could be restored with the addition of succinate, the complex 

II substrate.  This has also been observed to be true of metformin (Hinke et al., 2007, 

Wheaton et al., 2014).  These compounds, incapable of uncoupling the energy 

harnessing process of mitochondria outright, appear to cause little detrimental damage 

to the cell.  Nonetheless, any potential resultant transient decrease in cellular ATP and 

rise in cellular ADP and AMP could provoke the activation of AMPK.  

RTC-1 and RTC-15 stimulate the phosphorylation of AMPKα, and its downstream 

effector proteins, AS160 and ACC in a more pronounced manner to metformin despite 

the 50-fold higher dose of the common anti-diabetic therapy, echoing the previous 

finding in terms of drug potency.  The enhanced influence of RTC-1 and RTC-15 

resonates through to their impact on glucose transport, with RTC-1 demonstrating signs 

of longevity as glucose uptake is elevated for some time after cells have been washed 

free of the compound.  This may be due in part to the lipophilic properties of RTC-1, 

which also reflects its ability to provoke these effects at relatively low concentrations.   

As patients often demonstrate poor adherence to the multitude of daily doses required of 

metformin to effectively regulate glycaemic control (Donnan et al., 2002, García-Pérez 

et al., 2013), the enhanced potency of RTC-1 should promote its use as a more 

manageable therapeutic regime, particularly when its low toxicity profile is also 

considered. 

3.4.2 RTC-1-Induced Activation of Akt 
	
Along with being almost 1,000-fold more efficacious than metformin in the inhibition 

of NADH:ubiquinone oxidoreductase, the enhanced effects of RTC-1 on a direct 

modulator of glucose uptake, AS160, may also lie with its influence on the activity of 
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Akt.  RTC-1 was found to stimulate the phosphorylation of Akt and of AS160 in a 

superior manner to metformin, predominantly at Thr642, a critical consensus site in 

facilitating GLUT4 translocation.  As insulin-stimulated phosphorylation of AS160 at 

Thr642 is impaired in patients with type 2 diabetes (Middelbeek et al., 2013), the 

multifaceted action of RTC-1 through Akt strengthens its potential as a promising anti-

diabetic therapy.  However, the direct role RTC-1 plays in the augmenting the 

phosphorylation of Akt remains obscure as this novel compound and its derivative 

demonstrated no impact on the major upstream regulator of Akt, PI3K.  It is therefore 

likely the RTC compounds influence another aspect of Akt activation.    

Although most modulators of Akt activity rely on PI3K dependent relocalisation of Akt 

to the plasma membrane via the PH domain (Toker and Marmiroli, 2014), 

diphosphoinositol pentakisphosphate (IP7), synthesised by a family of three inositol 

hexaphosphate kinases (IP6Ks) (Stephens et al., 1993), has recently emerged as an Akt 

regulator competing with this mechanism (Chakraborty et al., 2010).  In Dictyostelium 

discoideum, IP7 has been shown to compete with PIP3 at PH domains, preventing PIP3 

signalling (Luo et al., 2003).  Prasad and colleagues (2011), specifically demonstrated 

the ability of IP7 to compete with PIP3 at the PH domain of Akt, negatively regulating 

PIP3-mediated cellular functions in neutrophils.  Furthermore, IP6K1 knockout mice 

which have depleted IP7 levels, demonstrate a lean phenotype and have elevated Akt 

activity in response to insulin stimulation (Chakraborty et al., 2010).   

 

IP6K’s have a Km for ATP between 1 and 1.4 mM, making IP7 synthesis very sensitive 

to fluctuations in ATP levels (Wunderberg and Mayr, 2012). The effect of the RTC 

compounds on NADH:ubiquinione oxidoreductase activity and subsequently 

intracellular ATP levels, may therefore, inhibit the function of IP6K to promote Akt 
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activation.  Although further experimentation would be required to confirm this, it is 

instructive that the IP6K inhibitor TNP, which decreases IP7 production to activate Akt, 

demonstrates similar effects to RTC-1 in that it also increases the phosphorylation of 

AMPKα and ACC (Sun et al., 2015).  While the activation of Akt appears promising to 

attenuate the symptoms of type 2 diabetes, stimulation of Akt as a therapeutic target 

must be tightly regulated as hyperactivation of this protein is thought to be involved in 

the development of many human cancers (Kumar et al., 2013).  The role of the RTC 

compounds is encouraging in this regard as RTC-induced activation of Akt and 

consequentially AS160, is very short lived and is rapidly replaced by AMPK-dependent 

activation of AS160 to further promote glucose uptake.   

3.4.3 Akt and AMPK-Mediated Signalling  
	
The action of the RTC compounds in stimulating glucose transport appears to be 

stringently regulated.  The initial surge of RTC-1-induced glucose uptake is thought to 

be dependent on Akt activation, as wortmannin was seen to effectively inhibit glucose 

uptake after a 15 minute exposure of C2C12 myotubes to RTC-1, while this impact 

lessened at the later time points.  This initial effect on Akt, whether through the 

inhibition of IP6K or by other means, is quickly attenuated, followed by the activation 

of AMPK, indicative of a feedback relationship between the two proteins.  A reduction 

in ATP levels, such as that triggered by the inhibition of NADH:ubiquinone 

oxidoreductase is known to destabilise the phosphorylation state of Akt by exposing 

phosphorylated sites to phosphatases (Chan et al., 2011, Lin et al., 2012).  Furthermore, 

Akt has been shown to phosphorylate rat AMPK at Ser485, which renders the kinase 

inactive (Horman et al., 2006).  The intricate relationship between Akt and AMPK may 

be fundamental to the power of the RTC compounds in stimulating glucose uptake.  As 

the initial activity of Akt subsides, so too does that of AS160, only to return under the 
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influence of AMPK.  The latter surge in glucose uptake appears to be dependent on the 

action of AMPK as it was effectively attenuated with the addition of Compound C.   

A proteomics study conducted by Dr. Pamela Young (Young et al., 2016), reinforces 

the potent downstream effects of the RTC compounds in targeting metabolomic 

proteins to restore cellular energy balance.  Notably, RTC-15 was found to increase the 

expression of triose phosphate isomerase, a protein that contributes to the process of 

glycolysis, of Annexin A2, a calcium binding protein involved in the fusion of plasma 

secretory vesicles, such as those of GLUT4, with the plasma membrane and of ECH1, 

an auxiliary enzyme of β-oxidation involved in preparing unsaturated fatty acids for 

fatty acid oxidation. 

3.4.4 RTC-1-Induced Effects on Insulin Signalling 
	
To better understand the anti-diabetic properties of RTC-1, the pro-inflammatory 

cytokine TNF-α was used to mimic an insulin resistant state in vitro.  TNF-α prevented 

insulin-induced glucose uptake by increasing the phosphorylation of the MAPKs thus 

leading to the inhibition of key components of the insulin signalling pathway.  Both 

RTC-1 and metformin overcame the influence of TNF-α, improving glucose uptake; 

RTC-1 elicited a more efficacious response at a much lower concentration.  At the 

protein level, metformin did not noticeably attenuate the impact of TNF-α on the insulin 

signalling pathway.  However, metformin markedly reduced the phosphorylation of 

JNK, Erk and p38.  The modest impact of metformin on this system may lie with its 

ability to constrain the phosphorylation of the MAPKs, as small molecule inhibitors of 

JNK have been found to restore insulin sensitivity in a mouse model of type 2 diabetes 

(Stebbins et al., 2008).  Additionally, metformin has been reported to inhibit the action 

of the MAPKs (Isoda et al., 2006, Simon-Szabó et al., 2014).  However, controversy 
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remains in this area as Kumar and Dey (2002), found that metformin increased p38 

phosphorylation, having no effect on Erk or JNK.  Furthermore, Lee and colleagues 

(2012) observed that metformin positively impacted on the phosphorylation of JNK.  As 

metformin demonstrated little effect in restoring the signalling capabilities of insulin, 

the influence of metformin on AMPK alone may have led to the moderate increase in 

glucose uptake in the presence of TNF-α.  Given the fact that metformin demonstrates 

no effect on the insulin signalling pathway in diabetic patients (Kim et al., 2002, 

Karlsson et al., 2005), nor does it act as an insulin sensitizer in mouse skeletal muscle 

(Turban et al., 2012), it seems likely that the modest influence of metformin bypasses 

the insulin signalling pathway.  

 

RTC-1 on the other hand, demonstrated no effect on the MAPKs yet restored insulin-

induced glucose uptake in a much more successful and significant manner to metformin. 

As RTC-1 was found to augment the signalling capabilities of insulin in cells stimulated 

with TNF-α, the enhanced effect of this compound was postulated to lie in its ability to 

also act as an insulin sensitizer.  Although RTC-1 demonstrated no direct effect on the 

insulin signalling pathway, in the presence of this compound the action of insulin 

significantly improved downstream of Akt.  However, the longer-lasting potent effects 

of RTC-1 on AMPK may have given rise to the increase in AS160 phosphorylation 

which enhanced glucose uptake.  Nonetheless, as RTC-1 was observed to restore 

insulin-induced phosphorylation of IRS1 in the presence of TNF-α, a protein it probably 

does not directly interact with, an unresolved element of the influence of RTC-1 

remains.  Analysis of other downstream targets of TNF-α that negatively impact on 

insulin signalling such as IKKβ and SOCS3, may give further insight into the regulatory 

effect of RTC-1 on TNF-α-induced insulin resistance.  Given that the inhibition of 
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IP6K1 either through knockout studies or by pharmacological intervention has been 

suggested to increase insulin sensitivity (Mackenzie and Elliott, 2014), the proposed 

impact of RTC-1 on this system to regulate Akt activity may explain the apparent 

insulin sensitising effects of the compound. 

3.4.5 The Anti-Adipogenic Effects of RTC-1 
	
As obesity is a major contributor to the genesis of type 2 diabetes, the reduction in 

weight gain observed in RTC-1 HFD-fed mice warranted further exploration.  RTC-1 

was found to potently block adipogenesis in 3T3-L1 preadipocytes and murine MSC 

with a concurrent rise in AMPKα and ACC phosphorylation.  Direct pharmacological 

attenuation of ACC (Levert et al., 2002) or transient inhibition through the 

phosphorylation of Ser79 via AMPK (Ejaz et al., 2009) has been found to attenuate the 

lipogenic activity of ACC and effectively inhibit adipogenesis.  Although a significant 

decrease in adipogenesis was not observed with the addition of metformin, despite the 

increase in ACC phosphorylation, several studies have demonstrated the anti-

adipogenic abilities of metformin and other AMPK activating molecules (Giri et al., 

2006, Ahn et al., 2008, Zhou et al., 2009, Molinuevo et al., 2010, Vingtdeux et al., 

2011).  RTC-1 and metformin were found to moderately reduce lipid accumulation in 

fully differentiated 3T3-L1 adipocytes with a modest increase in AMPKα and ACC 

phosphorylation.  This finding correlates with the effects of RTC-1 in vivo as the 

compound prevented HFD-fed mice from gaining weight, yet it did not appear to reduce 

pre-established adipose tissue.  

3.4.6 The Impact of RTC-1 on Osteogenesis 
	
RTC-1-induced phosphorylation of AMPKα positively altered the osteogenic 

differentiation process of murine MSC.  As patients with diabetes often present with 
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osteoporosis (Krakauer et al., 1995), this result proves particularly meaningful given the 

fact that administration of the anti-diabetic, roziglitizone, results in significant bone loss 

(Rzonca et al., 2004).  In line with studies of osteoblastic differentiation in MC3T3-E1 

cells (Kanazawa et al., 2008) and rat bone marrow progenitor cells (Molinuevo et al., 

2010), quantification of Alizarin Red S also demonstrated a modest increase in 

osteogenesis associated with metformin-induced AMPK activation.  Consistent with 

this, a role for AMPK signalling in skeletal physiology has been demonstrated by Shah 

and colleagues (2010).  Primary rat calvaria osteoblasts cultured in the presence of 

AMPK activators, AICAR and metformin exhibit a dose-dependent increase in 

trabecular bone nodule formation, while AMPKα knockout mice demonstrate smaller 

cortical and trabecular bone compartments when compared to wild type mice.  AMPK 

is believed to influence this process of differentiation by increasing the expression of 

eNOS and bone morphogenetic protein 2 (Kanazawa et al., 2009), both of which are 

critical in the regulation of bone mass and bone turnover by modulating osteoblast 

function (Yamaguchii et al., 2000, Armour et al., 2001).  

3.4.7 Summary 
	
This study has established the basis for the anti-diabetic and anti-obesity effects a novel 

compound exhibited in a dietary-induced murine model of type 2 diabetes (Fig. 3.37). 

RTC-1-induced inhibition of NADH:ubiquinone oxidoreductase leads to a transient 

decrease in cellular ATP levels which may reduce IP6K-induced IP7 production to 

promote Akt activation and sensitise the cell to the action of insulin.  This transient 

alteration to cellular energy also facilitates the activation of AMPK with a successive 

decrease in Akt activity and increase in the phosphorylation of AS160 and ACC.  The 

superior impact of RTC-1 on glucose transport, insulin resistance, adipogenesis and 

osteogenesis when compared to metformin, advocates this novel molecule as a powerful 
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therapy capable of regulating many facets of the pathophysiology of type 2 diabetes. 

 

Figure 3.37 Proposed mechanism of action of RTC-1. 

RTC-1 inhibits NADH:ubiquinone oxidoreductase activity, transiently decreasing 

cellular ATP levels.  This may prevent IP6K-induced IP7 synthesis, sensitising the cell 

to the action of insulin-stimulated PIP3 production, which can promote glucose transport 

through Akt.  The likely build up of ADP may then be sensed by adenylate kinase, 

which converts two molecules of ADP into one ATP and one AMP molecule.  The rise 

cellular ADP and AMP promotes AMPK phosphorylation and leads to a decrease in 

Akt activity.  Activated AMPK restores cellular energy balance by stimulating glucose 

transport through the action of AS160 and by reducing fatty acid synthesis as it inhibits 

ACC, thus preventing the conversion of acetyl-CoA to malonyl-CoA. 
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4.1 Introduction 
	
Type 2 diabetes is primarily caused by a systemic insulin resistant state to which 

obesity is a major contributing factor.  Increasing visceral adipose tissue provokes a 

chronic, low-grade, inflammatory response that negatively impacts on the insulin 

signalling pathway (Weyer et al., 2001, Kahn et al., 2006, Qatanani and Lazar, 2007, 

Emanuela et al., 2012, Osborn and Olefsky, 2012).  The rapidly rising incidence of 

type 2 diabetes, along with variable subject responses and the increasing limitations 

of current therapies, urge the need for innovative, effective strategies to prevent the 

development and progression of this condition (Rochester and Akiyode, 2014).  

GPCRs represent a rich source of drug targets for many disease states.  These seven 

transmembrane receptors, the largest family of proteins in the genome, convey major 

external signals to the internal environment of the cell, with approximately 30 – 40 

% of all marketed drugs targeting these versatile proteins (Ma and Zemmel, 2002, 

Lappano and Maggiolini, 2011, Tautermann, 2014).   

 

GPR21, an orphan GPCR, has recently emerged as a potential novel target for the 

treatment of type 2 diabetes (Gardner et al., 2012, Osborn et al., 2012).  GPR21 

knockout mice fed on a HFD demonstrated increased insulin sensitivity, improved 

glucose tolerance and a reduction in pro-inflammatory markers when compared to 

wild type littermates.  Both the identity of the ligand for this receptor and the precise 

mechanism by which it mediates this action remain unclear.  Analysis of the G 

protein to which GPR21 couples to amplify signal potential is key to understanding 

the activity and downstream consequences of receptor activation.  It has been 

suggested that GPR21 couples with Gαq (Bresnick et al., 2003) and specifically 

Gα15/16 (Xiao et al., 2008).  Selective GPCR coupling to Gαq proteins leads to the 
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activation of PLC, which cleaves PIP2 into the secondary messengers, DAG and IP3 

(Fig. 4.1).  The membrane-bound DAG activates PKC, whereas the soluble IP3 binds 

to its receptor in the endoplasmic reticulum triggering the release of Ca2+.  

Downstream of this, a wide range of intracellular pathways can be activated, 

including the MAPK cascade (Naor et al., 2000, Chan and Wong, 2004, Goldsmith 

and Dhanasekaran, 2007), of which JNK is an established contributor to the 

development of insulin resistance (Aguirre et al., 2000). 

 

 

Figure 4.1 Gαq signalling. 

	
Upon GPCR activation, a G protein binds to the receptor, which facilitates the 

exchange of bound GDP for GTP on the α-subunit.  The active GTP bound G protein 

then dissociates from the receptor forming a Gα monomer and a Gβγ dimer to 

modulate downstream effector proteins.  The Gαq family comprises four subtypes; 

Gαq, Gαq/11, Gα14 and Gα15/16 which activate PLC, an enzyme that catalysis the 

hydrolysis of PIP2 into DAG and IP3.  DAG directly activates PKC while IP3 

released into the cytoplasm mobilises Ca2+ from intracellular stores to influence PKC 

before it is rapidly metabolised into IP2 and subsequently IP1.  PKC signals to a 

variety of proteins including MAPKKKs, which phosphorylate MAPKKs; highly 

specific activators of the MAPKs; Erk, p38 and JNK.  
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4.2  Aims and Objectives 
 
This study aimed to elucidate the signalling mechanisms of GPR21 and the role it 

may play in obesity-associated type 2 diabetes.  Given the impact of knocking out 

this receptor in vivo and the potential role it may play in the development of insulin 

resistance, moderating the effects of GPR21 with novel compounds may hold great 

promise as a prospective therapy for type 2 diabetes.  As the structure of GPR21 is 

unknown, homology modelling and ligand docking studies were employed to 

identify potential small molecules capable of binding GPR21 and attenuating the 

downstream effects of the receptor. 
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4.3 Results 

4.3.1 Increased Expression of GPR21 is Observed in the Adipose 

Tissue of HFHS-Fed Mice 
 
Western blot analysis of the epididymal fat pads of wild type C57BL/6J mice, a 

meaningful indicator of obesity-related diabetes, revealed a substantial increase in 

GPR21 expression in HFHS-fed mice when compared to chow fed control mice (Fig. 

4.2A).  A concurrent increase in the content of the macrophage marker F4/80 was 

also observed in HFHS-fed mice (Fig. 4.2B).  As the epididymal fat pads of the mice 

demonstrated differential expression of standard housekeeping proteins such as β-

actin, Coomassie brilliant blue was used to confirm equal protein loading between 

groups (Fig. 4.2C).  A rise in F4/80 expression was also seen at the mRNA level 

(Fig. 4.2D) along with a notable increase in the pro-inflammatory cytokine TNF-α in 

HFHS-fed mice (Fig. 4.2E).   
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Figure 4.2 Analysis of the epididymal fat pads of chow fed and HFHS-fed mice. 

 

Epididymal fat pads of chow fed and HFHS-fed C57BL/6J mice were lysed, proteins 

separated by SDS-PAGE and expression of (A) GPR21 and (B) the macrophage 

marker F4/80, were evaluated by Western blotting.  Representative Western blots are 

shown along with relative densities obtained with ImageJ software, presented as 

mean ± SEM, n=3.  (C) A representative Coomassie brilliant blue stained gel was 

used to confirm equal loading of the extracted proteins.  qRT-PCR was also used to 

assess the mRNA levels of (D) F4/80 and (E) TNF-α, relative to the housekeeping 

control, HPRT.  Using the unpaired Student’s t-test, GraphPad Prism® 5 software 

demonstrates significance at p < 0.05; * and p < 0.01; **. 
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4.3.2 GPR21 is a Ubiquitously Expressed Protein 
	
In an attempt to better understand this receptor, the expression profile of GPR21 in 

various cell lines was analysed through Western blotting (Fig. 4.3).  Upon short 

immunoblotting exposure, GPR21 was not detected in C2C12 muscle cells, in THP-

1 monocytes or in the macrophage cell lines J774, RAW 264.7 and BMDM.  

Relatively low levels of the receptor were observed in A549 alveolar basal epithelial 

lung cells, CHO cells and SH-SY5Y neuroblastoma cells.  COS-1 and HEK293T 

kidney cells expressed a greater amount of GPR21, with more again detected in 

HepG2 liver cells.  The greatest abundance of GPR21 by far was found in 

differentiated 3T3-L1 adipocytes.  However, with a longer exposure time it was clear 

the monocytes and various macrophage cell lines were not completely devoid of the 

receptor, with C2C12 muscle cells also potentially exhibiting expression of GPR21.  

 
 

 

 
 
Figure 4.3 Western blot analysis of GPR21 expression in various cell lines. 

 
The indicated cell lines were grown to confluency, lysed, subjected to SDS-PAGE 

and immunoblotted with antibodies against GPR21 with short (SE) and long (LE) 

exposures.  β-actin was used as a loading control.  Data presented are representative 

of two independent experiments.  
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4.3.3 GPR21 cDNA can be effectively Transfected into HEK293T, 

RAW 264.7 and 3T3-L1 cells 

In order to explore the potential of an increase in GPR21 levels, overexpression of 

the receptor in a cell line was carried out.  HEK293T cells were selected as the 

primary cell for this study, as this human cell line expresses the SV40 large T 

antigen, which can bind to SV40 enhancers of expression vectors, yielding increased 

protein production.  Given the differential expression profile of GPR21 in adipocytes 

and macrophages, resident cells of the epididymal fat pads, transfection efficiencies 

with RAW 264.7 macrophages and 3T3-L1 adipocytes were also investigated.  To 

determine optimal transfection conditions HEK293T cells were transiently 

transfected with eGFP using Lipofectamine® 2000, whereas RAW 264.7 

macrophages and 3T3-L1 preadipocytes were transfected with eGFP using 

Lipofectamine® 3000 (Fig. 4.4A).  Cells transiently transfected under the indicated 

conditions were found to successfully express GPR21 as confirmed by Western 

blotting for the myc tag incorporated into the C-terminus of the receptor (Fig. 4.4B).   
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Figure 4.4 Optimisation of cell line transfection. 

HEK293T, RAW 264.7 and 3T3-L1 cells were seeded at the indicated densities and 

left to adhere for 24 hours.  Cells were then transfected with various ratios of eGFP: 

Lipofectamine® 2000 or Lipofectamine® 3000 as outlined in the manufacturer’s 

instructions.  (A) HEK293T and RAW 264.7 cells were left for 24 hours at 37 °C 

then imaged with an inverted Olympus CKX41 fluorescent microscope.  3T3-L1 

cells demonstrating expression of the plasmid after 24 hours were differentiated as 

outlined in Section 2.2.1.2.  Cells were visualised microscopically every two days 

and imaged on day six of the differentiation process.  (B) Using the outlined, 

optimised conditions, cells were transfected with GPR21 or the empty vector 

pCMV6-Entry.  After 24 hours, or at the end of the differentiation process in the case 

of 3T3-L1 adipocytes, cells were lysed, subjected to SDS-PAGE and immunoblotted 

for the myc tag incorporated into the C-terminus of GPR21 to confirm expression.  

β-actin was used as a loading control. 
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4.3.4 GPR21 is a Constitutively Active Receptor, Signalling 

Preferentially Through Gα15/16 

As HEK293T cells transiently expressed GPR21 with the greatest efficiency, they 

were selected to investigate the G protein to which GPR21 couples, to give further 

insight into the consequences of an increase in receptor expression.  HEK293T cells 

were transiently transfected with GPR21 along with the cDNAs of the α-subunits of 

the Gq family members; Gαq, Gα14, and Gα15/16, as these effector proteins have been 

suggested to couple with the receptor (Bresnick et al., 2003, Xiao et al., 2008).  

Mammalian receptors activating Gαq family members apparently do not discriminate 

between Gαq and Gαq/11 (Offermanns et al., 1994), therefore, the influence of Gαq/11 

on GPR21 activity was not investigated.  

Analysis of IP1 production with a FRET based IP-one assay was used as a surrogate 

of the transient Gαq secondary messenger IP3, since the degradation of this 

metabolite of IP3 can be prevented with the addition of lithium chloride (Trinquet et 

al., 2006).  An increase in endogenous IP1 was observed in HEK293T cells 

transfected with GPR21 alone and in the absence of a ligand when compared to cells 

transfected with the empty vector, an indication of a constitutively active receptor.  

Each of the Gαq subtypes led to an increase in basal IP1 production when co-

transfected with the empty vector pCMV6-Entry.  When GPR21 was coupled with 

Gαq a significant increase in IP1 was observed.  Although transfection with Gαq 

stimulated the greatest production of IP1, Gα15/16 was found to significantly augment 

GPR21-induced release of IP1.  Gα14 did not appear to markedly influence GPR21-

induced production of IP1 (Fig. 4.5). 
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Figure 4.5 GPR21 activity in HEK293T cells. 
 

HEK293T cells were seeded at 2.5x105 cells/ml in a 6 well plate, after 24 hours cells 

were transiently transfected with 4 µl Lipofectamine® 2000: 2 µg GPR21 plasmid 

DNA or the empty vector pCMV6-Entry.  When co-transfecting cells with Gαq, 

Gα15/16 and Gα14, 1 µg of each plasmid DNA was used.  After 24 hours cells were 

trypsinised, resuspended at a density of 6x106 cells/ml in IP-one stimulation buffer 

and processed according to the IP-one assay protocol (Cisbio, 62IPAPEC).  IP1 

concentrations were then extrapolated from an IP1 standard curve.  One-way 

ANOVA with a post-hoc Tukey test using GraphPad Prism® 5 software denotes 

significance at p < 0.05; * and p < 0.001; ***.  Data presented as mean ± SEM are 

representative of at least three independent experiments.  
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To confirm GPR21 was explicitly signalling through Gαq, HEK293T cells 

overexpressing GPR21 were incubated with increasing concentrations of the PLC 

inhibitor U73122 (Smith et al., 1990), as PLC is the crucial intermediate protein 

between Gαq signalling and the production of IP3.  Since the receptor appeared most 

active when co-expressed with Gα15/16, the effect of the inhibitor on GPR21 when 

coupled with Gα15/16 was concurrently investigated.  Cells transfected with pCMV6-

Entry and pCMV6-Entry coupled with Gα15/16 were also stimulated with U73122 as a 

control.  The PLC inhibitor demonstrated little effect on endogenous IP1 production 

in these control cells.  However, in cells overexpressing GPR21, a dose dependent 

decrease in IP1 production was observed (Fig. 4.6A), a response more evident when 

GPR21 was coupled with Gα15/16 (Fig. 4.6B).   
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Figure 4.6 The effect of the PLC inhibitor, U73122, on GPR21-induced IP1 

production in HEK293T cells. 

 

HEK293T cells were transiently transfected with (A) pCMV6-Entry or GPR21 and 

(B) pCMV6-Entry coupled with Gα15/16 or GPR21 coupled with Gα15/16.  After 24 

hours cells were trypsinised and resuspended at a density of 6x106 cells/ml in IP-one 

stimulation buffer.  Cells were then incubated with the PLC inhibitor U73122 

(Sigma-Aldrich, U6756) in IP-one stimulation buffer and processed according to the 

IP-one assay protocol.  IP1 concentrations were extrapolated from an IP1 standard 

curve and GraphPad Prism® 5 software was used to generate a non-linear sigmoidal 

dose response curve.  Data presented as mean ± SEM are representative of two 

independent experiments performed in triplicate each time.   
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4.3.5 Overexpression of GPR21 leads to the Activation of the 

MAPKs 
	
Downstream of the Gαq secondary messenger PLC, a wide range of intracellular 

pathways can be activated, including the MAPK cascade.  Overexpression of GPR21 

led to a significant increase in the phosphorylation of the MAPKs Erk, p38 and JNK 

when compared to cells transfected with pCMV6-Entry.  The effect of GPR21 on the 

MAPKs was reduced in cells incubated with complete medium containing 10 % 

(v/v) FBS in comparison to serum starved cells (Fig. 4.7A).  When coupled with 

Gα15/16 (Fig. 4.7B), GPR21 again led to an increase in the phosphorylation of Erk, 

p38 and JNK.  In the presence of 10 % (v/v) FBS, the phosphorylation status of the 

MAPKs was unaltered.   

 

To determine if the activation of the MAPKs was dependent on GPR21 signalling 

through Gαq to activate PLC, HEK293T cells overexpressing GPR21 were incubated 

with 10 µM U73122 in serum free complete medium.  The PLC inhibitor reduced the 

effect of the receptor on the MAPKs, with the influence of U73122 on JNK 

phosphorylation slightly inferior to that of the JNK inhibitor SP600125 (Fig. 4.8). 
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Figure 4.7 The effect of GPR21 overexpression on the phosphorylation of the    

MAPKs in HEK293T cells. 

 

HEK293T cells transiently transfected with (A) pCMV6-Entry or GPR21 and (B) 

pCMV6-Entry coupled with Gα15/16 or GPR21 coupled with Gα15/16 were incubated 

for 24 hours in complete medium in the presence or absence of 10 % (v/v) FBS.  

Cells were lysed and subjected to SDS-PAGE followed by immunoblotting with 

antibodies against phospho-Erk Thr202/Tyr204, phospho-p38 Thr180/Tyr182, phospho-

JNK Thr183/Tyr185, native Erk, p38 and JNK.  Myc was used to confirm GPR21 

expression and β-actin was used as a loading control.  Data are representative of two 

independent experiments. 
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Figure 4.8 The effect of U73122 on GPR21-induced phosphorylation of the 

MAPKs in HEK293T cells. 

 

HEK293T cells were transiently transfected with the empty vector pCMV6-Entry or 

GPR21 and left for 24 hours to incorporate plasmid DNA.  Cells were then 

stimulated with 10 µM U73122, a PLC inhibitor, 10 µM SP600125, a JNK inhibitor 

(Sigma-Aldrich, S5567) or an equal volume of the vehicle control, DMSO for 24 

hours in serum free complete medium.  Cells were lysed and subjected to SDS-

PAGE followed by immunoblotting with antibodies against phospho-Erk 

Thr202/Tyr204, phospho-p38 Thr180/Tyr182, phospho-JNK Thr183/Tyr185, native Erk, 

p38 and JNK.  Myc was used to confirm GPR21 expression and β-actin was used as 

a loading control.  Data are representative of two independent experiments. 
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4.3.6 GPR21 Negatively Impacts the Insulin Signalling Pathway 
 
As overexpression of GPR21 in HEK293T cells led to a significant increase in JNK 

phosphorylation, an acknowledged negative regulator of the insulin signalling 

cascade, the direct effect of receptor overexpression on this pathway was 

investigated (Fig. 4.9A).  HEK293T cells transfected with the empty vector pCMV6-

Entry as a control, exhibited basal phosphorylation of the principal proteins of the 

insulin signalling pathway.  Control cells also responded to the 1 hour 100 nM 

insulin stimulation, leading to an increase in the phosphorylation of the insulin 

receptor, IRS1, Akt and AS160 at both residues, Thr642 and Ser588 critical for GLUT4 

translocation to facilitate glucose transport.  Conversely, cells overexpressing 

GPR21 demonstrated reduced basal phosphorylation of Akt and AS160.  

Furthermore, cells did not respond to insulin-induced stimulation of the insulin 

receptor itself, diminishing the activity of the signalling pathway.  

 

Incubation of cells transfected with the empty vector with complete medium 

containing 10 % (v/v) FBS, increased the phosphorylation of AS160 at Thr642 

marginally, yet had little bearing on the activation of the other proteins of the 

signalling cascade.  However, the effect of GPR21 overexpression on this pathway 

was curtailed in the presence of FBS.  The phosphorylation of the insulin receptor, 

IRS1, Akt and AS160 were seen to increase when compared to GPR21-expressing 

cells incubated with serum free medium.  Nonetheless, the phosphorylation status of 

these proteins remained below that of cells transfected with pCMV6-Entry.   
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A similar result was observed when GPR21 was coupled with Gα15/16 (Fig. 4.9B), 

while cells co-expressing pCMV6-Entry and Gα15/16 responded to the action of 

insulin. Additionally, the impact of serum containing complete medium in 

weakening the effect of GPR21 on the insulin signalling pathway was less effective 

when the receptor was coupled with Gα15/16.   
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Figure 4.9 Western blot analysis of the effect of GPR21 on insulin signalling in 

HEK293T cells. 

 
HEK293T cells transiently transfected with (A) pCMV6-Entry or GPR21 and (B) 

pCMV6-Entry coupled with Gα15/16 or GPR21 coupled with Gα15/16 were incubated 

for 24 hours in complete medium in the presence or absence of 10 % (v/v) FBS, then 

stimulated with 100 nM insulin for 1 hour in KRBG.  Cells were lysed and subjected 

to SDS-PAGE followed by immunoblotting with antibodies against phospho-insulin 

receptor β Tyr1150/1151, phospho-IRS1 Tyr612, phospho-Akt Ser473, phospho-AS160 

Thr642 and Ser588, native insulin receptor β, IRS1, Akt and AS160.  Myc was used to 

confirm GPR21 expression and β-actin was used as a loading control.  Data are 

representative of two independent experiments. 
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As a consequence of a hindered insulin signalling pathway, overexpression of 

GPR21 also led to a significant decrease in glucose uptake both basally and under 

insulin stimulation.  Although this response was weakened in cells incubated with 

complete medium supplemented with 10 % (v/v) FBS, glucose uptake did not return 

to the level of counterpart cells transfected with the empty vector.  Complete 

medium supplemented with 10 % (v/v) FBS demonstrated no effect in augmenting 

glucose uptake in control cells transfected with pCMV6-Entry (Fig. 4.10A).  

HEK293T cells expressing GPR21 coupled with Gα15/16 also displayed a reduction in 

basal and insulin-induced glucose uptake when compared to cells transfected with 

pCMV6-Entry coupled with Gα15/16.  Similarly, complete medium supplemented 

with 10 % (v/v) FBS undermined the impact of GPR21 coupled with Gα15/16, while 

exhibiting no effect on glucose uptake in control cells transfected with pCMV6-

Entry and Gα15/16 (Fig. 4.10B). 
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Figure 4.10 The effect of serum on glucose uptake in HEK293T cells 

overexpressing GPR21. 

 

HEK293T cells transiently transfected with (A) pCMV6-Entry or GPR21 and (B) 

pCMV6-Entry coupled with Gα15/16 or GPR21 coupled with Gα15/16 were incubated 

for 24 hours in the presence or absence of 10 % (v/v) FBS, then stimulated with 100 

nM insulin for 1 hour in KRBG.  The effect on glucose uptake was established by 

measuring cellular levels of [3H]-2-deoxyglucose.  Data presented as mean ± SEM 

are representative of two independent experiments. One-way ANOVA with a post-

hoc Tukey test using GraphPad Prism® 5 software conveys a significant increase in 

glucose uptake at p < 0.05; * and p < 0.01; **.  A significant decrease in glucose 

uptake is denoted at p < 0.05; #, p < 0.01; ## and p < 0.001; ###.  
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4.3.7 The Constituents of FBS may Influence GPR21 Activity  
	
To further explore the effect of FBS on the phosphorylation events observed in 

response to GPR21 overexpression, transfected HEK293T cells were incubated with 

complete medium containing increasing concentrations of FBS for 24 hours prior to 

insulin stimulation (Fig. 4.11).  In serum free medium and medium containing 6 % 

(v/v) FBS, overexpression of GPR21 reduced insulin-induced phosphorylation of the 

insulin receptor.  When GPR21 transfected cells were incubated with complete 

medium containing 12 % (v/v), 25 % (v/v) and 50 % (v/v) FBS the effect of GPR21 

on the insulin receptor was abated.  In serum free medium, overexpression of GPR21 

led to an obvious decrease in insulin-induced phosphorylation of IRS1, an effect that 

was attenuated with increasing concentrations of FBS.  GPR21 also lessened insulin-

induced phosphorylation of Akt in serum free medium, however with increasing 

concentrations of FBS the response to insulin became augmented.  Further down the 

signalling pathway, the inhibitory effect of GPR21 on AS160 at Thr642 was evident 

both basally and upon insulin stimulation in serum starved cells. However, this 

response was reduced in GPR21-expressing cells incubated with complete medium 

containing 6 % (v/v) FBS.  While cells expressing GPR21 incubated with 12 % (v/v) 

and 25 % (v/v) FBS demonstrated a reduction in basal AS160 phosphorylation at 

Thr642, insulin-induced phosphorylation was comparable to cells transfected with the 

empty vector.  The phosphorylation status of AS160 at Thr642 was also equivalent to 

the basal levels observed with control cells when incubated in complete medium 

supplemented with 50 % (v/v) serum.  Insulin-induced phosphorylation of AS160 at 

Thr642 appeared to be reduced under these conditions, although the band present may 

have bleached due to the intensity.  Overall the overexpression GPR21 demonstrated 

little effect on the phosphorylation of AS160 at Ser588. hhhhhhhhhhhhhhhhhhhhhhh
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Figure 4.11 Western blot analysis of the effect of serum on insulin signalling in HEK293T cells overexpressing GPR21 in HEK293T cells. 

 

HEK293T cells transiently transfected with pCMV6-Entry or GPR21 were incubated for 24 hours with complete medium containing concentrations of 

FBS ranging from 0 – 50 % (v/v).  Cells were then stimulated with 100 nM insulin for 1 hour in KRBG, lysed and subjected to SDS-PAGE.  

Membranes were immunoblotted with antibodies against phospho-insulin receptor β Tyr1150/1151, phospho-IRS1 Tyr612, phospho-Akt Ser473, phospho-

AS160 Thr642 and Ser588, native insulin receptor β, IRS1, Akt and AS160.  Myc was used to confirm GPR21 expression and β-actin was used as a 

loading control. Data are representative of two independent experiments.  	
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The direct effect of FBS on GPR21 activity was then assessed through the impact on 

the activation of the MAPKs and IP1 production, to determine if the influence on the 

insulin signalling pathway was merely as a result of residual serum derived insulin 

present in the medium.   

 

Looking at the same sample set, phosphorylation of Erk was markedly increased in 

cells transfected with GPR21 in the presence and absence of insulin, yet only in 

serum free medium.  Basal phosphorylation of Erk in cells transfected with pCMV6-

Entry also subsided with increasing serum concentrations.  Transfection of 

HEK293T cells with GPR21 led to a considerable increase in the phosphorylation of 

p38 in serum free medium and medium supplemented with 6 % (v/v) and 12.5 % 

(v/v) FBS.  However GPR21-induced phosphorylation of p38 was reduced in cells 

incubated with concentrations of FBS above 25 %.  HEK293T cells overexpressing 

GPR21 incubated with serum free medium demonstrated an increase in JNK 

phosphorylation, while phosphorylated JNK remained undetected in cells transfected 

with the empty vector.  The effect of GPR21 on JNK diminished gradually when 

cells were incubated with medium containing increasing concentrations of FBS (Fig. 

4.12).   
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Figure 4.12 Western blot analysis of the effect of increasing serum concentration of GPR21 activation of the MAPKs in HEK293T cells. 

 

HEK293T cells transiently transfected with pCMV6-Entry or GPR21 were incubated for 24 hours in complete medium containing FBS at 

concentrations ranging from 0 – 50 % (v/v).  Cells were then stimulated with 100 nM insulin for 1 hour in KRBG, lysed and subjected to SDS-PAGE 

with antibodies against phospho-Erk Thr202/Tyr204, phospho-p38 Thr180/Tyr182, phospho-JNK Thr183/Tyr185, native Erk, p38 and JNK.  Myc was used to 

confirm GPR21 expression and β-actin was used as a loading control.  Data are representative of two independent experiments. 
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Table 4.1 Summarising the influence of GPR21 overexpression on protein 
phosphorylation.   
 
Phospho- - 6 % (v/v) 

FBS 
12.5 % (v/v) 

FBS 
25 % (v/v) 

FBS 
50 % (v/v) 

FBS Protein 
Insulin Signalling Cascade         
Insulin Receptor  - + ++ ++ +++ 
IRS1    + ++ ++ + ++ 
Akt    + ++ +++ +++ +++ 
AS160 Thr642 - + + ++ ++ 
MAPKs 
Erk +++ + - - - 
p38 +++ +++ ++ + + 
JNK ++ + - - - 

 
 

With regards to IP1 levels, GPR21-induced IP1 production decreased significantly when 

cells were incubated FBS (Fig. 4.13A).  In HEK293T cells overexpressing GPR21 

coupled with Gα15/16 IP1 production decreased gradually with increasing concentrations 

of serum and markedly so at 50 % (v/v) FBS (Fig. 4.13B).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                    Chapter 4: GPR21, A Novel Target for Obesity-Associated Type 2 Diabetes   

 
  

185 

 
Figure 4.13 IP1 production in HEK293T cells overexpressing GPR21 in response to 
FBS.   
 

HEK293T cells were transiently transfected with (A) pCMV6-Entry or GPR21 and (B) 

pCMV6-Entry coupled with Gα15/16 or GPR21 coupled with Gα15/16.  After 24 hours 

cells were trypsinised and resuspended at a density of 6x106 cells/ml in IP-one 

stimulation buffer.  Cells were then incubated with IP-one stimulation buffer containing 

FBS at concentrations ranging from 0 – 50 % (v/v) and processed according to the IP-

one assay protocol.  IP1 concentrations were extrapolated from an IP1 standard curve 

and GPR21 activity was determined by dividing the concentration of IP1 produced in 

cells expressing GPR21 by the concentration of IP1 produced in cells transfected with 

the empty vector.  The effect of the compounds was defined relative to cells incubated 

with serum free medium.  Data presented as mean ± SEM are representative of two 

independent experiments, n=2.  One-way ANOVA with a post-hoc Dunnett test using 

GraphPad Prism® 5 software denotes significance at p < 0.01; ** and p < 0.001; ***. 
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4.3.8 A Novel Compound, GRA2, Reduces the Activity of GPR21 

	
As the crystal structure of GPR21 remains unknown and no native interacting ligands 

for the orphan receptor have been identified to date, the development of a structural 

homology model was undertaken to design novel, small molecule ligands to bind 

GPR21 to modulate its downstream effects.  Dr. Gemma Kinsella developed the GPR21 

homology model (Fig. 4.14) using the Modeller software embedded in Biovia 

Discovery Studio (Biovia Software Inc.).  A sequence alignment was constructed 

between the amino acid sequence of the GPCR templates 2RH1 (Cherezov et al., 2007) 

and 4GBR (Zou et al., 2012), with human GPR21 (Swissprot accession code Q99679).  

Using this alignment, 1,000 different models were generated with a refinement protocol 

applied to the loop regions (Fiser and Sali, 2003a, 2003b) and disulphide bonds were 

formed between Cys102 and Cys181.  The final model was selected using the Modeller 

objective score and a selection of protein assessment tools 

(http://services.mbi.ucla.edu/SAVES/, Laskowski et al., 1996, Wiederstein and Sippl, 

2007). 

 

Utilising the developed model, Dr. Gemma Kinsella screened large compound 

databases such as Specs (www.specs.net) in silico through molecular docking studies 

using the FRED docking engine and OMEGA conformational databases from OpenEye 

Scientific Software  (Perola and Charifson, 2004, McGaughey et al., 2007, Hawkins et 

al., 2010, McGann, 2011).  From the ranked list of 11 compounds, 8 were screened 

experimentally in vitro for their ability to alter GPR21-induced production of IP1 (Fig. 

4.15).  Although the hit compounds did not significantly modify GPR21-induced 

production of IP1 at the concentrations assayed, one compound, GRA2 appeared to 

negatively influence the effect of GPR21.   
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Figure 4.14 Homology model of GPR21 incorporating the predicted binding site of 

a lead compound, GRA2. 

 

A Homology Model of GPR21 was designed using the Modeller software embedded in 

Biovia Discovery Studio based on its amino acid sequence and a template protein 

structure of related homologous proteins.  Image kindly generated by Dr. Gemma 

Kinsella using PyMOL (www.pymol.org).   
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Figure 4.15 The effect of hit compounds on IP1 production in HEK293T cells 

overexpressing GPR21. 

 

HEK293T cells were transiently transfected with the empty vector pCMV6-Entry or 

GPR21 plasmid DNA.  After 24 hours cells were trypsinised and resuspended at a 

density of 6x106 cells/ml in IP-one stimulation buffer.  Cells were then incubated with 

the hit compounds at a final concentration of 10 µM or an equal volume of vehicle 

control, DMSO, in IP-one stimulation buffer for 2 hours at 37 °C.  IP1 concentrations 

were extrapolated from an IP1 standard curve and GPR21 activity was determined by 

dividing the concentration of IP1 produced in cells expressing GPR21 by the 

concentration of IP1 produced in cells transfected with the empty vector.  The effect of 

the compounds was defined relative to the DMSO control.  Data presented as mean ± 

SEM are representative of two independent experiments performed in triplicate each 

time. 
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In a dose response assay, the reaction to GRA2 was not significant in HEK293T cells 

transfected with GPR21 alone, with a mild decrease in cellular IP1 observed at 1 mM 

only (Fig. 4.16A).  However, in cells overexpressing GPR21 coupled with Gα15/16,  the 

more pronounced IP1 production was markedly inhibited by GRA2 at 100 nM, an effect 

which plateaued at 1 µM  supressing the activity of GPR21 (Fig. 4.16B).  GRA2 did not 

influence basal IP1 levels of control cells transfected with pCMV6-Entry or pCMV6-

Entry coupled with Gα15/16.  
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Figure 4.16 Dose response analysis of GRA2 on IP1 production in HEK293T cells 

overexpressing GPR21. 

 

HEK293T cells were transiently transfected with (A) GPR21 or pCMV6-Entry and (B) 

pCMV6-Entry coupled with Gα15/16 or GPR21 coupled with Gα15/16.  After 24 hours 

cells were trypsinised and resuspended at a density of 6x106 cells/ml in IP-one 

stimulation buffer.  Cells were then incubated with the lead compound, GRA2 at 

various concentrations in IP-one stimulation buffer.  IP1 concentrations were 

extrapolated from an IP1 standard curve and GraphPad Prism® 5 software was used to 

generate a non-linear sigmoidal dose response curve.  Data presented as mean ± SEM 

are representative of two independent experiments performed in triplicate each time. 
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4.3.9 GRA2 Protects Against the Effects of GPR21 on the Insulin 

Signalling Pathway  

 
To determine if the impact of this compound resonated through to the downstream 

effects of GPR21 on insulin signalling, transfected HEK293T cells were incubated with 

GRA2 for 24 hours followed by an acute insulin stimulation.  In the presence of the 

vehicle control DMSO, HEK293T cells overexpressing GPR21 demonstrated 

significantly reduced phosphorylation of the insulin receptor in response to insulin 

when compared to cells transfected with the empty vector.  Overexpression of GPR21 

also diminished basal and insulin-stimulated phosphorylation of IRS1, Akt and AS160 

at Thr642 and at Ser588 when compared to cells transfected with pCMV6-Entry.  

Conversely, cells overexpressing GPR21 incubated with 10 µM GRA2, demonstrated 

no negative impact on insulin-stimulated phosphorylation of its receptor, with the effect 

of insulin comparable to that of cells transfected with the empty vector.  Cells 

overexpressing GPR21 treated with GRA2 also demonstrated a level of IRS1 and Akt 

activity similar to that displayed by cells transfected with pCMV6-Entry.  Although 

treatment with GRA2 attenuated the effect of GPR21 on AS160 when compared to the 

DMSO control, the phosphorylation status of the protein at Thr642 and at Ser588 was still 

below that of cells transfected with the empty vector.  HEK293T cells transfected with 

pCMV6-Entry also demonstrated a slight response to GRA2, in that phosphorylation of 

the components of the insulin signalling cascade increased somewhat (Fig. 4.17A).  
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A similar effect was observed in HEK293T cells co-transfected with GPR21 and Gα15/16 

(Fig. 4.17B).  Phosphorylation of the insulin receptor, IRS1, Akt and AS160 at both 

critical residues were decreased in HEK293T cells expressing GPR21 coupled with 

Gα15/16.  In the presence of 10 µM GRA2, the effect of GPR21 on the insulin receptor, 

IRS1, Akt and AS160 at Thr642 was reduced.  GRA2 also exhibited a positive action on 

control cells, marginally increasing the phosphorylation of the insulin receptor, IRS1 

and AS160 at Thr642 in cells transfected with pCMV6-Entry coupled with Gα15/16. 
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Figure 4.17 Western blot analysis of the effect of GRA2 on the insulin signalling   

pathway in HEK293T cells overexpressing GPR21. 

 

HEK293T cells transiently transfected with (A) GPR21 or (B) GPR21 coupled with 

Gα15/16.   Cells were stimulated with 10 µM GRA2 or an equal volume of DMSO in 

serum free complete medium for 24 hours.  Cells were then stimulated with 100 nM 

insulin for 1 hour in KRBG, lysed and subjected to SDS-PAGE followed by 

immunoblotting with antibodies against phospho-insulin receptor β Tyr1150/1151, 

phospho-IRS1 Tyr612, phospho-Akt Ser473, phospho-AS160 Thr642 and Ser588
, native 

insulin receptor β, IRS1, Akt and AS160.  Myc was used to confirm GPR21 expression 

and β-actin was used as a loading control.  Data are representative of two independent 

experiments. 
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These effects carried through to the downstream glucose uptake response.  HEK293T 

cells transfected with pCMV6-Entry reacted positively to a 100 nM insulin stimulation 

with a comparable increase in glucose uptake observed in the presence of DMSO and 

10 µM GRA2 (Fig. 4.18A).  Conversely, cells expressing GPR21 demonstrated a 

reduction in basal glucose uptake in the presence of DMSO, and a reduced response to 

insulin.  Treatment of HEK293T cells expressing GPR21 with 10 µM GRA2 for 24 

hours led to a significant improvement in basal and insulin-stimulated glucose uptake.   

 

In cells transfected with pCMV6-Entry coupled with Gα15/16 a comparable outcome to 

the empty vector alone was detected. Cells overexpressing GPR21 with Gα15/16 

demonstrated reduced basal and insulin-stimulated glucose uptake. While 10 µM GRA2 

improved glucose uptake in cells overexpressing GPR21 with Gα15/16, the effect was not 

significant (Fig. 4.18B).    
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Figure 4.18 The effect of GRA2 on glucose uptake in HEK293T cells 

overexpressing GPR21.   

 

HEK293T cells transiently transfected with (A) GPR21 or (B) GPR21 coupled with 

Gα15/16 were incubated with 10 µM GRA2 or an equal volume of DMSO in serum free 

complete medium for 24 hours.  Cells were then stimulated with 100 nM insulin for 1 

hour in KRBG.  The effect on glucose uptake was established by measuring cellular 

levels of [3H]-2-deoxyglucose.  Data presented as mean ± SEM are representative of 

two independent experiments.  One-way ANOVA with a post-hoc Tukey test using 

GraphPad Prism® 5 software denotes significance at p < 0.05; *. 
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4.3.10  GPR21 induces Macrophage Migration 

	
As GPR21 has been implicated in the promotion of macrophage infiltration into adipose 

tissue to encourage the genesis of type 2 diabetes (Osborn et al., 2012), the effect of 

GPR21 overexpression in 3T3-L1 adipocytes and RAW 264.7 macrophages was 

investigated.  Since 3T3-L1 adipocytes exhibited the highest native level of GPR21, the 

effect of augmented expression, through transfection, on 3T3-L1 conditioned medium 

to induce macrophage migration was investigated.  Conditioned medium was harvested 

from 3T3-L1 adipocytes transfected with pCMV6-Entry, GPR21, and pCMV6-Entry or 

GPR21 coupled with Gα15/16 in the presence and absence of GRA2.  RAW 264.7 

macrophages did not demonstrate a significant increase in migratory capacity in 

response to conditioned medium from 3T3-L1 adipocytes transfected with GPR21 or 

GPR21 coupled with Gα15/16 (Fig. 4.19).  The novel compound GRA2 similarly 

produced no effect on the migratory ability of the macrophages in this system. 
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Figure 4.19 The effect of GPR21 on RAW 264.7 migration towards 3T3-L1 

adipocyte conditioned medium.  

 

3T3-L1 adipocytes were transiently transfected with pCMV6-Entry, GPR21, pCMV6-

Entry coupled with Gα15/16 or GPR21 coupled with Gα15/16.  Fully differentiated 

adipocytes were incubated with 10 µM GRA2 or DMSO for 24 hours to generate 

conditioned medium.  RAW 264.7 macrophages were placed in a 5.0 µm Transwell® 

insert at a density of 5x105 cells/ml in complete medium supplemented with 2 % (v/v) 

FBS and equilibrated in a 24 well plate with complete medium containing 2 % (v/v) 

FBS for 1 hour at 37 °C.  Untransfected RAW 264.7 were allowed to migrate towards 

conditioned medium generated from transfected 3T3-L1 adipocytes displaying large 

lipid droplets ± 10 µM GRA2.  After a 4 hour incubation at 37 °C, migratory cells were 

quantified as described in Section 2.7.5.  
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Given that GPR21 did not appear to influence the production of soluble factors to 

promote macrophage chemotaxis, the direct effect of the receptor on RAW 264.7 

migration towards 3T3-L1 conditioned medium was evaluated. RAW 264.7 

macrophages overexpressing GPR21 demonstrated an increased aptitude for migration, 

as did cells overexpressing GPR21 coupled with Gα15/16.  When RAW 264.7 cells were 

exposed to GRA2, the compound provoked a minor curtailment of GPR21-induced 

migration, whilst a significant decrease was observed in cells expressing GPR21 

coupled with Gα15/16 (Fig. 4.20A).   

 

As JNK has been implicated in the process of macrophage accumulation in adipose 

tissue (Han et al., 2013) and can be activated downstream of proteins involved in the 

promotion of cytoskeletal reorganisation to facilitate macrophage migration, the effect 

of GRA2 on GPR21-induced phosphorylation of JNK in RAW 264.7 macrophages was 

examined and was found to decrease in the presence of the novel compound (Fig. 

4.20B). 
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Figure 4.20 The direct effect of GRA2 on the migratory capacity of RAW 264.7 

cells overexpressing GPR21. 

 

RAW 264.7 macrophages were transfected with pCMV6-Entry, GPR21, pCMV6-Entry 

coupled with Gα15/16 or GPR21 coupled with Gα15/16.  (A) After 24 hours cells were 

transferred into a 5.0 µm Transwell® insert and stimulated with 10 µM GRA2 in 

complete medium supplemented with 2 % (v/v) FBS then positioned into a 24 well plate 

containing 3T3-L1 conditioned medium.  After a 4 hour incubation at 37 °C, migratory 

cells were quantified as described in Section 2.7.5.  One-way ANOVA with a post-hoc 

Tukey test using GraphPad Prism® 5 software denotes a significant increase in 

migration at p < 0.01; ** and p < 0.001; ***.  A significant decrease in migration is 

indicated at p < 0.05; #, n=3.  (B) Alternatively, cells incubated with 10 µM GRA2 for 4 

hours were lysed, subjected to SDS-PAGE and immunoblotted with antibodies against 

phospho-JNK Thr183/Tyr185 and native JNK.  Myc was used to confirm GPR21 

expression and β-actin was used as a loading control.   
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4.4 Discussion 

	
Analysis of the expression profile and signalling capabilities of GPR21 has given 

further insight into mechanisms by which this orphan GPCR may contribute to the 

development of the type 2 diabetic phenotype.   

4.4.1 The Effects of Enhanced GPR21 Expression 

	
Increased expression of GPR21 in the epididymal fat pads of wild type HFHS-fed mice 

was found to correlate with a rise in the macrophage marker F4/80, along with an 

increase in TNF-α expression.  As well as being a marker gene for pro-inflammatory 

M1 type macrophages, TNF-α is known to contribute to the development of insulin 

resistance (Uysal et al., 1997, Lumeng et al., 2007).  Western blot analysis of various 

cell lines demonstrated an abundance of GPR21 present in adipocytes whilst reduced 

expression of the receptor was found in the three macrophage cell lines tested.  

Although the adipocytes displayed the highest levels of GPR21, macrophages cannot be 

discounted as a source of the increased receptor expression in the epididymal fat pads of 

HFHS-fed mice as the macrophage cell lines investigated were not specifically 

polarised into either the M1 or M2 type subset.  This differentiation may be significant 

as Osborn and colleagues (2012), observed a marked increase in GPR21 mRNA levels 

in M1 type macrophages when compared to M2 type macrophages.  As the macrophage 

cell lines investigated were not polarised into either subset it is not possible to ratify 

unambiguously the source of the increased GPR21 expression in the HFHS-fed mice.  

 

Confirming the signalling capabilities of GPR21 was fundamental to understanding the 

consequence of the observed increase in receptor expression.  As studies indicate that 

GPR21 may signal through Gq type G protein α-subunits (Bresnick et al., 2003, Xiao et 
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al., 2008), the effect of the receptor on IP1 production was investigated.  Analysis of 

this stable downstream metabolite of IP3, which accumulates upon Gαq receptor 

activation, suggests that GPR21 overexpressed in HEK293T cells can adopt the active 

conformation necessary to couple and activate Gαq type G proteins.  GPR21 was 

observed to stimulate this signal transduction in the absence of a ligand, a hallmark of a 

constitutively active receptor.  Co-expression with the specific members of the Gαq, 

family revealed a functional interaction between GPR21 and Gα15/16, as receptor-

induced IP1 production increased most significantly when co-transfected with Gα15/16.     

Although the greatest increase in cellular IP1 was observed in cells co-expressing 

GPR21 and Gαq, this is believed to be a consequence of Gαq expression alone, as this 

protein provoked a significant increase in cellular IP1 when expressed without the 

receptor.  Incubation of transfected HEK293T cells with the PLC inhibitor, U73122, 

blocked GPR21-induced production of IP1, confirming the selectivity of the effect of 

GPR21 on this signalling cascade. 

4.4.2 The Downstream Consequences of Gαq Activation 

The Gαq class of G proteins play a pivotal role in the regulation of many proteins central 

to the development of insulin resistance.  In 3T3-L1 adipocytes Gαq/11 has been shown 

to increase insulin-induced glucose uptake in a potentially PI3K dependent manner 

(Imamura et al., 1999), while β-cell specific inactivation of the genes encoding Gαq and 

Gαq/11 results in impaired glucose tolerance and insulin secretion in mice (Sassmann et 

al., 2010).  However, stimulation of the Gαq pathway by the prostaglandin receptor EP1, 

leads to MAPK activation and the production of pro-inflammatory cytokines involved 

in the genesis of insulin resistance such as IL-6 and TNF-α (Sun and Ye, 2012). 

Furthermore, studies with Gαq/11 have demonstrated reduced insulin-induced 
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phosphorylation of Akt in HeLa cells overexpressing this G protein α-subunit (Ueda et 

al., 2004).  These results demonstrate that the influence of Gαq type G proteins on 

glucose homeostasis is not only receptor, but also cell specific. 

Downstream of PLC, distinctive Gαq signalling systems have been found to activate the 

MAPKs; Erk, p38 and JNK (Naor et al., 2000).  Focusing on this pathway, GPR21 was 

found to significantly increase the phosphorylation of Erk, p38 and JNK in a PLC-

dependent manner.  However, in the presence of complete medium containing 

increasing concentrations of FBS, GPR21-induced phosphorylation of the MAPKs was 

attenuated, intimating the possibility of a native inverse agonist for the constitutively 

active receptor in the serum.  JNK is known to negatively regulate insulin signalling and 

is abnormally elevated in dietary and genetic murine models of obesity (Hirosumi et al., 

2002).  Possibly as a consequence of increased JNK activity, HEK293T cells 

overexpressing GPR21 displayed an impaired insulin signalling pathway, both basally 

and under insulin stimulation.  The regulatory effect of FBS on GPR21 activity was 

carried through to this signalling cascade and the consequential effect on glucose 

uptake.  In cells overexpressing both GPR21 and Gα15/16 the effect of serum was 

reduced, suggesting that the increased activity of GPR21 when coupled with Gα15/16 

may lead to a “hyper activated” signalling pathway that may not easily subside in the 

presence of any potential regulatory factor in the serum.  As increasing serum 

concentrations led to a decrease in IP1 production and a decline in MAPK 

phosphorylation, it is possible that a regulatory ligand for GPR21 present in the serum 

also led to the reduced impact of the receptor on the insulin signalling pathway rather 

than it arising as a consequence of residual serum derived insulin.  
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4.4.3 The Potential of a Ligand for GPR21 
	

The prospect of an endogenous inverse agonist suggests that the effect of GPR21 may 

be tightly regulated under normal physiological conditions and only becomes 

deleterious when uncontrolled, as in a state of obesity.  The identification of natural 

ligands for orphan receptors, such as GPR21 may provide insight into the regulatory 

mechanism of the receptor as well as lead to the discovery of novel molecules not 

previously recognised as extracellular mediators.  So-called reverse pharmacology has 

led to the deorphanisation of about 300 GPCRs and the discovery of several novel 

ligands (Chung, Funakoshi and Civelli, 2008).  However, as this method can prove to be 

a lengthy and demanding endeavor, the onset of homology modelling and ligand 

docking studies has revitalised the drug discovery field, enabling high throughput 

screening of receptors (Flohr et al., 2002, Evers and Klabunde, 2005, Kufareve et al., 

2011).  Given the influence of GPR21 on insulin signalling, a molecule that binds 

GPR21 and blocks its constitutive activity in a similar manner to the prospective native 

ligand could be a very powerful new anti-diabetic therapy.   

Constitutively active orphan GPCRs, such as GPR21 provide a direct route to drug 

discovery as their functionality can be understood without the need to identify 

endogenous ligands (Chalmers and Behan, 2002).  Virtual screening of an in house 

model of GPR21 identified 11 hit compounds with the potential to bind the receptor.  Of 

the 8 compounds screened in vitro, GRA2, demonstrated prospective abilities as an 

inverse agonist of GPR21 as it reduced IP1 accumulation in HEK293T cells 

overexpressing the receptor.  Unfortunately, this compound displayed reduced solubility 

at higher concentrations and the effect on IP1 waned.  The diminished effect on IP1 

production could also arise through β-arrestin-mediated internalisation of the ligand 
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bound-receptor, following prolonged incubation with a high concentration of the 

compound.  Nevertheless, at the more soluble concentration of 10 µM GRA2 improved 

the signalling responses to insulin in cells overexpressing GPR21 and GPR21 coupled 

with Gα15/16, following through to a modest restoration of glucose uptake.  Cells 

transfected with the empty vector also displayed enhanced phosphorylation of the 

proteins involved in the insulin signalling cascade in response to GRA2.  This may be 

as a consequence of the compound acting on native GPR21 expressed in HEK293T 

cells, obstructing the dampening effects of the receptor on the insulin signalling 

pathway.  

4.4.4 The Role of GPR21 in Macrophage Migration 

	
The marked effect of GPR21 on JNK activity was noteworthy, as increased expression 

of this MAPK in macrophage cells has been reported to promote HFD-induced 

accumulation of adipose tissue macrophages.  Macrophage specific deletion of JNK has 

been observed to decrease the expression of macrophage marker genes, Cd68 and F4/80 

in the adipose tissue of HFD-fed mice (Han et al., 2013).  Furthermore, Osborn and 

colleagues (2012), found markedly fewer adipose tissue macrophages in GPR21 

knockout mice than in wild type counterparts, while GPR21 knockout macrophages also 

displayed reduced migration towards chemokine rich medium.  Complementing this 

study, RAW 264.7 macrophages overexpressing GPR21 displayed an enhanced 

migratory capacity towards 3T3-L1 conditioned medium.  Although Osborn and 

colleagues (2012), discovered fewer macrophages to migrate towards conditioned 

medium harvested from GPR21 knockout adipocytes, conditioned medium generated 

from 3T3-L1 adipocytes overexpressing GPR21 did not influence macrophage 

migration.  The latter finding suggests GPR21 might not control macrophage migration 
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by upregulating the production of classical chemoattractants such as MCP-1 and LTB4 

(Kamei et al., 2006, Li et al., 2015).  It may therefore be plausible to speculate that 

GPR21 could be a novel control point coordinating, amongst other possibilities, the 

rearrangement of the actin cytoskeleton to promote macrophage migration into adipose 

tissue.   

A range of extracellular signals are known to induce cytoskeletal reorganisation to 

mediate cellular chemotaxis through GPCRs, receptor tyrosine kinases, PI3K isoforms 

and small GTPases (Jones, 2000).  The activation of small GTPases controls cell 

migration through the regulation of the actin cytoskeleton and the MAPK pathways 

(Hall, 1998).  The MAPKs JNK, Erk and p38 have all been observed play crucial roles 

in cell migration as the inhibition of these proteins can prevent migration in many cell 

types (Huang, Jacobson and Schaller, 2004).  Notably, the Rho family of small GTPases 

have been found to signal downstream of Gαq (Seasholtz, Majumdar and Brown, 1999, 

Chikumi et al., 2002, Vogt et al., 2003). Moreover, Gαq deficient neutrophils and 

dendritic cells display reduced chemotactic responses (Shi et al., 2007).  PKC isoforms, 

which can be activated downstream of the Gαq family, have been found to directly 

associate with microfilaments (Larsson, 2006) and regulate focal adhesion components 

(Fogh et al., 2014), to mediate cytoskeleton changes that facilitate cell migration.  It 

may be plausible to speculate that GPR21 could promote cytoskeletal reorganisation 

through its action on Gα15/16, leading to the observed increase in RAW 264.7 migration.  

This reinforces the findings of Osborn and colleagues (2012), who demonstrated that 

GPR21 knockout macrophages did not undergo crucial cytoskeletal rearrangements to 

promote transmigration.  

The direct effect of GRA2 in attenuating GPR21-promoted migration reinforces the 
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hypothesis that it may have the ability to act as an anti-diabetic therapy.  Strengthening 

the potential of GRA2-related inhibition of GPR21-induced JNK activation, 

macrophage specific JNK deficiency has been shown to prevent the accumulation of 

adipose tissue macrophages expressing the M1 surface markers CD11c+ and CD206− 

and to reduce the expression of genes associated with M1 polarisation; CD11c, IL-1β, 

Il-6, NOS2, TNF-α (Han et al., 2013).  Analysis of macrophage cell surface markers 

following GPR21 overexpression and GRA2 treatment may give further insight into 

whether the receptor may also influence macrophage polarisation to the pro-

inflammatory M1 subset and if this novel compound may have a regulatory impact.  

Taken together, these results demonstrate the pivotal role GPR21 signal transduction 

through Gα15/16 may play in the development of type 2 diabetes, giving insight into a 

novel means of controlling adipose tissue macrophage accumulation.  

4.4.5 Summary 
	
Under normal physiological conditions, this constitutively active GPCR may be tightly 

regulated to facilitate macrophage migration in reaction to an antigen driven immune 

response.  However, obesity-induced type 2 diabetes potentially dysregulates GPR21; 

an increase in GPR21 expression, an increase in an endogenous agonist or a reduction in 

an inverse agonist could all exacerbate the effects of this receptor.  Downstream of 

Gα15/16, the potentiated pro-inflammatory signal activates the MAPKs, inhibits the 

insulin signalling pathway and may promote macrophage migration through the 

induction of cytoskeletal reorganisation (Fig. 4.21).  Whatever the primary cause of the 

GPR21 effect in vivo, an inverse agonist such as the one identified in this study could 

restore the signalling potential of insulin to reinstate normal glucose homeostasis.  

Structure-activity relationship studies of the identified compound should yield 
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compounds with increased affinity for the receptor and hence increased biological 

efficacy to curtail the development of type 2 diabetes.  

	

 
 

Figure 4.21 Proposed role of GPR21 in the development of type 2 diabetes. 
 

The constitutively active GPR21 recruits and activates Gα15/16, which facilitates the 

hydrolysis of PIP2 into DAG and IP3 through the action of PLC.  Both DAG and IP3 

activate PKC, which signals to and activates the MAPK cascade.  PKC has also been 

implicated in the promotion of cytoskeletal reorganisation to stimulate cell migration.  

Gαq proteins have been found to activate the Rho family of small GTPases that 

stimulate the activity of the MAPKs and regulate intracellular actin dynamics to 

promote cell migration, among other functions.  Activated JNK has been proposed to 

promote macrophage accumulation in adipose tissue and is known to phosphorylate 

IRS1 of the insulin signalling cascade at Ser307 preventing insulin-induced tyrosine 

phosphorylation of its substrate.  Due to the potential of a native inverse agonist in 

serum, the pro-inflammatory signal transduction of GPR21 is believed to be tightly 

regulated under normal physiological conditions.  However in a state of obesity, GPR21 

activity is uncontrolled and becomes deleterious, promoting macrophage migration into 

adipose tissue and insulin resistance, potentially through the action of JNK. 
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5.1 Synopsis 

	
Type 2 diabetes is a complex metabolic condition provoked primarily by obesity-

induced insulin resistance. Distinct routes may be taken to attenuate the 

pathophysiology of this condition, such as augmenting key metabolic regulators to 

overturn the damaging effects of insulin resistance and directly targeting the root cause, 

which many believe to be obesity-induced inflammation.  The work undertaken in this 

project has aided in resolving the mechanism of action of a successful anti-diabetic 

compound, RTC-1 and has given insight into the underlying mechanisms by which the 

novel diabetic target, GPR21 exerts its effects.  Although the original aims of this 

project were achieved, several questions surfaced over the course of this study, which 

warrant further investigation.   

5.2 Cellular Effects of RTC-1 

	
The ability of RTC-1 to inhibit RBP binding, the purpose for which it was designed, 

may have contributed to the dramatic effect of the compound on insulin sensitivity in 

vivo.  However, as a result of this study the anti-diabetic and anti-obesity effects of 

RTC-1 have been largely attributed to the activation of AMPK as a consequence of the 

inhibition of NADH:ubiquinone oxidoreductase.  Although the inhibition of the 

mitochondrial respiratory chain was traditionally believed to be detrimental to the cell 

(Degli Esposti, 1998), more recent studies have illustrated over-activation of 

mitochondria as a potential risk for insulin resistance, suggesting the protective benefits 

of inhibition (Pospisilik et al., 2007, Vernochet et al., 2012, Quintens et al., 2013).  

RTC-1 demonstrated a superior effect to metformin in this regard, which may lie with 

the structural differences of the compounds.  Metformin is largely hydrophilic and 

reliant on organic cation transporters to enter the cell (Rena et al., 2013), while the 
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lipophilic properties of RTC-1 allow easier target engagement.  The compounds may 

also occupy distinctive regions of the mitochondrial respiratory chain to alter cellular 

energy balance.  Studies by Wheaton and colleagues (2014), found metformin to 

reversibly inhibit mitochondrial NADH:ubiquinone oxidoreductase.  Although the exact 

binding site remains unknown, this group have speculated that metformin does not act 

on the same site as the irreversible NADH:ubiquinone oxidoreductase inhibitor 

rotenone, as metformin did not substantially increase H2O2 release from mitochondria, 

whereas rotenone augmented this significantly.  Recently, Madiraju and colleagues 

(2014), observed that metformin bound non-competitively to an intermediate 

mitochondrial respiratory chain component, mitochondrial glycerophosphate 

dehydrogenase (mGPD).  mGPD controls cytoplasmic NADH levels and is involved in 

lipid and glucose synthesis (Mráček et al., 2013), thereby providing an alternative mode 

by which metformin may exert its downstream effects.  Based on some structural 

similarities to ubiquinone, RTC-1 could possibly bind the ubiquinone cleft of 

NADH:ubiquinone oxidoreductase to reduce the activity of the complex.  Molecular 

docking and binding simulations may give further insight into the binding capacity of 

RTC-1.  In addition to the observed consequential effects on glucose uptake and lipid 

synthesis, RTC-1 may also elicit long-term beneficial effects on dysregulated pancreatic 

β-cells through AMPK-induced autophagy (Quan et al., 2012, Rubinsztein et al., 2012).  

Analysis of an autophagy marker, such as the microtubule-associated protein 1 light 

chain 3, may help to ascertain whether RTC-1-induced activation of AMPK also 

promotes autophagy.  

 

Although more potent than metformin, the prospect of RTC-1 inducing the rare, yet 

most damaging physiological condition associated with metformin, lactic acidosis, is 
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unlikely.  RTC-1 does not impair the process of oxidative phosphorylation entirely, as 

oxygen consumption can be restored with the addition of the succinate:ubiquinone 

oxidoreductase substrate.  Free protons resulting from ATP hydrolysis can, therefore, be 

processed, albeit less efficiently, reducing the possibility of acidosis.  Furthermore, 

metformin-induced lactic acidosis may not exclusively arise as a consequence of 

NADH:ubiquinone oxidoreductase inhibition.  The effect of metformin on mGPD may 

contribute to the development of lactic acidosis, as this disrupts the conversion of 

lactate to glucose.  Moreover, high therapeutic levels of metformin have been observed 

to reduce lactate clearance by the liver (Lalau et al., 2015).  Nevertheless, the effect of 

RTC-1 on lactate production should be investigated as this compound is explored as a 

novel anti-diabetic therapy.  

 

While the superior effect of RTC-1 on glucose uptake may be attributed to the enhanced 

action on NADH:ubiquinone oxidoreductase to promote AMPK activation, the 

influence of RTC-1-induced phosphorylation of Akt cannot be discounted as a 

contributory factor.  As RTC-1 demonstrated no effect on the major regulator of Akt 

activity, PI3K, it is possible that RTC-1-stimulated decreases in ATP levels may 

prevent IP6K-induced IP7 synthesis to relieve the inhibitory effect of this inositol 

pyrophosphate on Akt activation.  The effects of the IP6K inhibitor, TNP, further 

support this concept, as it has been observed to enhance Akt, AMPK and ACC 

phosphorylation, however, this compound demonstrates no inhibitory effect on 

NADH:ubiquinone oxidoreductase activity (Sun et al., 2015).  TNP also reduces 3T3-

L1 adipogenesis (Chakraborty et al., 2010), although this impact does not approach the 

effectiveness of RTC-1, emphasising the potential of this novel compound.  HPLC 

analysis of cellular IP7 levels will give further insight as to whether this is a mechanism 
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by which RTC-1 may augment Akt activation and improve insulin sensitivity (Saiardi et 

al., 2002).  Furthermore, the inhibition of IP7 associated with the IP6K inhibitor, TNP, 

has been observed to improve cardiac function, a notable outcome as mitochondrial 

dysfunction associated with insulin resistance can promote the development of 

cardiovascular diseases, the leading cause of death among patients with diabetes (Sun et 

al., 2015).  If studies demonstrate that RTC-1 modulates intracellular IP7 levels, it 

would be interesting to determine if cardiomyocyte apoptosis can also be regulated. 

 

5.3 GPR21 Signal Transduction 

	
Although Gq coupled GPCRs are usually stimulatory towards insulin, it is clear the 

influence of these proteins cannot be generalised, given that the Gq coupled 

gonadotropin releasing hormone receptor has been observed to inhibit insulin release 

from rat islets (Amisten et al., 2013).  In this study the Gq coupled GPCR, GPR21, was 

found to be a constitutively active receptor that promoted macrophage migration and the 

activation of the MAPKs, which can negatively impact on the insulin signalling 

pathway.  Expression of this receptor was observed to be upregulated in HFHS-fed mice 

and correlated with an increase in epididymal fat pad macrophages, consistent with a 

role for this receptor in obesity-associated type 2 diabetes.  Intriguingly, the effects of 

GPR21 on MAPK activation and insulin signalling could be attenuated with increasing 

concentrations of serum, advocating the potential of an endogenous regulatory ligand 

for the receptor.  Employing GPR21 induced IP1 production as a functional screen for 

fractionated serum samples, followed by mass spectrometry analysis of those that 

attenuate GPR21 activity may assist in the identification of this regulatory ligand.  

Furthermore, analysis of the effects of diabetic serum on GPR21 activity may give 

insight into the role of this receptor in the development of type 2 diabetes. 
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The adverse contributions of visceral adipose tissue inflammation to the progression of 

type 2 diabetes are stark. Unsurprisingly, therefore, the prospect of targeting 

inflammatory mediators to arrest the pathogenesis of this condition has gained 

significant attention.  Initial studies with the IL-1 receptor antagonist, anakinra, 

demonstrated the beneficial effects of an anti-inflammatory agent on insulin resistance 

as a reduction in inflammatory markers correlated with an extended improvement in 

insulin action.  Although adverse effects occurred with the daily injections of anakinra, 

the benefits of targeting inflammation to regulate insulin resistance have been realised 

and antagonists for IL-1β are currently under investigation (Donath, 2014).  

Virtual screening of an in house homology model of GPR21 led to the identification a 

novel compound, GRA2, with potential anti-diabetic properties as it was found to 

attenuate the downstream effects of the constitutively active GPCR on macrophage 

migration and JNK activation.  Targeting macrophage infiltration into adipose tissue has 

the potential to slow the progressive decline in insulin secretion and responsiveness 

associated with type 2 diabetes.  In a phase 2 clinical trial, Hanefeld and colleagues 

(2012), found promise with the MCP-1 receptor antagonist in this regard, as glycated 

haemoglobin levels were seen to decrease in obese type 2 diabetic patients.  It remains 

unclear if GPR21-related JNK activation promotes migration or if it could be activated 

as a consequence of another mediator of cytoskeletal reorganisation.  F-actin staining of 

GPR21-overexpressing RAW 264.7 macrophages may reveal if GPR21-induced signal 

transduction promotes cytoskeletal reorganisation to form the branched morphology 

necessary for migration.  Furthermore, treatment of macrophages overexpressing 

GPR21 with specific inhibitors for proteins downstream of Gαq signalling that have 

been found to regulate cell migration, such as PKC (Inhibitor-calphostin C) may give 

further insight into the role GPR21 plays in macrophage migration.  
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Nevertheless, GRA2 holds promise as an anti-diabetic agent, as along with regulating 

migration and JNK phosphorylation in RAW 264.7 macrophages, it also counteracted 

the effects of GPR21 to augment insulin signalling and glucose uptake.  Although there 

are currently no anti-diabetic therapies marketed to regulate JNK activity, the effects of 

the insulin sensitising thiazolidinedione, rosiglitazone may also involve the modulation 

of this kinase.  Díaz-Delfín, Morales and Caelles (2007), found rosiglitazone to inhibit 

the elevated JNK activity associated with obesity to restore insulin-induced IRS1 

tyrosine phosphorylation.  Modulating JNK activity to restore insulin sensitivity is 

therefore a promising tactic to target type 2 diabetes and may account for the underlying 

in vitro effects of GRA2 on GPR21-induced insulin resistance.  Analysis of the effects 

of GPR21 overexpression in JNK deficient cells may reveal if the impact of the receptor 

on migration and insulin signalling are dependent on the MAPK.  Furthermore, the 

analysis of other key negative regulators of insulin signalling, namely IKKβ and 

SOCS3, in response to GPR21 overexpression would help consolidate the influence of 

this receptor in the development of insulin resistance. 

5.4 Conclusion 

 
The work presented in this thesis has contributed to a better understanding of the ways 

in which the type 2 diabetic phenotype may be regulated.  Given the complexity of the 

factors contributing to the development of this condition, an amalgamation of therapies 

directed at versatile targets, such as those discussed in this study, may be the best 

approach to treat type 2 diabetes.  
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