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The geometry of thermodynamic state space is studied for asymptotically anti–de Sitter black holes in
D-dimensional space-times. Convexity of thermodynamic potentials and the analytic structure of the
response functions is analyzed. The thermodynamic potentials can be used to define a metric on the space
of thermodynamic variables, and two commonly used such metrics are the Weinhold metric, derived from
the internal energy, and the Ruppeiner metric, derived from the entropy. The intrinsic curvature of these
metrics is calculated for charged and for rotating black holes, and it is shown that the curvature diverges
when heat capacities diverge but, contrary to general expectations, the singularities in the Ricci scalars do
not reflect the critical behavior. When a cosmological constant is included as a state space variable, it can be
interpreted as a pressure and the thermodynamically conjugate variable as a thermodynamic volume. The
geometry of the resulting extended thermodynamic state space is also studied, in the context of rotating
black holes, and there are curvature singularities when the heat capacity at constant angular velocity
diverges and when the black hole is incompressible. Again the critical behavior is not visible in the
singularities of the thermodynamic Ricci scalar.
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I. INTRODUCTION

Thermodynamics is a very general yet remarkably
powerful tool for understanding the physical properties
of a very wide range of phenomena. Its generality lies in the
fact that the formalism sidesteps direct questions about the
nature of the underlying microscopic physics. This is an
obvious advantage when studying systems whose micro-
scopic physics is not yet well understood, such as the
physics of quantum gravity. The quantum nature of black
holes is thus a perfect arena for thermodynamics to be used
as an early stage investigative tool for gaining insight into
the underlying microscopic physics.
The aim of the present study is to elucidate the geometry

of black hole thermodynamic potentials. For a gas thermo-
dynamic stability demands that the thermal energy be a
convex function of the entropy S and the volume V, from
which the well known relation CP > CV follows. The
isothermal compressibility κT and the isentropic compress-
ibility κS are related to the heat capacities by CPκS ¼ CVκT,
implying the reciprocal relation κT > κS. Schwarzschild
black holes famously have negative heat capacity [1] but
stability can be achieved in asymptotically anti–de Sitter
space, with a suitable cosmological constant [2]. For a
black hole, with electric chargeQ, we replace V withQ and
the analogous condition for the heat capacities1 is then

CΦ > CQ, where Φ is the electrostatic potential of the black
hole. In this case the isothermal electrical capacitance,
CT ¼ ∂Q

∂Φ jT , and the isentropic electrical capacitance,

CT ¼ ∂Q
∂Φ jS, are related to the heat capacities by

CΦCS ¼ CQCT , implying CT > CS. For rotating black holes
in asymptotically anti–de Sitter (AdS) space-time V is
replaced with the angular momentum, J, and −P by the
appropriate angular velocity, Ω. The analogue of the
compressibilities for a gas are the moments of inertia, IS ¼
∂J
∂Ω jS and IT ¼ ∂J

∂Ω jT . For stability CΩ > CJ and CΩIS ¼
CJIT implies IT > IS. The analytic structure of the
response functions, in particular the interplay between
their zeros and singularities, is crucial in satisfying these
relations, and we shall explore this in detail for charged and
rotating black holes in space-time dimensions D ≥ 4. For
example, the phenomenon of ultraspinning black holes in
D > 4 is associated with a negative moment of inertia.
Thermodynamic potentials can also be used to generate a

metric on the space of thermodynamic states so that the
intrinsic curvature associated with the metric encodes
information about the underlying physics of the thermo-
dynamic system [4,5] (for a review see [6]). The study of
the geometry of thermodynamic state space for black holes
was pioneered in [7] and has subsequently been inves-
tigated by a number of authors (a nonexhaustive list is
provided by [8–24], and there is a review in [25]). In the
present work this program is taken further and curvatures
are studied for charged and for rotating black holes in
D-dimensional space-times for allD ≥ 4, in the presence of
a cosmological constant Λ. Generically one expects the
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1Strictly speaking it is the enthalpy of the black hole that is the

relevant thermodynamic potential when a fixed negative cosmo-
logical is present, rather than the internal energy [3]. At fixed
pressure the enthalpy should be a convex function of S and Q.
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intrinsic curvature of thermodynamic state space to diverge
when response functions, such as heat capacities, diverge
[6,26], and this expectation is indeed realized, but we shall
see that there is a twist for black holes in that critical points,
which are known to exist for Λ < 0, are not visible in the
thermodynamic curvatures calculated here.
When the cosmological constant is included in the set of

thermodynamic variables, as argued in [3] it should be, the
dimension of the thermodynamic state space is increased.2

Most of the literature to date on the thermodynamic
geometry of black holes has assumed fixed Λ, but when
state space is extended to include Λ the dimension of the
thermodynamic space is increased and the calculations
become more involved. The thermodynamic geometry of
black holes with varying Λ was considered in [33–35] but
the study in the present paper is rather different in that it
also considers the role of the thermodynamic volume, the
Legendre transform of the pressure, which to our knowl-
edge has so far not been considered as a state variable in the
thermodynamic geometry of black holes.
The layout of the paper is as follows. In Sec. II the

geometry of thermodynamic state space is briefly reviewed;
Sec. III concerns charged, nonrotating black holes in D
space-time dimensions and extends known results inD ¼ 4
for spherical black holes to D > 4 and general event
horizon topologies; Sec. IV discusses the thermodynamic
geometry of neutral singly spinning black holes in
D-dimensions, the curvature scalar associated with the
thermodynamic geometry is discussed, and singularities in
the curvature scalar are related to singularities in the heat
capacity and vanishing compressibility. Finally Sec. V
summarizes the conclusions while some technical results
are given in two appendixes.

II. THERMODYNAMIC METRICS

Different thermodynamic potentials give rise to different
thermodynamic metrics, and both the internal energy,
UðS; VÞ, and the entropy, SðU;VÞ, can be used to generate
Euclidean signature metrics for thermodynamically stable
systems [6]. For example, the internal energy of a single
component gas is a convex function of the extensive
variables, entropy S and volume V, and the Hessian matrix

gAB ¼ ∂2U
∂XA∂XB ; ð1Þ

with ðX1; X2Þ ¼ ðS; VÞ and A;B ¼ 1; 2, is a positive
definite matrix. Viewed as a metric, originally considered
by Weinhold [4], there is an intrinsic curvature associated

with this matrix which has been calculated for a number of
thermodynamic systems [6].
The components of gAB are related to the response

functions of the thermodynamic system,

gSS ¼
∂T
∂S
����
V
¼ T

CV
; ð2Þ

with CV the heat capacity at constant volume;

gVV ¼ −
∂P
∂V
����
S
¼ 1

VκS
;

where κS ¼ − 1
V
∂V
∂P jS is the adiabatic compressibility, and

gSV ¼ 1

VαS
; ð3Þ

where αS ¼ 1
V
∂V
∂T jS is the adiabatic thermal expansion

coefficient. Standard thermodynamic relations can be used3

to show that

det g ¼ T
VCPκS

:

A generalization of this formula when there are more
than two independent thermodynamic variables was given
in [26].
When response functions diverge, the determinant of the

metric vanishes and it will not be invertible. In a thermo-
dynamic system with two variables the locus of points on
which a response function diverges is called a spinodal
curve, and it is natural to ask whether this lack of
invertibility on a spinodal curve is associated with a
genuine singularity in the intrinsic curvature or if it is just
a coordinate singularity. Indeed the thermodynamic curva-
ture is inversely proportional ðdet gÞ2 and is expected to
diverge on spinodal curves [6,26]. For the van der Waals
gas for example the curvature is proportional to ðCPκSÞ2
and diverges whenCP diverges. The spinodal curve has two
branches in the P − V plane, and with the exception of the
critical point where the two branches meet, it lies in a
regime that is not thermodynamically stable.
A related metric, the Ruppeiner metric, is associated with

the Hessian matrix of the entropy, SðU;VÞ, which is a
concave function, so

2The possibility of varying Λ was first considered by
Henneaux and Teitelboim [27] and has been revisited by
various authors since [28–32]. Although the focus here is
on negative Λ, many of the formulas can be analytically
continued to positive Λ.

3In particular, the aforementioned relation CPκS ¼ CVκT
together with CP ¼ CV þ TVα2P

κT
and κT ¼ κS þ TVα2P

CP
, where κT ¼

− 1
V
∂V
∂P jT is the isothermal compressibility, and αP ¼ 1

V
∂V
∂T jP is the

isobaric thermal expansion coefficient. Also the Maxwell relation
∂T
∂V jS ¼ −∂P

∂S jV implies

gSV ¼ −
∂P
∂T
����
V

∂T
∂S
����
V
¼
�∂V
∂T
����
P

∂P
∂V
����
T

�∂T
∂S
����
V
¼ −

αP
κT

T
CV

:
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~gAB ¼ −
∂2S

∂ ~XA∂ ~XB ; ð4Þ

with ð ~X1; ~X2Þ ¼ ðU;VÞ, is also a positive definite matrix if
the system is stable. It has been argued [6] that the intrinsic
thermodynamic curvature contains information about
microscopic physics of the system; for example, it diverges
when response functions diverge. Indeed both curvatures
vanish for an ideal gas and both are positive for a van der
Waals gas and diverge at the critical point.
The Ruppeiner and the Weinhold metrics are confor-

mally related,

~gAB ¼ 1

T
gAB

and give equivalent information. The Ricci scalar of the
Weinhold metric, R, and that of the Ruppeiner metric ~R, are
therefore related by the standard formula for conformally
related metrics,

~R ¼ TRþ ðn − 1Þ∇2T −
ðn − 1Þðnþ 2Þ

4

ð∇TÞ2
T

; ð5Þ

where n is the number of independent thermodynamic
variables,4 one of which is T. The second term on the right-
hand side involves

∇2T ¼ 1ffiffiffiffiffiffiffiffiffi
det g

p ∂að
ffiffiffiffiffiffiffiffiffi
det g

p
gab∂bTÞ

¼ 1ffiffiffiffiffiffiffiffiffi
det g

p ∂að
ffiffiffiffiffiffiffiffiffi
det g

p
gabgbSÞ

¼ 1ffiffiffiffiffiffiffiffiffi
det g

p ∂ ffiffiffiffiffiffiffiffiffi
det g

p
∂S

����
V
:

The last term on the right-hand side of (5) is related to the
heat capacity at constant volume, CV ¼ T

gSS
,

ð∇TÞ2
T

¼ 1

CV
; ð6Þ

since

∇aT ¼ ∂aT ¼ gaS ⇒ ð∇TÞ2 ¼ gabgaSgbS ¼ gSS ¼
T
CV

from (2). When n ¼ 2 and the only variables are ðS; VÞ
the relation between the Weinhold and the Ruppeiner
curvatures is

~R ¼ TR −
1

2
∂S ln

�
TCVκT

V

�
ð7Þ

(the derivative here is at constant V and the factor of V has
been chosen to make the argument of the logarithm
dimensionless).
Another class of conformally related metric was pro-

posed in [36], but the focus here will be restricted to the
specific cases (1) and (4); otherwise the analysis would
become rather too long.
The thermodynamic potentials for a gas also depend on

the number of particles so, for a single component gas
consisting of N particles, UðS; V; NÞ, and a complete
description requires three independent variables, XA ¼
ðS; V; NÞ with A ¼ 1; 2; 3. One might expect that a full
description of the thermodynamic geometry would require
calculating a 3 × 3 Ricci tensor, but this is not the case in
standard thermodynamics as the resulting 3 × 3 Hessian
matrix is not invertible and cannot be used to determine a
curvature. This is a consequence of the Gibbs-Duhem
relation, which follows from homogeneous scaling of the
extensive thermodynamic state variables and potentials.
Consider the Gibbs free energy,

GðT; P;NÞ ¼ μN ¼ UðS; V; NÞ − TSþ PV; ð8Þ

where μ ¼ ∂U
∂N jS;V is the chemical potential. In the three-

dimensional state space parametrized by extensive varia-
bles XA ¼ ðS; V; NÞ this can be written as

UðXÞ ¼ XAYAðXÞ; ð9Þ
where YAðXÞ ≔ ∂AU. Now the 3 × 3 Hessian matrix is

gAB ¼ ∂AYB

so

YA ¼ ∂AU ¼ YA þ gABXB;

where (9) has been used for the second equality. Hence

gABXB ¼ 0 and the vector ~X ¼ ðX1; X2; X3Þ is an eigen-
vector of gAB with eigenvalue zero (this is essentially a
consequence of homogeneous scaling). Assuming the other
two eigenvalues are finite, the 3 × 3Hessian matrix is never
invertible and is not a suitable candidate for a positive
definite metric. Similarly for a multicomponent gas, with k
different chemical species i ¼ 1;…; k and particle numbers
Ni, there is always at least one zero eigenvector of the
ðkþ 2Þ × ðkþ 2Þ Hessian matrix. For this reason it is
natural to fix the total particle number N ¼ N1 þ � � �Nk
and only consider a ðkþ 1Þ × ðkþ 1Þ metric.
For black holes we do not yet have an analogue of the

particle number; nevertheless scaling arguments can be
applied to derive the black hole analogue of the Gibbs-
Duhem relation, the Smarr relation [37]. For black holes the

4When the variables are ðS; VÞ, then n ¼ 2, but we quote the
more general result.
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extensive thermodynamic variables do not scale homo-
geneously. For example, in D space-time dimensions the
black hole mass,M, and electric charge,Q, have dimension
(D − 3) (in units with G ¼ c ¼ 1), while entropy, S, and
angular momentum, J, have dimension (D − 2) and Λ has
dimension −2. If Λ is equated to a pressure,

Λ ¼ −8πP;

so negative Λ gives a positive pressure. Then the black hole
mass has the thermodynamic interpretation of enthalpy [3].
The mass is a function of entropy, angular momentum Ji

[where i ¼ 1;…; r and r is the rank of SOðD − 1Þ], electric
charge, and pressure: MðS; Ji; Q; PÞ. The thermodynami-
cally conjugate variables are temperature, angular velocity
Ωi, electric potential Φ, and thermodynamic volume V,

T ¼ ∂M
∂S ; Ωi ¼

∂M
∂Ji ;

Φ ¼ ∂M
∂Q ; and V ¼ ∂M

∂P :

The Smarr relation, the black hole analogue of (8), then
reads

ðD − 3ÞM ¼ ðD − 2ÞΩ:Jþ ðD − 2ÞTS − 2PV

þ ðD − 3ÞQΦ: ð10Þ

When Λ is allowed to vary, the Weinhold metric should
be defined in terms of the internal energyU in order to have
a positive definite metric. The internal energy is the
Legendre transform of the enthalpy with respect to P,

UðS; Ji; Q; VÞ ¼ M − PV:

Then

T ¼ ∂U
∂S ; Ωi ¼

∂U
∂Ji ; Φ ¼ ∂U

∂Q ; P ¼ −
∂U
∂V ;

and

gAB ¼ ∂2U
∂XA∂XB ; ð11Þ

with XA ¼ ðS; Ji; Q; VÞ and A ¼ 1;…; rþ 3.
One immediate consequence of the inhomogeneous

scaling of black hole thermodynamic functions is that,
unlike ordinary thermodynamics, gAB need not have a zero
eigenvalue. However, if P ¼ 0, it always has a negative
eigenvalue [38], and there are no thermodynamically stable
asymptotically flat black holes in any dimension, regardless
of rotation or charge. On the other hand, asymptotically
AdS black holes can be stabilized by a large enough
positive pressure: Hawking and Page realized this for

nonrotating neutral black holes [2], and it was generalized
to the charged nonrotating case in [39] and the charged
rotating case in [38].
Note that the complete Legendre transform of U,

EðΩ; T; P;ΦÞ ≔ U − ΩiJi − TSþ PV − ΦQ; ð12Þ
is nonzero for black holes—in contrast to ordinary thermo-
dynamics where (8), and its generalization to multi-
component systems, implies that

U − TSþ PV − μiNi ¼ 0:

This is again a consequence of the inhomogeneous scaling
of black hole thermodynamic variables and E is in fact
related to the Euclidean action, IE, of the black hole via [40]

E ¼ TIE:

When discussing the thermodynamic geometry of
asymptotically AdS black holes, it is very common in
the literature to use the enthalpy MðS; Ji; Q; PÞ rather than
the internal energyUðS; Ji; Q; VÞ to derive a Weinhold-like
metric. This not unreasonable when P is fixed, and indeed
for asymptotically flat black holes with P ¼ 0 it makes no
difference which one uses as they are the same. When
P ≠ 0, the (rþ 2)-dimensional metric obtained from the
Hessian of M by varying S, Q, and Ji with P fixed will be
positive definite for a thermodynamically stable black hole.
Typically there are curvature singularities when the heat
capacity diverges.
In [33] P was varied along with the other parameters but

this has the disadvantage that the Hessian matrix of
MðS; Ji; Q; PÞ cannot be expected to be positive definite
for thermodynamically stable systems; one should use
UðS; Ji; Q; VÞ to get a positive definite Weinhold metric.
A technical point is that, for a given solution of

Einstein’s equations, an explicit expression for the mass
in terms of thermodynamic variables is often cumbersome
at best and intractable at worst. It is usually more
convenient to express the thermodynamic potentials in
terms of variables other than ðS; Ji; Q; VÞ. Curvature
tensors can of course be calculated in any coordinate
system, invoking general coordinate covariance, but one
must be careful because the right-hand side of (11) is not
covariant under general coordinate transformations: XA ¼
ðS; Ji; Q; VÞ are a privileged set of coordinates that picks
out a particular Lagrangian submanifold of thermodynamic
“phase space” [36]. Writing the thermodynamic line
element as

d2s ¼ ∂2U
∂XA∂XB dX

AdXB ¼ dYAdXA; ð13Þ

where YA ¼ ðT;Ωi;Φ;−PÞ, we can change variables from
XA to XA0 ðXÞ in terms of which Eq. (13) becomes
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d2s ¼ gA0B0dXA0
dXB0

;

with

gA0B0 ¼ ∂YC

∂XA0
∂XC

∂XB0 : ð14Þ

The metric thus factorizes into a product of two matrices.
Equation (14) will prove to be the most practical starting
point for calculating curvatures in an arbitrary coordinate
system XA0

for the thermodynamic state space when the
functional forms of YAðX0Þ and XAðX0Þ are known
explicitly.

III. ASYMPTOTICALLY ADS
REISSNER-NORDSTRÖM SPACE-TIMES

In this section we consider the thermodynamic geometry
of charged, nonrotating AdS black holes. This was inves-
tigated in four-dimensional space-times by the authors of
[9], and here the analysis is extended higher dimensional
space-times with general dimension D.
With no extra work, and with a view to applications in

the AdS=CFT correspondence, we can also incorporate
more general event horizon topologies by denoting the
curvature of the event horizon by k: so k ¼ 1 is a spherical
event horizon, k ¼ 0 a flat one (which we take to toroidal
for convenience), and k ¼ −1 the (D − 2)-dimensional
space of constant negative curvature.
The extensive variables are the electric charge Q and the

entropy S. The pressure P will be kept fixed in this section,
parametrized for notational convenience by

λ ¼ 16πP
ðD − 1ÞðD − 2Þ :

If rh is the radius of the outer horizon, the entropy, in units
with G ¼ c ¼ ℏ ¼ 1, is

S ¼ ϖrD−2
h

4
; ð15Þ

where ϖ is the volume of the event horizon with rh set to
unity.5 The mass (enthalpy) of the black hole is

M ¼ ðD − 2ÞϖrD−3
h ðkþ λr2h þ Q2

r2D−6Þ
16π

:

The Hawking temperature is

T ¼
ðD − 1Þλr2h þ ðD − 3Þðk − Q2

r2D−6
h

Þ
4πrh

; ð16Þ

placing an upper bound Q2 ≤ ðD−1
D−3 λr

2
h þ kÞr2D−6

h on Q2 to
ensure T ≥ 0.
In [9] a Weinhold metric on the two-dimensional state

space parametrized by S and Q using the Hessian of
MðS;Q; λÞ, with λ fixed, was considered in D ¼ 4, with
XA ¼ ðS;QÞ, A ¼ 1; 2,

gAB ¼ ∂2M
∂XA∂XB : ð17Þ

With λ fixed this is a positive definite metric for a
thermodynamically stable black hole. It gives rise to a
geometry with a positive scalar curvature for D ¼ 4 [9],
and this result generalizes to D ≥ 4. The metric is written
here in ðrh; QÞ coordinates, so as to avoid fractional powers
of S: using (14) it evaluates to

g ¼ ðD − 2Þϖ
8π

 
rD−5
h ZQðrh; Q; λÞ − ðD−3ÞQ

rD−2
h

− ðD−3ÞQ
rD−2
h

1
rhD−3

!
; ð18Þ

where ZQðrh; Q; λÞ is

ZQðrh; Q; λÞ ¼ ðD − 1Þλr2h − 2πrhT þ ðD − 3Þ2 Q2

r2D−6
h

:

ð19Þ

The determinant of g vanishes when the heat capacity
diverges, but we need to be careful to distinguish between
the heat capacity at constant charge CQ and the heat
capacity at constant electric potential CΦ. In this context
the electric potential is the thermodynamic conjugate of the
charge,

Φ ¼ ∂M
∂Q
����
S
¼ ðD − 2ÞϖQ

8πrD−3
h

;

and the heat capacity at constant Φ is

CΦ ¼ ðD − 2ÞϖπrD−1
h T

2ZΦðrh; Q; λÞ ; ð20Þ

where

ZΦðrh; Q; λÞ ¼ ðD − 1Þλr2h − 2πrhT: ð21Þ

Indeed

det g ¼ ϖ2ðD − 2Þ2ZΦðrh; Q; λÞ
64π2r2h

5For k ¼ þ1 this is the volume of the unit (D − 2) sphere, and
for k ¼ 0 and k ¼ −1 the event horizon can be made to have a
finite area by suitably identifying points.
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and a necessary condition for stability is

ðD − 1Þλr2h > 2πrhT; ð22Þ

which is always true for k ≤ 0 and only imposes a genuine
constraint for k ¼ 1. The heat capacity at constant charge is

CQ ¼ ðD − 2ÞϖπrD−1
h T

2ZQðrh; Q; λÞ ; ð23Þ

and the analogue of CP > CV for a gas is CΦ > CQ. Since
ZQ > ZΦ, this is satisfied provided ZΦ is not negative. Note
that both CQ and CΦ are finite for k ≤ 0, and the heat
capacity can become singular only if k ¼ 1.
The adiabatic electrical capacitance,

CS ¼
∂Q
∂Φ
����
S
¼ 8πrD−3

h

ðD − 2Þϖ ;

is independent of the electric charge, depending only on the
entropy, and is always positive. The isothermal electrical
capacitance CT immediately follows from CQCT ¼ CΦCS.
There is a critical point if ∂2M

∂S2 and ∂2M
∂S2 vanish simulta-

neously. This cannot happen for k ¼ 0 or k ¼ −1, but for
k ¼ þ1 there is a critical point at

r2h;� ¼
ðD − 3Þ2

ðD − 1ÞðD − 2Þλ ;
Q2�

r2D−6
h;�

¼ 1

ðD − 2Þð2D − 5Þ ;

ð24Þ

found in [41,42]. By definition CQ diverges at the critical
point, but CΦ is finite and negative there. Thus CΦ < 0 at
the critical point, which is therefore in a thermodynamically
unstable regime unless Q is held fixed.
The intrinsic scalar curvatures arising from the Weinhold

and Ruppeiner geometries are described in detail in
Appendix A. For the Weinhold metric (18) the Ricci scalar
takes rather a simple form,

R ¼ ðD − 3Þ2
ðD − 2Þ

πrhk
SZ2

Φ

: ð25Þ

Thus the curvature of the event horizon is reflected in the
sign of R; in particular theWeinhold metric is flat for k ¼ 0.
The curvature scalar associated with the corresponding

Ruppeiner metric, with Λ fixed, follows from the charged
black hole analogue of (7) for a gas,

~R ¼ TR −
1

2

∂
∂S
����
Q
ln

�
TCΦCS
Q2

�
; ð26Þ

or by direct calculation from the Ruppeiner metric. It is
proportional to λ and therefore vanishes in asymptotically
flat space-time: explicitly

~R ¼ ðD − 1Þλf3πT − ðD − 1Þrhλg ~Fðrh; λ; QÞC2
Φ

2f2πðD − 2ÞSTg3 ; ð27Þ

where

~Fðrh; λ; QÞ ¼ 2ðD − 1Þλr2h þ 4ðD − 4ÞπrhT

þ 2ðD − 3Þ2 Q2

r2D−6
h

is a positive function. That ~R vanishes for asymptotically
flat space-time in D ¼ 4 was observed in [9], and we see
here that this statement generalizes to D > 4. ~R can be
of either sign when λ > 0 and is negative for small
temperatures, diverging to minus infinity for extremal
black holes.
We see that a flat event horizon gives R ¼ 0 while a flat

cosmology, Λ ¼ 0, gives ~R ¼ 0. It was observed in [25]
that repulsive microscopic forces tend to give negative
Ruppeiner curvature6 while attractive forces give positive
curvature, but in the absence of an underlying theory of
quantum gravity it is not at all clear whether this inter-
pretation accounts for the changing sign of ~R for Reissner-
Nordström black holes when λ ¼ 3πT

ðD−1Þrh.
The dependence of the Weinhold scalar on k in (25)

can also be given a thermodynamic interpretation. The
sign of k is significant for stability as there is no
Hawking-Page phase transformation for k ≤ 0. This can
be seen by calculating the Gibbs free energy for the black
hole,

GðT;ΦÞ ¼ MðS;QÞ − TS −QΦ;

which, in terms of λ, rh, and Q, is

G ¼ ϖrD−3
h

16π

�
k − λr2h −

Q2

r2D−3
h

�
:

The black hole is only stable against Hawking-Page decay
if its Gibbs free energy is less than the Gibbs free energy of
anti–de Sitter space filled with pure thermal radiation at the
Hawking temperature of the black hole and, if the back
reaction of the radiation is ignored, the latter is zero. Thus
the black hole is stable against the Hawking-Page phase
transition if the Gibbs free energy is negative, [2], which is
always the case for k ≤ 0. A Hawking-Page phase tran-
sition is possible only if R > 0.
Note the critical point is not reflected in either of the

curvature scalars because the singularities of R and ~R are
determined by ðCQCTÞ2 ¼ ðCΦCSÞ2 and there is a locus of
zeros in the isothermal electrical capacitance CT which

6Our convention for the sign of the Ricci scalar is that a sphere
has positive curvature: this is opposite to that of [25].
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exactly cancels the singularities in CQ. The fact that the
analytic structure of the curvatures is determined by CΦ and
not by CQ is a phenomenon which also occurs for rotating
black holes as we shall see in the next section. The same
phenomenon is also present for the van der Waals gas
where the singularities in the curvature are determined by
CP and not CV ; the latter is in fact finite. For the van der
Waals gas, however, the critical point is also determined by
CP and not CV , while for the black hole the critical point is
determined by CQ and not CΦ, even though CΦ can have
singularities when k ¼ 1.
If the pressure is included as a thermodynamic variable,

we should Legendre transform from MðS;Q; PÞ to
UðS;Q; VÞ ¼ M þ PV to ensure a positive definite metric
for thermodynamically stable black holes. However, the
Weinhold and Ruppeiner metrics associated with the three-
dimensional state space, parametrized by ðS;Q; VÞ, are
singular because S and V are not independent for non-
rotating black holes [43]. This restriction is removed when
the black hole rotates, and we study this case in the next
section.

IV. ASYMPTOTICALLY ADS MYERS-PERRY
BLACK HOLES

A. Singly spinning black holes

The thermodynamic state space associated with a
D-dimensional rotating black hole is multidimensional in
general, because of the increasing number of angular
momenta as D increases. For simplicity we set Q ¼ 0
and focus on the singly spinning case where only one of the
Ji is nonzero, J1 ¼ J ≠ 0 say, with Ji ¼ 0 for i ¼ 2;…; r.
The thermodynamic state space is then three-dimensional,
parametrized by ðS; J; VÞ. The geometry can be parame-
trized by the cosmological constant, a rotational parameter
a, and the radius of the event horizon rh.
Details are given in Appendix B, and here we summarize

the relations between the geometric parameters and the
thermodynamic ones. It is convenient to define dimension-
less variables ā ¼ a

rh
and λ̄ ¼ λr2h in terms of which the

thermodynamic variables ðS; J; VÞ are [44,45]

S¼ϖrD−2
h

4

ð1þ ā2Þ
ð1− λ̄a2Þ ;

J ¼ϖrD−2
h

8π

ð1þ ā2Þð1þ λ̄Þā
ð1− λ̄ā2Þ2 ;

V ¼ ϖrD−1
h

ðD− 1ÞðD− 2Þ
ð1þ ā2ÞfD− 2− ðD− 3Þλ̄ā2 þ ā2g

ð1− λ̄ā2Þ2 ;

ð28Þ

where ϖ is the volume of a unit (D − 2)-sphere. The
conjugate variables ðT;Ω; PÞ are

T ¼ ðD − 3Þ þ ðD − 5Þā2 þ λ̄fD − 1þ ðD − 3Þā2g
4πrhð1þ ā2Þ ;

Ω ¼ ð1þ λ̄Þā
ð1þ ā2Þrh

;

P ¼ ðD − 1ÞðD − 2Þλ̄
16πr2h

; ð29Þ

and the thermodynamic potentials are

M ¼ ϖrD−3
h

16π

ð1þ ā2Þð1þ λ̄ÞfD − 2 − ðD − 4Þλ̄ā2g
ð1 − λ̄ā2Þ2 ;

U ¼ M − PV

¼ ϖrD−3
h

16π

ð1þ ā2ÞfD − 2 − ðD − 3Þλ̄ā2 þ λ̄2ā2g
ð1 − λ̄ā2Þ2 :

ð30Þ

All extensive quantities (S, J, V, M, and U) diverge
when λ̄ā2 ¼ 1, which should be viewed as the edge of
thermodynamic state space [46]; in particular the entropy
becomes negative for λ̄ā2 > 1 and only λ̄ā2 < 1 makes
sense thermodynamically.

B. Thermodynamic geometry

1. Fixed pressure

For Λ ¼ 0 singly spinning black holes the
thermodynamic state space is two-dimensional, the inde-
pendent variables being either S and J, for the Weinhold
metric, or M and J, for the Ruppeiner metric. The intrinsic
curvatures associated with both the Weinhold and the
Ruppeiner metrics were calculated in [15] and the
Weinhold metric is flat for all D.
When Λ < 0 and held fixed the space-time can be

parametrized either by the geometric variables ðXA0 Þ ¼
ðrh; āÞ or by the thermodynamic variables ðXAÞ ¼ ðS; JÞ:
for calculations involving the thermodynamic metric the
former are more useful because (28), (29), and (30) are
simple ratios of polynomials of fairly low order in these
variables which makes the algebra more tractable. With the
explicit expressions (28) and (29) it is straightforward to
evaluate the matrices ∂XC

∂XB0 and
∂YC

∂XA0 , with YC ¼ ðT;ΩÞ, and
hence determine the metric (14) and its curvature.
Details of the Weinhold and the Ruppeiner curvature

scalars at fixed pressure are given in Appendix B. They
diverge on the spinodal curve for the heat capacity at
constant angular momentum, which is a

CΩ;P ¼ −
4πrhTSfD − 2 − ðD − 4Þā2g

ZΩðλ; āÞ
ð31Þ

with
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ZΩðλ̄; āÞ ¼ ðD − 3Þð1þ λ̄ā2Þ − ðD − 1Þλ̄ − ðD − 5Þā2:
ð32Þ

The spinodal curve, ZΩ ¼ 0, is therefore given by

λ̄ðāÞ ¼ ðD − 3Þ − ðD − 5Þā2
ðD − 1Þ − ðD − 3Þā2 ≔ λ̄∞: ð33Þ

In contrast the heat capacity at constant angular momen-
tum is

CJ ¼ −
4πrhTSð1þ ā2Þ2fD − 2þ ðD − 4Þλā2g

ZJðλ̄; āÞ
; ð34Þ

where ZJ is quadratic in λ [the explicit expression is
given explicitly in Appendix B, Eq. (B7)]. In the
thermodynamically stable regime CΩ > CJ.
There is a critical point and a second order phase

transition associated with fixed J, first found in [47] for
D ¼ 4 but which has an analogue in any D. This critical
point is not visible for fixed Ω as CΩ is finite there and, in
parallel with the Reissner-Nordström case, CΩ is in fact
negative at the critical point.
Explicitly the Weinhold curvature is

R ¼ 16πλ̄ð1 − λ̄ā2ÞF1ðλ̄; āÞ
ϖrD−3

h ð1þ ā2ÞfD − 2þ ðD − 4Þλ̄ā2g2Z2
Ωðλ̄; āÞ

ð35Þ

with F1ðλ̄; āÞ a polynomial linear in λ̄ and quartic in ā2,
given explicitly in Appendix B, Eq. (B4), while the
Ruppeiner curvature is

~R ¼ −
ðD − 3Þð1 − λ̄2ā4Þ ~F1ðλ̄; āÞ ~F2ðλ̄; āÞ

πϖrD−1
h ð1þ ā2Þ2TfD − 2þ ðD − 4Þā2gZ2

Ωðλ̄; āÞ
;

ð36Þ

with ~F1ðλ̄; āÞ a linear in λ̄ and ā2, and ~F2ðλ̄; āÞ quadratic in
λ̄ and ā2 [Appendix B, Eqs. (B10) and (B11)].
The Weinhold metric is no longer flat when Λ < 0, for

any D ≥ 4, and can be of either sign. Both the Weinhold
and the Ruppeiner metrics are flat on the line λ̄ā2 ¼ 1,
which is the boundary of the region where a thermody-
namic interpretation of the black hole is consistent as the
entropy, angular momentum, and mass all diverge on this
line. Both are singular on the spinodal curve for the heat
capacity at constant angular velocity (31).
As an example the Ricci scalar for the Ruppeiner metric

is shown in Fig. 1, for D ¼ 5 (scaled by r3h to make it
dimensionless). It is negative for small λ̄, for any value of
the rotation parameter ā, but is positive everywhere in the
thermodynamically stable regime. The latter observation is
also true in D ¼ 4 [18,19,21].
The singularities in both theWeinhold and the Ruppeiner

curvatures are determined by those of CΩ and not CJ. In the
context of rotating black holes we have CJIT ¼ CΩIS,
where IS and IT are the isentropic and isothermal
moments of inertia, respectively, Eqs. (B7) and (B8) in
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FIG. 1 (color online). The Ricci scalar for the Ruppeiner geometry associated with a singly spinning asymptotically AdS Myers-Perry
black hole inD ¼ 5 at fixed λ̄, as a function of λ̄ and ā (multiplied by r3h to render it dimensionless). In the right-hand figure ~R is positive
in the white regions and negative in the black regions. The regime of local thermodynamical stability [determined by convexity
MðS; J; PÞ with P fixed] lies below the blue curve, bounded by the hyperbola λ̄ā2 ¼ 1 (blue) and the spinodal curve ZΩ ¼ 0 (red). The
vertical dashed line indicates the Hawking-Page phase transition—the black hole is stable against the Hawking-Page phase transition
only for λ̄ > 1. The critical point lies in the unstable regime if the angular momentum is not fixed and is indicated by the dot.
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Appendix B. The curvatures here are proportional to
ðCJITÞ2 ¼ ðCΩISÞ2: there are singularities in CJ that
are canceled by corresponding zeros in the isothermal
moment of inertia7 IT and singularities in IT which are the
same as those in CΩ. Note also that the singularities of

IS ¼
∂J
∂Ω
����
S
¼ rhSð1þ a2Þ2fD − 2þ ðD − 4Þλā2g

2πð1 − λ̄ā2Þ2fD − 2 − ðD − 4Þā2g ;

ð37Þ

in the region with λ̄ā2 < 1, are canceled by zeros inCΩ, and
the only singularities in the curvatures are those of CΩ. For
D ≥ 5, CΩ is positive if either ZΩ > 0 and a2 < D−2

D−4 or
ZΩ < 0 and ā2 > D−2

D−4, but the latter possibility necessarily
implies that IS < 0: for ultraspinning black holes the
moment of inertia is negative.
In summary, when the pressure is held fixed, both the

Weinhold and the Ruppeiner scalar curvatures diverge on
the spinodal curve for CΩ, ZΩ ¼ 0 in (32), and these are the
only singularities. The curvature singularities are deter-
mined by those of CΩ, not CJ.

2. Varying pressure

Allowing for varying Λ there is potentially a four-
dimensional space of thermodynamic states associated
with singly spinning charged black holes, parametrized
by ðS;Q; J; VÞ. A completely general analysis would be
rather complicated, and we restrict ourselves here to
studying the three-dimensional state space of singly spin-
ning electrically neutral black holes. Even then, with a

three-dimensional state space, the full Ricci tensor is
necessary for a complete description of the curvature,
and for simplicity the discussion here is restricted to the
Ricci scalar, for which the properties are not too difficult to
extract.
The diagonal components of the Weinhold metric in

thermodynamic coordinates ðS; J; VÞ have direct physical
interpretations,

gSS ¼
∂T
∂S ¼ T

CV;J
;

gJJ ¼
∂Ω
∂J ¼ I−1

S;V;

gVV ¼ −
∂P
∂V ¼ 1

VκS;J
;

where IS;V is the isentropic moment of inertia of the black
hole, with V fixed.
The Weinhold and Ruppeiner metrics of a singly spin-

ning asymptotically AdS Myers-Perry black hole, with
internal energy UðS; J; VÞ, can be evaluated in ðrh; ā; λ̄Þ
coordinates using (14). They are found to be

R ¼ 16π

ðD − 3ÞϖrD−3
h

ð1 − λ̄ā2ÞF2ðλ̄; āÞ
ā4ð1þ ā2Þð1þ λ̄Þ2Z2

Ωðλ̄; āÞ
; ð38Þ

where F2ðλ̄; āÞ is quadratic in λ̄ and quartic in ā2 (more
details are given in Appendix B).

~R ¼ ð1 − λ̄ā2Þ ~F3ðλ̄; āÞ
4πðD − 3ÞϖrD−1

h ā4ð1þ ā2Þ3ð1þ λ̄Þ2TZ2
Ωðλ̄; āÞ

;

ð39Þ

FIG. 2 (color online). The Ricci scalar for the Weinhold geometry associated with a singly spinning asymptotically AdS Myers-Perry
black hole in D ¼ 5, as a function of λ̄ and ā (multiplied by r2h to render it dimensionless). The color coding is the same as in 1.

7In this section λ is held fixed, so it is implicit that the moment
of inertia here is calculated at fixed pressure IT ¼ IT;P.
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where ~F3ðλ̄; ā2Þ is a quintic polynomial in λ̄ and sixth order
in ā2.
Both curvatures diverge for ā2 ¼ 0 and on the curve λ̄∞.

The former singularity, at ā2 ¼ 0, is associated with the
incompressibility of a nonrotating black hole [48] while
the latter is again the same locus of points as that on which
the heat capacity at constant angular velocity and pressure
CΩ;P diverges [38].
For illustrative purposes we show the Weinhold Ricci

scalar, R, for D ¼ 5 in Fig. 2, scaled by a factor r2h to make
it a dimensionless function of only two variables, ā and λ̄.
For comparison the Ruppeiner Ricci scalar ~R is shown in
Fig. 3, scaled by r3h. In both cases the Ricci scalar diverges
on the curve λ̄∞ in Eq. (33), where the denominator has a
double zero associated with a singularity in the heat
capacity. The Ricci scalar also diverges for ā ¼ 0, where
the black hole is incompressible. A correlation between
singularities in response functions and singularities in the
Ricci scalar for thermodynamic state space is a generic
feature of the geometry of black hole thermodynamic state
space [6], and for black holes in particular [26]. Both Ricci
scalars vanish on the hyperbola λ̄ā2 ¼ 1, except at the point
λ̄ ¼ ā2 ¼ 1, since the denominators of both R and ~R have
double zeros there [Eqs. (B16) and (B18) in Appendix B].
The region of thermodynamic stability lies below the

solid blue curve in the right-hand plots in Figs. 2 and 3 (the
black hole is also unstable against the Hawking-Page phase
transition for λ̄ < 1). The thermodynamically stable regime
is isolated from the divergences in the heat capacity, except
at the single point ā2 ¼ λ̄ ¼ 1. The Ruppeiner scalar is
positive close to the line of the Hawking-Page phase
transition, but can become negative for large pressure
and entropy.

Unlike the two parameter case the Ricci scalar does not
carry complete information about the curvature for a three-
dimensional state space, such as the one considered in this
section. The Ricci tensor RAB does, however, have complete
information, and a second invariant is given by the trace of its
square, RABRAB, and this can also be evaluated.8 For both the
Weinhold metric and the Ruppeiner this quadratic invariant
has the same singularity structure as the square of the Ricci
scalar squared: for the Weinhold metric

RABRAB ¼ 64π2ð1− λ̄ā2Þ2P5ðλ̄; āÞ
ðD− 3Þ2ϖ2r2ðD−3Þ

h ā8ð1þ ā2Þ2ð1þ λ̄Þ4Z4
Ωðλ̄; āÞ

;

ð40Þ

with P5 a polynomial quintic in λ̄ and of order 8 in ā2, with
integer coefficients, while for the Ruppeiner metric

~RAB
~RAB

¼ ð1 − λ̄ā2Þ2P10ðλ̄; āÞ
16π2ðD − 3Þ2ϖ2r2ðD−1Þ

h ā8ð1þ ā2Þ6ð1þ λ̄Þ4T2Z4
Ωðλ̄; āÞ

ð41Þ

with P10 of order 10 in λ̄ and order 12 in ā2, with integer
coefficients.

V. CONCLUSIONS

The thermodynamic geometry of asymptotically anti–de
Sitter black holes in D space-time dimensions has been

FIG. 3 (color online). The Ricci scalar for the Ruppeiner geometry associated with a singly spinning asymptotically AdS Myers-Perry
black hole in D ¼ 5, as a function of λ̄ and ā (multiplied by r3h to render it dimensionless). The color coding is the same as in Fig. 1.

8I am grateful to the referee for the suggestion of investigating
this quadratic invariant.
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examined in three special cases: electrically charged static
black holes with fixed cosmological constant; electrically
neutral singly spinning asymptotically AdS Myers-Perry
black holes with fixed cosmological constant; and electri-
cally neutral singly spinning asymptotically AdS Myers-
Perry black holes in an extended state space in which the
cosmological constant is included among the thermody-
namic variables. The first two cases generalize previous
studies in the D ¼ 4 case to arbitrary dimension, while the
last is a new direction in the geometry of black hole
thermodynamics in which the black hole volume is inter-
preted as the thermodynamic variable conjugate to the
positive pressure supplied by a negative cosmological
constant. The analysis is based on Eq. (14) which expresses
the thermodynamic metric in a manifestly general coor-
dinate covariant way, allowing any convenient coordinate
system to be used for the calculations.
Our first observation extends the analysis of [9] for

four-dimensional spherical black holes to D space-time
dimensions and also to event horizons with positive
(k ¼ þ1), negative (k ¼ −1), and vanishing (k ¼ 0) cur-
vature. At fixed Λ ≤ 0 the sign of the Weinhold curvature,
derived from MðS;Q; PÞ for a charged, nonrotating black
hole in D space-time dimensions, is determined by the
topology of the event horizon: the Weinhold curvature is
positive for spherical event horizons and negative for
hyperbolic horizons, while flat event horizons give a flat
Weinhold metric. This behavior shows a correlation with
thermodynamic stability, as only k ¼ 1 black holes can
support a Hawking-Page phase transition. In contrast, the
Ruppeiner metric is flat for Λ ¼ 0 but can be of either sign
for Λ < 0.
For spherical event horizons the black hole can rotate and

the Weinhold metric on the two-dimensional state space of
singly spinning electrically neutral black holes, derived
from MðS; J; PÞ with P fixed, is flat when Λ ¼ 0.
For asymptotically AdS black holes which are both

charged and spinning there is a critical point for fixedQ and
J [47], but not for fixed Φ or fixed Ω. General consid-
erations suggest that the thermodynamic curvatures should
diverge on spinodal curves, but the analysis in Sec. III and
Sec. IV shows that the thermodynamic curvatures do not
diverge on the singularities of CQ or CJ. Rather, because of
cancellations in CQCT ¼ CΦCS and CJIT ¼ CΩIS, they
diverge on the singularities of CΦ and CΩ. Contrary to
expectations the thermodynamic curvatures do not diverge
at the critical points. This unusual feature of the geometry
of the thermodynamic state space for black holes may be
due to the inhomogeneous scaling of the thermodynamic
variables that makes the Smarr different from the integrated
form of the Gibbs-Duhem relation.
For singly spinning electrically neutral black holes the

thermodynamic state space can be enhanced to include the
volume as a thermodynamic variable. The internal energy is
a function of volume rather than pressure,UðS; J; VÞwhere

a negative cosmological constant provides a positive
pressure and V ¼ ∂M

∂P jS;J, with M the black hole mass, is
the thermodynamic volume. Unlike the mass MðS; J; PÞ,
which is the enthalpy in thermodynamics, the internal
energy UðS; J; VÞ is a concave function of all its arguments
for thermodynamically stable systems and gives rise to a
positive definite Weinhold and Ruppeiner metrics in the
region of parameter space where the black hole is thermo-
dynamically stable. The resulting Ricci scalars have been
calculated and shown to diverge for J ¼ 0, when the black
hole is incompressible, and when the heat capacity at
constant angular velocity and pressure, CΩ;P, diverges.
Again the critical point is not visible in either the Weinhold
or the Ruppeiner curvature scalars.
Symbolic manipulations performed in this analysis were

carried out using Maple©.

APPENDIX A: THERMODYNAMIC CURVATURE
OF CHARGE BLACK HOLES

For nonrotating, asymptotically AdS black holes, the
space-time metric is

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2d2ΩðD−2Þ; ðA1Þ

where d2ΩðD−2Þ is the line element on a unit (D − 2)-
dimensional sphere, torus, or hyperbolic space for k ¼ 1, 0,
or −1, respectively, and

fðrÞ ¼ k −
2μ

rD−3 þ
Q2

r2D−6 þ λr2: ðA2Þ

The mass and the entropy are

M ¼ ðD − 2Þϖμ

8π
¼

ðD − 2ÞϖrD−3
h ðkþ Q2

r2D−6
h

þ r2hλÞ
16π

ðA3Þ

and

S ¼ ϖrD−2
h

4
: ðA4Þ

Q is the electric charge and λ ¼ − 2Λ
ðD−1ÞðD−2Þ.

The entropy and the Hawking temperature are

S ¼ ϖ

4
rD−2
h ðA5Þ

and

T ¼ f0ðrhÞ
4π

¼
ðD − 1Þλr2h þ ðD − 3Þðk − Q2

r2D−6
h

Þ
4πrh

; ðA6Þ
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where ϖ is the volume of a unit (D − 2) sphere, torus, or
hyperbolic space for k ¼ 1, 0, or −1.9 For fixed Λ < 0, the
Weinhold metric is the 2 × 2 Hessian matrix obtained by
differentiatingMðS;Q; PÞ with respect to S andQ, keeping
P fixed,

g ¼ ϖðD − 2Þ
8π

 
rD−5
h ZQðrh; λ; QÞ − ðD−3ÞQ

rhD−2

− ðD−3ÞQ
rhD−2

1
rhD−3

!
; ðA7Þ

where

ZQðrh; λ; QÞ ¼ 1

2

�
ðD − 1Þrh2λ − ðD − 3Þk

þ ðD − 3Þð2D − 5Þ Q2

rh2D−6

�
: ðA8Þ

ZQðrh; λ; QÞ is of course related to the heat capacity at
constant charge and pressure,

CQ;P ¼ ðD − 2ÞπϖrD−1
h T

2ZQðrh; Q; λÞ : ðA9Þ

The zero locus of ZQðrh; λ; QÞ is the spinodal curve of
CQ;P. This is, however, not visible in the determinant,

det g ¼ ϖ2ðD − 2Þ2ZΦðrh; Q; λÞ
64π2r2h

; ðA10Þ

where

ZΦðrh; Q; λÞ ¼ 1

2

�
ðD − 1Þr2hλ − ðD − 3Þ

�
k −

Q2

r2D−6
h

��
:

ðA11Þ
The determinant reflects the singularity structure of the
heat capacity at constant electric potential, Φ ¼ ∂M

∂Q j
S;P

¼
ðD−2ÞϖQ
8πrD−3

h
, which is

CΦ;P ¼ ðD − 2ÞπϖrD−1
h T

2ZΦðrh; Q; λÞ : ðA12Þ

The Weinhold scalar curvature is

R ¼ 4πkðD − 3Þ2
ðD − 2ÞϖrD−3

h ZΦðrh; Q; λÞ2 : ðA13Þ

For k ¼ 1 the singularities in the curvature match those of
the heat capacity of the black hole at constant pressure,
CΦ;P. For k < 0, CΦ;P and R are finite and R is negative.

The Weinhold curvature scalar can be succinctly written
in terms of the electrical capacitance,

CS;P ¼ ∂Q
∂Φ
����
S;P

¼ 8πrD−3
h

ðD − 2Þϖ ; ðA14Þ

and the entropy (A5) as

R ¼ ðD − 3Þ2
ðD − 2Þ

πrhk
SZ2

Φ

: ðA15Þ

The Ruppeiner metric, on the other hand, based on the
Hessian matrix of SðM;Q; PÞ with a two-dimensional state
space consisting of ðM;QÞ and P fixed, has scalar
curvature

~R ¼ 4ðD − 1Þλð3πT − ðD − 1ÞrhλÞ ~Fðλ; rh; QÞC2
Φ;P

fðD − 2ÞϖrD−2
h πTg3 ;

ðA16Þ

where ~Fðλ; rh; QÞ is a linear function of λ,

~Fðλ; rh; QÞ ¼ ðD − 1ÞðD − 2Þr2hλ

þ ðD − 3Þ
�
ðD − 4Þkþ ðD − 2Þ Q2

r2D−6
h

�
;

ðA17Þ
which is positive for k ¼ 1.

APPENDIX B: METRIC AND RICCI SCALAR
FOR ROTATING BLACK HOLES

A singly spinning asymptotically AdS Myers-Perry
black hole, in D > 3 dimensions, has the line element [46]

ds2 ¼ −
Δ
ρ2

�
dt −

a
Ξ
sin2θdϕ

�
2

þ ρ2

Δ
dr2 þ ρ2

Δθ
dθ2

þ Δθsin2θ
ρ2

�
adt −

r2 þ a2

Ξ
dϕ
�

2

þ r2cos2θdΩðD−2Þ;

where

Δ ¼ ðr2 þ a2Þð1þ λr2Þ − 2μ

rD−5 ;

Δθ ¼ 1 − λa2cos2θ;

ρ2 ¼ r2 þ a2cos2θ;

Ξ ¼ 1 − λa2:

μ, a, and λ are geometric parameters related to mass,
rotation, and cosmological constant, respectively (as
before, λ ¼ − 2Λ

ðD−1ÞðD−2Þ). There is an event horizon at

the largest root, rh, of
9For k ¼ 0 and −1 the event horizon volume can be made finite

by identifying points.
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ΔðrhÞ ¼ 0 ⇒ μ ¼ 1

2
rD−5
h ðr2h þ a2Þð1þ λr2hÞ:

The Hawking temperature is

T ¼ ðD − 3Þð1þ λa2Þr2h þ ðD − 1Þλr4h þ ðD − 5Þa2
4πrhðr2h þ a2Þ ;

ðB1Þ

for D > 4 this is a positive function for any a. The
condition that a2 ≥ 0 forces T to lie in the range

ðD − 3Þλr2h þ ðD − 5Þ ≤ 4πrhT ≤ ðD − 1Þλr2h þ ðD − 3Þ:

When Λ is fixed, the Weinhold metric derived from
MðS; J; PÞ with fixed P is, in ðrh; aÞ coordinates,

g ¼ ϖrD−5
h

16πðr2h þ a2Þ

0
B@

p1ðrh;λ;aÞ
ð1−λa2Þ − 2að1−λ2r4hÞððD−1Þr2hþðD−5Þa2Þ

rhð1−λa2Þ2

− 2að1−λ2r4hÞððD−1Þr2hþðD−5Þa2Þ
rhð1−λa2Þ2

2ð1þλr2hÞ2½ð3−a2Þλa2þr2h−3a
2�

ð1−λa2Þ3

1
CA;

where p1ðrh; λ; aÞ in the top-left entry is

p1ðrhλ; aÞ ¼ λ½ðD − 3ÞðD − 4Þa4 þ 2ðD2 − 5Dþ 3Þa2r2h
þ ðD − 1ÞðD − 2Þr4h� − ðD − 4ÞðD − 5Þa4
− 2ðD2 − 7Dþ 9Þa2r2h − ðD − 2ÞðD − 3Þr4h:

The Ricci scalar arising from this Weinhold metric is, in
terms of dimensionless variables λ̄ ¼ λr2h and ā ¼ a

rh
,

R ¼ 16πλ̄ð1 − λ̄ā2ÞF1ðλ̄; āÞ
ϖrD−3

h ð1þ ā2ÞfD − 2þ ðD − 4Þλ̄ā2g2Z2
Ωðλ̄; āÞ

;

ðB2Þ

where

ZΩðλ̄; āÞ ¼ ðD − 3Þð1þ λ̄ā2Þ − ðD − 1Þλ̄ − ðD − 5Þā2;
ðB3Þ

and F1ðλ̄; āÞ is linear in λ̄,

F1ðλ̄; āÞ ¼ A1ðāÞā2λ̄þ B1ðāÞ; ðB4Þ

with

A1ðāÞ ¼ ðD− 5Þ2ā4fðD− 4Þā2 þ ðD− 6Þg
− ðD− 1ÞðD2 − 17Dþ 48Þā2 − ðD− 1Þ2ðD− 2Þ;

B1ðāÞ ¼ −ðD− 5Þā4fðD− 4ÞðD− 5Þā2
þ ðD2 þ 5D− 18Þg þ ðD− 1Þ2fDā2 þ ðD− 2Þg:

The zeros of ZΩ reflect singularities in the heat capacity,
in this instance the heat capacity at constant angular
velocity and pressure,

CΩ;P ¼ −
4πrhTSfD − 2 − ðD − 4Þā2g

ZΩðλ̄; āÞ
: ðB5Þ

The heat capacity at constant angular momentum and
pressure has a rather different structure,

CJ;P ¼ −
4πrhTSð1þ ā2Þ2fD − 2þ ðD − 4Þλā2g

ZJðλ̄; āÞ
ðB6Þ

with

ZJðλ̄; āÞ ¼ −λ̄2ā2fðD − 3Þā4 þ 6ā2 þ 3ðD − 1Þg
þ λ̄fðD − 5Þā6 þ ð5D − 33Þā4 − ð5Dþ 3Þā2
− ðD − 1Þg þ 3ðD − 5Þā4 − 6ā2 þD − 3:

The isentropic moment of inertia at constant pressure
(analogous to κS for a gas and evaluated in [38]) is

IS;P ¼ ∂J
∂Ω
����
S;P

¼ rhSð1þ a2Þ2fD − 2þ ðD − 4Þλā2g
2πð1 − λ̄ā2Þ2fD − 2 − ðD − 4Þā2g :

ðB7Þ
The isothermal moment of inertial tensor IT;P can be
obtained from the identity CΩ;PIS;P ¼ CJ;PIT;P,

IT;P ¼ rhSZJðλ̄; āÞ
2πð1 − λ̄ā2Þ2ZΩðλ̄; āÞ

: ðB8Þ

The Ruppeiner metric has Ricci scalar

~R ¼ −
ðD − 3Þð1 − λ̄2ā4Þ ~F1ðλ̄; āÞ ~F2ðλ̄; āÞ

πϖrD−1
h Tð1þ ā2Þ2fD − 2þ ðD − 4Þλ̄ā2gZ2

Ωðλ̄; āÞ
;

ðB9Þ
where ~F1ðλ̄; āÞ is linear in λ and ā2 while ~F2ðλ̄; āÞ is
quadratic. Explicitly

~F1ðλ̄; āÞ ¼ ðD − 3Þð1þ λ̄ā2Þ − 3fðD − 1Þλ̄þ ðD − 5Þā2g;
ðB10Þ

~F2ðλ̄; āÞ ¼ ~A2ðāÞλ̄2 þ ~B2ðāÞλ̄þ ~C2ðāÞ; ðB11Þ
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with

~A2ðāÞ ¼ ðD − 4ÞfðD − 3Þā2 − ðD − 1Þgā2;
~B2ðāÞ ¼ ðD − 5ÞðD − 6Þā4 − 2ðD2 − 6Dþ 1Þā2

þDðD − 1Þ;
~C2ðāÞ ¼ ðD − 2ÞfðD − 3Þ − ðD − 5Þā2g:

Note that the only singularities in R or ~R are those
associated with the spinodal curve of CΩ;P, ZΩ ¼ 0.
When λ̄ ¼ 0, Eq. (B9) reduces to

~R ¼ −
4ðD − 3ÞfD − 3 − 3ðD − 5Þā2g

ϖrD−2
h ð1þ ā2ÞfðD − 3Þ2 − ðD − 5Þ2ā4g ; ðB12Þ

which is the result quoted in [15].

There is a critical point on the spinodal curve for
CJ;P. This was first found for D ¼ 4 in [47], where the
critical values are λ̄crit ¼ 0.2105 and ācrit ¼ 0.1795, and is
present in any space dimension greater than three.
In five dimensions, for example, λ̄crit ¼ 0.3569 and
ācrit ¼ 0.1802. There is no critical point visible in
CΩ;P; in fact ZΩ > 0 and CΩ < 0 at the critical point,
and the critical point is actually unstable if J is not fixed.
The curvature scalars diverge on the spinodal curve for
CΩ;P, not that of CJ;P, and the critical point is not visible
in the thermodynamic curvature.
Allowing P to vary requires using V as a thermody-

namic variable in order to ensure a positive definite
Weinhold metric, associated with UðS; J; VÞ, in regions
of the state space where the black hole is thermody-
namically stable. The Weinhold metric following from
(14), (28), (29), and (30) is

g ¼ ϖrD−5
h

16π
×

2
666664

ð1þā2Þp2ðλ̄;āÞ
ð1−λ̄ā2Þ2 − 2ðD−2Þrhð1−λ̄2Þā

ð1−λ̄ā2Þ2 − 2rh½ðD−1Þ−ðD−3Þλ̄�ð1þā2Þā2
ð1−λ̄ā2Þ2

− 2ðD−2Þrhð1−λ̄2Þā
ð1−λ̄ā2Þ2

2r2hð1þλ̄Þ2ðā2ð3−ā2Þλ̄þ1−3ā2Þ
ð1þā2Þð1−λ̄ā2Þ3

r2hð1þλ̄Þðλ̄ā2þ1−2ā2Þā
ð1−λ̄ā2Þ3

− 2rh½ðD−1Þ−ðD−3Þλ̄�ð1þā2Þā2
ð1−λ̄ā2Þ2

r2hð1þλ̄Þðλ̄ā2þ1−2ā2Þā
ð1−λ̄ā2Þ3

2r2hð1−ā4Þā2
ð1−λ̄ā2Þ3

3
777775; ðB13Þ

where the top left entry involves

p2ðλ̄; āÞ ¼ −DðD − 3Þā2λ̄2 þ fðD2 − 5Dþ 8Þā2
þ ðD − 1ÞðD − 2Þgλ̄ − ðD − 2ÞðD − 3Þ:

The determinant of the Weinhold metric, in ðrh; λ̄; āÞ
coordinates, is

det g ¼ −
ϖ3ðD − 3Þr3D−11

h ð1þ λ̄Þ3ð1þ ā2Þā4ZΩðλ̄; āÞ
2048π3ð1 − λ̄ā2Þ6 ;

ðB14Þ

which, for λ̄ > 0, vanishes when ā ¼ 0 and when

λ̄ ≔ λ̄∞ ¼ ðD − 3Þ − ðD − 5Þā2
ðD − 1Þ − ðD − 3Þā2 ; ðB15Þ

and diverges for

λ̄ā2 ¼ 1:

The zeros of det g are genuine curvature singularities and
are reflected in the Ricci scalars below; indeed these reflect
singularities in the response functions: the black hole is
incompressible for ā2 ¼ 0, and the heat capacity at constant
angular velocity, CΩ;P, diverges on λ̄∞ where ZΩ ¼ 0. Both
Ricci scalars vanish at the limit of thermodynamic state
space where λ̄ā2 ¼ 1 and extensive quantities diverge.

The Ricci scalar following from the Weinhold metric
(B13) can be written as a ratio of two polynomials in the
dimensionless variables ðλ̄; ā2Þ

R ¼ 16π

ðD − 3ÞϖrD−3
h

ð1 − λ̄ā2ÞF2ðλ̄; ā2Þ
ā4ð1þ ā2Þð1þ λ̄Þ2Z2

Ωðλ̄; āÞ;
; ðB16Þ

where F2 is quadratic in λ̄ and quartic in ā2. Explicitly

F2ðλ̄; ā2Þ ¼ A2ðā2Þλ̄2 þ B2ðā2Þλ̄þ C2ðā2Þ ðB17Þ

with

A2ðā2Þ ¼ ā2½ðD− 3Þð7D− 27Þā6 − ð5D2 − 10D− 19Þā4
−ðD− 1Þð3D− 13Þā2 þ ðD− 1Þ2�;

B2ðā2Þ ¼ −ðD− 2ÞðD− 5Þð2D− 7Þā8
þ ðD3 − 9D2 þ 20D− 4Þā6
þ ð3D3 − 17D2 þ 22Dþ 12Þā4
− ðD− 1ÞðD2 − 8Þā2 − ðD− 1Þ2ðD− 2Þ;

C2ðā2Þ ¼ ðD− 3ÞðD− 5Þ2ā8 þ ðD− 5ÞðD2 − 11Dþ 19Þā6
− ð3D3 − 28D2 þ 70D− 61Þā4
− ðD3 − 12D2 þ 30D− 23Þā2
þ ðD− 1ÞðD− 2Þð2D− 5Þ:
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The only singularities of R are those associated with the zeros of ZΩ.
The Ricci scalar for the Ruppeiner metric conformal to (B13) is more complicated,

~R ¼ ð1 − λ̄ā2Þ ~F3ðλ̄; āÞ
4πðD − 3ÞϖrD−1

h ā4ð1þ ā2Þ3ð1þ λ̄Þ2TZ2
Ω
; ðB18Þ

where ~F3ðλ̄; āÞ is a quintic polynomial in λ̄ and sixth order in ā2. Again the only singularities are associated with the zeros
of ZΩ.
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