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Abstract

A connectionist attentional-shift model of eye-
movementontrol (CASMEC) in readingis described.

The model provides an integrated account of a range

of saccadiacontrol effectsfound in reading,suchas
word-skipping, refixation, and of course normal
saccadic progression.

Theoretical background

The bulk of researchon eye-movementontrol in
reading suggestdhat the processesontrolling the
when and the where of eye movementsoperate
relatively independently; word identification
appearsto determinethe when of most of the
forward movementof the eyes, while low-level
oculomotorfactorsarethe maininfluenceon where
in a word the eyéands. Neverthelessthe processes
controlling the when and where must interact at
somelevel, and a number of attemptshave been
made toprovidea coherentaccountof the dynamics
of this interaction (McConkie, 1979; Morrison,

1984; Rayner & Pollatsek, 1989; O'Regan, 1990).

Connectionism provides a  convenient
frameworkfor integratinginformation from several
domains (e.g., language and vision) and would
thereforeseemwell suitedto the task of modelling
eye-movementsn reading. The model described
here, casmec, is primarily an integration and
computational implementation of the informal
models of Morrison (1984) and O'Regan (1990).
Morrison'sproposalcan be sketchedout broadly as
follows: Assumethatthe word currently fixated is
word n. In the normal courseof eventsthis word
will be correctly identified and attentiosill shift to
word n+1. Note that foveation and allocation of
visual attentionare assumedo be decoupled. The
process of shifting attention to the next word
automaticallyresultsin the programmingof a new
saccade. In most casesthis programis executed.
However, if the shift in attention has been of

sufficiently long durationto allow the identification
of word n+1 without the needto foveateit, three
possibilities arise:  The first is that word
identification takesplace,the programmedsaccade
is cancelled,and attentionshifts to word n+2. A
new saccadeas then programmedand subsequently
executed. The second possibility is that
identification occurstoo late to delay the execution
of thesaccadeo word n+1. In this case, a saccade
to word n+1 is rapidly followed by a saccadeto
word n+2. Thethird possibilityis thatthe saccadic
programis modified, so that the resulting saccade
causeghe eye to land somewherebetween word
n+1 and wordn+2. Within thisframework,onecan
accountfor the skipping of high-frequencywords
(i.e., readily identifiable words), saccadeshat land
between words, and the occasional very brief
fixation. The attentionalshift mechanismis alsoa
way of explaining preview effects. These occur
whenthe encodingof a word in the currentfixation
benefits from it having been attended on the
precedingfixation. Thereis a considerableamount
of evidencesupportingthe integrationof someform
of informationacrosssaccadesvhich facilitatesthe
encodingof the subsequentlyfixated word in both
readingand non-readingasks(Rayner& Pollatsek,
1989).

The othermajor elementof cAsMECis basedon
the work of O'Regan(1990). He proposeda model
of eye-movementcontrol which is a function of
low-level oculomotor constraints and lexical
processes. In his Strategy-Tacticanodel, the eye
moves forward in careful word-by-word reading,
using low-spatial frequency cues to aim at the
optimal viewing position (ovpP) of the next word
(somewherdo the left of its centre). O'Reganand
his co-workers (O'Regan,Levy-Schoen,Pynte, &
Brugalliere,1984)identified the ovp asa particular
locationin a word whereboth speedof recognition
and likelihood of refixation are at their lowest.
Aiming at the ovp representsan overall strategy
which gives way to a within-word tactic to
maximise the amount afiformationpickedup once
a word has been fixated. If the eye faildand near



a word'sovp, atypical tactic,accordingto O'Regan,
is to saccade to the other end of ward ratherthan
to the middle, thus maximising the combined
information from both fixations.
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I mplementation details

An overview of CASMEC is given in Figure1l. The
visual input is processe@longtwo main pathways,
the first dealing with word recognition and the
seconddealing with saccadicprogramming. The
two modulesin circlesrepresenthe componentof
the framework that are trained using the
backpropagationlearning algorithm (Rumelhart,
Hinton, & Williams, 1986), and both consist of
single hidden-layer feedforward networks with
trainableweights. The modulesin rectanglesare
non-connectionistind are usedto manipulatethe
inputsandoutputsof the trainablemodulesin ways
that will be describedin more detail below. The
thick lines connecting some of the modules
representhe transmissiorof activationvalues,and
the thin lines represent the transmission of
triggering or enabling signals.

Visual Input Matrix
The visual input consists of a 26x8ttrix in which

the rows representettersandthe columnsrepresent
spatiallocations. Theinput matrix is intendedto be

analogousto a low-level cortical representation.

The effects of the non-homogeneityof receptor
density in the retina is representedn two ways:
First, moving outwardfrom the areaprojectedto by

the fovea, there is a decreasein the spatial
resolution of letters. Second, there is a
commensuratadecreasein the accuracyof letter
categorisation. Both these representational

assumptions are well supported in the psychophysics

researchiterature (Chastain,1982; Levi, Klein, &
Aitsebaomo, 1985).

The decrease in spatial resolution is
implemented by means of a set of Gaussian
distributionsof varying standarddeviation. These
will bereferredto in functionalform asy = G(o
X), whereo is the standarddeviationandx is a term

corresponding to relative spatial location. Column 8

in the visual input matrix was chosenas the centre
of the area projected to by the foveBhe activation
of a single unit in this column representsthe
presenceof the letter it represents. Its activation
value is given by G(0.25,0)= 1.6. Moving away
from the centre,to the columnson either side, o
increasesby a fixed amount, which resultsin a
decreasein the height of the distribution, and
thereby the activation level of the units in the
column. Furthermore, as the height of the
distribution decreaseshe leakageof activation to
the sameletter unit in adjacentspatial locations
increases. The rate at which o increases,and
consequentlythe rate at which the level of unit
activationdecreaseds basedon the linear equation
(dueto O'Regan1990):r'=r' ,(1+m@ ) wherer' is
the ratio of the acuity (in this case,level of unit
activation)at someeccentricity@ over the acuity at
the centre of the foved, is this ratio for thecentre,
and m is a constantwhich reflects the rate of
increase in the sizef the cortical receptivefields as
¢ increases. Each spatial location representsan
incrementin @ of 0.25 (i.e., four letters to a
degree). A value fom of 1.6 waschoserbecausét
gavea convenieno incrementof 0.1 andwasclose
to thevalueof 1.7 estimatedby O'Regan(1990)for
readingon the basisof a range of psychophysical
experiments.

The value x determines the amount of
activation that leaks into adjacentcolumnsof the
visual matrix. On the assumptionthat there is

perfect spatial resolution at the centre, the increment

to x associatedvith one characterspace(i.e., one
column) was chosento correspondto the point at
which G(0.25,x)=0.001;in other words, where the
leakage of activation from the central locatiorthe
immediatelyadjacentlocationsis negligible. The
value ofx chosen using this criterion was 1.0.



For eachspatiallocation, a Gaussianvas used
to representthe degreeof categorycertainty. As
one moves further away from the centre, o is
incremented, resulting in a decrease in activaftbon
the relevant letter unit and an increasein the
leakageof activation to category (as opposedto
spatial)neighbours.Thus,the unit representinga”,
say, activatesunits for visually similar letters, and
doessoto an increasingextentas one movesaway
from the centre. Visual similarity was determined
by a clusteranalysisof the pixel representationf a
standard font.

Attentional M echanism

A keyrole in casmEec is playedby visual attention.
This process is operationalisedby a movable
inverted"spotlight” which suppressethe activation
of partof the visualrepresentatiomhile leavingthe
attendedareaat its normal level (cf. Mozer, 1991).
The neurophysiologicaimotivation for this comes
from Crick's (1984) proposal for an attentional
mechanisnof this sort operatingin the areaof the
thallamus. In the implementationthe activity of all
non-attendedegionsof the input is multiplied by
0.25. This figure waschosernto be small enoughto
give words that were attended to, Ioot foveateda
chance to compete with the foveal inplitalsohad
to be smallenoughto providethe saccade-targeting
mechanism with a relatively noise-free target.

Lexical Encoding Module

The internal architectureof the lexical moduleis a
fully-connectedfeedforwardnetwork with a 26x16
input units, 150 hiddenunits,andeight outputunits.
Theinput to the modulecomesfrom the central16
columnsof the visual input matrix and is modified
by the attentionalspotlight, which dampensdown
the activationof non-attendedvords. Eight output
units are usedto represeneachof the 222 wordsin
the training corpus(describedbelow). Words that
are visually similar are given similar lexical codes.

Within a larger reading model, the lexical
module would make a lexical representation
availableto higher-ordemprocessesHere,however,
it simply servesto storethe sequenceof identified
words and enable a shift in attention.

Saccadic Control Module

The input to the saccadicprogrammingmodule is
also derived from the visual input matrix. Since
low-spatial frequency information appearsto be
used in targeting saccadic eye-movements,the
visual input matrix is transformedinto a vector by
collapsing over the category dimension. The
elements of the resulting vector correspond ta2he
spatiallocations,andthe valuefor a given element
is the maximum activation value in the collapsed
column for that location.

The internal architecture of the saccadic
moduleis a standardfeedforwardnetwork. There
are 20 input units, 15 hiddenunits, and two output
units. The learning task is to saccadeto the
spotlightedareaof the input vector. Thetwo output
units representhe directionsleft andright. Their
activationvaluesprovide the distanceto the left or
right thatthe "eye" hasto movein orderto foveate
the attendedword "blob." The "shift fixation"
module, when triggered, takes this output and itses
to modify the visual input matrix.

M odelling the Temporal Dynamics

Normally, a two-layer feed-forward network will

generatean outputfrom a given input in two time-
steps. In orderto derive processingime datafrom
these networks, a technique first described by
Cohen,Dunbar,and McClelland (1990) was used.
During the performancephase of the modelling
process, the standard weighted sum of input
activations is replaced with the following time-
averaging formula:

net, =13 (8,w;) +(1-T)net,,

where net is the netinput to unit j at time t,
net ., input to this unit on the previoustime cycle,
g, Is the activationof unit i attime t, w; is the
strength of the connection from umito unit j, andt
is atime constanthat determinesvhatcombination
of the currentand previousnet inputsto the unit is
to be used in the calculation of the current
activationlevel. By usingthis formula, activation
builds up slowly in the outputnits of a feedforward
network and asymptotesto a stable value. The
number of cycles to asymptoteis used as an
analogueof processingime. In Figure 1, the two
moduleslabelled "asymptotedetector"are usedto
check whether the output from the lexical and



saccadic modules has asymptoted. When an
asymptotes reachedhe modulesgeneratea signal
thatis usedby the modulescontrolling fixation and
attention shifts.

In the caseof the lexical module,T waschosen
so thatthe numberof cyclestakenfor the moduleto
asymptotewhen fixating a typical word (both in
frequencyand length) was roughly equal to 125.
This is the numberof ms estimatedto be neededo
encodea typical word (Rayner& Pollatsek,1989).
In the caseof the saccadigprogrammingmodule,a
value for T was chosenso that the averagenumber
of cyclesto asymptotewas also around150. The
aim herewasto equatecycle time with the number
of millisecondsrequiredto programmeand execute
a saccade. The saccadic programming time
probablyhasa lower boundof 75 ms, which when
combinedwith an efferentlag of 50-60ms, givesa
combinedlower bound of 125 ms, with 150 ms
assumedto be an averagevalue. Using these
criteria, the t for the lexical modulewas setat 0.1
and at 0.15 for the saccadic programming module.

Training phase

In the training phase,the saccadicand lexical
modules were trained using the backpropagation
learningalgorithm. Threestoriesexcerptedirom a
schoolreaderwere used,consistingof 863 wordsin
total, madeup of 222 differentwords. The average
word length of the text was 4.5 letters. Words
occurred with varying frequency the text, andthis
corpus-basedfrequency was used as a way of
building in frequencystructurethatcould be usedin
a later study of frequency effects.

The lexical module was trained to identify
words randomly fixated at different locations. In
training the saccadic programming module, the
network wastrainedto makethe rangeof saccade-
typesthat one finds in normal adult reading. The
preciseproportionsof progressionsiegressionsand
re-fixations were derived from empirical data
(Rayner & Pollatsek, 1989; O'Regan, 1990).

Testing phase

For the test phasethe trained saccadicand lexical
componentsvere assembleds shownin Figure 1,
and the resulting behaviourcomparedwith known
gualitative and quantitative aspects of eye-
movement control in reading.

Simulated reading proceeds as follows:
Fixation-sized chunksf text comprisingon average
four words are pre-processednto a visual input
matrix and then loadeidto the visualinput module.
This module is used as a soudfenput for boththe
lexical encoding and saccadic programming
modules. At somepoint the level of activationin
oneof the modulesasymptoteso a stablevalue. In
the caseof the lexical module, the time taken to
asymptotewill vary accordingto the frequencyof
theword fixated andthe fixation locationwithin the
word. When the lexical encoding module
asymptotes this is detected by an asymptote
detectionmodulewhich sendsan enablingsignalto
the lexical identification module which enablesa
shift in attention. On the otherhand,if the saccadic
moduleis the first to asymptoteand if the size of
the proposed saccadegreaterthansomethreshold,
then a saccadds executed. Sincethe goal of the
saccadicnoduleis to fixate the currently attended
word, a saccadat this stagewill causea refixation
of the currently attendedword in the manner
proposed by O'Regan.

When a shift in fixation isriggeredinformation
aboutthe size of the shift is readfrom the saccadic
moduleandusedto selectthe next chunkof text to
befixated. Attentionis allocatedto the word at the
centreof the foveal projection If the centrefalls on
a spacebetweenwords, the word to the right is
chosenas the focus of attention (this assumption
requiresempirical verification). The text is pre-
processedin the usual way by the visual input
module and passedalong the saccadicand lexical
pathways. Note that the lexical moduleis not reset
at this point, only the input layers of eachmodule
are changed. There will still be some residual
activationin the hiddenand output layersfrom the
previous fixation which can help accelerate
convergencen the currentfixation, thus permitting
the integrationof informationacrossfixations. It is
a debatablepoint whether or not the saccadic
module should also be reset. Are there, for
example, the equivalent of preview effects in
saccadigprogrammingwherebya saccadef equal
length to the previous one is programmedmore
rapidly, thus shortening the current fixation
duration? Again, this is anopenempiricalquestion.
Forthe presentjt is assumedhat a resetdoestakes
place.

Per for mance of the M odel

The meanfixation durationfor one passthroughthe
training text entailingpver 800 fixationswasaround



200 ms and the mean saccadic length was 6

characters.Both figuresare smallerthanonewould

expectfrom adult readers. Fixationswere shorter,
becausethe refixation tactic used by the model

generated a relatively large number of brief

fixations. The distribution of fixation durations
tendedto be bi-modal. This suggestghat someof

the timing assumptionsparticularly with regardto

saccadicmodule may have to be reviewed. The

main reasonfor the shortersaccadesvas because
fewer words were skippedthan in normal reading
and also because theeanword lengthof thetextis

below average at around four characters.

Shift invariance

The model demonstrateda surprising degree of
shift-invariancein the recognition of words. Ten
testpassesvere madethroughthe corpusin which
eachword in the text was fixated at somerandom
position in the range comprising the word, plus
three charactersprior and two after. Words were
correctly identified on 95% of fixations, and of the
222 uniquewords90% were correctlyidentified. It
seemdhatthe spatialandcategory’blurring” of the
input representationhas the beneficial effect of
makingthe input identifiable at different horizontal
displacements.

Optimal viewing position effects

Figure 2: Optimal viewing position effect in
simulation data
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A typical ovp patternwas found in the simulation
data. In Figure2, the ovp for eachword tendsto be
left of centre,andis more pronouncedfor longer
words, as in real reading (O'Regan,1990). Note
that the zero location in Figure 2 representsthe
spaceprior to the word and that "cycles" is an
analogueof fixation duration. Note also that this

effectis not a training artefact,sinceeachletter was
equiprobable as a fixation location during training.

Contingent changesin display

Apart from normal reading, the model is also
capableof simulating a range of eye-movement
contingentdisplay changeexperimentssuchasthe
moving window studiesof McConkie and Rayner
(1975). One of their conditionsinvolved replacing
the lettersof wordsin the parafoveawith Xs. They
found that this manipulation actually speededup
fixation durations when compared to other
replacementoptions, such as the use of similarly
shaped letters. Thamgterpretedhis effectasdueto
lack of interferencefrom lettersbeyondthe window
boundary. In the simulation, when words in the
periphery were replaced with either a random
sequenceof consonantr a sequenceof Xs, the
average fixation duration was longer for the
consonantsequencehan the X sequence. The X
sequencavascloseto that of normalreading. The
simulation behavioursuggestshat McConkie and
Rayner'sexplanationfor this effect is only part of
the story: In the simulation, both the lexical
processingand saccadicprogrammingcomponents
are speededip, indicatingthat aswell as providing
lessinterferencethe Xs alsopresenia clearertarget
for the saccadic module.

Other features of the model

Due to space limitations only a sample of the
model'scapabilitiescanbe discussed.Among other
aspectsof reading behaviour reproducedby the
model are refixations, frequency effects (high
frequencywordsaremorerapidly encodedhanlow
frequencywords), peripheral preview effects, and
word skipping. In the latter casetwo words are
recognised in one fixation and a saccadeis
programmedo word n+2. The skippedword tends
to be short and of high frequency within the corpus.

Conclusion

CasMEC is capable oaccountingor a rangeof eye-
movement control behaviour in reading. It
represents rigorous alternativeto the more usual,
informally specified,modelsin the area. CASMEC
exploits the single currency provided by



connectionisnmto representhe interactionbetween
the visual, lexical, and motor domains

The effort of implementing the model has
clarified some existing finding&.g.,the X effectin
the moving window experimentsof McConkie and
Rayner, 1975) and raised some new empirical
guestions: How, for example,is the intendedtarget
word selectedon a new fixation if the eye lands
betweentwo words? Are there the equivalentof
preview effects in saccadic programming?

The main shortcomingof the model is that it
does not match the distributional properties of
fixation durationsfound in readers. This is due to
the timing assumptionsof the model. Although
thesehave beerderived from empirical data, the
simulationresultssuggesthat the interpretationof
these data may need to be re-examined.

While the focus of this paperhasbeenon just
one model of eye-movement control, the
connectionist implementation is potentially a
framework for the explorationof a range of such
models. Many of the elementstbi frameworkare
uncontroversialwhatis usually at issueis how the
elementsinteract. The framework presentedhere
should allow a number of different interaction
protocols to be tested.
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