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Abstract.  Motivated by current interest in the dynamics of trapped quantum 
gases, we study the microcanonical dynamics of a trapped 1D gas of classical 
particles interacting via a finite-range repulsive force of tunable strength. We 
examine two questions whose analogues have been of interest in quantum 
dynamics: (1) the breathing mode (size oscillation) dynamics of the trapped gas 
and the dependence of the breathing frequency on the interaction strength, and 
(2) the long-time relaxation and possible thermalization of the finite isolated gas. 
We show that the breathing mode frequency has non-monotonic dependence 
on the magnitude of the mutual repulsion, decreasing for small interactions 
and increasing for larger interactions. We explain these dependences in terms 
of slowing-down or speeding-up eects of two-body collision processes. We 
find that the gas thermalizes within a reasonable finite timescale in the sense 
of single-particle energies acquiring a Boltzmann distribution, only when the 
interaction strength is large compared to the energy per particle.
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1. Introduction

The non-equilibrium dynamics of isolated systems has been the subject of a large vol-
ume of work in recent years. In particular, in the quantum context, the study of unitary 
quantum evolution of many-body and few-body systems has undergone an explosive 
growth. This interest was partly fueled by the availability of experimental systems, 
e.g. trapped ultracold atomic and ionic systems, where non-dissipative dynamics can 
be studied explicitly due to excellent isolation from the environment. There are also 
foundational reasons for studying quantum dynamics in isolation: recent activity has 
led to advances in the understanding of basic principles connecting quantum dynamics, 
quantum chaos and the emergence of statistical mechanics and thermalization [1, 2]. 
For classical many-body systems, explorations of the connections between microscopic 
dynamical rules, chaos, ergodicity and statistical mechanics have a much longer his-
tory, dating back to the time of Boltzmann and Poincaré [3–8].

https://doi.org/10.1088/1742-5468/aac741
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Motivated by questions and issues arising in the field of quantum many-body and 
few-body dynamics, in this work we will study the classical dynamics of a collection 
of interacting particles confined in a 1D harmonic trap. The analogs of two questions, 
studied intensively in the quantum literature, will be investigated for this classical sys-
tem: (1) the influence of interactions on the breathing mode frequency of the trapped 
gas, and (2) the relaxation and possible thermalization of the finite system under its 
own evolution, in the absence of any external baths or dissipation mechanisms.

Experiments with cold atoms, which have an essential motivational role for the 
current interest in many-body quantum dynamics, are generally performed in a trap-
ping potential, either optical or magnetic. As a result, in the last two decades many 
questions of many-body quantum physics have been reformulated in the presence of 
a harmonic trap. The presence of a harmonic trap often results in new dynamical 
phenomena. For example, the motion of vortices in a trapped condensate [9] has new 
features, such as precession, compared to vortex motion in uniform condensates [10]. 
Trapping also results in new collective phenomena which have no analog in uniform 
situations: for example, collective modes like dipole, breathing and quadrupole modes 
are specific to trapped many-body systems. Dipole modes (center of mass oscillations) 
and breathing modes (size oscillations) appear even for 1D trapped systems; higher-
dimensional systems display additional, more complicated modes like quadrupole and 
scissors modes. Because of the omnipresence of trapping potentials in cold-atom experi-
ments, dipole and breathing mode dynamics are pervasive across the field: these modes 
have been intensively studied and used for diagnostic purposes since the early days of 
research with trapped quantum-degenerate gases, and continue to generate interest 
today [11–31]. In one of the best-known experiments on quantum many-body dynam-
ics, [32], the dynamics of an integrable system (Lieb–Liniger bosons) was seen to have 
ultraslow relaxation in a trap, supposedly due to integrability. This experiment has led 
to continuing eorts to understand how a trap breaks integrability [33–36].

The presence of harmonic trapping is thus a paradigmatic aspect in the field of 
quantum non-equilibrium physics. This motivates our study of classical dynamics 
of trapped interacting particles. Similarly motivated by quantum dynamics, classi-
cal trapped dynamics of hard rods has recently been studied in [35, 36], focusing on 
integrability-breaking eects of the trap. Classical dynamics in parabolic traps have 
also been studied for particles with long-range interactions, for which shell structures 
play an important role [37]. In this work, we consider trapped classical particles which 
interact via a simple finite-range potential between any pair of particles: a constant 
repulsive force acts whenever the particles are less than a certain distance apart. The 
interaction strength can be tuned, leading to dierent regimes of behavior.

Our first theme will be the breathing mode of the classical interacting gas, and the 
eect of interactions on the frequency of the breathing mode. In the quantum case, 
this has long been a topic of interest for both bosons and fermions. For bosons with 
short-range (contact) interactions, the situation has been studied in one, two and three 
dimensions. At zero interaction, the breathing mode is twice the trapping frequency ω0 
in each case, assuming isotropic trapping. A mean field (Gross–Pitaevskii) calculation 
gives the frequency to be 

√
D + 2 times the trapping frequency, where D is the spatial 

dimension. For three-dimensional (3D) traps, the mean-field description is expected 
to be qualitatively correct, thus the breathing mode frequency is expected to change 

https://doi.org/10.1088/1742-5468/aac741
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monotonically from 2ω0 at zero interactions to 
√
5ω0 at large interactions. Remarkably, 

for 2D traps, the breathing frequency is exactly 2ω0 for any interaction strength [12], 
due to a symmetry. Classical trapped particles with scale-invariant interaction poten-
tials also have breathing frequency 2ω0 independent of interaction strength [12]. The 
interaction dependence in 1D (trapped Lieb–Liniger gas) is also remarkable: as the 
interaction is increased, the breathing frequency first decreases from 2ω0 to the mean-
field prediction 

√
3ω0, and then at larger interactions increases again, returning to 2ω0 

in the infinite interaction (Tonks–Girardeau) limit [17, 21–23, 28]. The breathing mode 
has also been investigated extensively for fermionic systems with contact interactions 
[15, 20, 30], and also for fermionic and bosonic systems with long-range interactions 
[16, 24, 25]. The breathing mode has also been studied for a high-temperature trapped 
gas where a Boltzmann-equation description is valid, both theoretically [38, 39] and 
experimentally [40].

In this work, we use an explicit microscopic model treated microcanonically, rather 
than a Boltzmann equation approach. Unlike the quantum case, the harmonic potential 
does not impose a length scale or an energy scale. The interaction range can thus be 
scaled away by a redefinition of length, i.e. by measuring lengths in units of the inter-
action range. There are thus only two important parameters determining the system 
behavior, namely the interaction strength and the energy per particle. We find that the 
breathing mode frequency has a non-monotonic dependence on the interaction param-
eter. At small interactions, when the particles pass through each other, the eect of 
collisions is to slow down the dynamics, so that the breathing frequency drops below 
the non-interacting value 2ω0. At very large interactions, the particles bounce o each 
other, a process which speeds up the size oscillations, resulting in the breathing fre-
quency being larger than 2ω0.

Our second theme is the process of relaxation at longer timescales, and possible 
thermalization. This topic is also motivated by intense recent research in the quant um 
context. In quantum isolated systems, thermalization is now understood in terms of 
the so-called eigenstate thermalization hypothesis (ETH), which postulates that in 
ergodic systems the expectation values of observables in individual eigenstates depend 
ony on the eigenenergy, and hence represent the thermal value [1, 2, 41]. The con-
nection to statistical mechanics is particularly dicult for explicitly finite systems, 
in which case ETH is to be understood in terms of finite size scaling [42]. In classical 
systems, the connection between microscopic dynamics and statistical mechanics has 
been studied since the 19th century [3–8]. It is generally understood that systems with 
nonzero Lyapunov exponents, i.e. chaotic or ergodic systems, thermalize in the long-
time limit, provided there are enough degrees of freedom. However, various aspects 
deserve further study. For example, given a certain strength of integrability-breaking 
(e.g. interaction strength), one might want to ask whether a system achieves a ther-
mal distribution under purely Newtonian (non-dissipative) evolution, and if so, what 
the necessary timescale is for this thermalization. As in the quantum case, finite sys-
tems are particularly intricate. In finite systems, defining thermalization is trickier as 
most observables will fluctuate or oscillate substantially. In addition, the influence of 
Kolmogorov–Arnold–Moser (KAM) orbits may play a role in preventing thermaliza-
tion; it is generally believed that the fraction of phase space where KAM physics might 
be relevant decreases rapidly with particle number [5].

https://doi.org/10.1088/1742-5468/aac741
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In our work, we examine the relaxation of our trapped interacting classical system, 
explicitly for finite numbers of particles. We look for thermalization within finite tim-
escales, by sampling single-particle energies periodically until such timescales and com-
paring the distribution of single-particle energies with the Boltzmann distribution. We 
show that whether or not the system thermalizes in this sense depends on the ratio of 
interaction strength and energy per particle. We also show that this result is reflected 
in the Lyapunov exponents of the system. (Since we include weak ergodicity breaking 
for which thermalization takes ultra-long times, we find it convenient to consider finite-
time Lyapunov exponents.) We also examine another notion of thermalization, accord-
ing to which a system is thermalized when it loses memory of initial state, by following 
the dynamics of the particle distribution in phase space. Remarkably, we find that one 
can observe energy thermaliztion even at timescales when the shape of the phase space 
distribution continues to perform seemingly coherent oscillations.

There is a significant literature on calculating Lyapunov exponents in model statisti-
cal-mechanics systems and thus exploring ergodicity [4, 43–46]. This provides intuition 
of what types of microscopic interactions are likely to produce thermalizability, and is 
an important step in the program of understanding statistical mechanics ‘from the bot-
tom up’. However, we are not aware of a significant literature on following explicitly 
the microcanonical dynamics of statistical-mechanical or few-body systems. Several 
such studies have appeared recently [35, 36, 47], motivated by the quantum dynamics 
literature, like the present work. Another line of work has examined thermalization 
dynamics in one dimensional gravitational systems [48]. Investigating such real-time 
dynamics can be expected to provide insights on the timescales and microscopic mech-
anisms involved in the emergence of statistical mechanics from collections of particles.

This paper is organized as follows: in section 2, we introduce the Hamiltonian, iden-
tify and introduce the essential scales, and describe some aspects of the model and our 
simulations. The breathing frequency is treated in section 3. We explain the main fea-
tures using both real-space and phase space pictures of the interaction process, obtain 
estimates for the interaction- and energy-dependence of the frequency shift, and com-
pare these predictions with numerics. Section 4 treats relaxation and thermalization. 
We propose a condition for relaxation in reasonable timescales from considerations of 
few-body dynamics, compare the energy distribution with the Boltzmann distribution, 
show how the largest finite-time Lyapunov exponent distribution reflects the relaxation 
condition, and examine shape dynamics of the particle distribution in phase space. 
Concluding remarks appear in section 5.

2. The model and its equilibrium properties

2.1. Model and scaling

Our model for the interacting classical gas involves particles with a finite-range repul-
sive interaction. Two particles repel each other whenever they are within a distance σ 
from each other. The force of repulsion is a constant, F0, within this distance and zero 
when the distance is larger.

https://doi.org/10.1088/1742-5468/aac741
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∣∣∣F (x)
∣∣∣ =

{
F0 |x| < σ

0 |x| > σ (1)

where |x| is the distance between two particles. This equation describes the magnitude 
of the interparticle force; the direction is always repulsive.

The gas contains N such identical particles, each of mass m, in a harmonic trap. The 
Hamiltonian describing the gas is

H =
1

2
mω2

0

∑
i

x2
i +

1

2
m

∑
i

v2i +
∑

|xi−xj |<σ

F0 (σ − |xi − xj|) .

 (2)
Here F0 (σ − |r|) θ(σ − |r|), with r = xi − xj and θ() the Heaviside theta function, is the 
potential corresponding to the force introduced in equation (1). It is useful to rescale 
the quantities. We will measure distance, time, energy and force in units of σ, 1/ω0, 
mω2

0σ
2 and mω2

0σ respectively:

x̃i =
xi

σ
, H̃ =

H

mω2
0σ

2
, t̃ = ω0t, F̃0 =

F0

mω2
0σ

. (3)

Equation (2) is then rewritten as

H̃ =
1

2

∑
i

x̃i
2 +

1

2

∑
i

(
dx̃i

dt̃

)2

+
∑

|x̃i−x̃j |<1

F̃0 (1− |x̃i − x̃j|) . (4)

Through this rescaling, we have reduced the number of the parameters in our model to 
three: the energy H̃, the interaction strength F̃0, and the number of particles N. The 
rescaling is equivalent to setting σ, ω0 and m to 1; this is what we do in the numerical 
simulations. In the rest of this paper, we will use ‘E’ and ‘F0’ to denote the reduced 
versions H̃ and F̃0, and omit the tilde when writing rescaled quantities.

In the limit of infinite F0, the particles maintain a distance larger than σ from each 
other. In this limit each particle can then be thought of as a ‘hard rod’ of length 2σ. 
In the absence of a trap, this would be the 1D classical system shown by Tonks to be 
classically integrable [49].

2.2. Cloud size or ‘radius’

We will be concerned with the size of the cloud. We quantify the size through the root-
mean-square of particle positions {xi},

R =
(
x2
) 1

2
=

(
1

N

∑
i

x2
i

) 1
2

, (5)

and refer to this quantity as the ‘radius’ or ‘cloud radius’. In the dilute gas limit, there 
are few or no interactions occuring at most times. Thus the energy E is dominated by 
the trap energy, i.e. E ≈ mω2

0

∑
i x

2
i = Nmω2

0R
2, or, in our units,

E ≈ NR2 . (6)
This approximation is good when the average distance betwen particles is much larger 
than the interaction range σ = 1, i.e. whenever R � 1, which is the regime we consider 

https://doi.org/10.1088/1742-5468/aac741
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dynamics in. Another way of describing this dilute-gas regime is that the gas is far from 
the ground state (described in the next subsection). Neglecting the interaction energy 
to estimate E is reasonable even at very large interactions (F0 � E/N ), because for 
very large interactions, the particles behave as hard rods which bounce o each other 
very rapidly, so that at most instants one can expect no collisions to be taking place, 
provided the gas is dilute. It is also expected to be a good approximation at very small 
F0 since we can then simply neglect the interaction energy. Thus, we will use this as a 
common estimate for R in terms of the energy.

2.3. Ground states

The lowest-energy state of the system has zero kinetic energy; in this state the particles 
find stationary positions which minimize the trap (potential) and interaction energies. 
The trap potential tries to squeeze the particles towards the trap center, while the 
interaction tries to push them apart.

Because of the discontinuous ‘Heaviside theta’ form of our interaction, at large 
enough interactions (large F0) the particles are spaced exactly at distance equal to the 
range σ, which is distance 1 in our rescaled units. The interaction is then eectively a 
‘hard-core’ interaction, or alternatively, the particles can be thought of as hard rods 
of length 2σ.

At very small F0, the particles in the ground state are close enough to the trap 
center that each particle interacts with every other particle. Equating the interaction 
force due to all the other particles with the trapping force, one finds that the position 
of the i-th particle is

xi =
2F0

mω2
0

(
i− N + 1

2

)
= 2F0

(
i− N + 1

2

)
 (7)

where the particles are labeled i  =  1 to i  =  N from left to right. Thus the particles are 
equidistant in this regime. In this ‘solid’-like state, the low-lying excitation involves 
independent oscillation of the particles around their equilibrium position. In this regime, 
the distance between the leftmost and rightmost particles is at most σ = 1. Thus, this 

situation extends up to F0 =
1

2(N−1)
. For the N  =  5 case shown in figure 1, this behavior 

is seen up to F0  <  1/8.
In figure 1, we can see this crossover from the ‘solid-like’ limit (left) to the ‘hardcore 

gas’ limit (right). In between, there is a rich staircase-like structure, as the particles 
attempt to minimize the interaction by being at distance  >1 from as many other par-
ticles as is compatible with the trap energy.

2.4. Phase space distribution

A useful way to visualize the state and evolution of the gas is to plot the position and 
momentum of each particle, i.e. to plot the locations of the particles in the single-
particle phase space. This will be useful for visualizing both the breathing mode and 
relaxation.

Figures 2 and 3 show such phase space snapshots. We generally start with particles 
distributed at random positions around the trap center, initially with no velocity (zero 

https://doi.org/10.1088/1742-5468/aac741
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momentum). The initial state thus has the points lined up along the X axis. In the 
absence of interactions, each particle would undergo simple harmonic oscillation with 
period T = 2π/ω0 = 2π. The point corresponding to each particle executes clockwise 
elliptical motion around the X-P plane. (In our units, the elliptical trajectory is actu-
ally circular.) This results in the distribution retaining its linear shape and rotating 
clockwise with exact period T. The eect of the interaction is to smear out the line and 
spread the points out toward a rotationally invariant distribution in the X-P plane. 
The top panel of figure 2 shows this during the first period and figure 3 shows this pro-
cess over a much longer timescale.

Since the rotation of the initial line of points is simple to understand as a single-
particle (non-interacting) eect, we can focus on interaction eects by viewing the 
phase space in a ‘rotating’ frame. The rotating frame is used in the lower panel of 
figures 2 and 3. In this picture, the ‘real’ X and P axes are rotating counter-clockwise. 
This rotating frame picture may be regarded as a classical version of the ‘interaction 
picture’ of quantum dynamics. This picture highlights eects of interactions because 
the other eects are already encoded in the frame rotation.

In the absence of interactions, each point (each particle) is stationary in the rotat-
ing-frame phase space picture. As seen in the lower row of figures 2 and 3, interactions 
cause a gradual distortion of the line as well as some degree of rotation. The rotation 
that is visible in the already rotating Xrot − Prot frame is the interaction-induced shift 
of the breathing frequency ωB from the noninteracting value, 2ω0. The distortion of the 
line toward an eventually rotationally invariant distribution may be regarded as ther-
malization or ergodicity. In the next sections we explore these two interaction-induced 
eects.

2.5. Numerical calculations

We use the Verlet algorithm (molecular dynamics) to numerically simulate the cloud, 
using particle numbers between 5 and 50. Our force is simple, so that calculating the 
force at each step is inexpensive, however, the theta function dependence of the force 

Figure 1. The ground state of a system with N  =  5 particles, shown via the positions 
of each particle, labeled 1 through 5. At large interactions, the particles position 
themselves just outside the range of interactions of the neighboring particles.

https://doi.org/10.1088/1742-5468/aac741
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collision process. The simulation is purely microcanonical: no external bath or thermal-
izing mechanisms are introduced.

The initial state is taken to have particles with zero velocity and random positions; 
hence the line distribution in the phase space picture. This has the advantage that the 
breathing motion is prominently visible. In addition, the question of long-time relax-
ation has the simple interpretation of evolving from the line distribution to a circularly 
symmetric distribution in phase space.

3. Breathing frequency

We are interested in the oscillations of the size R(t) of the cloud. It is convenient that 
our finite-size simulations start with a line distribution in phase space. If we started 

Figure 2. Upper (lower) panels are snapshots of the cloud configuration in phase 
space in the stationary (rotating) frame, at instants within the first trap period. 
Here N  =  50, F0  =  100, and E = 50 000.

Figure 3. Phase space snapshots of the cloud dynamics viewed in the rotating 
frame, at longer timescales. The broadening and rotation observed here are 
interaction eects: in the non-interacting gas the particles are stationary in this 
frame.

https://doi.org/10.1088/1742-5468/aac741
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with a state whose configuration deviates only slightly from circular symmetry in X-P 
space, the oscillating amplitude would be too small to be distinguished from noise.

Without interaction, the breathing mode frequency ωB is exactly 2. This is visual-
ized readily from the top panel of figure 2, where R(t) is the extent of the distribution 
in the horizontal (X) direction. As the line rotates clockwise with frequency ω0 = 1, 
within each period the line is twice horizontally aligned (maximum R) and twice verti-
cally aligned (minimum R), so that the frequency of R(t) is ωB = 2. When there is inter-
action, the frequency will get shifted: ωB = 2 + δ. Numerically, we measure the radius 
of the cloud R(t) and get the frequency spectrum of its oscillation behavior by Fourier 
transform. Then we take the peak frequency near 2 as the breathing mode frequency.

3.1. Interaction-dependence

The frequency measured numerically for dierent E and F0 is shown in figure 4 for a 
system with five particles, plotted as a function of F0. The points each correspond to 
breathing-mode dynamics following from a single initial state; there is no averaging. 
The curves therefore show some noise. However, two prominent features are clear from 
these curves. At large interactions, F0 � E , the breathing frequency is larger than 2, 
and saturates around a value which decreases with the system energy E. At small inter-
actions, the breathing frequency is smaller than the non-interacting value 2.

Below, we will provide a detailed phase space argument for these behaviors. However, 
a simple real-space picture explains both eects qualitatively as well. For very large F0, 
when the interaction is ‘hard-core’-like, two particles exchange momentum instanta-
neously during a collision. By exchanging the labels of the particles during the collision, 
this can be interpreted as follows: particle A carrying momentum PA jumps by distance 
σ to the right, while particle B carries its momentum PB and jumps by distance σ to 
the left. In this manner, every collision will save a particle some time, σ

v
. This trans-

lates into an increase of the breathing frequency. The speed v per particle is on aver-

age  ∼
√

E/N , and the number of collision each particle experiences in one period of 
harmonic oscillation is  ∼N; hence we obtain δ ∼ N

3
2E− 1

2. When F0 is smaller, we can 
no longer think of the particles as hard rods; the collisions now take finite time dur-
ing which the speeds of the particles are slowed down and then sped up again, as they 
either cross paths or bounce from each other. When F0 is small enough, this approach-
ing time will at some critical value of F0 consume the time saved by the finite range 
of the interaction. This explains why there is a small-F0 regime for which the shift δ 
is negative. Figure 4 shows that this critical value of F0, where δ changes sign and ωB 
crosses 2, increases with energy.

3.2. Estimates using the rotating phase space

Since we are interested in the deviation δ = ωB − 2 from the non-interacting breathing 
frequency, it is useful to work in the rotating frame, in which a non-interacting cloud 
would be stationary (non-rotating). The rotation frequency of the cloud in this frame 
is then δ.

To analyze the rotation relative to the Xrot − Prot frame, we consider two-particle 
collisions. In figure 5(a), we show schematics of such collisions near the trap center 
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at strong interactions. During the collision, the particle momentum is changing at a 
constant rate (the force is a constant repulsion), so the particle trajectory has a comp-
onent of motion in the direction of the P axis. However, the P axis itself is rotating 
in the Xrot − Prot frame, at frequency ω0. Thus, the trajectories of the particles during 
the collision in the Xrot − Prot plane are curved arcs. As long as F0 is large enough 
that the particles bounce o each other, the particle momentum will change sign, so 
a trajectory starting at negative P will end at positive P. For very large F0, the par-
ticles simply exchange momentum when they are at distance σ from each other; this 

process is shown in red as two straight lines. (The particles are initially at X = ±1
2
σ 

and remain at these X values, but exchange their momenta.) For smaller F0, there is 
change of both position and momentum, as shown in yellow, green and blue for suc-
cessively weaker interactions.

The blue dashed line in figure 5(a) shows a case where F0 is small enough such that 
the particles can just cross each other. In figure 5(b) we show collisions for even smaller 
F0, so that the particles pass each other. The force changes direction discontinuously 
when the particles cross. In the Xrot-Prot plane, this is seen as a sharp turning point 
in the trajectory—if the momentum is initially positive, it first decreases and then 
increases again.

The boundary case between bouncing and passing behaviors is shown as the blue 
dashed curve in both figures 5(a) and (b). In this case, the momentum decreases to just 
about zero when the relative distance reaches zero, so that the particles just manage 
to cross.

We now estimate δ at large F0. The relevant collision process is that shown by 
the red lines in figure 5(a). The two particles, which are initially on the Xrot axis, are 
moved to two other points, on the thick gray line, which deviates a small angle α away 
from original configuration. In every period of the harmonic oscillation, each particle 
meets each of the other particles twice. Half of these collisions (about N collisions) are 
between particles with large dierence in momentum, which is the process shown in 

Figure 4. Breathing mode frequency measured at dierent E and F0, for N  =  5 
particles. Inset: a demonstration of the oscillation of Etrap, the total potential 
energy of particles in the trap, Since Etrap ∝

∑
is x

2
i , it manifests the oscillation 

behavior of the radius R(t) as defined in equation (5). The breathing frequency is 
obtained from the Fourier transform of R(t).
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figure 5. (As for the remaining half of the collisions, colliding particles have smaller 
dierence in their momenta. In this estimate we ignore the eects of these collisions, as 
they clearly contribute far less to the rotation of the particle distribution.)

The precession angle is α ∼ σ/P , where P is the momentum of the colliding particles. 
In our rescaled units, the typical momenta of interacting particles are of the order R. 
(In phase space R can be interpreted either as the extent in real space when the veloci-
ties are small, or as the extent in momentum space when the particles approach x  =  0, 
i.e. when the distribution is along the P direction.) Thus, we can estimate α ∼ σ/R, i.e. 
α ∼ 1/R, since our unit of length is σ. This is the rotation per unit collision. Since there 
are  ∼N collistions per period T = 2π, we have the estimate for the interaction-induced 
rotation per unit time as

δ = 2
N

2π

1

R
=

1

π
N3/2E−1/2

 (8)

The factor 2 accounts for the fact that each rotation of the elongated cloud in phase 
space corresponds to two breathing mode periods. In the last step we have used the 
estimate E ∼ NR2, equation (6).

The eect of interactions on the breathing frequency is more complicated at smaller 
F0. As we have seen in figure 4, a small F0 can decrease the breathing frequency from its 

)b()a(

Figure 5. Schematic diagrams of two-particle collision process in the Xrot-Prot 
plane. The black filled dots shown locations of the two particles in Xrot-Prot space 
before the collision; the empty dots show locations after the collision. The dashed 
lines show the trajectories during the collision process. Collistions for dierent 
F0 values are shown with dierent color. (a) When F0 is large, particles cannot 
pass each other: during the collision the momentum changes sign. Being subject 
to a constant repulsive force, their trajectories during collision are curved arcs. 
The weaker F0 is, the longer the collision lasts, and hence the more curved is 
the corresponding arc. For very strong interactions (red dashed line), particles 
exchange momenta instantaneously; hence the red dashed line is straight. The 
locations of the particles after this collision are on the gray line; the angle α made 
by this gray line is estimated in the text. The yellow, green, and blue dashed 
curves are for successively weaker interactions. (b) When F0 is small, particles 
pass each other, so that the force they feel is discontinuous (changes sign) at the 
moment when they cross each other. Their trajectory in Xrot − Prot space has a 
corresponding turning point. The dashed bright blue trajectory is identical with 
the one in (a), which is the critical situation between passing and bouncing. In that 
case, particles have zero relative velocity when they collide.
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non-interacting value ωB = 2. This can also be understood using phase space pictures 
of collision processes. For F0 not very big, the finite interaction time needs to be taken 
into consideration. During this time, the point describing a particle in phase space 
moves along the direction of the P axis at the rate F0/m. Since the P axis is itself rotat-
ing counter-clockwise in the Xrot-Prot frame, the particle will follow a curved trajectory 
in Xrot − Prot space, e.g. the yellow or green dashed lines in figure 5(a). The angle α 
that we used above to estimate δ thus decreases with the increase of interaction time; 
it is smaller for the yellow line and even opposite for the green line. This explains the 
negative contribution of interaction to δ, for small enough values of F0. At even smaller 
values of F0, shown in figure 5(b), the particles cross each other. The resulting final 
values are such that the line joining the post-interaction locations of the two particles 
has negative α, i.e. is tilted clockwise with respect to the Xrot axis, meaning a negative 
contribution to the breathing frequency.

We can also estimate the critical value of F0 for a given energy (or alternatively 
the critical value of E for a given F0) between positive and negative contributions to 
the breathing frequency. Since the P axis rotates with frequency ω0 = 1 in the Xrot-Prot 
plane, the post-collision position of the particle in the Xrot-Prot plane makes angle ω0τ  
with the red line in figure 5(a). Here τ is the time over which the interaction acts. The 
crossover between positive and negative δ is found by comparing this angle to α:

ω0τ = α. (9)
The time τ is approximately the time it takes for the momentum to change sign due to 
a constant force F0. Since the momentum is  ∼R, this means τ ∼ R/F0. Using our previ-
ous estimate α ∼ σ/R, together with E ∼ NR2, gives us the condition

E

N
∼ F0 (10)

for the breathing frequency to cross the non-interacting value ωB = 2. This is roughly 
the same criterion for whether two particles will bounce or cross each other in a 
typical collision. (Note that this is only a rough correspondence: from the green arc in 
figure 5(a), we see that the contribution to δ can be negative even when F0 is strong 
enough for two particles to bounce o rather than pass each other.)

The condition (10) is consistent with figure 4, where we noted that the critical F0 
grows with increasing energy.

3.3. Comparisons with numerical data

In figure 6 we show a quantitative test of the main prediction, equation (8), of our 
analysis of the collision process. For large F0, the frequency indeed scales as E−1/2 
and for F0 = 105 is quite close to the actual numerical values prediction (8). Even for 
smaller F0, at small enough energies (larger E−1/2 values) the breathing mode becomes 
proportional to E−1/2.

One might ask whether the breathing frequency predictions are also valid at late 
times, after the system has ‘relaxed’ from the initial line distribution in phase space to 
a more spread-out cloud, as we have seen in figure 3. In figure 6 we show the breath-
ing frequency calculated from R(t) oscillations in the first 100 time units, and also the 
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frequency from data in a later time window. The frequencies appear to be overall stable 
and dependent primarily on F0 and E.

4. Relaxation and thermalization

For any nonzero interaction, the system is expected to be ergodic for N  >  2. Once 
there are many particles, one expects thermalization in the long-time limit. From the 
few-particle perspective, several interesting questions pose themselves. First, although 
we expect ergodicity, the question of how long it takes to thermalize is an open ques-
tion for small N. We treat below a coarse-grained version of this question: namely, we 
ask whether particles show ergodic behavior within reasonable timescales chosen to be 
(somewhat arbitrarily) in the timestep range of 103–104. Another question is the con-
nection between energy thermalization as defined by the appearance of a Boltzmann 
distribution, and other intuitive characteristics of ergodic behavior such as whether the 
single-particle phase space is isotropically occupied. We find cases where one aspect is 
seen while the other is not.

4.1. Few-particle considerations

Since we are interested in thermalization within finite timescales, it is useful to first 
consider mechanisms which hinder relaxation or thermalization. We begin with few-
particle motion. Since ergodicity and relaxation are generally expected to be more 

Figure 6. Dependence of breathing frequency, calculated for N  =  20 particles, 
on energy. Dierent colors represent dierent F0—red for F0 = 2× 103, yellow 
for F0 = 3× 103, green for F0 = 1× 104, and blue for F0 = 1× 105. Runs with 
three dierent initial states are shown in each case. In each run, the frequency 
is measured both in the time window 0–100 (labeled as crosses) and in the time 
window 900–1000 (labeled as circles). The black dashed line is the prediction of 
equation (8).
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robust and ecient with larger particle numbers, consideration of small particle num-
bers will highlight eects which slow down relaxation.

4.1.1. Two particles. We consider the two-particle motion in their center of mass 
frame. The center of mass itself executes simple harmonic oscillation. In the absence 
of interactions (F0  =  0), the eective potential within the center of mass frame is itself 
parabolic, with the same frequency. So their relative motion is also a harmonic oscilla-
tion, with the same frequency ω0.

With interactions, a term F0(1− |r|)θ(1− |r|) is added, where r is the relative dis-
placement; as shown in figure 7. Now, the relative motion is no longer harmonic. When 
the internal energy is much larger than F0, one could regard the resulting motion as 
having a slightly dierent frequency, or a collection of frequencies whose center is 
shifted slightly from ω0. Since the center-of-mass motion is still of frequency ω0, we 
have a superposition of slightly dierent frequencies, resulting in beating dynamics. 
This is clearly seen in the time evolution of individual energies shown in figure 7. The 
two panels correspond to dierent internal energy Ei (defined as the total energy minus 
the center-of-mass energy). For larger Ei, the distortion of the eective potential (at 
constant F0) plays a smaller role in shifting the eective frequency of relative motion; 
hence the beat frequency is smaller.

This illustrates a simple mechanism hindering the redistribution of energy between 
particles, which is necessary for thermalization or relaxation. As seen in the example 
dynamics shown in figure 7, the dierence in energy between the two particles is sus-
tained over time. Of course thermalization is not expected anyway in a two-particle 
system, but we will see below how this basic eect continues to play a role for larger N.

4.1.2. More particles. Once we have more than two particles, we expect chaotic or 
ergodic behavior. However, it is easy to imagine mechanisms which drastically slow 
down redistribution of energy.

Generally, whenever we have some particles with energy very dierent from others, 
the dynamics occurs mostly independently within groups of particles with similar ener-
gies. For example, with three particles, consider the situation where two of them, say 
A and B, have small internal energy, which means their mutual distance and relative 
velocity are both small, whereas the third particle (C) has some energy quite dierent 

Figure 7. Two-particle dynamics. Left: Eective potential for relative motion. 
Center and right: evolution of the individual energies of the two particles. The two 
panels correspond to internal energy Ei = 2 and Ei = 5; the interaction is F0  =  1. 
The beat frequency is lower for larger Ei.
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from A and B. Then, A and B will often be interacting, and if their internal energy 
is smaller than F0, significant energy exchange can occur between them. C will gener-
ally exchange little energy with the pair during interactions, in which (due to larger 
internal energy between C and either A or B), the interaction is not eective in energy 
exchange.

An example is shown in figure 8, following the dynamics of N  =  5 particles. Two 
pairs of particles persist in performing ‘internal’ dynamics. The lone particle partici-
pates only in some slow beating motion with the center of mass of one of the pairs. 
Clearly, the energy mismatch acts as a hurdle to the relaxation process.

4.2. Relaxation condition and the Boltzmann distribution

Our consideration of few-particle motion has shown that relaxation is slow when the 
internal energy of pairs is large compared to F0. This allows us to conjecture a condi-
tion for relaxation in reasonable time. Although it is impossible to express the internal 
energy of every pair in terms of the total energy E, we can estimate the typical internal 
energy by the average energy, E/N. At least they are of the same order. Thus we have 
the condition

F0 �
E

N
 (11)

for relaxation. This is the same condition we obtained in the previous section for the 
breathing frequency to be increased (rather than decreased) by the interaction.

Because the model is expected to be ergodic for N  >  2 particles, we expect the same 
condition to lead to thermalization. In fact, the proposed condition works even quanti-
tatively, as we show in figure 9. Here, the distribution of energies among the dierent 
particles is presented. Given our small particle number, a single snapshot of the ener-
gies will not yield enough statistics to investigate the distribution of single-particle 
energies. Therefore, single-particle energies are recorded once every time unit (i.e. at 
time intervals of 1/ω0) as the simulation evolves, up to around t ∼ 104. The distribu-
tion of these observed values then shows whether or not the system has thermalized 
to a Boltzmann distribution. In the two panels of figure 9, we show the distributions 
obtained for a N  =  5 system and a N  =  20 system. In both cases, we choose the total 
energy to be E  =  1000N. In accordance with our conjectured condition, we find that 
the observed single-particle distributions are qualitatively dierent for F0 � 1000 and 
for smaller interactions. When the ‘thermalization condition’ F0 � E/N  is satisfied, the 
distribution is roughly exponential (∼e−βε). For smaller F0, thermalization in this sense 
is not seen in the single-particle energy distribution. Since the systems are expected to 
be ergodic, the smaller-F0 systems presumably will also eventually show a Boltzmann 
distribution of energy, but only at (much) longer timescales.

In figure 10, we display the agreement with the Boltzmann distribution in several 
‘thermalizing’ situations, F0 � E/N . In each panel, the calculated distributions from 
simulations is plotted against the Boltzmann distribution. The overall agreement shows 
that the energy is well-thermalized among the particles on average within the times-
cales under consideration.
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There are some small deviations from the Boltzmann distribution visible in figure 10. 
Most of the deviation is probably due to numerical noise, and unsurprising given our 
small system sizes. However, some deviation is also expected due to the contribution 
of the density of states (DOS), as the probability of finding an energy is proportional 
to the Boltzmann exponential factor multiplied by the DOS. For the simple harmonic 
oscillator, the DOS is constant. The interaction deforms the energy shell in the small 

Figure 8. Time evolution of single-particle energies in a system of five particles, 
showing a case of inecient energy redistribution. The energies of the two particles 
with highest energy (2 and 3) show a clear beating similar to the two-particle case, 
as does the pair 4 and 5, although less visible. The ‘unpaired’ particle 1 performs 
slow beating dynamics with the center of mass of the 4 and 5 pair—the energy of 
the particle 1 and of the center of mass of the 4 and 5 pair undergo long-period 
out-of-phase oscillations, of which approximately the first one-third of one period 
is visible in the time window shown.

Figure 9. The distribution of single-particle energies. Snapshots of the single-
particle energies are taken at unit time steps during the simulation, up to  ∼10 000 
time units. Green curves obey the relaxation condition (11), and yellow/orange 
corresponds to smaller F0. The two panels correspond to dierent particle numbers 
N, but we choose total energies such that E/N is identical (=1000) in all cases. 
Thus the threshold (11) corresponds to the interaction F0 ∼ 1000.
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region |xi − xj| < σ; so that the DOS is no longer a constant. The measured distribu-
tion seems systematically slightly smaller than the Boltzmann curve at very small ε. 
For larger interactions, small energies are expected to be penalized, as the interaction 
opposes particles clustering at small velocities near the bottom of the trap. This may be 
the reason for the counts in figure 10 being slightly lower than the Boltzmann predic-
tion at small ε. However, since we are in the regime of a dilute gas (σ � R), the eect 
is quite small.

4.3. Lyapunov exponents

The general idea that thermalization is faster for larger F0/E can be quantified through 
the Lyapunov exponents. For high-dimensional systems, there is a spectrum of expo-
nents which manifests the instability of the trajectory along each direction. The larg-
est Lyapunov exponent (LLE) reflects the shortest time scale for the system to lose 
memory of the initial state. To calculate the LLE, we follow the method described, 
e.g. in [7]. If the calculation is carried out up to suciently late times, the LLE for an 
ergodic system is uniquely defined and independent of the starting state. We would 
like to deal with parameter regimes both within and outside our relaxation condition, 
E  <  F0N and E  >  F0N, and in the latter case we have seen that ergodicity does not 
become apparent at reasonable timescales. Therefore, we carry out the computation of 
the LLE up to t ∼ 103, i.e. we consider finite-time Lyapunov exponents [46]. The LLE 
estimates obtained in this way depend on the initial configuration. The collection of 
these estimates forms a distribution. We show the distributions in figure 11 for fixed 
F0 and dierent values of the total energy E. The distributions are obtained using 100 
initial states in each case.

The average LLE decreases with the increase of energy. The critical part is near 
E  =  F0N  =  5000. Around this value, the most probable value of LLE decreases well 
below  ∼1, which indicates that the shortest time scale becomes much longer than an 
oscillation period when E � 5000. This is consistent with our predicted thermaliza-
tion threshold. As E increases far beyond the thermalization threshold value, the LLE 
distribution is close to zero, suggesting a divergence of relaxation time. We have thus 

Figure 10. Complaring the single-particle energy distribution ρ(ε) with the 
Boltzmann distribution. The energy values all satisfy the relaxation condition (11). 
The Boltzmann distribution ∝e−βε, with the temperature defined as β−1 = E/N , 
is the thick dashed line.
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shown an explicit correspondence between energy thermalization in real time and the 
(finite-time) LLE.

For the largest E values (smallest F0/E) in figure 11, we note large relative 
fluctuations. This presumably reflects the fact that the relaxation time in these cases is 
much larger than the time used to calculate the finite-time LLE’s.

4.4. Shape of distribution in single-particle phase space

Until now, we have formulated the thermalization question in terms of energy distribu-
tions. More generally, thermalization may be taken to mean that a many-body system 
loses memory of its initial state. In the single-particle phase space picture, figures 2 and 
3, our initial state is very special: the particles are lined up along the X axis. The eect 
of interaction is to distort this line toward a circularly symmetric distribution. Thus, 
we would consider that the memory of the initial state is lost when the distribution of 
points in the X-P plane are not elongated in any one direction.

To quantify the shape of distribution in phase space, we define a shape parameter 
S measuring the degree of ellipticity:

S =
a− b

a+ b
 (12)

where a and b are the long axis and the short axis of the inertia ellipse in phase 
space respectively. These are calculated by diagonalizing the inertia tensor I: 
Ixx =

∑
p2, Ixp = Ipx = −

∑
xp, Ipp =

∑
x2. The shape parameter is S  =  1 for line-

shaped distributions and S  =  0 for circularly symmertic distributions.
In a thermalizing system with very large N, one might expect that S(t) will decrease 

rapidly to zero, and a reasonable conjecture is that the timescale for the decrease 
(relaxation) of S(t) should be related to the timescale for achieving energy thermaliza-
tion. However, in our finite systems, we will find that S(t) can continue to perform 
coherent oscillations long after single-particle thermalization has been observed.

Figure 11. The distribution of largest Lyapunov exponents, for N  =  5, F0  =  1000, 
at dierent energies. The color indicates the observed probability of a measured 
LLE value being found in a bin; the bins are of size 0.01. The average of the 
distribution decreases monotonically with energy.
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The time evolution of the shape parameter S is shown in figure 12. The top three 
panels show averaged values of S in order to highlight the overall behavior. Every data 
point is the average of the original data over 10T = 20π. (The dynamics for several 
initial states are shown to give an impression of typical S(t) dynamics.) The bottom-
row panels show the original data measured in a time window starting after several 
thousand time units.

The coarse-grained (averaged) dynamics in the top row reflects our intuition that 
there is slower relaxation at larger E/F0. We see a much faster decay for small E/F0, 
i.e. in the thermalizing regime. The behavior of S(t) at longer times shows (bottom 
row) that there are coherent oscillations of the phase space cloud shape on rather long 
timescales. Strikingly, this is even true for the thermalizing regime (bottom left panel), 
for which the time-averaged single-particle energies already are Boltzmann-distributed. 
Thus, energy thermalization can occur at timescales much faster than it takes for other 
features of the gas to relax.

5. Discussion and conclusions

Considering classical interacting particles in a harmonic trap, we have addressed two 
non-equilibirum problems motivated by analogous questions in recent research on 

Figure 12. N  =  20,F0  =  1000. Time evolution of the shape parameter, S(t), for 
N  =  20 particles, F0  =  1000. The three columns correspond to E  <  F0N (low-energy 
or thermalizing regime), E  =  F0N (intermediate regime), and E  >  F0N (high-energy 
or non-thermalizing regime). In the top row, coarse-grained values (averaged over 
10 periods) are shown, for several initial states with the same energy in each 
case. The lower row shows original data (not averaged) in a window after several 
thousand time steps.
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quantum many-body dynamics. We have chosen to work with a simple finite-range 
interaction with variable interaction strength, in the ‘dilute gas’ regime where the par-
ticles are at an average distance significantly larger than the interaction range.

The first question concerned the breathing mode of the classical trapped gas, and 
the influence of interaction on the breathing mode frequency. We have shown nontriv-
ial dependence of the breathing frequency on the interaction strength F0: the breathing 
frequency first decreases as a function of F0, and around the critical value F0 ∼ E/N , 
increases above the non-interacting value. Eventually at large F0 the frequency shift 

reaches a plateau at a value ∝
√

N3/E. We have explained this behavior physically, 
using both real-space and phase space pictures.

The second question concerned the relaxation and thermalization behavior of the 
gas. This is particularly interesting for a moderate number of particles, far from the 
thermodynamic limit. We have examined thermalization in the sense of single-particle 
energy distribution; this has to be carefully defined when the number of particles is in 
the ‘mesoscopic’ regime. Sampling the single-particle energies from temporal snapshots 
of the system over a period of time, we find that the system ‘thermalizes’ in reasonable 
time for F0 � E/N . We have explained this condition in terms of relaxation-hindering 
mechanisms for few-particle systems. We have also shown that this threshold corre-
sponds to the largest finite-time Lyapunov exponent exceeding  ≈1. Finally, we have 
found that (for F0  >  E/N) thermalization occurs at timescales much faster than the 
timescale for the breathing mode oscillations to damp out. This is remarkable if one 
expects thermalization to correspond to the loss of memory of initial conditions: the 
initial shape ellipticity of the phase space cloud provides very-long-lived oscillations of 
the shape of the phase space distribution, even after energy thermalization has already 
occurred. Of course, it is known quite generally that dierent observables can have 
dierent equilibration times.

For both the breathing mode frequency and the thermalization problem, the same 
condition F0 ∼ E/N  has been found to demarcate dierent regimes of behavior. In each 
case the condition arises from the same microscopic consideration: whether or not two 
interacting particles are likely to bounce o each other or pass through each other. The 
breathing frequency can be analyzed by observing the time lost or gained due to inter-
actions within each period. When the average behavior of particles transits from mostly 
bouncing o each other to mostly passing through each other, the breathing frequency 
approaches the non-interacting case. Therefore the bouncing-to-passing crossover is 
what sets the interaction scale at which the breathing frequency changes its nature. 
On the other hand, the criterion for thermalization is estimated according to whether 
particles have significant opportunity to exchange energy with each other. Exchange 
of energy is more ecient when two particles bounce o, rather than pass through. If 
one particle can exchange energy with a significant number of particles in each period, 
then the system should thermalize in a reasonable time scale. Thus the same condition 
appears in the two apparently distinct problems. From a dimensional standpoint, this 
is not surprising because F0 and E are the only two independent parameters describing 
the system, after all variables have been rescaled.

The present work opens up various questions. (1) Although our setup (trapped gas 
with short-range interactions) and our questions (breathing mode, thermalization) have 
been motivated by similar issues in the literature on quantum dynamics and ultracold 
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gases, it is presently unclear whether our results carry over in any way to the quantum 
case. (2) Our chosen form of interaction is simple and sensible as a model interaction; 
and we expect that the F0-dependence of the breathing mode frequency represents the 
interaction-dependence for a wide class of interactions. However, it would be interest-
ing to ask how collective modes in general depend on the form of interactions. For 
example, if the force were partially or totally attractive, e.g. if F0 is negative, or with 
a Lennard–Jones type potential which is attractive for some separations, the eect on 
the breathing frequency is not obvious. (3) While the connection between ergodicity 
and thermalization is expected to be simpler in large systems, for few-body systems 
like the present case the connection is less clear and raises questions of the parametric 
dependence of timescales on model parameters. One might for example like to meaning-
fully define a time scale for thermalization, but this is tricky for few-body systems. One 
idea is to think of the inverse of Lyapunov exponents as thermalization time scales. 
Of course, this means a whole set of time scales (one for each positive exponent), but 
perhaps it is meaningful to think of the inverse of the largest (the LLE) as the time 
scale for energy thermalization. The present work qualitatively supports such a corre-
spondence, but a detailed quantitative understanding would be desirable. (4) An open 
question is how the LLE (or its inverse) approaches the F0 → ∞ limit, say for a fixed 
energy. This limit is of particular interest because the trap-less version is integrable, 
and has been studied recently [35, 36]. From our results on the finite-time LLE in 
figure 11, we infer that as a function of F0 the LLE should increase at fixed energy and 
then eventually plateau at the value appropriate for the hard-rod limit.

These outstanding questions exemplify the need for better general understanding 
of the connections between relaxation timescales, interaction strengths, thermalization, 
and finite-time Lyapunov exponents.
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