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We demonstrate that certain vortices in spinor Bose-Einstein condensates are non-Abelian anyons
and may be useful for topological quantum computation. We perform numerical experiments of
controllable braiding and fusion of such vortices, implementing the actions required for manipulating
topological qubits. Our results suggest that a new platform for topological quantum information
processing could potentially be developed by harnessing non-Abelian vortex anyons in spinor Bose-
Einstein condensates.

All elementary particles are classified by their quan-
tum statistics as either bosons or fermions. How-
ever, in certain two-dimensional materials, particle-
like excitations—anyons—which are neither bosons or
fermions, have been predicted to emerge [1, 2]. When two
anyons are exchanged, braiding their space-time world-
lines, the system’s wave function may accumulate an ar-
bitrary phase not restricted to the specific values corre-
sponding to bosons or fermions. For non-Abelian anyons,
exchange may act through non-commuting unitary oper-
ators, rather than simple phases. Also, how such anyons
fuse (combine) when brought together depends on the
history of their paths prior to the fusion. Encoding infor-
mation in the non-local fusion properties of non-Abelian
anyons forms a tantalising prospect for realisation of a
fault-tolerant universal quantum computer [3, 4].

Recent advances in quantum computing have come
from intense research focus on qubits realised in a va-
riety of systems including trapped ions [5–7], spins in
silicon atoms [8, 9] and superconducting circuits [10, 11].
Such systems must contend with the accumulation of
spontaneous errors due to the inherent interactions of
the qubits with their environment. In contrast, topo-
logical quantum computers based on topological qubits
made of non-Abelian anyons are anticipated to be far
more resilient due to being topologically protected from
many conventional types of decoherence. Two promising
non-Abelian anyon platforms are the Fibonacci and Ising
anyon models [12–16]. A number of experiments have
explored the potential realisation of such anyons in con-
densed matter systems including Majorana zero modes
[17–21] and quasiparticles in certain fractional quantum
Hall states [22–24]. Other non-Abelian anyon models
have been proposed to be realisable using fluxons [25–
27]. Notwithstanding, the existence of a physical sys-
tem of non-Abelian anyons capable of universal quantum
computation remains an open question.

Here we computationally demonstrate that certain
fractional vortices—particle-like topological excitations
in two-dimensional (2D) spinor Bose–Einstein conden-
sates (BECs)—may be non-Abelian anyons and are po-
tentially useful for applications in topological quantum

information processing and storage. In addition to flux-
ons, excitations in these systems include chargeons [28]
and charge-flux composites known as dyons [29–32]. The
full spectrum of excitations is labeled using the quantum
double of the symmetry group of the condensate [33]. In
addition to chargeons, these systems also allow for com-
pletely delocalized Cheshire charges [34, 35]. We simulate
the braiding and fusion of non-Abelian vortex anyons by
employing external pinning potentials that could be re-
alised using focused laser beams [36, 37], to controllably
manipulate the states of topological qubits constructed
from such non-Abelian vortex anyons.

Non-Abelian vortex anyons—A non-Abelian anyon
model has three essential aspects; (i) a list of particle
types; (ii) a set of fusion rules that determine the types of
particles formed after fusing together two particles; and
(iii) braiding rules that describe the effect of exchang-
ing the positions of two particles. We demonstrate that
the topological interactions of our non-Abelian fractional
vortices in spinor Bose–Einstein condensates [38–45] con-
tain the essential aspects of a non-Abelian anyon model.
The anyon models involved are similar to those of non-
Abelian toric code models [4] or discrete gauge theories
[33]. Each non-Abelian vortex is characterized by a dis-
tinct topological flux represented by a matrix that corre-
sponds to a certain transformation of the spinor wave
function of the Bose–Einstein condensate, as it winds
around the core of the vortex. The transformation ma-
trices that represent fluxes form a group, the stabiliser
group H of the condensate. A specific flux can be rep-
resented by a particular transformation or by any of its
conjugates within this group. Distinguishable flux types
correspond to fluxons and are labelled by the sets of
conjugate transformations—the conjugacy classes of H.
The fluxons represent distinguishable topological particle
types in the theory. In addition to fluxons, there are H-
charges or chargeons, labelled by representations of H.
Physically, the fluxon particles in our system are associ-
ated with vortices, and more specifically the low-energy
Bogoliubov quasiparticle eigenstates localized within a
vortex core [46]. Similarly, the chargeon particles may
be viewed as Bogoliubov ‘zero’ modes, such as those as-
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FIG. 1. Braiding and fusion of non-Abelian fractional vortices. a, The paths of vortices embedded in a two-dimensional
Bose–Einstein condensate trace out world lines that form a braid whose plat closure yields a link (Supplementary Video 1).
The total condensate density is shown for the initial (t̃ = 0) and final (t̃ = 132) states. b, Spin-singlet pair amplitude (left
column) and magnetization (right column) with vortex locations marked using circles and labelled by the vortex (anyon) types.
The upper rows correspond to the system state just after the vortices have been fused pairwise and the lower rows correspond
to the state just before the fusion. The field of view of each of the four frames in b-f corresponds to the dashed rectangle shown
in a where the inter-vortex separation is 27µm. The dimensionless times t̃ = tω of measurement of states b-f are marked in a.

sociated with a phonon, a magnon or a soliton, which are
organized into multiplets under the action of H (which
leaves the state of the condensate invariant).

Physically, vortices with non-commuting topological
fluxes are characterised by non-trivial, path dependent,
topological interactions. Figure 1 shows the outcome of
a numerical experiment, obtained by solving the spin-
2 Gross–Pitaevskii equation (see Methods) in 2D gov-
erned by a five component spinor wavefunction Ψ, that
demonstrates the exotic braiding and fusion dynamics of
non-Abelian vortices. The system is initialized at time
t = 0 in Fig. 1a by creating four non-Abelian vortices in
the Bose–Einstein condensate by phase-imprinting two
vortex-antivortex pairs, one on the left and one on the
right hand side of the rectangular condensate. Using pin-
ning potentials that model an array of Gaussian–shaped
laser beams that repel atoms, the vortices can be pinned
and controllably moved around, forming a braid in their

space-time world lines as shown in Fig. 1a and in Supple-
mentary Videos. A plat closure of the braid is realised
by the initial pair-creation and final fusion of the vor-
tex pairs. The effects of braiding the vortices are ob-
served at different dimensionless times t̃ = tω, where
ω = 2π × 5 Hz, after alternatively, (i) releasing the pin-
ning potentials and measuring the properties of the four
vortices, see lower rows in Fig. 1(b-f), or, (ii) fusing the
two vortex pairs first and then measuring the result af-
ter releasing the pinning potentials, see upper rows in
Fig. 1(b-f). The vortex locations are visualised via their
core structure, which may have non-zero spin-singlet pair
amplitude, |A|2, and/or non-zero magnetisation, Fz (see
Methods).

A detailed understanding of the observed dynamics
comes from labelling the flux of each vortex in Fig. 1(b-f),
enabled by the vortex identification method described in
Ref. [45], which is based on the spherical harmonics rep-
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resentation of the spinor order parameter. The vortex
labels are elements of the group H. Here, they have the
form ±Xν

η , where Xη is a Roman numeral denoting the
fluxon part of the anyon type. Each anyon may repre-
sent several vortices whose topological fluxes are further
specified by the combination of symbols ν and η, and
the ± sign (see Methods). Underpinning the braiding
dynamics is the long-range topological influence between
non-Abelian vortices [26, 27, 47]. For an anti-clockwise
elementary braid (exchange of a pair) of vortices with
fluxes (γ1, γ2) their mutual topological influence converts
their fluxes to (γ2, γ2γ1γ2), see Supplementary Figure S1.
The products and the inverse in γ2γ1γ

−1
2 are taken in

the group H. If γ1 and γ2 do not commute, this map-
ping permutes the flux of the second vortex within the
set of fluxes associated with its anyon type. The clock-
wise exchange realises the map (γ1, γ2)→ (γ−1

1 γ2γ1, γ1).
Braiding may also enact a local unitary transformation
on the wave function, which reverses the sign of the vor-
tex core magnetisation, turning a red core into a blue
core, and vice versa, without changing the value of their
fluxes, as shown in Fig. 1e and 1d. The outcome of fus-
ing two vortices is determined by an ordered product of
their two fluxes equivalent to their total flux. Only vor-
tices whose fluxes multiply to the identity element of H
may annihilate, otherwise the fusion results in a remnant
vortex. It is also possible for vortices with commuting
fluxes to pass through each other without apparent in-
teraction [25, 45].

The initial vortex-antivortex pairs in Fig. 1f (lower
row) consist of three particle types; two vortices of same
type (III0) with non-zero |A|2, green cores, and two of
different types (IV0 and VI−1) with Fz > 0, red cores.
Initially, both pairs annihilate upon being fused (Fig. 1f,
upper row), by construction. An exchange of the two
vortices in the middle leads to the state measured at
t̃ = 20, shown in Fig. 1e. The braid swaps the positions
of two vortices, which trivially changes the pairwise fu-
sion dynamics as neither the green and red or green and
blue cored vortices can annihilate. The braid between
t̃ = 60 and t̃ = 100 consists of two exchanges (elementary
braids) of the two middle vortices resulting in the state
shown in Fig. 1c. Importantly, although this braiding
preserves the ordering of the vortex types by returning
them to their original pre-braiding positions at t̃ = 60,
the types of vortices formed after fusion are different be-
fore (V0 and VII−1 at t̃ = 60) and after (IV0 and VI−1 at
t̃ = 100) the braiding. Such vortex metamorphosis due to
braiding is a hallmark of non-Abelian anyons. The final
exchange of the middle two vortices results in the state
at t̃ = 132, shown in Fig. 1b, where the two non-Abelian
vortex anyon pairs again annihilate.

Vortex anyon model—The cyclic-tetrahedral phase of
a spin-2 BEC supports seven distinct fluxon types, la-
belled as Iη - VIIη (see Methods). Each of the seven
types of fluxon comes with several possible charge labels

and taking these into account we obtain the fusion and
braiding rules for a complete anyon model. Here we will
focus mostly on the fusion of the flux types. The fu-
sion outcomes of the lowest energy fluxons are detailed
in the table presented in the Supplementary Figure S2.
Although the type IVη - VIIη vortices are non-Abelian
anyons, their fusion rules do not preserve the winding
number η of the anyons, complicating their potential use
for topological quantum computation. However, restrict-
ing to the set of three fluxons I0, II0 and III0, hereafter
referred to as 1, σ, and τ , respectively, results in a concise
non-Abelian anyon model. The fusion of two chargeless
τ anyons may result in either a 1, σ or τ anyon, with the
explicit fusion rule τ ⊗ τ = N1

ττ1⊕Nσ
ττσ ⊕Nτ

τττ , where
the multipliers N1

ττ = 6, Nσ
ττ = 6, and Nτ

ττ = 4 mean
that when anyons a and b fuse, they may form a c anyon
in N c

ab distinct ways (see Supplemental Material). Note
that the 6 distinguishable ways the τ fluxons can fuse to
the flux vacuum are further split by the 4 possible re-
sulting Cheshire charge states and that only one of those
6 fusion channels corresponds to the true vacuum state
having both vanishing flux and charge (see Supplemental
Material). The non-Abelian τ anyon is its own antipar-
ticle such that upon fusion, two τ anyons may annihilate
each other. The remaining flux fusion rules of this anyon
model are; τ ⊗ σ = τ , σ ⊗ σ = 1 and x ⊗ 1 = x, where
x ∈ {1, σ, τ}. The anyons 1 and σ are Abelian with
quantum dimensions d1 = dσ = 1, respectively. The τ
anyon is the non-Abelian (fluxon) anyon of the theory
with a quantum dimension, dτ = 6, larger than both the
Fibonacci and Ising anyon models.

Topological qubits—The different fusion outcomes of
the anyons define a fusion path, equivalent to a set of
topologically distinct states, which can be used for en-
coding quantum information. We are inspired by the
Fibonacci anyon model where the fusion of three anyons
allows a topological qubit to be defined as a two-level
system plus one non-computational state. In the case of
three τ fluxons, the number of distinct fusion paths in
which information could be stored is significantly larger
than in the Fibonacci anyon model. Nevertheless, for
the sake of demonstration, we consider braiding opera-
tions with three fluxons that involve only a subset of the
many states in the full fusion space and may therefore
be conveniently discussed in terms of effective qubits. A
natural choice for the zero state corresponds to the cre-
ation of two pairs of τ fluxons from the true vacuum.
The rightmost of the four anyons will not be part of
the qubit and will not take part in any braiding pro-
cesses we consider. Therefore its flux will not be men-
tioned explicitly in the qubit’s state. The zero state of
the qubit is then |0〉 = 1

6

∑
γ1, γ2∈III |γ1, γ

−1
1 , γ2〉, corre-

sponding to three τ anyons with fluxes γ1, γ
−1
1 and γ2

respectively. A convenient choice for the second qubit
state is |1〉 = 1

6

∑
γ1, γ2∈III |γ1, γ1, γ2〉, corresponding to
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FIG. 2. Single qubit braiding operation. a, The paths
of the three τ anyons trace out braided world lines enacting
a unitary operation on the initial state. Time flows upward.
The total condensate density is shown for the initial state.
The overlayed concentric ellipses denote the orientation of
the qubit as a graphical representation of the bracket nota-
tion used in the text. b, Spin-singlet pair amplitude of the
qubit just before the fusion. The rounded rectangle marks
the boundary of the condensate and the vortex locations are
denoted by the circles, the inter-vortex separation is 27µm.
c, a fusion outcome corresponding to the annihilation of the
first two anyons as in the |0〉 state (Supplementary Video 2).
d, a fusion outcome corresponding to the non-annihilation of
the first two anyons as in the |1〉 state (Supplementary Video
3). Data in b-d are thresholded relative to half the maximum
value in b and any maxima within the vortex location mark-
ers are mapped to the solid green circles. The raw data is
shown in Supplementary Figure S5. The specific fluxes of the
three initial state vortices in (c) are (IIIx0 ,−IIIx0 , III

x
0) and in

(d) they are (IIIx0 ,−IIIx0 , III
y
0).

the fusion of the τ fluxon pair to the σ fluxon.

Figure 2 demonstrates the action of manipulating the
state of such a topological qubit by controllable braiding
of the anyons. Initially, the fluxons are prepared in such
a way that the first two of them are guaranteed to anni-
hilate upon fusion, as in the |0〉 state, which in practice
could be achieved by nucleating two vortex-antivortex
pairs that introduces a fourth, surplus, anyon which is
disregarded in this numerical experiment without conse-
quence.

A unitary operation, encoded by the braid in Fig. 2a,
is applied to the fluxons by moving the vortices with
the pinning potentials to exchange the second and third
anyons within the qubit structure twice. Once the braid-
ing has been completed, a measurement of the state is
made by fusing the first and second anyons from the
left of the condensate and observing the remaining core

Fx

a cb 0.25

0

�0.25

FIG. 3. Signatures of a Cheshire charge. Frames (a)-(c)
show the x-component of the magnetization density of the
condensate at the end of the simulation of Fig. 2(c). The
time interval between the frames is δt ≈ 16ms. The circular
markers denote the locations of the vortex pinning sites. The
expanding ring shaped magnetic soliton structure is emitted
due to the fusion of two fluxons, see also Supplementary Video
5.

structures shortly after the pinning potentials have been
withdrawn. Prior to the fusion the three τ anyons are
identified by the green |A|2 cores, as shown in Fig. 2b.
After the braiding, the measurement outcome depends on
the topological influence between the exchanged anyons.
The braid maps the |0〉 state to a superposition∑

γ1, γ2∈III
γ1γ2=γ2 γ1

|γ1, γ
−1
1 , γ2〉

2
√

3
+

∑
γ1, γ2∈III
γ1γ2 6=γ2 γ1

|γ1, γ1, γ2〉
2
√

6
, (1)

where the two sums contain the combinations of fluxes
which braided with trivial and non-trivial topological in-
fluence, respectively. The probability p that a measure-
ment would record complete annihilation p(0) = 1/3 or
the formation of a σ fluxon p(1) = 2/3 after the braid-
ing is obtained by projecting the braided superposition
state onto the two qubit basis states |0〉 and |1〉. Prior
to the fusion measurement the two possibilities are indis-
tinguishable by any local observation. In general, braid-
ing with respect to this basis would introduce significant
leakage into the non-computable fusion paths even for the
case of a single qubit. However this is not a real problem
as we only restricted to a two dimensional space for il-
lustrative purposes. Any realistic implementation would
use the full fusion space for computations.

In the numerical experiments we simulate two spe-
cific components of the |0〉 state, those with fluxes
(IIIx0 ,−IIIx0 , III

x
0) and (IIIx0 ,−IIIx0 , III

y
0), such that the

braid acts on these basis states in a deterministic man-
ner. In the first case the exchanged anyons commute so
the braid realises a trivial topological influence and the
fusion measures the |0〉 state, shown in Fig. 2c, charac-
terised by a single green core. However, in the latter
case they do not commute so the non-trivial topological
influence changes the signs of the anyons and the fusion
measures the state |1〉 of the topological qubit. Such a
measurement of the |1〉 state is illustrated in Fig. 2d and
corresponds to the observation of two green vortex cores,
with the additional filled core corresponding to a σ anyon
formed in the fusion of the two τ anyons.

Cheshire charge—We have discussed the topological
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qubit at the fluxon level, ignoring the H-charges. How-
ever, the states considered in the single qubit simulations
are τ flux eigenstates, which correspond to charge super-
position states. Here the charge arises as Cheshire charge
[34, 35, 48], which may be revealed when the vortices are
annihilated causing the delocalized Cheshire charge to
appear. Representations for the four pure (Cheshire) H-
charge states, less normalisation, that may result from
the annihilation of two type τ fluxons may be expressed
in terms of the τ flux eigenstates as

|T0,1〉 = τxτx̄ + τx̄τx + τyτȳ + τȳτy + τzτz̄ + τz̄τz,

|T1,1〉 = τxτx̄ + τx̄τx + θ(τyτȳ + τȳτy) + θ∗(τzτz̄ + τz̄τz),

|T2,1〉 = τxτx̄ + τx̄τx + θ∗(τyτȳ + τȳτy) + θ(τzτz̄ + τz̄τz),

|T3,1〉 = {(τxτx̄ − τx̄τx), (τyτȳ − τȳτy), (τzτz̄ − τz̄τz)},
(2)

where the Ti refer to the H-charges, 1 is the total flux,
θ = ei2π/3 and the notation τxτx̄ corresponds to a spinor
hosting two vortices, IIIx0 and -IIIx0 . After a Cheshire
charge localizes to a H-charge, it could reform as a pair
of Alice vortices or a propagating Alice ring [35]. In our
single qubit simulations we have observed a propagating
ring-shaped soliton structure in the magnetization den-
sity of the condensate, Fig. 3(a-c), see Supplementary
Video 5. This observed signature may be related to the
phenomenology of Cheshire charges.

We have demonstrated that certain non-Abelian frac-
tional vortices in spinor Bose–Einstein condensates may
be non-Abelian anyons and have shown how such vortex
anyons could be braided and fused using guiding laser
beams. Mochon showed [49] that anyons based on fi-
nite groups that are solvable but not nilpotent are capa-
ble of universal quantum computation. Since the binary
tetrahedral group does satisfy these criteria, it may be
a fruitful platform for developing a universal quantum
computer. A method to generate multiple non-Abelian
vortices has been outlined in [44]. However, to real-
ize such vortices experimentally a series of engineering
challenges must be confronted (see Supplemental Mate-
rial). To ensure the non-Abelian topology, our numeri-
cal experiments employ spin interaction strengths which
are not currently achievable in experiment. However, a
recent proposal by Hurst and Spielman Ref. [50] may
provide an experimentally realisable pathway for tuning
the spin interactions. Promisingly, many additional non-
Abelian phases have been predicted for higher spin BEC
systems [51], which may enable a more accessible experi-
mental route for creating non-Abelian vortex anyons. To
surpass the inertial limitations of massive vortices [52],
including the adiabaticity speed limit of vortex braid-
ing [53], synthetic non-Abelian fluxons could potentially
be designed and engineered using novel artificial gauge
field techniques [54, 55]. The ability to perform quantum
information processing with the non-Abelian vortices is
likely compromised by the substantial challenge of cre-

ating and maintaining true quantum superpositions with
a macroscopic number of atoms in a Bose–Einstein con-
densate. However, we conclude that non-Abelian vor-
tices in spinor Bose–Einstein condensates hold promise
for a tangible demonstration of the underlying principles
of topological quantum computation and should be pur-
sued further.
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Methods
Spin-2 Bose–Einstein condensates—Within the mean-

field theory, a spin-2 Bose–Einstein condensate is de-
scribed by a vector order parameter Ψ(r, t) with five
components ψm, corresponding to the internal spin states
of the condensate, indexed by the magnetic quantum
number m = −2, −1, 0, 1, 2 [43]. The Hamiltonian den-
sity of the system is

H = H0 +
c0
2
n(r)2 +

c1
2
|F(r)|2 +

c2
2
|A(r)|2, (3)

where the single-particle part,
∑2
m=−2 ψ

∗
m[−~2∇2/2M+

V(r, t)]ψm = H0, contains the kinetic energy, where M
is the atomic mass, and an external potential V(r, t).
Due to the dilute nature of the condensate, the interac-
tion terms can be considered to arise from the s-wave
scattering of two-particles in one of the combinations
of even total spin F . The scattering can be approx-
imated by a contact interaction with a coupling con-
stant gF = 4π~2aF/M , where aF is the s-wave scattering
length of the F spin channel. In the Hamiltonian den-
sity the interactions appear as a spin-independent term
depending on the total particle density n(r), and two
spin-dependent interactions depending on the spin den-
sity vector F(r) =

∑2
i,j=−2 ψ

∗
i (fν)ijψj , where fν are the

spin-2 Pauli matrices, and the spin-singlet pair amplitude
A(r) = (2ψ2ψ−2 − 2ψ1ψ−1 + ψ2

0)/
√

5. The strengths
of these interactions are specified by the consolidated
coupling constants c0 = 4π~2(4a2 + 3a4)/7M , c1 =
4π~2(a4−a2)/7M and c2 = 4π~2(7a0−10a2 +3a4)/7M .

For small external magnetic fields, the c1 and c2 spin
interaction strengths determine a phase diagram charac-
terised by the values of |F(r)| and |A(r)|. Our focus is on
the cyclic-tetrahedral phase which exists for c1 > 0 and
c2 > 0 and is characterised by |F(r)| = 0 and |A(r)| = 0.
There also exists a ferromagnetic phase for c1 < 0 and
c2 > 0, with non-zero |F(r)| and |A(r)| = 0, and an
antiferromagnetic phase when c1 > 0 and c2 < 0, with
|F(r)| = 0 and non-zero |A(r)|. Each phase is described
by multiple degenerate order parameters connected by
composite gauge and spin rotations. The addition of ex-
ternal magnetic fields lifts this degeneracy due to linear
and quadratic Zeeman shifts, further splitting the phase
diagram. Spin-2 BECs have thus far been experimentally
realised using 87Rb atoms. Measurements of the scatter-
ing lengths of 87Rb suggest that the condensate lies in
the antiferromagnetic phase, though sufficiently close to

the phase boundary that uncertainties do not preclude
the cyclic-tetrahedral phase [56–58].

Non-Abelian vortices—The types of vortices that can
be excited in a BEC are determined by the symmetries of
the system’s order parameter. The full symmetry group
of a spinor Bose gas is G = U(1)× SO(3). Each conden-
sate phase corresponds to an order parameter with a dis-
tinct discrete broken symmetry described by the order-
parameter manifold M = G/H, where H is a finite sub-
group of G called the isotropy group whose transforma-
tions leave the physical properties of the condensate or-
der parameter invariant. The types of vortices (fluxes) in
each ground state phase are classified according to homo-
topy theory. The classification occurs by mapping each
point on a real path encircling a vortex core in the con-
densate to a path in the corresponding order-parameter
manifold. Two paths in the order-parameter manifold
are homotopic if they share a base point x0 ∈ M and
can be smoothly deformed into each other. The homo-
topic paths, which are the elements of the fundamental
group π1(M, x0), form equivalency classes. Each ele-
ment of π1(M, x0) corresponds to a particular vortex.
If M = G/H is simply connected, and H is a discrete
group then π1(M, x0) ∼= H. Hence, a vortex is equiva-
lently defined as the transformation in H that describes
the change in the order parameter along a path enclosing
the vortex core. When the fundamental group is non-
Abelian, i.e. contains elements that do not commute un-
der the group operation, the corresponding vortices are
called non-Abelian vortices. Since SO(3) is not simply
connected, the vortices are typically characterised by the
simply connected covering group SU(2). Of the possi-
ble subgroups of SU(2), the binary dihedral D∗n, binary
tetrahedral T ∗, binary octahedral O∗, and binary icosa-
hedral Y ∗ groups are non-Abelian and correspond to con-
densate phases with non-Abelian vortices. Such phases
occur for spin-S BECs, for S ≥ 2 [51, 59–63]. In spin-2
condensates, non-Abelian vortices can be excited in the
cyclic-tetrahedral or the biaxial nematic phases, where
the latter is realised from the broken degeneracy of the
antiferromagnetic phase after the introduction of an ex-
ternal magnetic field.

Fluxons—In this work we consider non-Abelian vor-
tex anyon models in the cyclic-tetrahedral phase of the
spin-2 BEC with a specific focus on the flux property
of the anyons. A representative cyclic-tetrahedral phase
order parameter is given by Ψ = (i, 0,

√
2, 0, i)T/2 up

to a gauge and spin rotation R = eiφe−iθω·F. The
order-parameter manifold of the cyclic-tetrahedral phase
isG/H = U(1)×SU(2)/T ∗. Hence, the cyclic-tetrahedral
phase order parameter is invariant under the 24 elements
of the isotropy group H = T ∗, which consist of discrete
composite U(1) gauge and SU(2) spin rotations. Conse-
quently, each element of T ∗ corresponds to a distinct vor-
tex. Furthermore, each vortex is categorised into a vor-
tex type (fluxon) according to its equivalency class—the
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set of fluxes related by the equivalency relation gγg−1—
where γ is the flux of a vortex and g ∈ T ∗. The 24 lowest
energy vortices, as determined by the U(1) phase rota-
tion, are categorised in seven equivalency classes I−VII.
These fluxons are: (I) the vacuum state; (II) the integer
spin vortex; (III) the half quantum vortex; (IV) and (V)
the 1/3 fractional vortices and (VI) and (VII) the 2/3
fractional vortices. The fluxes of each class are

(I) {(η, I)}
(II) {(η, −I)}

(III) {(η, iσν), (η, −iσν)}
(IV) {(η + 1/3, σ̃), (η + 1/3, −iσν σ̃)}
(V) {(η + 1/3, −σ̃), (η + 1/3, iσν σ̃)}

(VI) {(η + 2/3, −σ̃2), (η + 2/3, −iσν σ̃2)}
(VII) {(η + 2/3, σ̃2), (η + 2/3, iσν σ̃

2)}, (4)

where the U(1) component is represented by a winding
number η ∈ Z plus a class specific constant, and the
SU(2) part by the spin-1/2 Pauli matrices σν , for ν =
x, y, z, and σ̃ ≡ (I+iσx+iσy+iσz)/2. There is no unique
way to assign each flux in an equivalency class to each
vortex. Each such assignment is related by an isomor-
phism corresponding to an operation gXg−1 of the entire
equivalency class by a group element g ∈ T∗. As a result,
vortices with different fluxes in the same equivalency class
are indistinguishable such that the equivalency classes
define the indistinguishable fluxon particles—anyons—in
our non-Abelian vortex anyon models.

Chargeons and dyons—In addition to the 6 non-trivial
fluxons and one vacuum state corresponding to the 7
equivalency classes of T ∗, there are chargeons that carry a
H-charge. The algebraic structure of charges and fluxes
is determined by the quantum double category theory
[33]. The H-charges correspond to irreducible represen-
tations of the centralizer groups of T ∗. The centralizers
for the fluxon types are T ∗ (I, II), Z4 (III), and Z6 (IV
- VII) with 7, 4, and 6 irreducible representations, re-
spectively. For a given U(1) winding number, there are 6
non-trivial pure charges (no flux), the same as the 6 pure
fluxes. In addition, there are further 29 dyons (charge-
flux composites). Thus in total, the cyclic-tetrahedral
phase anyon system has one vacuum state and 41 non-
trivial particles comprising 6 fluxons, 6 chargeons, and
29 dyons. Additional particles are introduced when the
U(1) number is accounted, though many of these parti-
cles will behave identically under braiding. The quantum
dimension of each anyon is given by product of the order
of the associated equivalency class of its flux with the
dimension of the irreducible representation of its charge.

When H-charges are braided around fluxes, the result
is analogous to the Aharonov-Bohm effect. The flux γ
will act on the charge α by the matrix α(γ) that repre-
sents the element γ ∈ H, which labels the flux, in the

representation α of H, which labels the charge. When
the group H is commutative, this matrix reduces to a
simple phase factor, the usual Aharonov-Bohm phase. A
similar result is obtained when braiding dyons, although
in this case the acting group is a centralizer subgroup of
H. Even if no particles with charge are present, charges
can still play a role in braiding, since fusion of fluxes may
yield anyons with non-trivial charge. For example, two
particles (fluxons) each carrying a pure flux may fuse in
such a way that the two fluxes annihilate but neverthe-
less result in a non-trivial H-charge. Even if such fluxes
are kept apart, they act as carrying a single delocalized
charge when a third flux is braided around such a pair of
fluxes. The delocalized charge associated with the flux
pair is the elusive Cheshire charge, so named after the
Cheshire cat, which could disappear, but leave its grin
visible [34, 35, 64]. In this work, unless otherwise stated,
our focus is on the fluxons of the theory and their fusion
and braiding dynamics.

Non-Abelian vortices in the biaxial nematic phase—
The biaxial nematic phase also permits non-Abelian vor-
tex anyon models. The representative biaxial nematic or-
der parameter Ψ = (1, 0, 0, 0, 1)T/

√
2, has an order pa-

rameter manifold G/H = U(1)×SU(2)/D∗4 , where D∗4 is
the sixteen-element non-Abelian binary dihedral-4 group.
Similar to the cyclic-tetrahedral phase, the topological
charges are classified into seven equivalency classes. Here
the vortex types are: (I) the vacuum state; (II) the inte-
ger spin vortex; (III)-(IV) the half quantum vortices; (V)
a half quantum vortex with π/2 spin rotation; (VI) a half
quantum vortex with 3π/2 spin rotation and (VII) a half
quantum vortex with π spin rotation. The corresponding
fluxes are

(I) {(η, I)}
(II) {(η, −I)}

(III) {(η, ±iσx), (η, ±iσy)}
(IV) {(η, iσz), (η, −iσz)}
(V) {(η + 1/2, σ̃), (η + 1/2, −iσzσ̃)}

(VI) {(η + 1/2, −σ̃), (η + 1/2, iσzσ̃)}
(VII) {(η + 1/2, ±iσxσ̃), (η + 1/2, ±iσyσ̃)}, (5)

where σ̃ ≡ (I + iσz)/
√

2. It is noted that the vortices
of equivalency classes I− IV are the same as those in
equivalency classes I− III of the cyclic-tetrahedral phase.
For the biaxial nematic phase, the H-charges correspond
to irreducible representations of the centralizer groups of
D∗4 . The centralizers are D∗4 (I, II), Z4 (III, VII), and
Z8 (IV - VI) with 7, 4, and 8 irreducible representations,
respectively. In total, for a given η, the biaxial nematic
phase anyon system has one vacuum state and 45 non-
trivial particles comprising 6 fluxons, 6 chargeons, and
33 dyons.

Non-Abelian vortices in the biaxial nematic phase—
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The biaxial nematic phase also permits non-Abelian vor-
tex anyon models. The representative biaxial nematic or-
der parameter Ψ = (1, 0, 0, 0, 1)T/

√
2, has an order pa-

rameter manifold G/H = U(1)×SU(2)/D∗4 , where D∗4 is
the sixteen-element non-Abelian binary dihedral-4 group.
Similar to the cyclic-tetrahedral phase, the topological
charges are classified into seven equivalency classes. Here
the vortex types are: (I) the vacuum state; (II) the inte-
ger spin vortex; (III)-(IV) the half quantum vortices; (V)
a half quantum vortex with π/2 spin rotation; (VI) a half
quantum vortex with 3π/2 spin rotation and (VII) a half
quantum vortex with π spin rotation. The corresponding
fluxes are

(I) {(η, I)}
(II) {(η, −I)}

(III) {(η, ±iσx), (η, ±iσy)}
(IV) {(η, iσz), (η, −iσz)}
(V) {(η + 1/2, σ̃), (η + 1/2, −iσzσ̃)}

(VI) {(η + 1/2, −σ̃), (η + 1/2, iσzσ̃)}
(VII) {(η + 1/2, ±iσxσ̃), (η + 1/2, ±iσyσ̃)}, (6)

where σ̃ ≡ (I + iσz)/
√

2. It is noted that the vortices
of equivalency classes I− IV are the same as those in
equivalency classes I− III of the cyclic-tetrahedral phase.
For the biaxial nematic phase, the H-charges correspond
to irreducible representations of the centralizer groups of
D∗4 . The centralizers are D∗4 (I, II), Z4 (III, VII), and
Z8 (IV - VI) with 7, 4, and 8 irreducible representations,
respectively. In total, for a given η, the biaxial nematic
phase anyon system has one vacuum state and 45 non-
trivial particles comprising 6 fluxons, 6 chargeons, and
33 dyons.

Vortex short-hand notation—We represent each par-
ticular vortex flux with a shorthand notation ±Xν

η ≡
(η+aX, gνX). The X is a Roman numeral corresponding to
the class number. The subscript η is the winding number
of the U(1) rotation, which appears in the flux along with
a class specific constant aX. The superscript ν defines the
axis of the σν Pauli matrix generator of the class specific
SU(2) rotation gνX, while the sign in gνX is determined
explicitly by the sign of the label. Example labels for
the cyclic-tetrahedral phase vortices are IIIx0 = (0, iσx),
IV0 = (1/3, σ̃) and -VIx−1 = (−1/3, −iσxσ̃2).

Fusion rules—The result of fusing two anyons, a and b,
is given by a fusion rule a⊗ b =

∑
cN

c
ab c, where the sum

is over the anyon labels of all possible fusion outcomes.
The multiplicity, N c

ab, states how many distinguishable
ways a particular c anyon can be formed from the fusion
of a and b anyons. Similarly, the quantum dimension can
be shown to satisfy the relation dadb =

∑
cN

c
abdc. The

outcome of fusing two fluxons, Xη and Yν , respectively, is
determined by a product of their matrix representations
following the composition rule (±Xα

η )(±Yβ
ν ) = (η+ aX +

ν+aY, g
α
Xg

β
Y). As a result, their flux-level fusion rules can

be determined directly from the fusion tables, which are
presented for the cyclic-tetrahedral and biaxial nematic
phases in Supplementary Figure 4 and Supplementary
Figure 5, respectively. For example, the fusion of two
fluxes of the τ (III0) anyon can produce a flux of the 1
(I0), σ (II0), or τ (III0) anyon and hence

τ ⊗ τ = N1
ττ1⊕Nσ

ττσ ⊕Nτ
τττ. (7)

The multiplicities are determined as the number of dis-
tinct factorizations of the fluxes of each outcome into
products of τ anyon fluxes, equivalent to considering the
reverse process where an anyon c splits into anyons a and
b in Nab

c = N c
ab ways. As an example, the multiplicity

Nτ
ττ = 4 since each indistinguishable flux of a τ anyon can

be factorized into 4 distinct products of τ anyon fluxes.
The fusion rules for all the cyclic-tetrahedral and biax-
ial nematic phase non-Abelian vortex anyons are given
at the flux-level in Supplementary Table I and Supple-
mentary Table II, respectively. The multiplicities are
accounted for by the H-charges, resulting in richer fu-
sion rules. Considering the τ fluxon anyon model sum-
marised in Table I the charge inclusive fusion rules are:

σ
(1)
T0 ⊗ σ

(1)
T0 = 1

(1)
T0 ; 1

(1)
T0 ⊗ 1

(1)
T0 = 1

(1)
T0 ; 1

(1)
T0 ⊗ σ

(1)
T0 = σ

(1)
T0 ;

1
(1)
T0 ⊗ τ

(1)
Z0 = τ

(1)
Z0 ; σ

(1)
T0 ⊗ τ

(1)
Z0 = τ

(1)
Z0 ; and

τ
(1)
Z0 ⊗ τ

(1)
Z0 =1

(1)
T0 ⊕ 1

(1)
T1 ⊕ 1

(1)
T2 ⊕ 1

(3)
T3⊕

σ
(1)
T0 ⊕ σ

(1)
T1 ⊕ σ

(1)
T2 ⊕ σ

(3)
T3⊕

2τ
(1)
Z0 ⊕ 2τ

(1)
Z2 ⊕, (8)

where in the above anyon notation τ
(d)
c the subscript de-

notes the H-charge of the anyon and the superscript de-
notes the quantum dimension of the charge. Here Zi and
Ti refer to the irreducible representations of the central-

izers Z4 and T ∗, respectively. The particles 1
(1)
T0 , σ

(1)
T0

and τ
(1)
Z0 are equivalent to the fluxons I0, II0 and III0,

respectively. The physical content of Eq. (8) is thus that
the fusion of two τ type fluxons on the left may result
in an annihilation to a true vacuum, in either of the two
fluxons, one of three chargeons or one of six dyons. It is
implicitly understood that charge conservation is main-
tained in the fusion rules by the presence of Cheshire
charge. The Cheshire charge states corresponding to the
Ti chargeons in Eq. (8) are those in Eq. (1), which can
similarly describe the σ dyons after trivially replacing
the τ vortex pair fluxes with those fusing to II0. The
Cheshire charges of the τ dyons are

|Z0, τ〉z = {τxτȳ + τx̄τy}, {τyτx + τȳτx̄},
|Z2, τ〉z = {τxτȳ − τx̄τy}, {τyτx − τȳτx̄}, (9)

where τxτȳ corresponds to a spinor hosting two vortices,
IIIx0 and -IIIy0, which fuse to the vortex IIIz0.

The result of fusing two chargeons is determined from
the tensor product of their representations. The fusion
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of dyons is more complex as it involves the centralizer
groups of the fluxes. Nevertheless, all fusions can be
calculated using the tensor product decomposition of the
representations of the quantum double D(H) of H. This
can be done efficiently using the characters of D(H) [65].

In addition to the cyclic-tetrahedral phase τ anyon
model, the biaxial nematic phase additionally supports
two concise non-Abelian anyon models. These models
consist of the restricted sets of fluxons {I0, II0, IV0} and
{I0, II0, III0, IV0}, respectively, for which the fusion rules
are given in Supplementary Table II. In both models, the
fluxons I0 and II0 are Abelian anyons with quantum di-
mensions dI0 = dII0 = 1, while III0 and IV0 are non-
Abelian anyons with quantum dimensions dIII0 = 4 and
dIV0 = 2, respectively. As with the full fusion rules of the
cyclic-tetrahedral anyon models, such as Eq. (8), incor-
porating the H-charges will result in a greater number of
distinguishable anyons in the model.

Entangling topological qubits—It is straightforward to
extend the creation and manipulation of single flux qubits
to multiple topological qubits. Figure 6 demonstrates the
action of a unitary braiding operation on two topologi-
cal qubits comprising six τ anyons. We consider a |00〉
initial state, corresponding to both qubits starting in the
|0〉 state. The full braid, shown in Fig. 6a, causes an
intertwining of the two qubits by tying a topologically
non-trivial link in their anyon world lines. The topologi-
cally trivial operations in Fig. 6a (greyed out) only alter
the relative orientation of the two qubits and will have
no effect on the fusion outcome. The braid maps the |00〉
state to a superposition∑

γ11, γ21, γ12, γ22∈III
γ11 γ12=γ12 γ11

|γ11, γ
−1
11 , γ21; γ12, γ

−1
12 , γ22〉

12
√

3

+
∑

γ11, γ21, γ12, γ22∈III
γ11 γ12 6=γ12 γ11

|γ11, γ11, γ21; γ12, γ12, γ22〉
12
√

6
, (10)

where the two sums contain the combinations of fluxes
which braided with trivial and non-trivial topological in-
fluence, respectively. The probability p that a measure-
ment would record complete annihilation p(00) = 1/3
or the formation of two σ fluxons p(11) = 2/3 after the
braiding is obtained by projecting the braided superpo-
sition state onto the states |00〉 and |11〉.

The numerical experiment shown in Fig. 6b simu-
lates the action of the topologically non-trivial subsec-
tion of the braid on two of the states contributing to
|00〉, those with fluxes (IIIz0,−IIIz0, III

y
0; IIIz0,−IIIz0, III

y
0)

and (IIIx0 ,−IIIx0 , III
y
0; IIIz0,−IIIz0, III

y
0). The outcomes of

measurements corresponding to the first case (d) or sec-
ond case (e) are shown. Before fusion (c) all anyons have
green cores. Upon counting anyons from left to right,
when the second and third (in qubit one), and fourth
and fifth (in qubit two) anyons are fused, both pairs may
either annihilate (d) or leave a green anyon behind (e).

Experimental and theoretical feasibility—Similarly to
the case of Ising anyons [15], the pure fluxons considered
here are not capable of universal quantum computation
by braiding alone and additional operations involving
chargeons will be required to achieve universality [49, 66].
However, even non-universal anyons may be capable of
being used as a quantum memory and even performing
certain quantum algorithms with full topological protec-
tion, such as a specific Grover search algorithm [67] and
a calculation of the Jones polynomial at a specific root
of unity [16].

Vortices in Bose–Einstein condensates can be manipu-
lated using dynamical pinning potentials generated by fo-
cused laser beams [36, 37]. This enables controlled braid-
ing and fusion of vortex anyons. Condensates containing
few hundred vortices can realistically be achieved using
current experimental technologies and it may be possible
to control them using laser fields morphed with high reso-
lution digital micro-mirror devices (DMDs) [68]. Hence,
the creation of 100 high quality topological qubits is a
plausible prospect. A potential drawback is the adiabatic
speed limit of vortices, in turn limiting the clock speed
of such a BEC vortex topological quantum abacus. This
issue could perhaps be overcome if robust synthetic non-
Abelian fluxons could be created using artificial gauge
field techniques [55, 69].

The foremost experimental challenge for the realisa-
tion of non-Abelian vortex anyons is preparing a Bose–
Einstein condensate in a stable non-Abelian ground state
phase. Presently, experiments with spinor condensates
are limited to phases accessible in the presence of back-
ground magnetic field noise and with the natural scat-
tering lengths of available atomic species, since the spin-
dependent coupling constant c2 cannot be independently
modified using standard Feshbach resonance techniques.
Due to uncertainties in the scattering lengths of the ru-
bidium atom, the cyclic-tetrahedral phase may remain an
experimentally realisable phase for a spin-2 87Rb conden-
sate but likely only in the presence of vanishing external
magnetic fields. Moreover, in our numerical experiments
we have considered spin interaction strengths stronger
than the naturally occuring values for rubidium. This
does not affect the topological properties of the anyons
but it modifies the spin-healing length (the vortex core
size) allowing us to simulate smaller systems. The biaxial
nematic phase also hosts non-Abelian vortex anyons and
is perhaps a better prospect experimentally, since it may
be realised in the presence of an external magnetic field
and could potentially be achieved with naturally occur-
ring scattering lengths [44]. Furthermore, experimental
searches for non-Abelian vortices are not limited to spin-2
condensates with many other non-Abelian phases having
been predicted for higher spin BEC systems [51, 59–63].
Indeed, the spin-6 condensate, recently realised with er-
bium atoms [70], has a phase that is symmetric under the
non-solvable non-Abelian binary icosahedral group [63]
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and is therefore an attractive prospect for realising uni-
versal topological quantum computation employing only
fluxons [66].

The most serious issue for the existence of superposi-
tion states of the non-Abelian vortex anyons in these sys-
tems seems to be the difficulty of creating true quantum
superpositions of many atoms. The non-Abelian vortices
exist as topological states in the coherent macroscopic
spinor wavefunction describing many condensate atoms.
Therefore it might be expected that an N -atom superpo-
sition state realizing a particular fluxon could decohere
for example to a state where the atoms realize a definite
flux state, instead of a superposition of fluxes. Consider-
ing the limit of very small condensate atom numbers the
situation may change but also the mean-field description
of the bosonic condensates becomes inapplicable.

Numerical methods—The numerical experiments are
performed by solving the spin-2 Gross-Pitaevski equa-
tions [43, 45], for a condensate of 87Rb atoms with par-
ticle number of either N = 3 × 105, for the experiments
in Fig. 1 and S4, or N = 1.75× 105, for the single qubit
experiment in Fig. 2, on a spatial mesh of 10242 grid
points in 2D. The numerical integration is performed us-
ing XMDS2 [71] implementing adaptive Runge-Kutta to
fourth and fifth order time integration and Fourier spec-
tral methods for spatial integration. The numerical re-
sults are presented in non-dimensionalised units t̃ = 1/ω,
l =

√
~/2Mω where ω = 2π × 5 Hz and M is the mass

of a 87Rb atom. The dimensionless coupling constant
c̃0 = c0N/~ωl2 is determined from the experimentally
measured scattering lengths of 87Rb [56–58]. Following
Kobayashi et. al [41] the dimensionless spin interaction
strengths are chosen as c̃1 = c̃2 = 0.5 c̃0.

We consider a quasi-uniform condensate in a trapping
potential Vext = A tanh[(x/a)6 + (y/b)6], where A =
50~ω, a = (86, 59, 120) µm and b = (52, 45, 52) µm,
for the numerical experiments in Figs 1-2 and Fig S4,
respectively. The pinning potentials used for moving the
vortices are modeled as Gaussian laser beams [72]

Vpin(r) =
P√
2πσ2

e−
(x−x0)2+(y−y0)2

2σ2 , (11)

where (x0, y0) is the location of the focus point, P =
63 ~ω and σ = 0.5l. Upon braiding the pinning potentials
are moved with an orbital angular frequency ωpin = π2/2
rad s−1. The vortices are fused by bringing pinning po-
tentials together until they overlap whereupon their am-
plitudes P are linearly ramped down over a time period
of ≈ 127ms.
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TABLE I. Fluxon fusion rules a⊗b for the non-Abelian vortex anyons in the cyclic-tetrahedral phase. The concise anyon model
discussed in the text is highlighted.

I0 II0 III0 IV0 V0 VI−1 VII−1

1 = I0 I0 II0 III0 IV0 V0 VI−1 VII−1

σ = II0 II0 I0 III0 V0 IV0 VII−1 VI−1

τ = III0 III0 III0 6I0 ⊕ 6II0 ⊕ 4III0 3IV0 ⊕ 3V0 3IV0 ⊕ 3V0 3VI−1 ⊕ 3VII−1 3VI−1 ⊕ 3VII−1

IV0 IV0 V0 3IV0 ⊕ 3V0 3VI0 ⊕VII0 VI0 ⊕ 3VII0 4I0 ⊕ 2III0 4II0 ⊕ 2III0
V0 V0 IV0 3IV0 ⊕ 3V0 VI0 ⊕ 3VII0 3VI0 ⊕VII0 4II0 ⊕ 2III0 4I0 ⊕ 2III0

VI−1 VI−1 VII−1 3VI−1 ⊕ 3VII−1 4I0 ⊕ 2III0 4II0 ⊕ 2III0 3IV−1 ⊕V−1 IV−1 ⊕ 3V−1

VII−1 VII−1 VI−1 3VI−1 ⊕ 3VII−1 4II0 ⊕ 2III0 4I0 ⊕ 2III0 IV−1 ⊕ 3V−1 3IV−1 ⊕V−1

FIG. 4. Fluxon fusion table for the topological charges of the cyclic-tetrahedral phase non-Abelian vortex
anyons. The product A·B is ordered with A corresponding to the top row and B to the first column. The thick cell borders
divide the regions of each anyon fusion rule. The background colour of each cell signifies the anyon type with the intensity of
the shading highlighting the winding number η.
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TABLE II. Fluxon fusion rules a⊗ b for the non-Abelian vortex anyons in the biaxial nematic phase. The concise anyon models
discussed in the text are highlighted.

I0 II0 III0 IV0 V0 VI0 VII0

I0 I0 II0 III0 IV0 V0 VI0 VII0
II0 II0 I0 III0 IV0 VI0 V0 VII0
III0 III0 III0 4I0 ⊕ 4II0 ⊕ 4IV0 2III0 2VII0 2VII0 4V0 ⊕ 4VI0
IV0 IV0 IV0 2III0 2I0 ⊕ 2II0 V0 ⊕VI0 V0 ⊕VI0 2VII0
V0 V0 VI0 2VII0 V0 ⊕VI0 2I1 ⊕ IV1 2II1 ⊕ IV1 2III1
VI0 VI0 V0 2VII0 V0 ⊕VI0 2II1 ⊕ IV1 2I1 ⊕ IV1 2III1
VII0 VII0 VII0 4IV0 ⊕ 4V0 2VII0 2III1 2III1 4I1 ⊕ 4II1 ⊕ 4IV1

FIG. 5. Fluxon fusion table for the charges of the biaxial nematic phase non-Abelian vortex anyons. The product
A·B is ordered with A corresponding to the top row and B to the first column. The thick cell borders divide the regions of each
anyon fusion rule. The background colour of each cell signifies the anyon type with the intensity of the shading highlighting
the winding number η.
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|A|2
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1

σ
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FIG. 6. Two qubit braiding operation. a, Braid diagram for a unitary operation applied to an initial |00〉 state where the
topologically trivial operations are greyed out. Coloured strands are used to distinguish the measurement anyons of each qubit.
b, The paths of the six τ anyons trace out the topologically non-trivial braid shown in a (Supplementary Video 4). Time flows
upward. The total condensate density is shown for the initial state. The overlayed concentric ellipses denote the orientation of
the qubits as a graphical representation of the bracket notation used in the text. c, Spin-singlet pair amplitude of the qubits
just before the fusion. The rounded square marks the boundary of the condensate and the vortex locations are denoted by
the circles. The inter-vortex separation is 27µm. d, a measurement outcome corresponding to the annihilation of the second
and third, and fourth and fifth anyons, counting left to right, as in the |00〉 state. e, a fusion outcome corresponding to non-
annihilation as in the |11〉 state. Data in c-e are thresholded relative to half the maximum value in c and any maxima within the
vortex location markers are mapped to the solid green circles. The raw data is shown in Supplementary Figure 9. The specific
fluxes of the six vortices in (d) are (IIIz0,−IIIz0, III

y
0 ; IIIz0,−IIIz0, III

y
0) and in (e) they are (IIIx0 ,−IIIx0 , III

y
0 ; IIIz0,−IIIz0, III

y
0).
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γtot = γ2 γ1

⇐⇒

γtot = γ2 γ1

b

a

γ1 = γtotγ
−1
2

γtot = γ2 γ1

⇐
⇒

γtot = γ2 γ1

ba

γ1 = γtotγ
−1
2

c

α γ

γ
α(γ) · α

γtot = γ2 γ1

⇐
⇒

γtot = γ2 γ1

ba

γ1 = γtotγ
−1
2

c

α γ

γ
α(γ) · α

FIG. 7. Topological influence of non-Abelian vortex
anyons. a, Counter-clockwise exchange of two fluxons, de-
noted by the blue and yellow circles, respectively. Each loop
defines a charge. All such loops begin at a base point, denoted
by the black circular marker, and encircle either a vortex or
vortices in a counter-clockwise sense. A path encircling a vor-
tex clockwise defines the inverse flux. Prior to the exchange
the blue and yellow vortices have fluxes γ1 and γ2, respec-
tively. The loop around both vortices defines the total flux
γtot = γ2γ1. After the exchange the blue fluxon has a new
flux γ′1. b, The path corresponding to the flux γ′1, top row,
can be decomposed into the combined paths γ′1 = γtotγ

−1
2 , on

the bottom. c, Braid of a fluxon pair with Cheshire charge
α, denoted by the dotted red ellipse, about a fluxon with flux
γ. The total flux of the fluxon pair commutes with γ. After
the braid the charge acquires a non-Abelian Aharonov-Bohm
phase α(γ).
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FIG. 8. Single qubit braiding operation. Raw data for
Fig. 2 without thresholding (Supplementary Videos 2 and 3).
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FIG. 9. Two qubit braiding operation. Raw data for
Fig. 6 without thresholding (Supplementary Video 4).
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