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We present a new exact algorithm for estimating all elements of the quark propagator. The advantage of the
method is that the exact all-to-all propagator is reproduced in a large but finite number of inversions. The efficacy
of the algorithm is tested in Monte Carlo simulations of Wilson quarks in quenched QCD. Applications that are
difficult to probe with point propagators are discussed.

1. INTRODUCTION

The discovery of exactly chirally symmetric
fermions on the lattice has triggered intensive re-
search in the development of algorithms to simu-
late dynamical Ginsparg-Wilson fermions on the
lattice. In light of recent work in this area, we
anticipate that there will be a limited number of
expensive, full QCD configurations in the near
future. One would like to extract all the informa-
tion that one can from these lattices without be-
ing restricted by point propagators, which would
appear highly wasteful considering the cost to
generate the configurations. Point propagators
do not require massive computing power but re-
strict the physics one has access to, mainly the
flavour non-singlet spectrum. They also restrict
the interpolating operator basis used to produce
early plateaux in effective masses, for instance,
since a new inversion must be performed for every
operator that is not restricted to a single lattice
point. Variational methods would be much more
powerful with the use of all-to-all propagators.

All-to-all propagators [1–6] provide a solution
to these problems, but are usually too expensive
to compute exactly as this requires an unrealistic
number of quark inversions. Stochastic estimates
tend to be very noisy and variance reduction tech-
niques are crucial in order to separate the signal
from the noise. In this paper we propose an ex-
act algorithm to compute the all-to-all propaga-

∗This contribution is based on parallel talks given by Alan
Ó Cais and K. Jimmy Juge at Lattice 2004.

tor utilizing the idea of low-mode dominance cor-
rected by a stochastic estimator which yields the
exact all-to-all propagator in a finite number of
quark inversions.

2. THEORY AND NOTATION

2.1. Spectral Decomposition
Theoretical arguments, backed up by numer-

ical evidence [7,8], indicate that the low lying
eigenmodes of the Hermitian Dirac operator cap-
tures much of the important infrared physics in
hadronic interactions. It would be desirable to
take advantage of this fact and solve exactly for
as many of the eigenmodes as possible to estimate
the all-to-all quark propagator.

To this end, we define the Hermitian Dirac op-
erator Q = γ5M where M is the usual Dirac oper-
ator. The truncated representation of the quark
propagator is then given by,

Q̄0 =
Nev∑

i

1
λi

v(i)(�y, y0) ⊗ v(i)(�x, x0)† , (1)

where Qv(i) = λiv
(i). The truncation at an ar-

bitrary number, Nev, of eigenvectors, however,
leaves the theory non-unitary, making it manda-
tory to correct it.

2.2. Dilution (Noisy Estimators)
The standard method of estimating the all-

to-all quark propagator is to sample the vector
space stochastically. One generates an ensemble
of random noise vectors, {η[1], · · · , η[Nr]}, with
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the property

〈〈η(x)⊗η(y)†〉〉 ∝ δx,y , (2)

where 〈〈· · ·〉〉 denotes average over noise samples.
The solution for each vector is obtained in the
usual way,

ψ[r](x) = Q−1η[r](y) . (3)

The all-to-all quark propagator is estimated as

Q−1 = 〈〈ψ⊗η†〉〉

� 1
Nr

Nr∑

r

ψ[r](y) ⊗ η[r](x)† .
(4)

This method is noisy because it relies on delicate
cancellations in the O(1) noise over many samples
to find the signal, which falls off exponentially
with the separation. We propose to remove the
O(1) random noise by “diluting” the noise vector
according to some dilution scheme resulting in an
exponential gain in the variance. A particularly
important example of dilution for measuring tem-
poral correlations in hadronic quantities is “time
dilution” where the noise vector is broken up into
pieces which only have support on a single times-
lice each,

η(�x, t) =
Nt−1∑

j=0

η(j)(�x, t) , (5)

where η(j)(�x, t) = 0 unless t = j.
Each diluted source is inverted resulting in Nt

pairs of vectors, {ψ(i)(�x, t), η(i)(�x, t)}, which then
gives an unbiased estimator of 〈ψψ̄〉 with a single
noise source,

Q−1 =
Nt−1∑

i=0

ψ(i)(�x, t) ⊗ η(i)(�x0, t0)† . (6)

We show the effect of time dilution on a pseu-
doscalar propagator on a 123×24 lattice in Fig. 1.
The triangles are the average of 24 noise sources
without any dilution and the circles are from a
single noise source which has been time-diluted.
This particular scenario is analogous to the “wall
source on every timeslice” method used by the
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Figure 1. The psuedoscalar propagator computed
with and without time dilution.

authors of Ref. [1] to estimate the disconnected
diagrams appearing in hadronic scattering length
calculations. Our method is, however, more gen-
eral and can be extended to the spin, color and
space components of the source vector. The
“homeopathic” limit of this dilution procedure re-
sults in the exact all-to-all propagator in a finite
number of steps (Fig. 2). This limit cannot be
reached in practice on realistic lattices, but the
path of dilution may be optimized so that the
noise from the gauge fields dominate the errors
in the hadronic quantities of interest with only a
small, managable number of fermion matrix in-
versions.

2.3. ‘Hybrid’ Method
The evidence that much of the hadronic physics

we would like to extract from the lattice is in the
low-lying eigenmodes of the (Hermitian) Dirac
operator suggests that one try to calculate as
many as possible of the low modes exactly and
correct for the truncation with the noisy method.
This gives rise to two concerns: firstly, the cor-
rection should leave the exactly solved low-lying
modes intact; and secondly, it should not intro-
duce large uncertanties in the process. We pro-
pose that the stochastic method with noise dilu-
tion is a natural way to accomodate both of those
concerns.

First, we note that the exact Nev low eigen-
modes obtained separately naturally divide Q
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Figure 2. A cartoon of possible deviations of
the stochastic estimates of the exact solution (at
Nd = Nmax) for different dilution paths. Simply
adding noise vectors will give a 1/

√
N behaviour.

into two subspaces, Q = Q0 + Q1, defined by

Q0 =
Nev∑

i=1

λiv
(i) ⊗ v(i)† , (7)

Q1 =
N∑

j=Nev+1

λjv
(j) ⊗ v(j)† . (8)

Similarly, the quark propagator is broken up into
two pieces, Q−1 = Q̄0 + Q̄1, where Q̄0 is given by
Eq. (1) and Q̄1 is the remaining unknown piece.
We correct for the truncation and estimate Q̄1

using the stochastic method, Q̄1 = 〈〈ψ⊗η†〉〉 with
Nr noise vectors, {η[1], · · · , η[Nr]}. The solutions
are given by

ψ[r] =
(
Q−1P1

)
η[r] = Q−1

(P1η[r]

)
, (9)

where P1 is the projection operator

P1 = 1−P0 = 1−
Nev∑

j=1

v(j) ⊗ v(j)† . (10)

Note that Eq. (9) follows from the identity
Q−1P1 = Q̄1. As was mentioned earlier, the idea

of dilution will be applied to the stochastic es-
timation of Q̄1. Each random noise vector, η[r],
that is generated will be diluted and orthogonal-
ized (wrt v(i)) so that it can be used to obtain
ψ[r]. In other words, we now have the following
set of noise vectors:
{(

η
(1)
[1] , · · · , η

(1)
[Nr]

)
, · · · ,

(
η
(Nd)
[1] , · · · , η

(Nd)
[Nr]

)}
,

where the upper indices denote the dilution and
the lower indices label the different noise sam-
ples. We note that the noise vectors are mutually
orthogonal to each other due to the dilution be-
fore an average over different random vectors are
taken, i.e.,

η
(i)
[r] (�x, t) ⊗ η

(j)
[s] (�y, t′)† ∝ δij . (11)

This results in smaller variance than the standard
method which mixes noise, as Eq. (2) shows.

There is a natural way to combine the two
methods to estimate the all-to-all quark propa-
gator. The similarity in the structure of Eq. (1)
and Eq. (4) suggests that one construct the fol-
lowing “hybrid list” for the source and solution
vectors:

w(i) =
{

v(1)

λ1
, · · · ,

v(Nev)

λNev

, η(1), · · · , η(Nd)

}
(12)

u(i) =
{

v(1), · · · , v(Nev), ψ(1), · · · , ψ(Nd)

}
(13)

where the indices run over NHL = Nev + Nd el-
ements. The master formula for the unbiased,
variance reduced estimate of the all-to-all quark
propagator is then given by

M−1 =
NHL∑

i=1

u(i)(�x, x4) ⊗ w(i)(�y, y4)†γ5 . (14)

Using the pion as an example, we can demon-
strate how unitarity is recovered from the trun-
cated propagator. In Fig. 3, we show the effective
mass from the truncated propagator and from
the hybrid method with a time, spin, color and
space (even-odd) diluted noise vector. The trun-
cated propagator, which approaches the asymp-
totic value from below, is corrected by the addi-
tion of the diluted noisy propagator.
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Figure 3. The effective mass from 100 eigenvec-
tors and from the hybrid method with 100 eigen-
vectors and a time-diluted noise vector. The lat-
tice size is 63 × 12.

3. QCD IMPLEMENTATION

All-to-all propagators not only expand the
range of applications accessible in lattice QCD
but also considerably simplify the construction of
hadronic interpolating operators. A pseudoscalar
correlator is constructed in the following way with
traditional, point-to-all quark propagators,

C = M−1(�x, t;�0, 0)† ij
αβ M−1(�x, t;�0, 0)ji

βα . (15)

The construction of a better operator is awkward
at best since the operator at timeslice t is con-
structed from various components of the quark
propagator connecting the source and sink. All-
to-all propagators eliminate this complication as
the operator at timeslice t is constructed from
vectors on that timeslice,

O(i,j)
PS (�x, t) = (w(i)

[r1](�x, t)†γ5)γ5u
(j)
[r2]

(�x, t)

= w
(i)
[r1](�x, t)†u(j)

[r2]
(�x, t) ,

(16)

where the extra factor of γ5 comes from the use
of the Hermitian Dirac matrix, γ5M . For compli-
cated operators such as those used to project out

hybrid/exotic states, this is a much needed sim-
plification. For example, an interpolating opera-
tor for the exotic hybrid 1−+ can be constructed
from combinations of gluonic paths projecting out
the relevant quantum numbers [9]. One term in
such a sum may be

w[i](�x)†Uz(�x)Uy(�x+ẑ)U †
z (�x+êy)u[j](�x+êy) , (17)

where all the variables are located on a single
timeslice. A standard P-wave state may for ex-
ample be constructed as follows,

O(i,j)
P (�x, t) = w(i)(�x, t)†(Dku(j))(�x, t) , (18)

where Dk is the covariant derivative.
Using all-to-all propagators, correlation func-

tions are also constructed in an intuitive man-
ner. Hadronic correlation functions are obtained
by correlating interpolating operators sitting at
different timeslices, e.g.

C(t, t0) =
NHL∑

i,j

O(i,j)
[r1,r2]

(t)O(j,i)
[r2,r1]

(t0) (19)

for isovector two-point correlators (propagators).
Noting that this is simply a contraction of the

source and solution vectors with an outer sum
over the hybrid list indices, this gives even greater
scope for simplification. Once the machinery of
the hybrid list summation is set up in the pro-
gram, it becomes a black box to the end user who
simply supplies the subroutines to create the re-
quired operators from the quark, antiquark and
gluon fields on a timeslice.

For isoscalar mesons, the disconnected part of
the propagator must be included, yielding the fol-
lowing contraction,

{
w

(i)
[2] (t)

†γ5Γu
(j)
[1] (t)

} {
w

(j)
[1] (t0)

†γ5Γ†u(i)
[2](t0)

}

−
{
w

(j)
[1] (t)

†γ5Γu
(j)
[1] (t)

} {
w

(i)
[2] (t0)

†γ5Γ†u(i)
[2](t0)

}
.

4. TESTS

We use the Wilson action to illustrate the ef-
fectiveness of the variance reduction although it
is expected to work even better for a chiral action
and light quarks. The simulation parameters are
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Table 1
Fermion run parameters. The values for mπ, mρ

are taken from Ref. [11].
n3

x × nt κ amπ amρ mπ/mρ

63 × 12 0.1600 0.69 0.80 0.86
123 × 24 0.1600 0.69 0.80 0.86
123 × 24 0.1663 0.38 0.62 0.61
123 × 24 0.1675 0.30 0.60 0.50
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Figure 4. Equal cost test of the pion effective
mass at timeslice 6.

shown in Table 1. In order to demonstrate the
efficacy of the noise dilution method, we perform
an “equal cost” comparison test. Equal cost here
shall mean the same number of inversions per-
formed, disregarding the sparseness of the source
vector. For example, an even-odd dilution in
space results in twice as many inversions as the
one without, hence two independent sets of time
diluted noise vectors are generated to compare
the noise in the effective mass of the psuedoscalar.
As we have seen that no signal is obtained oth-
erwise, all noise vectors have been time diluted.
The results are shown in Fig. 4. The noise diluted
errors consistently show smaller errors than the
standard stochastic method. At this point, one
may note that the isovector correlation function
(when both quarks are saved as all-to-all) involves
a large number (NHL×NHL) of contractions. We
can take advantage of having saved different ran-
dom source/solution samples by reusing them in

the contraction. In other words, one can gener-
ate NR samples of noise vectors, η[r], and save the
corresponding solutions, ψ[r] to disk and perform
the contraction,

C =
∑

r,s

w†
[r]u[s](t)w

†
[s]u[r](t0) , (20)

yielding ∼ N2
R samples of the pion correlation

function. The errors correspondingly decrease
faster than the näıve 1/

√
NR, although the mea-

surements are correlated. We have seen in our
preliminary tests that the gain in error reduction
is comparable to some dilution choices. It is clear
that if one can afford to save the noise/solution
vectors onto disk, then this is a straightforward
method of variance reduction.

We have performed some spectroscopy calcu-
lations using the idea of dilution. Standard me-
son spectroscopy including pions, rhos, heavy ex-
otic hybrids (with two different operators) and
standard P-wave states were studied. For the P-
wave states in particular, it is difficult to get a
good overlap using point propagators. The ef-
fective masses for all the particles are shown in
Fig. 5 and Fig. 6. Although in this test study
we only used 10 quenched gauge configurations,
we have a surprisingly good signal for P-waves as
well as the extremely heavy hybrid states. Fur-
thermore, decay constants can be extracted from
point–smeared and smeared–smeared correlators
if all-to-all propagators are used [10].

5. SUMMARY

We have presented a new algorithm to estimate
the all-to-all propagator. All-to-all propagators
make it possible to make use of all the available
information in a gauge configuration, which con-
sidering the cost to generate full QCD configura-
tions may be of crucial importance. They are also
a necessary ingredient in flavour singlet physics.

All-to-all propagators have a further advantage
over point propagators in that operator construc-
tion is considerably simplified: The operators are
constructed in a natural way from local fields, and
extended operators used in variational methods
may be employed at no additional cost.

We have presented evidence that diluting
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Figure 5. The pion and rho meson effective
masses from 10 configurations on a β = 5.7,
123 × 24 lattice.

stochastic estimators in time, colour, spin or
other variables gives less variance than traditional
noisy estimators. This is not unexpected, since
dilution will yield the exact all-to-all propagator
in a finite number of iterations. More work is
needed to determine the optimal dilution path for
different observables.

The hybrid method allows one to extract the
important physics from low-lying eigenmodes and
combine this with a noisy correction in a natural
way. This may be implemented in such a way
that the user can be blind to the details of the
dilution and eigenvector list.

Preliminary tests of the algorithm have been
presented with small lattices and a small num-
ber of configurations. We find that the algo-
rithm works as expected for standard light-light,
static-light and exotic meson spectroscopy. Fur-
ther work will include higher statstics on lighter
masses as well as tests on disconnected diagrams.
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Figure 6. Preliminary results for a variety of P-
wave states. The staple hybrid operators actually
use a length-2 staple.
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