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The eigenstate thermalization hypothesis (ETH) is a conjecture on the nature of isolated quantum
systems that guarantees the thermal behavior of subsystems when it is satisfied. ETH has been
tested in various forms on a number of local many-body interacting systems. Here we examine the
validity of ETH in a class of nonlocal disordered many-body interacting systems — the Sachdev-
Ye-Kitaev Majorana (SYK) models — that may be tuned from chaotic behavior to integrability.
Our analysis shows that SYK4 (with quartic couplings), which is maximally chaotic in the large
system size limit, satisfies the standard ETH scaling while SYK2 (with quadratic couplings), which is
integrable, does not. We show that the low-energy and high-energy properties are affected drastically
differently when the two Hamiltonians are mixed.

I. INTRODUCTION

For well over a century it has been understood that
physical observables of a system coupled to a heat bath in
the long time limit are such that they may be computed
from a statistical average over all states of the system
with a weight that depends on only a few parameters
including the temperature of the bath.

Since heat baths are idealized objects coupled to but
distinct from the system of interest, a natural question
is: under what circumstances can a subsystem of a closed
(isolated) quantum system be thermalized by the remain-
der, in the sense of physical observables being expressed
in terms of a trace over some density matrix with a hand-
ful of constraints including particle number and temper-
ature? This led to the eigenstate thermalization hypoth-
esis (ETH) which is a conjecture about the nature of ma-
trix elements of physical observables that, if true, recon-
ciles the predictions of thermodynamics (with respect to
an ensemble whether microcanonical, canonical or grand
canonical) with those of quantum mechanics in the long-
time limit [1–3].

The essence of ETH is that diagonal matrix elements of
physical observables in the energy eigenstate basis, that
is distinguished by time evolution, are expected to be
quasi-randomly distributed with a width that falls off
rapidly with the Hilbert space dimension leading to a
smooth variation of the observable with energy. The
off-diagonal matrix elements are also expected to fall off
rapidly with increasing system size which can be viewed
as a de-phasing of the subsystem by the remainder of
the system. Taken together, these conditions on the ma-
trix elements ensure that subsystems of closed quantum
systems reach steady states that correspond to thermal
equilibrium.

Advances in the study of optically trapped cold atoms
in recent years have made the study of reasonably well
isolated quantum systems experimentally feasible to the
extent that ETH has transformed from a foundational
issue in statistical mechanics into a matter of practical
significance. With such an experimental impetus, there is

now a sizable literature exploring ETH mainly using nu-
merical techniques on finite clusters in a variety of many-
body local interacting quantum systems [3–24]. There is
by now overwhelming evidence that ETH is obeyed over
most of the many-body spectrum in systems with local
interactions, with important exceptions close to integra-
bility and in many-body localized states.

Despite the widespread success of ETH in such numer-
ical investigations, a number of questions remain open.
In this paper, we extend studies of ETH to a class of
many-body interacting models that are both disordered
and nonlocal. One member of this class is the Sachdev-
Ye-Kitaev model, SYK4, which consists of N Majorana
fermions with infinite range random four-point couplings
[25, 26]. This model recently shot to prominence having
been shown to exhibit a number of remarkable proper-
ties [25, 26] including, in the large N and strong coupling
limit (i) an extensive zero temperature entropy (ii) an
approximate emergent reparametrization invariance at
large N and (iii) an out-of-time-ordered correlator with a
Lyapunov exponent that saturates a conjectured bound
[27] implying that it is “maximally chaotic”.

A possible intuition for the dynamics of such zero-
dimensional disordered models is that the non-locality
allows information to propagate rapidly across all the
sites while the randomness in the couplings translates
to dynamics that approximates to the action of random
unitaries that should scramble information rapidly. This
intuition is borne out by a numerical study of the quench
dynamics [28] which shows that SYK4 approaches equi-
librium at some temperature when the initial state is the
equilibrium state for some other model. However, this
intuition fails for the close relative SYK2 which is a ran-
dom quadratically coupled model for which the Lyapunov
exponent vanishes [29]. The presumption that scram-
bling and thermalization should be connected suggests
that SYK4 should obey ETH while SYK2 should not.
This is the question that we explore in this paper. Previ-
ous work has showed that the Majorana version [30] and
the complex fermion analog of the SYK4 model [31] sat-
isfy ETH. Here, we explore the Majorana version, which
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splits into different sectors depending on N . We tune
parametrically between the SYK4 and SYK2 models.

Like Refs. 30 and 31 and the usual ETH literature,
we first present a study of the middle of the many-body
spectrum, i.e., excluding the spectral edges. We carry
out a finite size scaling analysis that tests a strong (scal-
ing) version of ETH [10]. Previous work has argued that
the complex fermion analog of SYK2 obeys ETH [32].
Our numerical and analytical work demonstrates scal-
ing behavior of the SYK2 matrix elements that contrasts
sharply with the scaling behavior of ETH but which is
very similar to the behavior observed in other integrable
models. The ETH scaling is valid also at parameters in-
termediate between the SYK4 and SYK2 points, which
is expected as the model becomes non-integrable as soon
as quartic coupling is included, i.e., everywhere except at
the SYK2 point.

In addition to these results pertaining to the middle
of the spectrum, we show a peculiarity of the low-energy
part of the spectrum, which is more relevant to the holog-
raphy literature. The low-energy eigenstates of SYK4

show the ETH behavior, which is not expected in lo-
cal models but may occur in nonlocal models because
the low energy eigenstates exhibit volume law entangle-
ment [33]. The low-energy eigenstates of SYK2 show the
scaling typical of integrable models. However, at inter-
mediate points, the ETH scaling is no longer seen — an
admixture of SYK2 destroys ETH scaling at low energies.
We believe this can be traced to the fact that the SYK2 is
an attractive fixed point in the RG sense. In other words,
ETH scaling of low-energy eigenstates is not governed by
non-integrability but by the RG flow.

The paper is organized as follows. In the next section,
we outline the statement of ETH, highlighting the scaling
form (size-dependence). Section III has a discussion of
the symmetries of SYK2 and SYK4 and the constraints
they place on the matrix elements of different classes of
“local” operators. Sections II and III are mostly peda-
gogical reviews, meant for readers unfamiliar with ETH
scaling or with the finite-size properties of SYK clusters.
Our main results are in Sections IV, V and VI. In Sections
IV and V we study the scaling behaviour of the diago-
nal matrix elements and, in Section VI, the off-diagonal
matrix elements. We then conclude with a discussion of
some of the significance of our findings.

II. THE EIGENSTATE THERMALIZATION
HYPOTHESIS

ETH is a generic mechanism for thermalization of ob-
servables in a closed, finite, non-integrable system out of
equilibrium, i.e., a mechanism for why the long-time av-
erage value of an observable Ô should be describable by
a Gibbs ensemble. The class of operators for which ETH
is expected to be valid includes local operators. ETH is a
statement about the diagonal matrix elements of the op-
erator in the energy eigenstates |n 〉 of the Hamiltonian,

i.e., the eigenstate expectation values Onn = 〈n| Ô |n 〉.
ETH states that the diagonal matrix elements of Onn
are smooth functions of the energy in the case when the
system size is large, with the fluctuations being exponen-
tially small in the system size. This follows from the idea
that high-energy eigenstates of non-integrable systems
are complicated enough that the eigenstate coefficients
are effectively random. For systems with a finite Hilbert
space dimension D, the central limit theorem yields the
scaling to be D−1/2 [9, 10]:

Onn = f
(1)
O (En) +

1

D1/2
f
(2)
O (En)Rnn (1)

where Rnn is a pseudo-random number with unit width

and f
(α)
O (E) are smooth functions of the eigenenergy En.

A further important ingredient of ETH concerns the
off-diagonal matrix elements: Omn for m 6= n. These
matrix elements should be suppressed exponentially in
the system size. Use of the central limit theorem again
shows the scaling to be D−1/2:

Omn =
1

D1/2
f
(3)
O (ε, ω)Rmn for m 6= n (2)

where Rmn is a pseudo-random number with unit width,
ε = 1

2 (Em +En), and ω = Em −En. Together, these are
usually written together in the following form:

Omn = f
(1)
O (En)δmn + e−S(E)/2fO (ε, ω)Rmn . (3)

This common form is more general than Eqs. (1), (2), be-
cause it applies also to systems with unbounded Hilbert
spaces. For systems with finite Hilbert spaces, the en-
tropy in the middle of the spectrum scales as S(E) =
lnD + const, so that the two forms are equivalent.

Although this is not commonly stressed, ETH is a scal-
ing statement. The idea of eigenstate coefficients being
effectively random leads unavoidably to the D−1/2 scal-
ing. Thus, a system in which the state-to-state fluctua-
tion of diagonal matrix elements decreases polynomially
with system size would not be considered as satisfying the
ETH, as formulated commonly through Eq. (3). Poly-
nomial scaling has been observed in integrable systems
[18, 21, 34], which are considered not to obey the ETH.
Also, diagonal matrix elements being equal to the canon-
ical value in the infinite-size limit (used as a definition of
ETH in Ref. [32]) is not equivalent to the usual statement
of ETH, outlined above.

For local Hamiltonians, the ETH is expected to be
valid only in the middle of the spectrum (high-energy
states). Since we are studying non-local Hamiltonians in
this work, we will also examine whether it is valid for
low-energy states.

The physical content of the ETH Ansatz becomes clear
when we consider computing thermodynamic observables
as long time averages. For example, consider O(t) ≡
〈ψ(t)|Ô|ψ(t)〉 on state |ψ(t)〉 =

∑
m cme

−iEmt|m〉:

O(t) =
∑
m

|cm|2Omm +
∑
m,n
m 6=n

c?mcne
i(Em−En)tOmn.
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The long-time average of this operator expectation value
is

〈O〉 ≡ 1

T

∫ T

0

dtO(t) =
∑
m

|cm|2Omm

which is the trace of the operator computed over the so-
called diagonal ensemble [4]. One may show that this is
equivalent to the microcanonical average if ETH is sat-
isfied, assuming that the state has mean energy E with
subextensive fluctuations. The condition of small off-
diagonal elements ensures that the time average of O(t)
converges to its thermal value in the long time limit.

ETH in the form stated above has been tested and
found to be valid on a range of local many-body inter-
acting models using, primarily using full spectrum nu-
merical diagonalization on finite systems. The effect of
tuning parameters toward an integrable point has also
been widely explored [5, 7, 10, 15, 35]. As the couplings
are tuned towards an integrable point, there is a con-
tinuous departure from the conditions of ETH, e.g., a
broadening of the distributions of matrix elements. The
significance of the breakdown of ETH close to integra-
bility is that integrable points have an extensive number
of constants of the motion that prevent thermalization
to the usual thermodynamic ensembles. Instead, such
systems are conjectured to thermalize to a generalized
Gibbs ensemble [36] that enforces the extensive number
of integrals of the motion in such systems. Another class
of systems that do not respect ETH are Anderson local-
ized or many-body localized systems in which disorder
inhibits thermalization [37].

In the following, we address the question of whether
ETH is respected in a class of models that are simulta-
neously fully connected, so that the concept of locality is
absent, and intrinsically disordered. We test ETH scal-
ing, as described above, for SYK2 and SYK4.

III. SYK MODELS AT FINITE N

In this section, we introduce the SYK2 and SYK4 mod-
els and their symmetries. We introduce the few-body op-
erators whose matrix elelments we will study, and show
how the model symmetries place constraints on these ma-
trix elements.

A. Hamiltonian and Symmetries

In the remainder of this article, we explore the prop-
erties of

H = (cos θ)HSYK4
+ (sin θ)HSYK2

(4)

where

HSYK4
=

∑
1≤i<j<k<l≤N

Jijklχiχjχkχl (5)

and

HSYK2
=

∑
1≤i<j≤N

iKijχiχj . (6)

Here χi’s are Majorana operators. The couplings Kij

and Jijkl are gaussian distributed random variables with

mean zero and respective variances 〈K2
ij〉 = K/

√
N and

〈J2
ijkl〉 = J

(
6
N3

)1/2
. The parameter θ runs from 0 to

π/2, with θ = 0 and θ = π/2 being the SYK4 and SYK2

points, respectively.
The anticommutation relation satisfied by Majoranas,
{χi, χj} = δij , is identical to the Euclidean Clifford alge-
bra {Γm,Γn} = 2δmn up to normalization. Therefore,
we may represent the N = 2M site Majoranas with
Hilbert space dimension 2N/2 by N gamma matrices of
size 2N/2 × 2N/2. The particular representation we use
for numerical analysis is given below in Section III C 6.

We introduce the parity operator P ≡ i−N/2
∏N
i=1 Γi and

note (i) that P 2 = 1 (ii) that P anticommutes with the
Γi for a given N . Property (ii) implies that the SYK4

Hamiltonian commutes with P so the ±1 parity is a good
quantum number.

We now consider the time reversal operator T = UTK:
an anti-unitary operator which may be written as the
product of a unitary operator UT and the complex conju-
gation operator K. The gamma matrices obey KΓiK =
−(−)iΓi. Our expectation is that complex fermions
c map to c† under time reversal, which implies that
TχiT

−1 = χi. This is ensured by choosing

UT = PM+1
∏
m=1

Γ2m−1. (7)

B. Observables

Our investigation into the validity of ETH in SYK
models rests on calculations of matrix elements for par-
ticular few-body operators. The operators we consider
are

Aij ≡ iχiχj

and

Bijkl ≡ χiχjχkχl

where the Majorana labels should be distinct but are
otherwise arbitrary.

C. Periodicity of SYK4

The SYK4 Hamiltonian is a matrix composed of O(N4)
independent random nonzero elements but with 2N/2 ×
2N/2 elements. The matrices are thus sparse, as is typical
for many-body Hamiltonians. As is the case with usual
condensed matter Hamiltonians, it can still be useful to
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N 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Ensemble GSE GUE GOE GUE GSE GUE GOE GUE GSE GUE GOE GUE GSE GUE

TABLE I. Association of the SYK4 model of different sizes to the three random matrix ensembles.

compare the symmetries with dense random matrix en-
sembles (Wigner-Dyson classes).

As pointed out first in Ref. [38], the nature of the spec-
trum and matrix elements of the SYK4 model have a pe-
riodic dependence on N , because the underlying symme-
tries correspond to different Wigner-Dyson classes (GOE,
GUE, GSE), depending periodically on N . The periodic
correspondence is shown in the table on page 4 for N up
to 30. This correspondence to the random matrix classes
has been verified numerically, e.g., through the level spac-
ing statistics [38–40] and from the spectral form factor
|Z(β+ it)|2, where Z is the partition function [40]. Both
measures exhibit departures from random matrix predic-
tions above some Thouless energy scale as is common
in many-body models [41]. In the spectral form factor,
ramp and plateau features occur in both random matrix
theory and SYK4 with the Thouless energy correspond-
ing to short time scales than the ramp onset [40]. Be-
low, we review the association between the SYK4 model
of different sizes to the Wigner-Dyson classes. We also
present numerical data illustrating features complemen-
tary to those in the earlier literature.

Because the Majoranas are invariant under time re-
versal, so too is the SYK4 Hamiltonian, HT = TH. By
direct calculation one may show that T 2 = 1 for N = 0, 2
mod 8 and T 2 = −1 for N = 4, 6 mod 8. It also follows
that (PT )2 = 1 for N = 0, 6 mod 8 and (PT )2 = −1
for N = 2, 4 mod 8. So there are four distinct cases to
consider based on the T 2 and (PT )2. We always work in
the basis with

P =

(
1 0

0 −1

)
.

To see how all the symmetries constrain the spectrum,
we now show that the algebraic relations on T and PT
may be satisfied by a particular UT matrix within each
class that then fixes the form of the Hamiltonian.

1. N = 0 mod 8

This class is specified by the conditions T 2 = 1 and
(PT )2 = 1. One can find a representation for the gamma
matrices for which

UT =

(
1 0

0 −1

)

which fulfils the algebraic relations on P and T . It follows
from time reversal invariance, UTH

?U−1T = H, that the

Hamiltonian takes the form

H =

(
H

(1)
R 0

0 H
(2)
R

)
.

Each block is a distinct real random matrix. Therefore,
we expect gross properties of the eigenstates of each block
to correspond to those of the GOE random matrix en-
semble.

2. N = 2 mod 8

In this case,

UT =

(
0 1

1 0

)
fulfils the conditions T 2 = 1 and (PT )2 = −1 and then
UTH

?U−1T = H implies that the Hamiltonian takes the
form

H =

(
HC 0

0 H∗C

)
.

The two chirality sectors thus have identical GUE spec-
tra. In other words, the eigenvalues are doubly degener-
ate with distinct chirality eigenvalues.

3. N = 4 mod 8

For this class,

UT =

(
Ω 0

0 −Ω

)
ensures that T 2 = −1 and (PT )2 = −1 where Ω2 = −1
which may be, for example,

Ω =

(
0 1

−1 0

)
.

Then

H =

(
H

(1)
H 0

0 H
(2)
H

)
.

where H
(1)
H and H

(2)
H are each a matrix of real quater-

nions represented by 2× 2 blocks of complex numbers of
the form (

z1 z2
−z?2 z?1

)
.
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FIG. 1. Plots of the diagonal matrix elements in the energy
basis for SYK4 for small system sizes. These illustrate the
appearance of degeneracies within the same sector (GSE) and
across different sectors (GUE). The plot also indicates where
matrix elements occur in equal or opposite pairs.

Random Hamiltonians built from real quaternions belong
to GSE by definition. The condition T 2 = −1 enforces
a double degeneracy on the eigenstates in a similar man-
ner to the Kramers degeneracy of time reversal invariant
half odd integer spin systems. The P = ±1 blocks have
distinct spectra, but the eigenvalues within each sector
are doubly degenerate.

4. N = 6 mod 8

The fourth and final case has T 2 = −1 and (PT )2 = 1
so that

UT =

(
0 1

−1 0

)
from which it follows that

H =

(
HC 0

0 H∗C

)
.

So, the properties are the same as for the case N = 2
mod 8.

5. Symmetry constraints on diagonal matrix elements

Time reversal places constraints on certain observ-
ables. In particular, for the GOE ensemble, since
T |En〉 = |En〉 and TiχiχjT

−1 = −iχiχj , the diagonal
matrix elements vanish, 〈En|iχiχj |En〉 = 0. For the
classes with double degeneracy |+〉, |−〉 ensured by time
reversal symmetry, one finds

〈+|iχiχj |+〉 = −〈−|iχiχj |−〉

Some of these properties of the SYK4 spectrum and ma-
trix elements are illustrated in Fig. 1 and summarized in
the table.

Referring to Fig. 1, we observe the following features.
For N = 8, the GOE case, energies are singly degener-
ate and the two-point operator matrix element vanishes
as shown above. For the other three system sizes, the
spectra are doubly degenerate and the two-point matrix
elements for the pairs are equal and opposite. For the
GSE class, the double degeneracy arises for states with
identical parities as illustrated by the up-down reflection
symmetry in the N = 12 upper panel. For the GUE
classes, the doubly degenerate states have opposite pari-
ties so the upper panels have up-down reflection symme-
try up to a swap in the symbols (open and closed symbols
swap). For the four-point function matrix elements for
doubly degenerate pairs are the same so for GUE the dif-
ferent parity symbols are overlaid and in the GSE case
identical parity symbols are overlaid.

6. Numerics on SYK Models

We may build a particular gamma matrix representa-
tion starting from the Pauli matrices σ1, σ2 and σ3, the
first two of which represent two Majoranas. Then, given

the gamma matrices for N Majoranas Γ
(N)
i together with

the P ≡ i−N/2
∏N
i=1 Γi operator we may obtain a repre-

sentation for N + 2 Majoranas

Γ
(N+2)
i = σ1 ⊗ Γ

(N)
i i = 1, . . . , N

Γ
(N+2)
N+1 = σ1 ⊗ P (N)

Γ
(N+2)
N+2 = σ2 ⊗ I.

In this representation,

P =

(
1 0

0 −1

)
and the Hamiltonian is block diagonal with each block
giving states of distinct P = ±1.

D. SYK2: Operators and periodicity

We now consider the SYK2 model. Once again, the
Hamiltonian is block diagonal in the gamma matrix rep-
resentation given above because it commutes with P .
SYK2 is not time reversal invariant but instead has the
feature that THT−1 = −H implying that the spectrum
has paired eigenvalues with ±En. Despite the lack of
time reversal symmetry, the periodicities in N mod 8 are
present but less distinctive than in SYK4. Similar argu-
ments to those for SYK4 reveal that all the Hamiltonians
have complex entries but N = 0, 4 mod 8 have ±En pairs
arising with the same parity while N = 2, 6 mod 8 have
±En pairs coming from different blocks. In SYK2, time
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FIG. 2. Plots of diagonal-in-energy matrix elements for SYK2

for several system sizes. For each case, energies appear in
equal and opposite pairs. As demonstrated in the main text,
matrix elements of the two-point operator (upper row) have
a symmetry under Eα → −Eα and 〈Aαα〉 → −〈Aαα〉 while
those of a four-point operator (lower row) have a symmetry
under Eα → −Eα and 〈Bαα〉 → 〈Bαα〉. Indications of a peri-
odicity in N can be seen in the eigenvalues of parity (shown
in green and red).

reversal antisymmetry places the following constraints on
matrix elements

〈+|iχiχj |+〉 = −〈−|iχiχj |−〉
〈+|χiχjχkχl|+〉 = 〈−|χiχjχkχl|−〉

where, here, |+〉, |−〉 have energies with opposite sign
and the site indices on each of the operators are distinct.
These features of the matrix elements are illustrated in
Fig. 2 where Aαα denotes some two point Majorana op-
erator and Bαα a four-point Majorana.

The SYK2 model has a Poissonian level spacing distri-
bution as is typical of integrable models. This is most
easily understood in the language of complex fermions.
In the single particle sector, the hopping model is simply
a random matrix in GOE with a semi-circle density of
states. The multi-particle sectors are straightforwardly
obtained from the single particle sector and the result-
ing multiparticle density of states should be gaussian as
an application of the central limit theorem. For a given
window of energies and at sufficiently high energies, the
occupation number distribution is effectively random be-
cause there is no mutual level repulsion in this integrable
case so the level spacings are Poisson distributed.

E. Combined Hamiltonian (SYK4+SYK2) —
spectrum and level statistics

Fig. 3 shows the evolution of the spectrum for differ-
ent small system sizes as coupling θ is tuned from 0 cor-
responding to SYK4 to θ = π/2 which is SYK2. The

0 0.25 0.5

θ / π
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0
1

E
n

e
rg

y
 e

ig
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s

Odd parity

Even parity

N = 4

0 0.25 0.5

θ / π

N = 6

0 0.25 0.5

θ / π

N = 8

FIG. 3. Full spectrum of N = 4, 6 and 8 models as θ is
tuned from SYK4 (θ = 0) to SYK2 (θ = π/2) illustrating
the presence of symmetries at θ = 0, π/2, as explained in the
main text.

0 0.25 0.5

θ / π

0
0

.2
0

.4
0

.6

〈r
〉

N = 12  &  N = 20

0 0.25 0.5

θ / π

N = 14

0 0.25 0.5

θ / π

N = 16

0 0.02

0
0
.4
Poissonian

GOE

GUE

12

20

FIG. 4. Ratio of consecutive level spacings 〈r〉, as a function
of the coupling interpolating between SYK4 for θ = 0 and
SYK2 for θ = π/2. Values for the Wigner-Dyson random
matrix classes are indicated by dashed horizontal lines. The
three panels correspond (from left to right) to GSE, GUE and
GOE classes at θ = 0.

parity symmetry is common to models at all θ. For
θ = 0, the three system sizes considered correspond to
GSE (N = 4), GUE (N = 6) and GOE (N = 8) which
respectively have double degeneracies within each parity
sector, double degeneracies within opposite parity sec-
tors and only accidental degeneracies. As θ increases,
the energies flow to the ±E symmetry at θ = π/2 which
is present in identical parity sectors for N = 4, 8 and op-
posite parity sectors for N = 6. For intermediate θ there
are direct level crossings between different parity sector
eigenstates and avoided level crossings between identical
parity sector eigenstates as one would expect.

Further connections between random matrix classes
and SYK models are drawn out through a calculation
of the mean ratio of consecutive level spacings 〈r〉 [42].
This measure is based on sn = En+1−En, the set of level
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spacings in an ordered list En of eigenenergies. The ratio

rn =
min(sn, sn−1)

max(sn, sn−1)

is defined for each pair of consecutive level spacings. For
Poisson statistics, the probability distribution of rn is
P (r) = 2/(1 + r)2 with mean 〈r〉 = 2 ln 2 − 1 ≈= 0.39.
For the Wigner-Dyson ensembles, we have 〈r〉GOE ≈ 0.53
and 〈r〉GUE ≈ 0.6 [43].

Fig. 4 shows 〈r〉 as a function of the coupling θ. The
spectrum of the odd parity sector is used in each case,
and rn values are combined from a large number of disor-
der realizations. The value of 〈r〉 corresponds to Poisson
statistics at θ = π/2 regardless of Wigner-Dyson class.
At θ = 0, the 〈r〉 value for N = 16 matches our expecta-
tion that it belongs to GOE. A similar result holds for the
GUE cases N = 14. For the GSE cases at θ = 0, there
is a double degeneracy (the Kramers degeneracy) within
each parity sector. Thus every second level spacing is
zero, leading to 〈r〉 = 0.

As θ increases from zero, the statistics in all cases
match those of GUE because the matrix elements are
irreducibly complex and the degeneracies are lifted. For
larger θ there is a smooth crossover to Poissonian statis-
tics. The Poissonian to GUE crossover near the SYK2

point has previously also been presented in Ref. [29]. The
r-statistics has also been described for the SYK4 point
in Ref. [38] and for a coupled chain of alternating SYK4

and free-Majorana ‘sites’ in Ref. [44].
Comparing different system sizes (e.g., N = 12 and 20

for the GSE class) shows that all the crossovers become
steeper for larger system sizes. At larger N , the devia-
tion from GUE behavior gets increasingly confined to the
singular points θ = 0 and θ = π/2.

IV. DIAGONAL MATRIX ELEMENTS:
HIGH-ENERGY STATES

In this section we report a study of the eigenstate ex-
pectation values (diagonal matrix elements) in the eigen-
states in the middle of the many-body spectrum. (We re-
fer to the middle of the spectrum as high-energy states.)
ETH scaling in the low-energy part of the spectrum is
discussed in a later section.

As usual in studies of the ETH, it is important to re-
strict to a single symmetry sector. We present results for
the odd-parity sector.

A. Non-integrable behavior of SYK4

We begin with SYK4. As we have seen, various proper-
ties of SYK4 have a periodic dependence on the system
size N that can be seen to follow from a correspond-
ing random matrix ensemble. We will present results for
N within a common ensemble. The GOE systems have
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FIG. 5. (a) Diagonal matrix elements of A = iχ1χ2 in SYK4

plotted against eigenenergies, for system sizes belonging to
the GUE ensemble, within a single parity sector for a single
disorder realization. (b) Distribution of diagonal matrix ele-
ments, obtained from combining many disorder realizations.
(c) Distribution of σA values obtained from individual real-
izations. (d) Standard deviation σA of the distribution of di-
agonal matrix elements of iχ1χ2 plotted against system size
N for various instances of the GUE ensemble. Dashed line
shows expected ETH scaling for non-integrable systems. In-
set: same data in double-logarithmic scale.

the disadvantage that the A = iχiχj operator is iden-
tically zero for all eigenstates, while the GSE systems
have additional symmetry sectors within the odd-parity
half of the Hilbert space. In addition, there are more
numerically accessible finite-size instances of GUE than
either of the other two. Hence we present results for
the systems with GUE symmetry, i.e., for the sequence
N = 6, 10, 14, 18, 22. . . ..

We first consider the diagonal matrix elements of the
two-point operator iχiχj for some arbitrary choice of
i and j. Fig. 5(a) shows the diagonal matrix elements
Aαα = 〈Eα|iχiχj |Eα〉 for the full spectrum from exact
diagonalization plotted against energy for four different
system sizes falling into the GUE ensemble. The matrix
elements are observed to be distributed around zero for a
given disorder realization independent of the location of
the eigenstate within the spectrum. The distribution has
a clear energy dependence, at least for the N = 26 and
30, being broader at the extremes of the spectrum. The
distribution of the matrix elements irrespective of energy
is gaussian and the width of the distribution narrows as
N increases, as shown in Fig. 5(b).

As explained in Section II, ETH is a scaling statement
— the width σA of the diagonal matrix elements should
scale as 1/D1/2. In the SYK models, D = 2N/2. Numeri-
cal results for six system sizes, shown in Fig. 5(d), shows
that the width does indeed scale as 2−N/4 for SYK4. (For
a single parity sector, the relevant Hilbert space is half of
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FIG. 6. Top two rows: Diagonal matrix elements of few-
body operators A and B against corresponding eigenenerges.
Bottom: the width σA of the distribution of diagonal matrix
elements plotted against system size. Two different scaling
functions are overlaid for comparison. The size dependence
follows N−1/2, much slower than the ETH scaling D−1/2.

2N/2, i.e., D = 2N/2−1. However, this is a change of over-
all factor and does not affect the scaling form, 2−N/4.)

There is some shot-to-shot variation of the width σA as
calculated from individual realizations. Fig. 5(c) shows
the distribution of σA values obtained from different dis-
order realizations. The width of these distributions falls
off rapidly with system size.

B. Integrable behavior of SYK2

We now consider SYK2, which is an integrable
(quadratic) model and hence is not expected to follow
ETH scaling. We consider diagonal matrix elements of
the two-point Majorana operator (operator A) and four-
point operator (operator B). Numerical diagonalization
shows a scatter in the matrix elements centred on zero
(top panels of Fig. 6) for both operators and the distribu-
tion does not apparently narrow with increasing system
size. This is qualitatively consistent with the behaviour
observed in other integrable models. A more quantitative
picture is seen by explicitly plotting the width σA against
system size, as in the lower panel of Fig. 6. This clearly
shows that D−1/2 scaling (i.e., 2−N/4 scaling) does not
hold. Different disorder realizations reveal a large scatter
in the width for each system size as shown by the differ-
ent green points at each N . The average of all of these
appears to fall off with a power law N−0.5, in strong con-
trast to standard ETH scaling. For the B operators we
find N−1 scaling.

We may derive the scaling of the width of the diagonal
matrix element distribution: 1/

√
N for the A operators

and 1/N for the B operators. We may pair the N Ma-
joranas of SYK2 arbitrarily and here we choose complex
fermion I to be composed of Majoranas i = 2I − 1 and

j = 2I so that cI = χ2I−1 + iχ2I and c†I = χ2I−1 − iχ2I .
The SYK2 Hamiltonian can be seen to contain number
conserving and non-conserving terms. As the Hamilto-
nian is quadratic we may diagonalize via

cI =
∑
α

(
uαI dα + uα+NI d†α

)
so that

HSYK2 =
∑
α

εαd
†
αdα

and the many-body eigenstates are

|ψ{m}〉 = (d†1)m1(d†2)m2 . . . (d†N/2)mN/2 |0〉

≡ |m1,m2, . . . ,mN/2〉

corresponding to eigenenergies
∑
α εαnα. The diagonal

matrix element Aαα may be chosen without loss of gen-
erality to be 〈ψ{m}|iχ2I−1χ2I |ψ{m}〉 so that the complex
fermions belong to the same site

Aαα =
1

4

∑
α

{(
uα?I uαI − u

α+(N/2)
I u

α+(N/2)?
I

)
d†αdα

+
(
u
α+(N/2)?
I u

α+(N/2)
I − uαI uα?I

)
dαd

†
α

}
In the spirit of exploring fluctuations between differ-

ent eigenstates within the same disorder realization as
is typical in the ETH literature, we make the assump-
tion that the single-particle eigenstate coefficients uαI are
Haar-random variables. Then

〈〈uαI u
β?
J 〉〉 =

2

N
δIJδ

αβ

〈〈uαI u
β
Ju

γ
Ku

δ
L〉〉 =

4

N2 − 4

(
δIKδJLδ

αγδβδ + δILδJKδ
αδδβγ

)
− 8

N(N2 − 4)

(
δIKδJLδ

αδδβγ + δILδJKδ
αγδβδ

)
where the double brackets 〈〈·〉〉 indicate an average over
the Haar measure. It follows that 〈〈Aαα〉〉 = 0 that is,
the diagonal two point matrix elements for SYK2 fluc-
tuate around zero mean. We may compute the variance
〈〈A2

αα〉〉 of the distribution under the same randomness
assumption with the result that this varies as 1/N for
large N . This is consistent with our numerically ob-
served N−1/2 scaling for the standard deviation. A sim-
ilar calculation for the four-point operator shows that
〈〈Bαα〉〉 = 0 and 〈〈B2

αα〉〉 ∼ 1/N2. Note that the above
results may also be regarded as coming from a disorder
average over the SYK couplings for a fixed energy win-
dow.
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Taken together, the numerical results we and others
have obtained for SYK2 — the Poissonian statistics, van-
ishing of large number of matrix elements and power
law fall-off of the spread in the diagonal matrix elements
— are all consistent with results obtained for integrable
many-body models [3, 18, 21, 34, 45]. At integrability,
the number of conserved quantities is extensive and these
are thought to bring about thermalization to a general-
ized Gibbs ensemble, for a wide range of observables and
initial conditions, coinciding with a failure of ETH scal-
ing. We note that Ref. 32, which claims ETH in complex
SYK2, is based on a different and non-standard state-
ment of ETH as discussed in Section II. We discuss ther-
malization at integrable points further in the concluding
section VII.

C. Between the SYK4 and SYK2 points

Our general Hamiltonian, H = (cos θ)HSYK4 +
(sin θ)HSYK2 , is not integrable, and therefore the mid-
dle of the spectrum should show standard ETH scaling
and generic thermalization behavior. The σA ∼ D−1/2
behavior is demonstrated in Figure 7, top center. For
large enough systems one expects this to be true for all
values of θ ∈ [0, π/2), i.e., excepting the integrable point
θ = π/2. At points closer to θ = π/2, one expects the
D−1/2 behavior to set in at larger sizes. This is the typ-
ical behavior close to integrability, as explored, e.g., in
Ref. [10].

V. MID-SPECTRUM VERSUS LOW-ENERGY
MATRIX ELEMENTS

Fig. 7 shows the scaling of the standard deviation σA
of the distribution formed from the A operator matrix
elements at θ = 0, π/4 and π/2 points. The upper and
lower panels show, respectively, σA drawn from the mid-
dle quarter and lower 1/16th of the full spectrum.

Unlike Hamiltonians with local interactions, the SYKq

models (with q = 4, 6, 8, ...) have the property that low-
energy states in the large-N limit are ‘thermal’ and even
maximally chaotic [25, 26, 46]. In finite-size SYK sys-
tems, this is manifested, for example, in the ground-
state entanglement entropy between two halves of the
system growing linearly with system size, i.e., ‘volume
law’-like behavior instead of ‘area law’-like behavior [33].
It is therefore natural to conjecture that the low-energy
eigenstates might display ETH scaling, i.e., that the low-
energy part of the spectrum might show behavior typical
of effectively random states. Fig. 7(b) shows ETH scal-
ing for the low-energy eigenstates of SYK4. While the
asymptotic behavior is apparently D−1/2, the behavior
sets in at larger sizes than for the middle of the spec-
trum. For local Hamiltonians, the low energy states show
quite different behavior from typical states in the middle
of the spectrum - the low energy states tend to have area

law entanglement entropy and ETH ceases to hold. The
SYK4 model is exceptional in this sense since the ETH
scaling is present throughout the spectrum.

For θ = π/2 (SYK2), σA shows the previously reported

1/
√
N scaling, not only at the middle of the spectrum as

reported in Fig. 6, but also at low energies, Fig. 7(e,f).
The most interesting behavior is seen for the com-

bined Hamiltonian, as exemplified by the θ = π/4 data
in Fig. 7(c,d). At the θ = π/4 point, in the middle of the
spectrum both operators exhibit the 2−N/4 scaling we
have come to expect from the SYK4 model; indeed 1/

√
D

is the expected behavior for any non-integrable system.
However, the low-energy behavior is determined not by
the non-integrability but rather by the RG properties.
The scaling dimension of the fermion operator in SYK4

is ∆ = 1/4, so the quadratic SYK2 perturbation has pos-
itive mass dimension and is RG relevant. This implies
that low energy observables will behave differently to ex-
pectations coming from SYK4 when the SYK2 coupling
is present. Indeed, Fig. 7(d) shows that, when we con-
sider only states from the lowest 1/16th of the spectrum,
the scaling of the widths departs considerably from the
SYK4 prediction D−1/2, consistent with the expectation
from the RG argument above. Thus, for 0 < θ < π/2,
the high-energy physics is governed by non-integrability,
while the low-energy physics is governed by flow to the
integrable fixed point.

VI. OFF-DIAGONAL MATRIX ELEMENTS

In this section, we discuss the off-diagonal matrix el-
ements, Fig. 8, for the operators A and B. The off-
diagonal matrix elements have arbitrary phase, since the
eigenstates each are defined only up to a phase. On av-
erage, this guarantees that the real and imaginary parts
of the off-diagonal elements will be distributed symmet-
rically around zero.

For SYK4, the distribution of off-diagonal elements is
gaussian, as in other non-integrable models [14, 24]. As
for the case of diagonal matrix elements, we study the
finite-size scaling of the standard deviation of this dis-
tribution. Once again, we find D−1/2 or 2−N/4 scaling,
Fig. 8(a), consistent with ETH scaling. The behaviour
of the two operators differ only in the coefficient.

For SYK2, one finds that most off-diagonal matrix el-
ements vanish, Fig. 8(b). Since SYK2 is a free fermion
model, the eigenstates may be organized by quasiparti-
cle number. The A operator written in the quasiparti-
cle basis has number conserving terms and terms that
change the quasiparticle number by two. For the B
operator, there are terms that change the quasiparticle
number by zero, two and four. Therefore off-diagonal
matrix elements in A may be non-vanishing only when
the eigenstates differ by two in the quasiparticle number
which is an exponentially small number of possible off-
diagonal matrix elements. Similar statements hold for
any q-Majorana operator for q � N .
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Because of this anomalously large weight at zero, the
distribution of off-diagonal matrix elements has a delta
function at zero, and so cannot be meaningfully plotted
from finite-size data. However, for θ close to π/2 (close
to the SYK2 point), the distribution retains signatures of
this feature, as seen in the θ = 0.45π inset to Fig. 8(c).
This is quantified by plotting the kurtosis of the distribu-
tion, which is 3 for a Gaussian distribution, as a function
of θ, Fig. 8(c). (With the number of disorder realizations
used, the kurtosis curves are not completely smooth, but
the overall behavior is clear.) The highly peaked struc-
ture due to the many zeros at/near the SYK2 point leads
to a sharp rise of the kurtosis. Comparison of the three
sizes also shows that the region of proximity shrinks with
increasing system size N — for larger system sizes, a
given departure from gaussian occurs for larger θ.

A similar feature was observed near integrability in
Ref. [14] for multiple non-random local models. This
suggests that our explanation above for zero off-diagonal
elements can be adapted to a wide class of integrable
models.

VII. DISCUSSION

In this paper, we have extended tests of ETH to a class
of random zero dimensional interacting models that may
be tuned from chaotic to integrable. Our detailed numer-
ical analysis shows that the chaotic model SYK4 obeys
the standard scaling form of the eigenstate thermaliza-
tion hypothesis. The key results are that the two and
four point matrix elements in the eigenstate basis scale as
2−N/4 leaving a sharp distribution around zero mean for
large finite N both at low energies and around the mid-
dle of the spectrum. In contrast, the scaling behaviour of
the integrable SYK2 model matrix elements is algebraic

in N over the entire spectrum.
The fact that SYK4 obeys ETH indicates that the

model has thermal correlators in the long time limit even
within single eigenstates. SYK2, in contrast, might be ex-
pected to thermalize to a generalized Gibbs ensemble av-
erages determined by the extensive number of conserved
quantities. It turns out that the canonical and GGE pre-
dictions coincide in free fermion models for single particle
operators [34], such as our A operator and the operator
considered in Ref. 32. It may be interesting to explore
further the quench dynamics of non-quadratic operators
in complex and Majorana SYK2.

The off-diagonal matrix elements in the energy basis
determine the way in which subsystems approach equi-
librium. Since ETH is obeyed by SYK4 one may make
statements about the long-time behavior of different cor-
relation functions for example, as observed in Ref. 40 that
the time-dependent two-point correlators tend to zero in
the long time limit for N (mod 8) = 0, 4, 6 while a nonva-
nishing limit is possible for the N (mod 8) = 2 sequence.

The off-diagonal matrix elements also control the be-
haviour of thermal out-of-time-ordered correlation func-
tions (OTOCs) such as 〈[A(0), B(t)]2〉β at inverse tem-
perature β. Such correlation functions have been much
studied recently in the context of quantum chaos and
scrambling. At early times, the local operators mutually
commute while the unitary evolution causes a spreading
of information in sufficiently chaotic systems leading to
an exponential increase in the OTOC - the exponent hav-
ing the interpretation of a Lyapunov exponent λ in the
semiclassical limit. One might expect such scrambling
of information to be an integral part of thermalization.
The fact that the Lyapunov exponent is finite in SYK4

and zero in SYK2 [29] is intuitively consistent with these
expectations.

SYK4 has the remarkable feature in the large N and
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the SYK2 model. The insets show the distribution for three
values of θ, for N = 18.

βJ limits that the Lyapunov exponent corresponds to
maximal chaos λ = 2π/β. In contrast, it has been ob-
served in numerical computations of the OTOC that the
finite N behaviour of SYK4 has a Lyapunov exponent
that is only weakly temperature dependent. The gulf be-
tween the latter result and the large N limit cannot be
bridged through the finite size scaling admitted by exact
diagonalization.

Similarly, there is only a weak sense in which SYK4

for small system sizes is a particularly efficient thermal-
izer. In local many-body interacting systems, insofar as
ETH has been tested, one finds similar behavior to SYK4

in non-integrable models while SYK2 behaves much like
local integrable models. However, significant departures
are expected at very low energies between the random
0 + 1D models considered here and local Hamiltonians.
This is because the low energy eigenstates of SYK4 ex-
hibit a volume law entanglement entropy [33, 47] whereas
local models have, instead, area law entanglement at low
energies. By showing that ETH scaling holds down to
the bottom of the spectrum we have uncovered a new
aspect of this unusual low energy behavior. One might
speculate that these features are present in generic fully
connected and nonintegrable interacting systems.

We have explored ETH for parameters interpolating
between SYK4 and SYK2. Remarkably, the low energy
behavior departs from the usual ETH scaling because
of the RG relevance of SYK2 whereas the middle of the
spectrum of the mixed Hamiltonian is governed by non-
integrability and ETH scaling persists.
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