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Abstract. WestudySU(2) lattice gauge theorywith twoflavors ofWilson fermion at non-zero chemical poten-
tial µ and low temperature on a 83×16 system.We identify three régimes along the µ-axis. For µ�mπ/2 the
systemremains in thevacuumphaseandall physical observables considered remain essentially unchanged.The
intermediate régime is characterisedbyanon-zerodiquark condensateandanassociated increase in thebaryon
density, consistent with what is expected for Bose–Einstein condensation of tightly bound diquarks. We also
observe screening of the static quark potential here. In the high-density deconfined régime we find a non-zero
Polyakov loop and a strong modification of the gluon propagator, including significant screening in the mag-
netic sector in the static limit, which must have a non-perturbative origin. The behaviour of thermodynamic
observables and the superfluid order parameter are consistentwith aFermi surface disruptedby aBCSdiquark
condensate. The energy per baryon as a function of µ exhibits a minimum in the deconfined régime, implying
thatmacroscopic objects such as stars formed in this theory are largely composed of quarkmatter.

1 Introduction

At large quark chemical potential µ, QCD is expected to
undergo a transition from a confined nuclear matter phase
to a deconfined quark matter phase, where the relevant
degrees of freedom are quarks and gluons. It is now also
generally believed that the quark matter phase at low tem-
perature T is characterised by diquark condensation: pair-
ing of quarks near the Fermi surface gives rise to a number
of color superconducting phases [1–4]. The phase struc-
ture depends critically on the precise values of the diquark
gap parameters and the effective strange quark mass at the
relevant densities, and in the absence of a first-principles
non-perturbative determination of these quantities, our
knowledge of this region of the phase diagram will remain
unsatisfactory.
Lattice QCD is at present unable to address these prob-

lems directly, since the fermion determinant is no longer
positive definite once µ �= 0, and cannot be used as a prob-
ability weight in the functional integral. There has been
much progress in recent years in developing methods for
the region of high T , low µ, where the problem is less se-
vere [5]. These methods are being extended in the direction
of higher µ and lower T , but it is not clear at what point
they break down, beyond which only unphysical results
will be obtained.
Another approach is to study QCD-like theories where

the fermion determinant remains real and positive even
when µ �= 0. These can be used as a laboratory for investi-
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gating gauge theories at high density and low temperature.
One such theory is two-color QCD (QC2D) with an even
number of flavors [6], where the quarks and antiquarks live
in equivalent representations of the color group and can
be related by an anti-unitary symmetry (the Pauli–Gürsey
symmetry). This theory has been studied on the lattice by
a number of groups [6–13].
At µ = 0, the Pauli–Gürsey symmetry implies an ex-

act symmetry between mesons and diquarks, which are
the baryons of the theory. In particular, chiral multiplets
will contain both mesons and baryons. For Nf = 2, for
example, the pseudo-Goldstone multiplet consists of the
pion isotriplet plus a scalar isoscalar diquark and antidi-
quark. The diquark baryons can be expected to condense
when µ�mπ/2, forming a superfluid ground state. In this
respect, the theory is radically different from real QCD,
where no gauge invariant diquark operator exists and the
ground state at high density is superconducting. The na-
ture of the superfluid ground state is, however, an inter-
esting issue in its own right. For instance, an alternative
approach to a superfluid order parameter in terms of an
orthodox BCS description of diquark pairing at the Fermi
surface has been given in [14].
In the gluon sector, the differences between SU(2) and

SU(3) are expected to be less important, and QC2D is
a good setting for ab initio studies of gluodynamics in the
presence of a background baryon density. Of particular in-
terest is the issue of deconfinement at high density. Signals
of deconfinement were observed in simulations with Wil-
son [11] and staggered fermions [12], where correlations
were found between the Polyakov loop and chiral or bary-
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onic observables. However, the phase structure has not
been investigated in any further detail, and it remains un-
clear whether there is a confined nuclear matter phase with
non-zero baryon number (as in QCD), or just a single phase
transition. This will be investigated in the present paper.
Most lattice studies so far have been conducted using

staggered fermions, which have several potential theoretical
problems. Firstly, the pattern of global symmetry break-
ing is different to that of the continuum, so two-color stag-
gered lattice QCD has a different Goldstone spectrum to
continuum QC2D [8, 9]. Secondly, one staggered flavor cor-
responds to four continuum flavors, which is uncomfortably
close to the Banks–Zaks threshold NBZf = 136/49 ≈ 5.6,
where the second term in the β-function changes sign, lead-
ing to a non-trivial infrared fixed point and the absence of
confinement and chiral symmetry breaking. Note that this
prediction for NBZf is inherently perturbative and may be
unreliable, since the fixed-point coupling is large for Nf ∼
NBZf . In order to describe a single continuumflavor, oneusu-
ally takes the fourth root of the fermion determinant. It is
not clear whether this procedure yields something corres-
ponding to a local action of a single-flavor fermion field [15].
Even if it can be shown to be a valid procedure at µ= 0, ob-
stacles remain forµ �= 0whichmay invalidate it [16].
These problems are absent if Wilson fermions are used.

We note that the Wilson formulation still admits a U(1)B
global symmetry implying a conserved baryon number,
and so a superfluid order parameter remains well-defined.
In the chiral limit κ→ κc, the lattice Dirac operator’s
eigenvalue spectrum lies in the same chiral orthogonal en-
semble universality class as the continuum theory. More-
over, the consequences of explicitly broken chiral symme-
try should be less severe, since they manifest themselves at
the bottom of the Fermi sea, and hence become physically
irrelevant at large µ. Because the Wilson formulation has
the entire first Brillouin zone available to describe a single
physical flavor, saturation artefacts set in at a larger value
of µ than is the case for staggered [17]. On the other hand,
one has to contend with a higher computational cost and,
for this reason, only a few studies using Wilson fermions
have been performed to date [11].
In this article, we will present results from a study of

QC2D with two flavors of Wilson fermion at zero tempera-
ture and non-zero chemical potential. In Sect. 2, we present
the lattice action and expressions for the principal bulk ob-
servables. The simulation parameters are given in Sect. 3,
along with results for the lattice spacing and pion and rho
meson masses from simulations at µ= 0. The main results
are given in Sect. 4. Finally, in Sect. 5, we discuss the signif-
icance of our results and the prospects for further work.

2 Lattice formulation and simulation

2.1 Action and algorithm

The Nf = 2 fermion action is given by

S = ψ̄1M(µ)ψ1+ ψ̄2M(µ)ψ2−Jψ̄1(Cγ5)τ2ψ̄
tr
2

+ J̄ψtr2 (Cγ5)τ2ψ1 , (1)

whereM(µ) is the usual Wilson fermion matrix

Mxy(µ) = δxy−κ
∑

ν

[
(1−γν)e

µδν0Uν(x)δy,x+ν̂

+(1+γν)e
−µδν0U†ν(y)δy,x−ν̂

]
. (2)

The diquark source terms J, J̄ serve a double purpose in
lifting the low-lying eigenmodes in the superfluid phase,
thus making the simulation numerically tractable and
enabling us to study diquark condensation without any
“partial quenching”. In principle, the results should at
the end be extrapolated to the “physical” limit J = J̄ =
0. We will also introduce the rescaled source strength
j ≡ J/κ.
The fermion matrix has the following symmetries:

γ5M(µ)γ5 =M
†(−µ) (3)

KM(µ)K−1 =M∗(µ) with K ≡ Cγ5τ2 , (4)

where we have used the property τ2Uµτ2 = U
∗
µ.

The last equation is the Pauli–Gürsey symmetry. This
symmetry implies that detM(µ) is real, but not neces-
sarily positive. However, with the change of variables φ̄=
−ψtr2 Cτ2, φ= C

−1τ2ψ̄
tr
2 , we can rewrite the action as

S =
(
ψ̄ φ̄

)
(
M(µ) Jγ5

−J̄γ5 M(−µ)

)(
ψ
φ

)
≡ Ψ̄MΨ . (5)

Hence positivity of detM requires the product JJ̄ to be
real and positive, which translates into the requirement
that the diquark source term be antihermitian [18].
Now use (5) to write

M†M=

(
M†(µ)M(µ)+|J̄|2

M†(−µ)M(−µ)+|J |2

)
(6)

The off-diagonal terms can be shown to vanish if J̄ = J∗

using (3); moreover the same identity applied to the lower
block yields

detM†M=
[
det(M†(µ)M(µ)+ J̄J)

]2
. (7)

It is, therefore, possible to take the square root analyti-
cally, by using pseudofermion fields with weight (M †M +
|J |2)−1. This has the advantage of (a) requiring ma-
trix multiplications of half the dimensionality, and (b)
permitting a Hamiltonian evaluation and hence the use
of an exact HMC algorithm. This is equivalent to the
even/odd partitioning step used for staggered fermion
gauge theories, but is more transparent since all lattice
sites are physically equivalent, making the force term eas-
ier to implement. The trick was used in [19], although
because the staggered version still requires a Pfaffian
rather than a determinant, an HMD algorithm was used in
that case.
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2.2 Observables

The quark number density is given by the timelike com-
ponent of the conserved vector current:

nq =
∑

i

κ
〈
ψ̄i(x)(γ0−1)e

µUt(x)ψi(x+ t̂ )

+ ψ̄i(x)(γ0+1)e
−µU†t (x− t̂ )ψi(x− t̂ )

〉
. (8)

The quark energy density can be defined in terms of a local
bilinear very similar to (8):

εq =
∑

i

κ
〈
ψ̄i(x)(γ0−1)e

µUt(x)ψi(x+ t̂ )

− ψ̄i(x)(γ0+1)e
−µU†t (x− t̂ )ψi(x− t̂ )

〉
. (9)

Unlike nq, however, this quantity requires both additive
and multiplicative renormalisation as a result of quantum
corrections. First, the vacuum contribution εq0 must be
subtracted. This correction can be obtained in the zero
temperature thermodynamic limit from the relation

ε0q =
1

D

(
Tr 11−〈ψ̄ψ〉µ=0

)
, (10)

valid in D-dimensional spacetime, or more directly, as we
do here, by subtracting the measured value of εq(µ= 0)�
0.3982(8). We have verified that this gives the same re-
sult as using (10). The multiplicative correction results
from the renormalisation of the anisotropy factor ξ = at/as
under quantum corrections; it affects the quantity de-
fined in (9) even in the isotropic limit ξ = 1, and must
be determined either perturbatively or preferably non-
perturbatively, requiring simulations with ξ �= 1. To our
knowledge, the perturbative correction has yet to be cal-
culated for Wilson fermions; for staggered fermions it has
been computed to be 1−0.1599C2(Nc)g2 [20], where C2 is
the quadratic Casimir. This suggests that our results for εq
should be rescaled downwards. Since the correction is inde-
pendent of µ, however, this is only an overall normalisation
factor.
With the standard Wilson lattice gauge action em-

ployed in this study the gluon energy density may be de-
fined as a local observable

εg ≡
1

N3sNt

〈
at
∂Sg

∂at

〉
=
3β

Nc
Tr〈�t−�s〉 , (11)

where �t, �s are timelike and spacelike plaquettes, re-
spectively. Once again, this requires renormalisation due
to quantum corrections; the dominant correction factor
has been calculated in perturbation theory to be 1−
0.1466C2g

2 [21], suggesting that bare εg data should again
be rescaled downwards by a µ-independent factor.
The final thermodynamic observable we can discuss is

the trace of the energy-momentum tensor, expressible in
terms of the conformal anomaly

δ = ε−3p

=−
1

N3sNt

[
a
∂β

∂a

∣∣∣∣
LCP

∂ lnZ

∂β
+a
∂κ

∂a

∣∣∣∣
LCP

∂ lnZ

∂κ

+a
∂j

∂a

∣∣∣∣
LCP

∂ lnZ

∂j

]
, (12)

where it is understood that beta-functions are evaluated at
µ= T = 0 along lines of constant physics, so dimensionless
ratios of physical quantities are cutoff-independent (the
derivation of this equation for µ �= 0 is sketched in [22]).
Baryon number symmetry implies that limj→0 ∂j/∂a= 0
and hence the third term can be neglected. The local ob-
servables required at µ �= 0 are then

−
1

N3sNt

∂ lnZ

∂β
=−
3β

Nc
Tr〈�t+�s〉 (13)

−
1

N3sNt

∂ lnZ

∂κ
=
1

κ
(Tr 11−〈ψ̄ψ〉) . (14)

The final bulk observables that we compute are the di-
quark condensate,

〈qq〉=
κ

2

〈
ψ̄1Kψ̄

tr
2 −ψ

tr
2 Kψ1

〉
, (15)

which is an order parameter for the vacuum-to-superfluid
transition, and the Polyakov loop N−1c 〈TrL〉, which in
pure gauge theories is an order parameter for the decon-
finement transition.

3 Simulation parameters and physical scales

Exploratory simulations at zero chemical potential were
performed at a range of different values for β and κ [18],
but for this study the parameters β = 1.7, κ= 0.178 were
selected. All simulations were performed on an 83×16 lat-
tice. The full set of parameters used is given in Table 1.
Configurations were saved every four trajectories.
In order to determine the scale, we computed pi and

rho meson correlators and the static quark potential. The
mesons were computed using point sources (no smearing),
and as Fig. 1 and Table 2 clearly show, on our relatively
small lattice this did not allow a precise determination
of the mass. In a future in-depth study of the hadron
spectrum it will be desirable to use smeared sources and
variational techniques, but at this point we are primarily
interested in a rough idea of the hadronic scales. These
numbers indicate that we may expect an onset transi-
tion at µo ≈mπ/2∼ 0.4a−1, but since there is no separa-
tion of scales between the Goldstone (pion) and the non-
Goldstone (rho), we should not expect the chiral perturba-
tion theory to be quantitatively valid at any point.
The static quark potential was computed using APE

smeared Wilson loops with spatial separations near the
diagonal to minimise lattice artefacts. The minimum time
separation used was 2. Figure 2 shows the potential to-
gether with a fit to the Cornell potential V (R) = σR+
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Table 1. Simulation parameters. 〈�〉 denotes the average tra-
jectory length, dt is the molecular dynamics time step, Ncg is
the number of conjugate gradient iterations needed in the mo-
lecular dynamics evolution, and acc is the acceptance rate

µ j Ntraj 〈�〉 dt Ncg acc

0 0 2000 1.0 0.0125 385 85%
0.1 0 608 1.0 0.0125 82%
0.2 0 560 1.0 0.01 785 75%
0.25 0.04 266 0.5 0.0075 740 86%
0.3 0 600 1.0 0.004 1350 80%

0.02 188 0.5 0.006 1170 80%
0.04 190 0.5 0.0075 965 75%
0.06 276 0.5 0.0075 775 86%

0.35 0 500 0.1 0.0005 1650 90%
0.02 400 1.0 0.004 1615 75%
0.04 500 1.0 0.005 1090 85%

0.4 0.04 148 1.0 0.005 1165 80%
302 0.5 0.006 1235 77%

0.45 0.04 252 0.5 0.0042 1275 82%
64 1.0 0.004 1200 88%

0.5 0.02 554 0.5 0.003 2565 78%
0.04 44 1.0 0.004 1240 74%

300 0.5 0.0045 1270 77%
0.06 304 0.5 0.005 900 86%

0.55 0.04 308 0.5 0.0038 1340 83%
0.6 0.04 112 1.0 0.0033 1290 83%

283 0.5 0.004 1375 80%
0.65 0.04 276 1.0 0.003 1310 85%
0.7 0.02 400 1.0 0.002 2525 80%

440 0.5 0.0025 2760 75%
0.04 136 1.0 0.003 1330 85%

530 0.5 0.0035 1450 78%
0.06 280 0.5 0.0037 970 85%

0.75 0.04 180 1.0 0.003 1390 80%
0.8 0.04 292 1.0 0.0028 1410 80%

292 0.5 0.003 1520 74%
0.9 0.04 264 0.5 0.003 1610 72%
1.0 0.04 272 0.5 0.0028 1660 75%
1.3 0.04 249 0.5 0.0033 1070 88%
1.4 0.04 404 0.5 0.005 620 82%
1.5 0.04 400 0.5 0.01 290 80%
1.6 0.04 400 0.5 0.01 215 90%
1.75 0.04 250 0.5 0.01 200 94%
2.5 0.04 260 0.5 0.012 260 97%

Table 2. Fit ranges and fitted masses for pi and rho mesons

Range mπ χ2/Ndf mρ χ2/Ndf mπ/mρ

3–4 0.809(2) 0.58 0.882(4) 0.71 0.917(3)
3–5 0.800(2) 0.97 0.870(3) 1.4 0.919(3)
3–6 0.795(2) 1.3 0.860(3) 2.5 0.924(3)
4–5 0.789(2) 0.81 0.854(4) 1.7 0.924(3)
4–6 0.786(2) 0.63 0.846(3) 1.9 0.929(3)
5–6 0.783(2) 0.80 0.836(4) 3.0 0.937(3)

e/R+C up to aRmax = 4.0. We find for the string tension
σa2 = 0.218(8), which gives a= 0.223(4) fm for the lattice
spacing.

Fig. 1. Pi and rho effective masses for µ= j = 0

Fig. 2. Static quark potential for µ= j = 0, together with a fit
to the Cornell potential

4 Results at µ �= 0

4.1 Model considerations

Our expectation as µ is increased from zero at T � 0 is that
the system will remain in the vacuum phase until an on-
set occurs at µ= µo �Mlight/Nc, whereMlight is the mass
of the lightest baryon in the physical spectrum. In QC2D
this lightest baryon is a scalar diquark state in the same
chiral multiplet as the pion: hence µo =mπ/2, and in the
chiral limit the onset transition is well described by an ef-
fective chiral model (χPT) in which only pseudo-Goldstone
pion and diquark degrees of freedom are retained. A mean-
field treatment of χPT yielded quantitative predictions for
chiral and superfluid condensates, quark number density,
and the Goldstone spectrum as µ is increased beyond on-
set [23]. Our starting point for thermodynamics is the re-
sult for quark number density:

nχPT =

⎧
⎨

⎩

0 , µ < µo ,

8NfF
2µ

(
1− µ

4
o
µ4

)
, µ≥ µo .

(16)
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Here F is the pion decay constant, a parameter of the
χPT, which can be extracted in principle from the pion
correlator measured at µ= 0. The pressure follows imme-
diately from integration of the fundamental relation nq =
∂p/∂µ|T,V :

pχPT = 4NfF
2

(
µ2+

µ4o
µ2
−2µ2o

)
. (17)

Now, if Ω(µ, T, V ) is the thermodynamic grand potential,
then in the grand canonical ensemble Ω = −pV . In the
T = 0 limit we can, therefore, extract the energy density
via Ω/V = εq−µnq, implying

εχPT = 4NfF
2

(
µ2−3

µ4o
µ2
+2µ2o

)
. (18)

We can also extract the trace of the energy-momentum ten-
sor δ = εq−3p:

δχPT = 8NfF
2

(
−µ2−3

µ4o
µ2
+4µ2o

)
(19)

and note that δχPT is positive for µo < µ <
√
3µo.

The result (18) for εχPT coincides with that derived
in [23] using the assumption that diquarks Bose-condense
in the ground state, remain degenerate with the pion for
µ ≥ µo, and that their self-interactions are weak due to
their Goldstone nature. One infers εq �

1
2mπnq = µonq.

A more refined treatment taking account of corrections to
the dilute ideal Bose gas from the weak repulsive interac-
tion yields [23]

εq = µonq+
n2q

64F 2Nf
+ · · · , (20)

where the dots denote corrections from subleading terms in
the chiral expansion. Using µ = ∂εq/∂nq, this can be seen
to be consistent with (16) linearised about µ= µo:

nχPT ≈ 32NfF
2(µ−µo) ; (21)

the same approximation predicts pχPT to vanish as (µ−
µo)

2, which is consistent with a second-order transition in
the Ehrenfest scheme.
Next we turn to the deconfined phase expected at large

µ. The obvious starting point is the Stefan–Boltzmann pre-
diction for the number density of massless quarks:

nSB =
NfNc

3π2
µ3. (22)

This is obtained simply by populating a Fermi sphere
of radius kF = µ, with every momentum state occupied
by 2NfNc non-interacting quarks. Other thermodynamic
quantities follow immediately:

εSB = 3pSB =
NfNc

4π2
µ4 ; δSB = 0 . (23)

An estimate for the chemical potential µd at which de-
confinement takes place can be obtained by equating the

Fig. 3. Ratio of thermodynamic observables from χPT and
free quarks

free grand potential densities, or equivalently the pressures
given in (17) and (23). Since pχPT > pSB for µ < µd is re-
quired for thermodynamic stability, we find µd given by the
largest positive real root of

µ3d−4πF

√
3

Nc
(µ2d−µ

2
o) = 0 . (24)

This estimate takes no account of any non-Goldstone
states in the hadron spectrum, or of any gluon degrees
of freedom released at deconfinement. In Fig. 3, we plot
the ratios nχPT/nSB, εχPT/εSB and pχPT/pSB as func-

tions of µ/µo for the choice F
2 =Nc/6π

2, corresponding to
µd � 2.288µo. Since nχPT < nSB at this point, this naively
simple approach predicts a first-order deconfining tran-
sition — note also that δχPT < 0 at deconfinement. Also
shown is the ratio of the speed of sound

vχPT =

√
∂p

∂ε
=

√√√√√
1− µ

4
o
µ4

1+3µ
2
o
µ4

(25)

to the Stefan–Boltzmann value vSB = 1/
√
3.

4.2 Thermodynamics results

The raw data for bosonic observables (spatial and tempo-
ral plaquettes, Polyakov line) are tabulated in Table 3, and
for fermionic bilinears (〈ψ̄ψ〉, nq (8), εq (9) and 〈qq〉 (15)) in
Table 4. All quark observables are normalised to Nc colors
and Nf flavors, with Nf = Nc = 2. In this section, we out-
line the analysis needed to extract bulk thermodynamical
quantities and condensates.
The most straightforward observable to analyze is the

quark density nq, which as the timelike component of
a conserved current requires no renormalisation due to
quantum corrections. There may, however, still be lattice



198 S. Hands et al.: Deconfinement in dense two-color QCD

Table 3. Raw data for gluonic observables

j µ Tr(�s+�t)/2Nc Tr(�t−�s)/Nc TrL/Nc

0.00 0.00 0.4738(1) −0.0002(1) −0.0014(05)
0.30 0.4739(3) 0.0001(2) −0.0008(14)

0.02 0.30 0.4742(3) 0.0002(2) −0.0012(15)
0.35 0.4755(4) −0.0005(3) 0.0005(24)
0.50 0.4804(5) 0.0024(2) 0.0020(13)
0.70 0.4773(3) 0.0089(2) 0.0127(11)

0.04 0.25 0.4735(3) 0.0002(3) −0.0026(14)
0.30 0.4753(4) 0.0007(4) −0.0013(20)
0.35 0.4764(4) 0.0004(2) 0.0003(13)
0.40 0.4784(4) 0.0012(3) 0.0020(14)
0.45 0.4792(3) 0.0020(4) −0.0016(18)
0.50 0.4799(4) 0.0025(3) 0.0044(15)
0.55 0.4793(4) 0.0037(3) 0.0004(17)
0.60 0.4794(3) 0.0051(3) 0.0029(21)
0.65 0.4778(3) 0.0069(2) 0.0065(11)
0.70 0.4773(4) 0.0092(3) 0.0094(16)
0.75 0.4752(2) 0.0122(2) 0.0188(19)
0.80 0.4719(2) 0.0172(3) 0.0292(12)
0.90 0.4648(3) 0.0299(3) 0.0719(17)
1.00 0.4549(3) 0.0442(3) 0.1393(19)
1.30 0.4277(4) 0.0479(3) 0.4286(20)
1.40 0.4142(3) 0.0259(4) 0.3216(11)
1.50 0.4060(2) 0.0128(3) 0.1019(13)
1.60 0.4052(2) 0.0114(3) 0.0224(18)
1.75 0.4052(2) 0.0105(4) 0.0018(18)
2.50 0.4053(3) 0.0115(4) 0.0008(13)

0.06 0.30 0.4767(3) 0.0003(2) 0.0004(16)
0.50 0.4791(4) 0.0025(2) −0.0035(14)
0.70 0.4772(3) 0.0095(4) 0.0094(16)

artefacts in both UV and IR régimes, as illustrated by the
equivalent quantity for free fields on aN3s ×Nt lattice:

nlatSB(µ) =
4NfNc
N3sNt

∑

k

i sin k̃0
[∑

i cos ki−
1
2κ

]
[
1
2κ −

∑
ν cos k̃ν

]2
+
∑
ν sin

2 k̃ν
,

(26)

where

k̃ν =

{
k0− iµ=

2π
Nt

(
n0+

1
2

)
− iµ , ν = 0 ,

kν =
2πnν
Ns
, ν = 1, 2, 3 .

(27)

For free massless quarks κ= 18 . In the large-µ limit n
lat
SB(µ)

saturates at a value 2NfNc per lattice site. This is an arte-
fact of non-zero lattice spacing, which we will discuss in
more detail in Sect. 4.3 below. For T = 0, the correspond-
ing continuum relation is (22). Figure 4 plots nlatSB/µ

3 for
several system sizes and shows that there are significant
departures from the continuum result both at small µ as
a result of finiteNs and at µa�O(1) as a result of non-zero
lattice spacing, species doubling, etc. Of particular inter-
est are the pronounced wiggles seen especially on the 83×
64 curve. These arise due to departures from sphericity of
the Fermi surface in a finite spatial volume and are visible
whenever the temperature is much smaller than the mode
spacing, i.e. Nt�Ns [24].

Table 4. Raw data for quark observables (no zero subtraction
applied to εq)

j µ nq εq 〈ψ̄ψ〉 〈qq〉

0.00 0.00 −0.0004(04) 0.3980(4) 14.409(2) –
0.30 −0.0008(22) 0.3994(22) 14.399(7) –

0.02 0.30 0.0012(12) 0.4028(16) 14.389(5) 0.0219(2)
0.35 0.0030(24) 0.4072(24) 14.364(3) 0.0293(3)
0.50 0.0382(24) 0.4496(40) 14.254(10) 0.0571(4)
0.70 0.1506(32) 0.5348(32) 14.178(6) 0.1099(5)

0.04 0.25 0.0036(14) 0.4012(16) 14.396(8) 0.0343(1)
0.30 0.0102(14) 0.4126(16) 14.360(4) 0.0400(2)
0.35 0.0144(12) 0.4188(18) 14.332(4) 0.0469(3)
0.40 0.0252(16) 0.4358(16) 14.292(8) 0.0549(3)
0.45 0.0332(24) 0.4422(30) 14.272(8) 0.0634(5)
0.50 0.0476(22) 0.4558(22) 14.244(8) 0.0713(5)
0.55 0.0648(30) 0.4702(30) 14.236(8) 0.0817(5)
0.60 0.0898(30) 0.4902(30) 14.196(8) 0.0932(4)
0.65 0.1238(26) 0.5146(28) 14.180(4) 0.1084(4)
0.70 0.1660(24) 0.5476(26) 14.156(4) 0.1248(4)
0.75 0.2302(34) 0.5972(32) 14.136(8) 0.1461(5)
0.80 0.3354(38) 0.6850(32) 14.084(8) 0.1701(5)
0.90 0.6664(56) 0.9716(60) 13.916(8) 0.2222(9)
1.00 1.2602(74) 1.5168(72) 13.560(8) 0.2654(12)
1.30 5.220(6) 5.284(6) 12.036(8) 0.0956(3)
1.40 7.040(4) 7.060(4) 11.312(4) 0.0594(1)
1.50 7.914(4) 7.916(4) 10.944(4) 0.0346(3)
1.60 7.996(3) 7.996(3) 10.916(4) 0.0255(1)
1.75 8.000(4) 8.000(4) 10.916(4) 0.0207(1)
2.50 8.000(2) 8.000(2) 10.924(4) 0.0161(1)

0.06 0.30 0.0130(14) 0.4184(14) 14.331(6) 0.0554(2)
0.50 0.0530(22) 0.4604(22) 14.230(8) 0.0855(8)
0.70 0.1780(30) 0.5574(30) 14.131(8) 0.1397(10)

The main implication in the window µ ∈ (0.25, 1.0)
where our analysis is focused is that nlatSB lies systemati-
cally above the continuum value, with the ratio increasing
for µ > 0.5. To correct for this lattice artefact, we have
chosen to plot the ratio nq/n

lat
SB, shown as a function of

Fig. 4. nlatSB/µ
3 for free massless Wilson fermions
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µ in Fig. 5. The free field density has been calculated for
massless quarks, i.e. with κ = 1

8 . In order to assess the
systematic error due to our lack of accurate knowledge of
the non-zero quark mass, we repeated the free field cal-
culation with κ= 0.120, corresponding to a conservatively
large mqa= 0.167 and found the resulting n

lat
SB(µ) to have

a similar shape, with a maximum departure over the µ
range of interest of O(20%). Where data are available we
have plotted as open symbols the result of linearly ex-
trapolating j→ 0; at µ= 0.3 this yields nq ≈ 0, consistent
with being below the onset expected at µo =mπ/2. For
µ= 0.5, 0.7, the extrapolation results in a downwards cor-
rection of O(20%). We also note that for µ� 0.5, the ratio
is roughly constant and greater than one, which is plausi-
ble if Stefan–Boltzmann scaling sets in at large µ, but with
a Fermi momentum kF > µ. Physically, this would result
from degenerate quark matter with a positive binding en-
ergy arising from interactions. Note that a non-zero quark
mass has the opposite effect, tending to raise µ over kF.
In Fig. 5, we also plot the unrenormalised quark en-

ergy density εq/ε
lat
SB versus µ, where ε

lat
SB is evaluated using

a formula similar to (26) and εcontSB is given in (23). Note
that systematic errors due to non-zero quark mass and in-
correct vacuum subtraction are potentially larger in this
case, but have maximum impact at the lower end of the
µ range of interest. Once again, a j→ 0 extrapolation has
been done where possible, and the signal for µ= 0.3 is con-
sistent with the vacuum. As for quark number density, the
ratio εq/ε

lat
SB tends to a constant at large µ, which we inter-

pret as evidence for the formation of a Fermi surface. This
limit is approached from above, however, and in the range
0.35� µ � 0.5 εq/εSB actually peaks. The implications of
this are discussed in Sect. 5.
The pressure p is best calculated using the integral

method [25]: i.e. p(µ) =
∫ µ
µo
nq(µ

′)dµ′. Note that since the
only µ-dependence comes from the quark action, this ex-
pression gives, in principle, the pressure of the entire sys-

Fig. 5. Ratio of thermodynamic observables to free field values
versus µ for j = 0.04.Open symbols show extrapolations to j = 0

tem including both quarks and gluons. In practice, for
data taken away from both continuum and thermodynamic
limits we should make some attempt to correct for arte-
facts: we have experimented with two different ad hoc
procedures:

I :
p

pSB
(µ) =

∫ µ
µo
nq(µ

′)dµ′
∫ µ
µo
nlatSB(µ

′)dµ′
; (28)

II :
p

pSB
(µ) =

∫ µ
µo

ncontSB

nlat
SB

(µ′)nq(µ
′)dµ′

∫ µ
µo
ncontSB (µ

′)dµ′
, (29)

where ncontSB , n
lat
SB are defined in (22) and (26), respectively.

Ultimately, data from different physical lattice spacings
will be required to determine which method is preferred.
Using an extended trapezoidal rule to evaluate the integral
on the j = 0.04 data of Fig. 5, we have estimated both pI(µ)
and pII(µ) and plot the results in Fig. 6. In both cases,
the pressure rises monotonically from near zero at onset,
but for method II there is some suggestion of a plateau in
p/pSB for µ� 0.6. By µ� 1.0 the two methods agree, with
p≈ 2pSB. This is consistent with the ratio nq/nSB in the
same régime, again suggesting a Fermi surface with kF >µ.
For comparison with the other fermionic observables we
have plotted pII/pSB in Fig. 5.
Next we turn to the gluon sector. Since at the cur-

rent lattice spacing the perturbative correction to the bare
gluon energy density is likely to be inadequate, in Fig. 7
we content ourselves with plotting unrenormalised data for
both εg/µ

4 and for comparison εq/µ
4, at j = 0.04. There

is no evidence in our data of any significant variation with
j for gluonic observables. The plot illustrates: (i) the sig-
nificant impact of rescaling the fermionic data by εlatSB (cf.
Fig. 5); (ii) for all µ > µo, the gluonic contribution is a sig-
nificant fraction of the total energy density; (iii) most
strikingly, εg scales as µ

4 over the whole range of µ. On di-
mensional grounds, this is the only physically sensible pos-
sibility if thermal effects are negligible. We reiterate that
gluonic contributions to thermodynamic observables are

Fig. 6. Pressure verus µ using two different integral methods
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Fig. 7. Comparison of bare quark and gluon energy densities
versus µ

not present in the SB formulae (23), so that observations
(ii) and (iii) are non-trivial predictions of the simulation.
Note that our lack of knowledge about the energy dens-
ity renormalisation factors prevents us from making any
quantitative estimate of the gluon energy density as a pro-
portion of the total energy density.
The quark and gluon contributions to the conformal

anomaly (14) and (13) are plotted in Fig. 8. As for en-
ergy density, the raw data requires a zero-µ subtraction.
To extract δ, we also need information on the lattice beta-
functions, which require an extensive simulation campaign
and are not yet available. For this reason, we restrict
ourselves to qualitative remarks. The quark contribution
shown in the upper panel of Fig. 8 increases monotoni-
cally from µ = 0. The sign of ∂κ/∂a is found to be nega-
tive in QCD simulations [26, 27] (although it can change
sign as the chiral limit κ→ κc is approached away from
the continuum limit [26]). This is in accord with what we
have found in our SU(2) simulations at various β, κ [18].
We conclude that the quark contribution to δ is nega-
tive. The gluon contribution, by contrast, starts positive
for µo � µ � 0.6 before changing sign to decrease mono-
tonically for µ > 0.6 (recall ∂β/∂a < 0 due to asymptotic
freedom).
In fact, we expect the gluon contribution to dominate,

since δκ/δβ ≈ O(0.01) along lines of constant physics [27].
This is clearly required for consistencywith Fig. 5, since the
sign of δmust coincidewith the sign of ε/εSB−p/pSB, which
looks positive for 0.4 � µ � 0.6. We also get a clue about
the unknown renormalisation factor for εq, since if δ is to go
negative at largeµ, εren/εSB < p/pSB in this régime.
The non-monotonic behaviour of the plaquette has

been predicted in a χPT study, in which asymptotic free-
dom of the gauge coupling is taken into account [28], and
has also been observed in recent simulations with staggered
fermions [12]. It can be understood in terms of Pauli block-
ing. In quark matter as µ increases, the number of qq̄ pairs
available for vacuum polarisation corrections to the gluon
decreases, since only states close to the Fermi surface can

Fig. 8. Top: κ−1 Tr(11−〈ψ̄ψ〉), and bottom: 3β/Nc Tr〈�t+
�s〉, as functions of µ at j = 0.04

participate. In the limit of complete saturation (i.e. one
quark of each color, flavor and spin per lattice site) the
gluon dynamics hence resembles that of the quenched the-
ory, so Tr�(µ→∞) < Tr�(µ = 0). Assuming a smooth
passage to the limit, we deduce δ < 0 at large µ.
To summarise the thermodynamic information, we

have been able to extract nq(µ) and p(µ) directly from
the simulation — any remaining UV and IR artefacts in
Fig. 5 can be controlled by simulations closer to thermo-
dynamic and continuum limits. The status of εq, εg is less
secure, because these quantities require renormalisation
by an as yet undetermined factor; similarly, the trace of
the energy-momentum tensor δ requires knowledge of the
lattice beta-functions. In each case, though, the rescaling
factor is µ-independent, so the shape of the data in Figs. 5
and 8 is correct. However, the behaviour of εq in Fig. 5, and
δg in Fig. 8 give a strong hint of two qualitatively distinct
high density regions: (i) for µo � µ � 0.65 εq ≈ O(5εSB),
and δg > 0; (ii) for µ � 0.65 εq/εSB ≈ nq/nSB, δg < 0. All
thermodynamic quantities seem to have the same µ-scaling
as their Stefan–Boltzmann counterparts in this higher
density régime, although nq/nSB ≈ p/pSB ≈ 2.
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4.3 The approach to saturation

In Fig. 9, we plot nq(µ) including values of µ up to 2.5,
as tabulated in Tables 1, 3 and 4, together with both
continuum (22) and lattice (26) expectations for non-
interacting quarks. On any system with a non-zero lattice
spacing, there is a point at which every lattice site is oc-
cupied by the maximum value 2NcNf allowed by the Pauli
exclusion principle. For free Wilson fermions, this occurs
for µa ≈ 2.0; for the interacting quarks studied here, the
saturation threshold drops to µa ≈ 1.5. We also see that
the relation nq ≈ 2nlatSB continues to hold all the way up
to the threshold; there is no sign of asymptotic freedom.
In this respect, the situation bears some similarity to that
of QCD at temperatures between Tc and 3Tc, where lat-
tice simulations have also uncovered a deconfined, but
still strongly interacting system. The nature of this sys-
tem is quite different, however, as in the high-temperature
case a slow approach towards Stefan–Boltzmann predic-
tions is observed, while in the present case, the strong
binding energy remains unchanged in the entire domain
studied.
As discussed above, in a saturated system, virtual qq̄

pairs are suppressed, leading to the expectation that the
gluodynamics should be that of the quenched theory. In
fact, inspection of Table 3 shows this is a little simplis-
tic, since εg remains non-vanishing even once saturation is
complete. Strong coupling considerations suggest that the
saturated system has a quark-induced effective action that
can be expanded in even powers of the Polyakov loops. The
resulting Seff distinguishes between�s and�t, hence yield-
ing εg �= 0, but respects the global Z2 centre symmetry of
the quenched action, consistent with 〈TrL〉= 0.
Just below saturation, TrL rises rapidly. In this régime,

the theory resembles a p-type semiconductor in that the
low energy excitations are deconfined holes. The holes ap-
pear weakly interacting: 〈qq〉, which also measures the
density of hole–hole pairs, is small, and there is little evi-
dence fromNcg (Table 1) for a light bound state.

Fig. 9.Quark number density nq and Polyakov loop L vs. µ for
values up to µ= 2.5. All lattice data are at j = 0.04

4.4 Order parameters

Might it be possible to reconcile the behaviour reported
in Sect. 4.2 with the models of Sect. 4.1? To elucidate this
question, we next review order parameters for superfluidity
and deconfinement. In Fig. 10, we plot both the superfluid
condensate 〈qq〉 given in (15), rescaled by a factor µ−2, and
the Polyakov loop L. Both show a marked change of be-
haviour at µ � 0.6; for µ greater than this value 〈qq〉/µ2

is approximately constant, while L rises from zero. To in-
terpret the superfluid condensate, we first need to compare
data taken at varying j, shown in Fig. 11 together with
a linear extrapolation to j = 0. The slight non-linearity of
the µ= 0.3 data suggests that below onset, limj→0〈qq〉= 0,
whereas for µ = 0.5, 0.7 the data extrapolate to a non-
vanishing intercept, implying a non-vanishing condensate
and hence spontaneous breaking of baryon number sym-
metry, i.e. superfluidity. Extrapolated values are plotted as
open symbols in Fig. 10.

Fig. 10. The Polyakov loop L and the superfluid diquark con-
densate 〈qq〉/µ2 for j = 0.04 as function of µ. Open symbols
show 〈qq〉/µ2 extrapolated to j = 0

Fig. 11. Superfluid condensate 〈qq〉 vs. j for various µ
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Now, in the Bose condensate phase expected for µo <
µ < µd, χPT predicts [23]

〈qq〉χPT
µ2

∝
1

µ2

√

1−
µ4o
µ4
, (30)

which is a monotonically decreasing function for µ ≥
4
√
2µo. For a Fermi surface perturbed by a weak qq at-
tractive force, by contrast, the order parameter counts the
number of Cooper pairs condensed in the ground state,
which all originate in a shell of thickness ∆ around the
Fermi surface, where∆ is the superfluid gap: hence

〈qq〉BCS
µ2

∝∆. (31)

The data of Fig. 10 support this scenario for µ� 0.6, with
∆ independent of µ. Further support for the importance
of quark degrees of freedom at large µ comes from the
Polyakov loop, which rises smoothly from zero at µ� 0.65.
We thus tentatively assign µd � 0.65, marking a transition
from confined scalar “nuclear” matter to deconfined quark
matter. In condensed matter physics parlance this tran-
sition would be characterised as one from BEC to BCS.
Exposing the detailed nature of the transition will require
many more simulations using a variety of source strengths,
lattice spacings, and spatial volumes.

4.5 Static quark potential

The screening effect of the dense medium can be further
investigated by studying how the static quark potential
changes as the chemical potential increases. In Fig. 12, we
show the static quark potential for various values of µ and
j = 0.04. Up to µ= 0.3 there is no change from the µ = 0
potential, while in the intermediate phase we see clear ev-
idence of screening due to a non-zero baryon density. This
is even clearer in Fig. 13, where the µ= j = 0 potential has
been factored out.

Fig. 12. The static quark potential for various values of the
chemical potential µ and diquark source j = 0.04, together with
the µ= j = 0 potential shown in Fig. 2

Fig. 13. The static quark potential for various values of the
chemical potential µ and diquark source j = 0.04, divided the
µ= j = 0 potential shown in Fig. 2

Fig. 14. The static quark potential at µ = 0.7 for different
values of j

In the deconfined phase a new pattern emerges, where
the short distance potential is strongly modified, while at
long distances we appear to see an increase with increasing
µ, rather than a decrease as expected. There are, however,
indications that the long-distance screening at µ= 0.7 may
become slightly stronger as j→ 0, as Fig. 14 shows. No de-
pendence on j is seen at µ= 0.3 or µ= 0.5. We do not have
an understanding of these effects at present, although it is
possible that lattice artefacts may contribute to the short-
distance modifications. This can be resolved by going to
finer lattices. Likewise, larger lattices will be required to
determine the long distance potential to greater accuracy.

4.6 Gluon propagator

We have computed the gluon propagator by fixing the con-
figurations to Landau gauge using an overrelaxation algo-
rithm to a precision |∂νAν |2 < 10−10. The approach and
notation is analogous to that of [29]. At non-zero chemical
potential, which defines a preferred rest frame, the gluon
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propagator can be decomposed as

Dµν(q) = P
M
µν (q)DM

(
q20,q

2
)
+PEµν(q)DE

(
q20,q

2
)

+PLµν(q)DL
(
q20,q

2
)
, (32)

where

PMij (q) =

(
δij−

qiqj

q2

)
; PM00 (q) = P

M
i0 (q) = 0 ; (33)

PEµν(q) = δµν −
qµqν

q20+q
2
−PMµν (q) ; (34)

PLµν(q) =
qµqν

q20+q
2
; (35)

qν =
2

a
sin

(πnν
Lν

)
, nν =−

Lν

2
+1, . . . ,

Lν

2
.

(36)

DM is the magnetic (spatially transverse) gluon propaga-
tor andDE is the electric (spatially longitudinal) propaga-
tor, while the longitudinal propagatorDL is zero in Landau
gauge.
Figure 15 shows the gluon propagator at µ= j = 0 as

a function of 4-momentum q2 = q20+q
2. Since the Lorentz

symmetry remains unbroken here, there is only one form
factor, and the small splitting between electric and mag-
netic gluon is most likely a finite volume effect, similar to
the asymmetric finite volume effects on the tensor struc-
ture observed in the SU(3) gluon propagator [29].
Figure 16 shows the gluon propagator at µ = 0.7, j =

0.04 as a function of the 4-momentum q2, compared to the
vacuum gluon propagator. We find that the electric prop-
agator remains virtually unchanged at this point, while
some modifications can be seen in the magnetic prop-
agator. In particular, the Lorentz or O(4) symmetry is
clearly broken, since different values for q0 give different
“branches”.
In order to see the µ-evolution more clearly, we show

in Fig. 17 the magnetic gluon propagator for the lowest
two Matsubara modes n0 = 0, 1 as functions of the spa-
tial momentum |q| for different µ. We see that there is

Fig. 15. Gluon propagator at µ= j = 0

Fig. 16. Gluon propagator at µ= 0.7, j = 0.04, together with
the µ= j = 0 propagator for comparison

Fig. 17.Magnetic gluon propagator for q0 = 0 (top) and aq0 =
2 sinπ/16 (bottom) and diquark source j = 0.04, as a function
of spatial momentum |q| for various values of the chemical po-
tential
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Fig. 18. As Fig. 17, for the electric gluon propagator

very little change up to the deconfinement transition, after
which there is a dramatic infrared suppression and clear
ultraviolet enhancement of the propagator. These changes
makes it look more like an ordinary massive boson prop-
agator, i.e. the gluon has acquired a magnetic mass that
grows as µ increases beyond µd. This effect does depend on
the diquark source j, becoming weaker as j→ 0, as Fig. 19
shows. Simulations at smaller j in the deconfined phase will
be necessary to firm up the picture, but it seems unlikely
that the j-dependence seen at µ = 0.7 will be sufficient to
wholly cancel the infrared screening effect. No dependence
on j is seen at µ= 0.3, 0.5.
Figure 18 shows the electric propagator for the low-

est two Matsubara modes, for selected values of µ. While
the electric propagator, as seen previously, remains un-
changed up to µ = 0.7, it too is clearly suppressed in the
infrared above deconfinement (although to a smaller extent
than the magnetic case), but appears unchanged in the ul-
traviolet. No dependence on the diquark source is seen.
The same effects can be seen in both static (q0 = 0) and
non-static propagators, although for n0 ≥ 2 the splitting
between electric and magnetic sectors becomes harder to
detect. The case of the static magnetic propagator is par-

Fig. 19. Magnetic gluon propagator at µ = 0.7 for various
values of the diquark source j

ticularly interesting, since this is unscreened to all orders in
perturbation theory, yet we observe a clear screening effect.
The increase of magnetic screening with j also suggests
a non-perturbative origin, hinting at a relation to the non-
vanishing 〈qq〉 condensate, rather than the presence of light
quasiquark degrees of freedom at the Fermi surface. The
data in this case may be distorted by possible finite volume
effects, although the consistency between the n0 = 0 and
n0 = 1 data indicates that these do not affect the qualita-
tive picture.

5 Discussion and outlook

Our results indicate that, at least for the (rather heavy)
quark mass employed in this study, QC2D has three sepa-
rate phases:

1. A vacuum phase, for µ < µo ≈mπ/2, where the baryon
density remains zero and all other physical quantities
(with the likely exception of the hadron spectrum [23])
are unchanged.

2. A confined, bosonic superfluid phase, for µo < µ < µd,
characterised by Bose–Einstein condensation of scalar
diquarks. The thermodynamics of this phase can be
qualitatively (but not quantitatively) described by chi-
ral perturbation theory, and the static quark potential
is screened by the dense medium.

3. A deconfined phase, for µ > µd, where quarks and glu-
ons are the dominant degrees of freedom. In this phase,
a Fermi surface of quarks is built up, leading to scaling
of thermodynamic quantities of the same form as pre-
dicted by the Stefan–Boltzmann form, but with a differ-
ent constant of proportionality. We interpret the latter
as evidence for a non-zero binding energy in this phase,
as kF >EF. We observe Debye screening of the electric
gluon propagator, as well as strong screening of both
static and non-static magnetic gluon modes.

The deconfinement transition occurs at aµd ≈ 0.65, which
in physical units corresponds to µd ≈ 600MeV. The corres-
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ponding quark density may be estimated as nq ≈ 11 fm−3

directly from Table 4, or from Fig. 5 where lattice artefacts
are taken into account, as ≈ 6.5 fm−3.
Let us discuss some phenomenological implications of

our results. First consider the nature of the deconfinement
transition. Since both the low density “nuclearmatter” and
high density “quark matter” phases are characterised by
a U(1)B breaking superfluid condensate, it is tempting to
postulate the quark/hadron continuity proposed for QCD
with Nf = 3 light flavors in [30]. In that case, the spectrum
of physical excitations in both nuclear and quark phases is
qualitatively similar and can bematched using phenomeno-
logical insight, for instance that the physical state with the
smallest energy per baryon is the 6-quark bosonic state
known as the H-dibaryon,which can Bose-condense to form
a superfluid at nuclear densities. In QC2D, however, no
matching is possible. The spectrum in the confined phase
consists entirely of bosonic states, be they qq̄ mesons, qq
baryons and their conjugates, or glueballs. The deconfined
phase by contrast has quasiquark excitations with half-
integer spin and mass gap ∆, the same energy scale as all
non-Goldstone mesonic and baryonic excitations. The only
states that are conceivably lighter are spin-1 quasigluons,
with no counterpart in the low-energy spectrum predicted
by χPT [23]. Since the spectrum is discontinuous, it seems
natural to suggest that deconfinement in this case is a gen-
uine phase transition, rather than a crossover.
The most intriguing of our results concerns the mag-

netic gluon propagator shown in Fig. 17. The long-distance
screening observed in the static limit q0→ 0 is not pre-
dicted at any order of perturbation theory. However, this
breakdown of perturbation theory should not be unex-
pected as the magnetic gluon is an intrinsically non-
perturbative object. We have no explanation for the
screening effect, but note that absence of magnetic screen-
ing in the static limit is a crucial ingredient of the cele-
brated calculation of the gap scaling ∆∝ exp(−3π2/

√
2g)

predicted for high-density QCD [31].
Finally, it is fascinating to speculate on the astrophysi-

cal consequences of our results. Figure 20 plots the energy
per quark εq/nq against µ, and shows a shallow minimum
at µa≈ 0.8. This feature occurs whether or not corrections
for lattice artefacts are applied, and appears to be a robust
prediction of our simulation. Inclusion of the gluon contri-
bution εg shown in Fig. 7 will ensure ∂ε/∂nq> 0 as µ→∞,
as of course will recovery of the Stefan–Boltzmann scal-
ing ((22),(23)) as asymptotic freedom sets in. Moreover,
the minimum is not predicted by χPT, where ε increases
monotonically with nq (see (20)). The minimum resembles
a property known as saturation in nuclear physics, and im-
plies that objects formed from a fixed number of baryons,
such as stars, will assume their ground states when the ma-
jority of the material lies in its vicinity. Since the minimum
lies above the deconfining transition, we deduce that two-
color stars are made of quark matter.
Orthodox models of quark stars [32] are based on a sim-

ple equation of state such as the BagModel, which predicts
a sharp first-order deconfining transition. The resulting
stars have a sharp surface where p= 0, along which quark
matter coexists with the vacuum. In QC2D by contrast,

Fig. 20. The ratio εq/nq vs. µ, using both the raw data of

Table 4, and rescaled by a factor nlatSB/ε
lat
SB

the state of minimum ε/nq has p > 0. A two-color star
must, therefore, have a thin surface layer, perhaps better
described as an atmosphere, formed from scalar diquark
baryons, and whose density falls continuously to zero as the
surface is approached. At the base of the diquark atmo-
sphere there will be a sharp increase in both pressure and
density, and the bulk of the star will be formed from quark
matter with µ> µd. Precise radial profiles, and the relation
between the star massM and its radiusR, must awaitmore
quantitative information of the equation of state, which re-
quires the correct normalisation of εq and εg.
We conclude the paper by outlining future directions

of study. The lattice spacing used here is quite coarse and
as illustrated in Sect. 4.2 lattice artefacts are quite sub-
stantial. It will be important to repeat the study on finer
lattices in order to gain control over these artefacts. This is
currently underway.
It will also be desirable to find the correct rescaling

factors for the energy densities, via a non-perturbative de-
termination of the Karsch coefficients using simulations on
anisotropic lattices [33, 34].
Since the differences between QCD and QC2D are

greatest in the chiral limit, the heavy quark mass employed
here can be considered an advantage rather than a draw-
back. Nonetheless, it would be desirable to study a system
with lighter quarks, to explore the mass dependence of our
results and interpolate between the régime we have been
exploring and the chiral régime. Better control over the
limit j→ 0 is also required.
Beyond the issues considered in this paper, we intend

to study the hadron (meson and diquark) spectrum and
the fate of Goldstone as well as non-Goldstone modes in
the dense medium. Issues of interest there are the fate
of the vector meson and the possibility that it becomes
light in the dense phase [11, 35, 36]. Also of interest is the
pseudoscalar diquark, which may provide a pointer to the
restoration of the U(1)A symmetry in the medium [37].
We also intend to study the Gor’kov quark propagator in
momentum space, which will provide information about
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effective quark masses and the superfluid diquark gap.
Gauge-invariant approaches to identifying the presence of
a Fermi surface in a Euclidean simulation can also be em-
ployed [38]. Finally, once ensembles of the dense medium
are available on a fine lattice, it will be interesting to ana-
lyse topological excitations [12], to see to what extent de-
confinement in dense baryonic matter resembles deconfine-
ment in a hot medium.
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