
Scalability of quantum computation with addressable optical lattices

T. R. Beals
Department of Physics, University of California, Berkeley, California 94720, USA

J. Vala* and K. B. Whaley†

Department of Chemistry and Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, USA
�Received 9 January 2008; published 7 May 2008�

We make a detailed analysis of error mechanisms, gate fidelity, and scalability of proposals for quantum
computation with neutral atoms in addressable �large lattice constant� optical lattices. We have identified
possible limits to the size of quantum computations, arising in three-dimensional �3D� optical lattices from
current limitations on the ability to perform single-qubit gates in parallel and in 2D lattices from constraints on
laser power. Our results suggest that 3D arrays as large as 100�100�100 sites �i.e., �106 qubits� may be
achievable, provided two-qubit gates can be performed with sufficiently high precision and degree of paral-
lelizability. The parallelizability of long-range interaction-based two-qubit gates is qualitatively compared to
that of collisional gates. Different methods of performing single-qubit gates are compared, and a lower bound
of 1�10−5 is determined on the error rate for the error mechanisms affecting 133Cs in a blue-detuned lattice
with Raman-transition-based single-qubit gates, given reasonable limits on experimental parameters.
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I. INTRODUCTION

Neutral atoms trapped in optical lattices constitute a
promising system for quantum-information processing �1,2�.
Single-qubit operations and qubit readout have already been
demonstrated �3�, albeit in a nonscalable system, and a num-
ber of two-qubit gates have been proposed �4,5�. Addressable
optical lattices—in which the lattice spacing is large enough
that individual lattice sites can be targeted by a laser
�6�—offer an environment that can be scaled to thousands of
qubits in a three-dimensional �3D� array �7�. Preparation,
loading, and imaging of an addressable optical lattice have
recently been demonstrated �8�.

Achieving large-scale fault-tolerant quantum computation
requires single- and two-qubit gates with extremely high fi-
delity, as well as the ability to perform many gates in paral-
lel. Current estimates of the fault-tolerance error threshold
range from 10−3 to 10−7 for conventional quantum error cor-
rection, depending on the difficulty of communication be-
tween physically distant qubits and the ability to prepare
certain states “offline” in a reliable manner �9–13�. More
radical error correction schemes �14–17� may offer better
thresholds, but at the cost of high overhead. For the optical
lattice system that is the focus of this work, the most relevant
estimates �12� suggest a fault-tolerance threshold on the or-
der of 10−5.

While much research has focused on schemes for realiza-
tion of qubits and performing quantum operations in a wide
variety of experimental systems, the detailed physics and
scalability of specific architectures have to date received less
attention. Some work has been done on system-level analysis
of architectural issues �18–21�. However, to provide real

numbers to questions such as how large a system of qubits
may be made and how many quantum operations can be
made on this, it is necessary to undertake detailed analysis of
the behavior of the proposed qubits in situ. The different
physics involved in different implementations poses a variety
of challenges, some of which may be system specific while
others, such as achieving gate fidelities with fault-tolerant
threshold values, are quite generic. For example, the need to
use thermal ensembles rather than pure states—as is usual in
gas state and solid state proposals—has presented a major
challenge for liquid state NMR because of limitations im-
posed by small thermal polarization and difficulties of initial-
ization �22–25�.

For qubits defined in internal states of trapped neutral
atoms or trapped ions, both the qubit interactions and their
environmental decoherence mechanisms are well understood
�26�. This enables architectural issues to be examined with
full microscopic analysis of all physical features of such qu-
bits. For ion traps, analysis of the limiting features of trapped
ion physics led to the proposal of a modular, multiplexed trap
architecture to allow scaleup from a few ��10� ions to many,
possibly thousands of, individually addressable ions �27–29�
and progress demonstrating components of such an architec-
ture for small numbers of ions is now under way �30–34�.
For neutral atoms trapped in optical lattices, up to 250 indi-
vidual atomic qubits have been trapped and imaged in an
optical lattice system that can be readily scaled up to include
thousands of atoms and whose spacing is large enough to
allow individual addressability �8�. Large arrays of sublattice
addressable trapped atoms have also been made �35,36�.
Trapped neutral atoms and ions are somewhat complemen-
tary; individual addressing and quantum gates are more
straightforward to implement with ions and have already
been demonstrated experimentally for small numbers of ions
�e.g., forming entangled states of �8 ions �37,38� and imple-
menting algorithms with two �39� and three qubits �40�� but
achieving scaleup to even hundreds of ions still presents a
serious technical challenge. In contrast, although scaleup to
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lattices containing hundreds of neutral atoms has been dem-
onstrated in an addressable system �8� and gates have been
demonstrated in nonaddressable systems �36� and in addres-
sable dipole traps �41,42�, they have not yet been accom-
plished in lattices containing individually addressable atoms.
Very recently, techniques for addressing individual sites in a
lattice with small spacing have been proposed �43,44�.

In contrast to the situation for atomic and ionic qubits,
progress in scaleup of solid state realizations of qubits—such
as Josephson junctions or 31P in Si—from pairs to many
qubits is in a far more rudimentary state. The kind of detailed
analysis that is required to develop specific physical devices
cannot be made yet, since the underlying microscopic phys-
ics of the qubits when in situ is not currently well enough
understood, although significant progress is being made �45�.
Furthermore, while solid state systems are often generically
referred to as “scalable” because of the ability to fabricate
large-scale solid state devices, the individual elements or qu-
bits are not as reproducible as gas phase qubits due to the
complexities and variability of their surroundings �46�. Nev-
ertheless, architectural studies are beginning to be made for
these systems �47,48�.

In this work, we go a step further in analysis of scaleup
for trapped neutral atoms, undertaking a detailed physical
investigation of the effects of single-qubit errors and other
imperfections that limit the scalability of neutral atom quan-
tum computation in an individually addressable optical lat-
tice. We consider different candidate single-qubit gates and
their sensitivity to various sources of experimental error. We
then compare this to calculations of the threshold rate for
fault-tolerant computation under the appropriate conditions,
in order to estimate how large a quantum computation may
be made within current technological constraints and pos-
sible near-term improvements. To our knowledge, this is the
first such detailed physical estimation of a practical limit on
physical scaleup for any proposed experimental implementa-
tion of pure state quantum computation. We hope that this
detailed analysis for trapped neutral atoms will spur similar
analyses for other physical implementations once the rel-
evant microscopic physics is better understood. Given that
no experimental system will have unlimited scalability, such
physical analysis of technical limits to scalable systems of
functioning qubits within current technology is an essential
complement to theoretical algorithmic scaling characteristics
derived from complexity theory.

We restrict our analysis here to addressable optical lat-
tices. While we do not explicitly consider the alternative lat-
tices with global addressing that are also being studied ex-
perimentally �49�, we shall make some comments at the end
of this paper on relative benefits that these other lattices
might offer. The analysis in this paper employs a combina-
tion of perturbation theory and numerical techniques such as
the pseudospectral method with a Chebyshev decomposition
of the Schrödinger propagator �50� to quantify the effects of
both memory and gate errors deriving from all known
sources for trapped atoms. In some respects our calculations
complement and extend those of Saffman and Walker �51�
for 87Rb atoms in dipole traps. However, that work did not
address the issue of scalability that is analyzed here after the
various error rates have been quantified. When a specific

choice of parameters is necessary, we consider here 133Cs
atoms in an addressable optical lattice �8� of lattice constant
a=5 �m, with depth of UL=200 �K. The lattice is ortho-
rhombic in geometry, and is created by blue-detuned beams
at 800 nm, with an intrapair angle of �9° for each of the
three pairs of beams. For the one-dimensional case, the lat-
tice potential is given by

V�x� =
UL

2
cos�2�

a
x� . �1�

Field-insensitive sublevels of the 6s 2S1/2 hyperfine ground-
state manifold are chosen as the qubit basis: �0	
�F=3,mF
=0	 and �1	
�F=4,mF=0	. The auxiliary levels �2	
�F
=4,mF=1	 and �3	
�F=3,mF=1	 are also involved in the
single-qubit gate presented here �see Fig. 2 below�. The pro-
cedure for loading and initializing the lattice is described in
detail by Weiss et al. �7� and Vala et al. �52�. We assume that
atoms are cooled to the vibrational ground state, e.g., with
3D Raman sideband cooling �53,54�.

This rest of this paper is organized as follows. Section
II A contains an analysis of the error mechanisms due to the
lattice itself, such as scattering processes and loss of atoms
from the lattice. Section II B analyzes the single-qubit gate
proposal based on a Raman two-photon process and Sec. II C
analyzes microwave-pulse-based single-qubit gates. We con-
sider the effects of off-resonant transitions of nontarget at-
oms, scattering, heating of target atoms, and addressing
beam targeting and intensity errors for both types of single-
qubit gate. Section II D contains a brief comparative discus-
sion of the scalability of different classes of two-qubit gates.
Section III provides an analysis of the results from the pre-
vious sections and their collective implications for the scal-
ability of quantum computation in an addressable optical lat-
tice. In Sec. IV, we summarize our conclusions, discuss some
possible ways to bypass the limitations identified here, and
identify some useful applications within the constraints es-
tablished here.

II. ERROR MECHANISMS

Fault-tolerance thresholds are sometimes expressed in
terms of a “unified” error rate comprising both storage and
gate errors, but are often also written in terms of separate
gate and storage error rates �and occasionally also prepara-
tion and readout error rates�. In order for error correction to
be able to keep up with storage errors, a practical quantum
computer must be able to perform many gates in parallel.
Consequently, estimates of error threshold values have typi-
cally assumed that gates can be performed on arbitrarily
many qubits in parallel �13�. Storage errors can then be con-
sidered on a similar footing to gate errors, which occur with
a frequency given by multiplying the storage error rate by
the typical gate time T1 to obtain an effective “error per gate
time” that can be combined with the error per gate �EPG� in
analysis of overall error rates.

Fault-tolerance threshold theorems assume maximal par-
allelizability �13�, implying that all or nearly all qubits can
be addressed simultaneously �nA�N, where N is the total
number of physical qubits and nA is the number that may be
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simultaneously addressed�. In most proposed schemes for
quantum computing this is extremely hard, except for the
trivial case where one desires to perform the exact same gate
on all atoms simultaneously. Parallelizability thus constitutes
an important figure of merit, since if nA grows more slowly
than N, the effective storage error rate will eventually exceed
the capacity of any error correction protocol. If only a frac-
tion nA /N of qubits can be addressed, the effective EPG for a
storage error will be approximately equal to the storage error
rate multiplied by the ratio NT1 /nA. As we show in Sec. III,
nA is on the order of N2/3 in 3D lattices, while in 2D lattices
nA can be on the order of N. T1 is on the order of tens of
microseconds for the microwave-pulse-based single-qubit
gate, whereas with sufficient laser power, it can be nanosec-
onds or less for the Raman single-qubit gate.

In the remainder of this section we derive expressions for
the EPG for various decoherence mechanisms encountered
by atoms trapped in an addressable optical lattice, using
133Cs as a specific example where necessary.

A. Optical-lattice-induced storage errors

We assume that the lattice has already been prepared, and
that each lattice site is initially occupied by exactly one atom
in the motional �0	 state. A detailed description of a proce-
dure to achieve this perfectly loaded lattice is contained in
Vala et al. �52�.

1. Photon scattering

Both Raman scattering, in which the initial and final states
of the atom differ, and Rayleigh scattering, in which they do
not, are sources of storage errors. Fortunately, the decohering
effects of Rayleigh scattering can be partially suppressed
with pulse sequences �55�. For Raman scattering, no such
method exists, and so we focus our analysis here on this
form of scattering. The effective storage EPG due to Raman
scattering is given by N

nA

T1�

� , where T1 is the gate time and
� /� the scattering rate. Calculating the relative transition
strengths �see the Appendix for details�, we find that roughly
half of the errors induced by Raman scattering will be bit-flip
errors, while the rest will be leakage to nonqubit states. The
Raman cross section ��	L� �where 	L is the lattice light
frequency� can be calculated as described in the Appendix,
and is shown in Fig. 1 as a function of the lattice light wave-
length. The scattering rate is related to the cross section by

�L/� =
c
0E2

2�	L
��	L� , �2�

where E2 is the average over an atomic spatial distribution of
the peak electric field squared. We note that the optical lattice

potential depth is given by UL�	L ,E0
2�=

E0
2

4 ���	L�� �91�. The
polarizability is shown as a function of wavelength in Fig. 1.
For an atom in the ground state in a red-detuned lattice, E2

�E0
2, whereas in a blue-detuned lattice, E2= ��2

2a2m	�
E0

2, where

	�= �
a
�2UL /m is the characteristic trapping frequency. We

can then calculate the Raman scattering rate for the blue- and
red-detuned cases:

�blue/� =
�c
0

a	L

�UL�	L,E0
2�

2m

��	L�
���	L��

, �3a�

�red/� =
2c
0

�	L
UL�	L,E0

2�
��	L�
���	L��

. �3b�

Using Eqs. �3a� and �3b�, we see that, for 133Cs in a blue-
detuned optical lattice with the reference parameters given in
Sec. I, we obtain a Raman scattering rate of � /�=2.2
�10−4 s−1, and thus an effective EPG value of �2.2
�10−4 s−1�

NT1

nA
.

2. Qubit loss and leakage

Qubit loss errors are particularly serious, in that they can-
not be automatically corrected by error correcting codes.
When an atom is lost from the optical lattice, or leaks into a
nonqubit state, it is necessary to first detect the error before it
can be corrected. The lost atom must be replaced before
standard erasure error correcting codes �56� can be applied to
correct the error. Detecting qubit loss requires that we have a
method of detecting the presence of an atom at a given lattice
site without disturbing its state.

Preskill �57� identified a simple circuit for performing
such loss detection measurements. The circuit requires an
ancilla in a known state, two applications of a controlled-NOT

�CNOT� or controlled-PHASE �CPHASE� gate, a similar number
of single-qubit gates, and a measurement of the ancilla. This
measurement could fail by giving an incorrect result �false
positives or false negatives�, or by disturbing the state of the
target atom. The latter type of error could be corrected by
standard error correcting codes, while the former could be
minimized by repeating the measurement as necessary. An-
other possibility for detecting qubit loss involves the use of a
cavity QED system �58�.

The need for having certain atoms in the lattice reserved
for use as ancillas for this scheme could be avoided by trans-
porting an extralattice ancilla atom where needed through the
use of optical tweezers �59�. If an atom loss was detected,
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FIG. 1. �Color online� Solid blue line: Raman scattering cross
section ��	L� for a 133Cs atom in a blue-detuned optical lattice, as
a function of lattice light wavelength L. Dashed green line:
frequency-dependent polarizability ��	L� at the frequency 	L

=2�c /L. Both ��	L� and ��	L� are calculated for 
+1-polarized
light interacting with the initial state �F=3,mF=0	, with results for
the �F=4,mF=0	 state or opposite polarization light being similar.
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this ancilla would already be on hand to serve as a replace-
ment. A drawback of this approach is that performing such
operations in parallel would require many sets of optical
tweezers. In the case of most leakage errors, parallelizable
methods exist for detecting leaked atoms and returning them
to a qubit state.

Fortunately, qubit loss rates are very low, with storage
times as long as 25 s already reported �3�. Collisions with
background gas atoms are the primary cause of loss, and so it
appears that storage times can be increased further through
improved vacuum systems. It is also possible that a method
may be found for performing loss detection measurements in
parallel, which, when coupled with a means for replacing
lost atoms, would allow qubit loss errors to be handled by
standard error correction techniques. Consequently, qubit
loss is not likely to be the dominant source of errors in the
near future, and we will not consider it further in this paper.

B. Raman-based single-qubit gates

Two-photon Raman transitions present an attractive op-
tion for single-qubit gates because of the associated speed of

qubit manipulation. Raman-based single-qubit rotations have
recently been experimentally demonstrated on a time scale
less than 100 ns for a single 87Rb atom trapped in an optical
dipole trap �41�. A theoretical analysis of factors contributing
to gate imperfections for a single 87Rb atom concluded that
gate fidelities of �10−4 are possible �51�. We analyze here
the error mechanisms arising during Raman gates imple-
mented for 133Cs atomic qubits in a blue-detuned optical
lattice.

We consider a Raman process in which the 6S1/2�F
=3�↔6P1/2 transition is driven with strength �1 by

+1-polarized light at a detuning of �1, and the
6P1/2↔6S1/2�F=4� transition is driven with strength �2 by

+1-polarized light at a detuning �2.

In the general case of a Raman-based single-qubit gate
with two-photon detuning �=�1−�2+ ���2�2− ��1�2� /2��1

+�2�, Rabi frequency �R��1�2
� / �2�1�, and pulse duration

t, we have an effective off-resonance Rabi frequency ��
����R�2+�2, and the rotation is approximately described by
the following matrix �51�:

R��R,�,t� =ei�t/2�cos���t

2
� − i

�

��
sin���t

2
�� iei�t/2�R

�

��
sin���t

2
�

ie−i�t/2�R

��
sin���t

2
� e−i�t/2�cos���t

2
� + i

�

��
sin���t

2
�� � . �4�

Unless otherwise noted, we assume zero two-photon detun-
ing, i.e., �=0. For the specific resonance case �1��2, the
rotation matrix is as follows:

R��,�� = � cos��/2� ie−i� sin��/2�
iei� sin��/2� cos��/2�

� ,

with �= ��R�t and �=arg��R�.
It is necessary to define a metric for fidelity of rotation

operations. We consider a qubit in an arbitrary initial state �
undergoing a rotation R�� ,��, and compare it to a � pulse,
R0�� ,0�. The fidelity is then given by the following relation
�5b�:

F = ����R0
†R��	�2 �5a�

=
1

2
+

1

6
�cos 2� − 2 cos � cos2�� , �5b�

where the overbar represents an average over initial states
and the corresponding error is given by P=1−F. �Note that
this definition differs from that of Ref. �51�, which consid-
ered the fidelity of a � /2 pulse on a specific initial state.�

1. Neighbor atom errors

In the case of a single-qubit gate performed with two
orthogonal Raman lasers, an atom that is adjacent to the

target atom and that is on the axis of one of the two lasers
will experience a small undesired rotation. The effective
Rabi frequency for this nontarget atom is �R� =�RI�a ,a� / I0,
where I�r ,z� is given by Eq. �19�. From Eq. �5a�, we can
determine the fidelity error in the desired identity operations
for the four neighboring nontarget atoms as

Prn �
2�2

3
��R�

�R
�2

=
2�2

3
�1 +

a2R
2

�2w0
4�−2

exp�−
4a2

w0
2 � , �6�

where R�894 nm is the Raman laser wavelength.

2. Spontaneous emission

In the limit where �1��2, the probability of spontaneous
emission during a � pulse is Prs� �

2��1�� , where �=34.9 ns is
the natural lifetime of the 6P1/2 state. For ��R�� ��1�, the
detuning �1 is related to the Rabi frequency and Raman laser
intensity I by

��R� = �8.3 � 1012 W−1 m2 s−2�
I

��1�
; �7�

therefore the probability of spontaneous emission is

Prs �
�

2

��R�
I��8.3 � 1012 W−1 m2 s−2�

. �8�
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3. Raman beam ac Stark shifts

The difference in ac Stark shift between the logical �0	
and �1	 states gives rise to a phase shift ��= t��U1
−�U0� /�. For a � pulse, t=� / ��R�, so for 
+1-polarized light
we have ��=��

�U1−�U0

��R
�. In the range 50��1 /2�

�5000 GHz, the ratio
�U1−�U0

��R
��−6�1010 s−1� /�1.

We now wish to calculate the variance V����= ���2	
− ���	2 due to atomic motion and spatial variation in the
Raman beam intensity. Since, for typical parameters, the
Rayleigh length of the Raman beam will be much larger than
the beam waist �z0�w0�, we need consider only motion in
the transverse direction. In the transverse direction at the

beam waist, the intensity has the form I�r ,0�= I0e−2r2/w0
2
,

where I0 is the intensity at the center, w0 the beam waist, and
r the transverse distance from the center. The atomic mo-
tional states can be approximated by eigenstates of the two-
dimensional harmonic trapping potential obtained by para-
bolic expansion of the transverse potential at the minima of
the lattice potential.

For an atom in the resulting two-dimensional harmonic
oscillator eigenstate �nx ,ny	, we calculate the variance of the
phase shift using the fourth-order Taylor expansion of the
Gaussian beam intensity,1 I�r ,0�� I0�1−2r2 /w0

2+2r4 /w0
4�.

This results in the variance Vnx,ny
����

Vnx,ny
���� �

�2a2

�2mULw0
4�6 � 1010 s−1

�1
�2

���nx
2 + nx + 1� + �ny

2 + ny + 1�� . �9�

�In studying the temperature dependence of this effect, the
reader may find it helpful to make the approximation
kBT /2��	�nx+1 /2���	�ny +1 /2�.� From the expression
for fidelity of a � pulse, Eq. �5b�, we see that the expected
error probability will be Pra= 2

3Vnx,ny
����.

4. Atomic motion

In addition to the effects discussed above, atomic motion
will introduce noise through variation in the effective pulse
area ��R�t and variation in the two-photon detuning �. The
former effect is simply a result of atomic motion across the
Gaussian profile of the Raman beams, and has a similar form
to the result calculated in the previous section, Eq. �9�. For a
� /2 pulse, we obtain the following result for the variance:

Vnx,ny
���R�t� �

�2a2

�2mULw0
4��

2
�2

��nx
2 + nx + 1� + �ny

2 + ny + 1�� .

�10�

This variation in pulse area will then result in an error

Prpa = 1
6Vnx,ny

���R�t� for a �/2 gate.

Doppler shifts of the Raman beams will cause variation in
the two-photon detuning �. Unlike the isolated two-site di-
pole trap situation considered by Saffman and Walker �51�,
our system involves a 3D lattice and thus does not allow for
a convenient first-order Doppler-free Raman laser configura-
tion. We thus expect to see significant variation in the two-
photon detuning due to atomic-motion-induced Doppler
shifts, as described by the following relation:

Vnx,ny
��� � �2�

R
�2

�v2	 �11�

��2�

R
�2�	�

m
�nx + ny + 1� . �12�

From the general expression for the rotation matrix, Eq. �4�,
we determine that this variation will result in a fidelity error
Prm� 8−4�+�2

24 �R
−2Vnx,ny

����0.22�R
−2Vnx,ny

���.

5. Polarization effects

The Raman beams used to perform the single-qubit gate
have a Gaussian profile. This means that, even at the beam
waist, the beam will have a small component of polarization
other than the desired 
+1, according to �51�

E�x,y,0� =
E0

2
�
+1 +

�y − ix�
zR


0�e−�x2+y2�/w0
2

+ c.c., �13�

where zR=�w0
2 /2 is the Rayleigh length. This extraneous

polarization can result in leakage errors by causing transi-
tions to states outside the computational basis. To estimate
the probability of such errors, we determine the relative mag-
nitude of the second term above, which corresponds to un-
desired polarization “seen” by a target atom in a vibrational
state �nx ,ny	. Equation �13� suggests that this can be esti-
mated by the ratio of the spatial extent of the atom to the
Rayleigh length, i.e., by

�P0�rel � ��r2	/zR =
R

�w0
2� �

m	�

�nx + ny + 1� , �14�

where 	�= �
a
�2UL /m is the characteristic trapping frequency

in the harmonic approximation. There are four possible non-
basis states into which the qubit could leak: �F=3,mF
= �1	 , �F=4,mF= �1	. Since the matrix elements for the
unwanted transitions are comparable to those for the desired
transitions �60�, and the corresponding Rabi frequencies are
smaller by a factor of �P0�rel, the probability of leakage into
any particular state for a � gate can be approximated by
sin2��P0�rel� /2�2���P0�rel� /2�2. The total leakage probabil-
ity in the motional ground state nx=ny =0 is then four times
that quantity, i.e.,

Prp �
�R

2a

�w0
4

1
�2mUL

. �15�

1Saffman and Walker in Ref. �51� appear to consider an approxi-
mation of the form I�r ,0�� I0 / �1+2r2 /w0

2�, which, while generally
a reasonable approximation for a Gaussian beam, is less accurate in
the center region �r�w0 /�2� than the fourth-order Taylor expan-
sion I�r ,0�� I0�1−2r2 /w0

2+2r4 /w0
4�.
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6. Laser intensity noise and linewidth

Noise in the Raman lasers affects the fidelity of the gate.
If the relative intensity fluctuation is �I / I, then by Taylor-
expanding Eq. �5b� with �→�0+��, we see that this will
result in an initial state-averaged fidelity error of P
= �1 /6����I / I�2 for a � gate and P= �1 /6�� �

2 �I / I�2 a � /2
gate.

Even if the Raman lasers are actively stabilized, shot
noise provides a lower bound on relative intensity fluctua-
tions. The fluctuation due to shot noise �27� is given by

�I

I
� � 4�	R

�PRt�
�1/2

, �16�

where � is the quantum efficiency of the detector used in the
stabilization circuit, 	R is the frequency of the Raman laser,
and PR is the laser power. If we assume �=0.5 and that our
stabilization circuit reaches the lower bound, then the mini-
mum fidelity error is

Prl =
4�2�	R

3PRt�

. �17�

For detunings much smaller than the absolute optical fre-
quency, we can use 	R�2��3.5�1014 s−1 �i.e., the Ra-
man transition frequency�. For a Gaussian beam of power
PR /2, the intensity I at the waist is related to the power as
I= PR /�w0

2, while t�=� /�R, with �R given by Eq. �7�. This
results in the following estimate for laser-intensity-
fluctuation-induced error:

Prl � �2.6 � 10−6 m2 s−1�
1

��1�w0
2 . �18�

C. Microwave-based single-qubit gates

Site-specific single-qubit gate operation in 3D lattices can
also be achieved through the use of a far-off-resonance ad-
dressing laser focused on a single lattice site, combined with
pulsed global microwave fields �6,52,61,62�. In order to ad-
dress a single atom, a Gaussian beam with waist substan-
tially smaller than the lattice spacing is used, which results in
the target atom seeing a much greater field than any neigh-
boring atom. The intensity of a Gaussian beam is described
by

I�r,z� = I0
w2�z�

w0
2 exp�− 2r2/w2�z�� , �19�

where w0 is the beam waist, I0 the intensity at the center of
the waist, z0=�w0

2 / the Rayleigh length, and w�z�
=w0�1+ z2

z0
2 the beam width as a function of the axial coor-

dinate z.
The addressing beam causes an ac Stark Shift �ac of the

various levels of the target atom. Here we consider the
scheme for 133Cs that is outlined in Fig. 2. By choosing the
“magic wavelength” M for the addressing beam �for 133Cs,
M �880 nm�, the �2	 and �3	 auxiliary levels receive ac
Stark shifts of equal magnitude but opposite sign, while the
qubit levels �0	 and �1	 are unaffected. This allows the

�0	↔ �2	, �2	↔ �3	, and �1	↔ �3	 transitions to be driven by
global microwave pulses that are resonant only for the target
atom. Alternatively, a collimated beam could be used to ad-
dress an entire row of atoms �provided the row was not much
longer than the Rayleigh length �w0

2 /M�, allowing nA
=N1/3 identical operations to be performed in parallel. How-
ever, since the beam waist w0 must be smaller than the lattice
spacing a, this implies that nA��a /M and consequently
only a relatively small number of atoms can be addressed
simultaneously using this method. We discuss this limitation
further in the next section.

We have developed a software package, quantum simula-
tion software �QSIMS� �63�, for simulating the quantum dy-
namics of one- and two-qubit gates in this and other systems.
Using QSIMS, we discretize the spatial wave function of the
atom on a grid, with a separate grid representing each pos-
sible internal state of the atom. Quantum dynamics are simu-
lated by applying the Schrödinger propagator, expanded in
Chebyshev polynomials �50�. The kinetic portion of the
Hamiltonian is applied by means of a Fourier transform of
the discretized wave function from the position basis to the
momentum basis. Transitions between levels are treated with
a dressed state approach �64�. Although QSIMS is capable of
simulating three spatial dimensions, the symmetry of the sys-
tem and the near-separability of the lattice potential make it
reasonable in most cases to perform simulations in only one
or two spatial dimensions. This results in a significant
speedup, since the run time of the simulations is O�N log N�
for a grid of N points.

We simulate the microwave-pulse-based single-qubit �
gate with QSIMS, using the parameters a=5 �m, UL
=200 �K, �ac=0.2 MHz, w0=1.2 �m, and T1=76 �s
�with microwave pulse intensity �1=41 341 s−1 chosen ap-
propriately to achieve this gate time�. The atom is assumed

FIG. 2. �Color online� Schematics of a single-qubit-flip opera-
tion. A focused far-off-resonant addressing laser produces an ac
Stark shift �ac of the �F=4,mF=1	 and �F=3,mF=1	 levels in a
single target atom. The qubit levels are the mF=0 levels, labeled �0	
and �1	. Levels �2	 and �3	 are auxiliary levels involved in the
single-qubit gate. �Most of the hyperfine sublevels not involved in
the gate are not shown here.� Three global microwave pulses tuned
to the transitions �0	↔ �2	, �1	↔ �3	, and �2	↔ �3	 drive these tran-
sitions in the target atom with transition strengths �2, �2, and �1.
Other atoms are not affected to first order �see below� since their
transitions are not resonant. Our simulations indicate that best per-
formance is achieved by simultaneously driving all transitions, with
the relative transition strengths chosen such that �2=�3 /2�1.
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to be initially in the �0	 qubit state and in the motional
ground state, so the final state of the gate correspond to �1	
and the motional ground state. We investigated various dif-
ferent versions of the gate with QSIMS and found that the best
performance is achieved by simultaneously driving all three
transitions �0	↔ �2	, �1	↔ �3	, and �2	↔ �3	, with pulse in-
tensity chosen such that the strength �2 of the first two tran-
sitions is �3 /2�1, where �1 is the strength of the �2	↔ �3	
transition.

1. Off-resonant transitions

Since the microwave pulses proposed to perform these
single-qubit operations are applied globally, i.e., to the entire
lattice, there is a small probability that such a pulse will
cause a given nontarget atom to undergo a nonresonant tran-
sition. We can minimize this probability by carefully tuning
the gate parameters such that the pulse ends with nontarget
atoms in a local minima of their Rabi cycles, and by making
the detuning � large compared with the Rabi coupling �1.
We are limited in our ability to do the former by our pulse
timing resolution �T, the uncertainty in the pulse length T1.

Most qubits in the lattice will be far from the target qubit
so that I�r ,z� is small �Eq. �19��, and thus will not experience
any Stark shift due to the addressing beam. The �0	↔ �2	 and
�1	↔ �3	 transitions are detuned from these unshifted qubit
transitions by �ac, while the �0	↔ �1	 transition is detuned by
2�ac. Since the probability P of transition for any given atom
is small, we can treat the transition amplitudes as indepen-
dent, and calculate each transition probability using the Rabi
formula, Eq. �20a� assuming that the coupling and pulse time

are chosen such that sin���1
2+�2 T1�

2 �=0 and T1��� /�1,
where T1��T1 /3 is the time required for one “leg” of the
single-qubit gate �see above and Fig. 2�. Since we wish to
minimize �ac for the purposes of reducing other types of
errors discussed below, we note that the smallest value of �
for which the former condition is satisfied is �=�3�1. This
results in the off-resonant transition probability estimates

Pmo =
�1

2

�1
2 + �2sin2���1

2 + �2T1� � �T

2
� �20a�

���

2

�T1

T1�
�2

. �20b�

With these estimates we can now ask, what is the corre-
sponding EPG due to off-resonant transitions of all nontarget
atoms? If we can simultaneously address an entire row of
nA=N1/3 atoms in a lattice of N atoms, the EPG is N2/3Pmo.
Unfortunately, this is challenging in even a modestly sized
lattice, as the intensity of the beam is inhomogeneous along
the beam axis, on a length scale set by the Rayleigh length
zR. By combining Eqs. �19� and �20a�, with �=�3�1�1
− 1

1+z2/zR
2 �, we estimate that the error for an atom at distance z

from the beam waist along the beam axis would be approxi-
mately 1− Pmo�z�� 9�2

16
z8

zR
8 . For typical parameter values, this

limits us to addressing just a few lattice sites with a single
beam before the error becomes large. In fact for our example
parameters, the Rayleigh length is zR=5.1�m, and the error

becomes of order unity at just one lattice site away from the
beam waist.

If we cannot simultaneously address entire rows with a
single addressing beam, the effective EPG will scale as

N� �
2

�T1

T1�
�2. Although such scaling of an error mechanism

would preclude scalable fault-tolerant quantum computation
for an arbitrarily large system, in practice it should not prove
very restrictive for lattices with moderate numbers of qubits.
For example, for microwave pulses of the appropriate fre-
quency, �T can be on the order of one cycle, or 10−10 s. For
a single-qubit gate time of T1=10 �s, this means a lattice of
105 atoms could have an EPG of less than 10−5 due to off-
resonant transitions. Scaling implications are discussed fur-
ther in Sec. III.

2. Addressing beam-induced heating

The far-off-resonant Gaussian addressing beam used to
perform site-selective single-qubit gates contributes har-
monic trapping and antitrapping potential terms for the �2	
and �3	 states, respectively, and also adds additional state-
dependent anharmonic terms to the potential experienced by
the atom. These anharmonic terms can generate entangle-
ment between motional and internal degrees of freedom, as
well as “heating” the atom to higher motional states �see Fig.
3�. Perturbation theory shows that the most significant unde-
sirable effect is due to the difference between the harmonic
components of the trapping potentials experienced by atoms
in the auxiliary states �2	 and �3	, relative to those experi-
enced in qubit states �0	 and �1	.

The overlap between the vibrational ground state of the
�0	 level and the first even vibrationally excited state of the
�2	 level is approximately �T=

�2
2

��ac

m	�
2w0

2 , where 	� is the char-
acteristic trapping frequency defined above and w0 is the
addressing beam waist. From this, we can calculate the prob-
ability of transition to the first even vibrationally excited
state, using the fact that 	���T�1 and T1�� /�1:

Pmh =
�1

2�T
2

�1
2�T

2 + 4	�
2sin2���1

2�T
2 + 4	�

2T1

2
�

� ��1�T

2	�
�2

=
1

64�4

�2�ac
2 ma6

T1
2UL

3w0
4 . �21�

Here we have simplified Eq. �21� by assuming that, since 	�

is of the same order as �1, the sin2�·� term will be of order
unity.

We have tested these perturbative predictions by simulat-
ing the single-qubit � gate with QSIMS as described above,
with initial condition �0	. The simulations show that the
probability that the atom will not be in the motional ground
state and desired qubit state after completion of the � gate is
1�10−6. This is consistent with what is expected from ap-
plication of Eq. �21� with our simulation parameters.

A small amount of heating does not in itself destroy the
qubit state. However, as the vibrational energy of the atoms
increases, the probability of other types of errors increases,
and so the atoms will periodically need to be recooled to the
ground state. Optical cooling can be done directly if the qubit
state were first transferred to a different location, or could
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potentially be done with the qubit “in place” through a
mechanism such as sympathetic cooling. Analysis of such
recooling mechanisms is beyond the scope of this paper.

3. Addressing beam-induced Raman scattering

We now determine the Raman scattering rate for the target
atom during a single-qubit microwave gate �Rayleigh scat-
tering at this wavelength is negligible�. Using Eq. �2�, we can
find the scattering rate in terms of E2. For 
+-polarized
light at the magic wavelength M, calculation using
Eq. �A3� yields a polarizability of ���−��880 nm��
=2.5�10−38 C2 m2 J−1 for 133Cs in the �F=3,mF=1	 or
�F=4,mF=1	 state �note that the polarizabilities for these
states have opposite signs and that the polarizabilities for the
mF=0 states are essentially zero at M�. Since the ac Stark
shifts of the target atom �F=3,mF=1	 and �F=4,mF=1	 lev-

els are given by ��ac=−
E0

2

4 ��M�, we can express the scat-
tering rate in terms of �ac as follows:

�/� = �880 nm�

0�ac

����−��880 nm��
��880 nm�

� 3.4 � 10−6�ac. �22�

We then obtain the corresponding Raman scattering error per

gate, Pms, by multiplying the scattering rate � /� of Eq. �22�
by the single-qubit gate time T1.

4. Addressing beam position error

If the addressing beam is off target by an amount �x,
Taylor expansion of �19� shows that the energy of the �1	 and

�2	 levels will be shifted by an amount 2��ac
�x

2

w0
2 . This de-

creases the �0	→ �1	 transition probability according to

1 − Pmpt =
�1

2

�1
2 + 4�ac

2 �x
4

w0
4

sin2���1
2 + 4�ac

2 �x
4

w0
4

T1

2
�

� 1 −
4

�2�ac
2 T1

2 �x
4

w0
4 . �23�

There is also an effect due to the perturbation of the eigen-
states of the �2	 and �3	 states. The matrix element between
the unperturbed harmonic oscillator ground state and the per-
turbed first excited state is ��x=4

�ac

	�

�x

w0
2� �

2m	�
. Assuming

��x�1�	�, the probability of exciting to a higher motional
state during the �0	↔ �2	 or �1	↔ �3	 transitions is then

Pmph =
�1

2��x
2

�1
2��x

2 + 	�
2sin2����x

2 �1
2 + 	�

2T1

2
� � ��1��x

	�
�2

=
�2

�3

��ac
2 �x

2a5m3/2

T1
2UL

5/2w0
4 . �24�

For typical parameter values, this second effect is of greater
significance and we will neglect the former in comparison
with this. Note also that we have calculated the error only for
one leg �i.e., transition� out of the three that compose the
gate, and that the total error for the gate may be greater.

We have simulated the one-qubit microwave-pulse-based
� gate between �0	 and �1	 using QSIMS with an addressing
beam position error �x=0.01 �m. We find that, on comple-
tion of the gate, the probability that the atom will not be in
the motional ground state and desired qubit state �1	 is
2�10−5. Using Eq. �24� with the same parameters as this
simulation yields a value 1.3�10−6. This is an estimate of
the error in the �0	→ �2	 and �3	→ �1	 legs of the gate. For
the �2	→ �3	 leg, we replace �x→2�x �because the perturba-
tion due to the addressing beam has opposite sign for the �2	
state versus the �3	 state�, to obtain an error of 7.8�10−6.
Summing these three errors, we obtain an overall error esti-
mate of 7.8�10−6 for the complete gate, which is within a
factor of 3 of the value obtained from the simulation.

D. Two-qubit gates

In this section, we make a qualitative comparison of the
two-qubit gate techniques most commonly mentioned in the
literature, with an emphasis on analysis of their different
implications for scalability. Most schemes involve either sta-
tionary qubits and long-range interactions, or movable qubits
and short-range collisional interactions between qubits.

1. Long-range-interaction-based gates

As with single-qubit gates, our choice of a large lattice
spacing allows for two-qubit operations to be performed in a

FIG. 3. Series of “snapshots” of the atomic spatial and internal
state wave function for an atom in a 1D trapping potential under-
going a microwave-pulse-based single-qubit � rotation gate, as
simulated by QSIMS. The four relevant internal atomic states are
labeled �0	 through �3	, as in Fig. 2, and the curves represent the
wave function for the atom’s center-of-mass coordinate. Simulation
parameters have been chosen to exaggerate the gate errors so that
they are visible in this figure. In �a�, we see that the initial state of
the atom is the internal state �0	 �F=3,mF=0�, with a Gaussian
center-of-mass wave function. In �b� and �c�, we see transitions to
the auxiliary levels �2	 and �3	. In �d� and �e�, vibrationally excited
states become visible, particularly for the component of the total
wave function in the state �3	. In �f�, we see the final state with a
significant portion of the wave function not in the desired �1	 state,
showing instead noticeable entanglement between spatial and inter-
nal degrees of freedom �e.g., the “bumpy” shape of the wave func-
tion component for the �3	 level�.
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site-specific manner. If the atoms are to remain stationary, a
long-range interaction is required to perform a two-qubit
gate. Furthermore, the interaction must somehow be control-
lable. Dipole-dipole interactions between atoms excited into
Rydberg states are a promising candidate, and many varia-
tions on this idea have been proposed �4,51,65–70�.

In one version of the Rydberg gate �4�, two nearby atoms
are conditionally excited into Rydberg states via a coherent
process �71�. If both atoms were initially in the �0	 state, they
are both excited into the Rydberg state where they interact
via a dipole-dipole interaction, resulting in accumulation of a
phase on the two-qubit state. They are then deexcited via
another series of Raman pulses. Since the interactional phase
accumulation occurs only in the case where both atoms are
initially in the �0	 state, this is effectively a CPHASE gate.
Estimates of both the speed and the maximum possible fidel-
ity for Rydberg gates are reasonably promising �4,51�, with
some putting the error rates achievable on the order of
10−3–10−4 �69�. However, because of the inherent long-
range nature of the interactions in this gate, when running
these gates between multiple pairs of qubits in parallel, it is
essential to take into account the effects of cross-talk be-
tween different qubit pairs, i.e., the dipole-dipole interactions
between qubits from different pairs. To make a rough esti-
mate of the degree of parallelization possible in the presence
of such cross-talk, consider a three-dimensional lattice of
atoms. Suppose an external static electric field is applied to
induce a “permanent” dipole moment in the Rydberg-state
atoms �4�: the level shift due to the resulting dipole-dipole
interaction falls off as 1 /R3. The fidelity error due to cross-
talk will therefore scale roughly as 1 /R6, where R is the
distance between different pairs of atoms that are simulta-
neously involved in Rydberg gate operations. We take the
fidelity of a Rydberg gate performed between atoms one lat-
tice spacing apart as unity, for reference. Then, taking a value
of 10−6 for the fault-tolerance threshold for gate errors �a
value intermediate between different estimates of the thresh-
old for the case of local gates �9,12��, this implies that the
two-qubit gate cannot simultaneously be performed on mul-
tiple pairs of atoms within approximately ten lattice sites of
each other. In a three-dimensional lattice, this geometric con-
straint limits us to simultaneously performing approximately
one two-qubit gate per several hundred atoms. This in turn
implies that the storage error rate during the two-qubit gate
time would have to be about two orders of magnitude lower
than this fault-tolerance threshold �i.e., �10−8 for the above
example�, to avoid accumulating additional idle time errors
on the qubits not involved in the gates.

It is possible to mitigate this cross-talk limitation by using
an interaction with more limited range, such as the van der
Waals interaction present between Rydberg atoms when
there is no hybridizing static electric field �72�. In general,
interaction strengths for the zero external field case scale as
O�n� /R6� �as is typical for van der Waals–type interactions�,
although there are exceptions �73�. This implies that cross-
talk errors would scale as 1 /R12, which allows for roughly
one simultaneous two-qubit gate per three dozen atoms. This
imposes more modest constraints on storage error rates—the
storage error rate per two-qubit gate time would then only
need to be about one order of magnitude below the threshold
value of 10−6.

2. Collisional gates

Another method of avoiding the limitations of long-range
interactions is to bring pairs of atoms close together and use
short-range interactions or collisions to implement two-qubit
gates. A variety of such gates have been proposed and ana-
lyzed �5,74–81�.

We note that, in the context of the system discussed in this
paper, it would first be necessary to transfer atoms from the
qubit states �0	= �F=3,mF=0	 , �1	= �F=4,mF=0	 to states
that experience a state-selective trapping potential �i.e., states
with nonzero mF�, so as to allow pairs of atoms to be trans-
lated toward each other and brought together. For example,
for lattice light with =800 nm and a particular circular
polarization, the states �F=3,mF=1	 and �F=3,mF=−1	
have polarizabilities that differ by more than 8%. Specific
atoms can be transferred into these states by microwave or
Raman transitions, analogous to the single-qubit gates dis-
cussed earlier. Alternatively, an entire plane of atoms can be
transferred simultaneously using the microwave pulse
method if the addressing beam is replaced by an inhomoge-
neous magnetic field. Once the atoms are in the appropriate
states, the atoms can be selectively moved by changing the
relative polarization of one of the lattice beams, as described
by Vala et al. �52� and Weiss et al. �7�, allowing the atoms to
be brought together to perform a gate �5�.

Due to the necessity of physically moving atoms around
the lattice, collisional gates are likely to be much slower than
long-range-interaction-based gates. Even in the case of a
“fast approach,” where the translation of the atoms is not
adiabatic, gate times are still one to two orders of magnitude
slower than the characteristic trap period of the lattice site’s
potential well �77�. Estimates of the maximum fidelity pos-
sible with collisional gates also tend to be lower than maxi-
mum fidelity estimates for Rydberg gates �74�.

Despite these drawbacks, collisional gates appear more
suited to large-scale quantum computation than long-range-
interaction-based gates. Collisional gates can easily be per-
formed on a massively parallel scale, particularly when used
in the context of cluster-state quantum computing �82,83�. In
cluster-state �also known as “one-way”� quantum computing,
two qubit gates are used only in the initial preparation of a
large entangled “cluster” state. The computation itself is then
effected via single-qubit measurements in a variety of bases,
or, equivalently, single-qubit rotations followed by measure-
ment in a particular basis. One recent scheme for cluster-
state quantum computing offers fault-tolerance thresholds as
high as 10−2 for local depolarizing errors and 10−3 if there
are also errors in preparation, gates, storage, and measure-
ment �14�. One can easily imagine building such a cluster
state with atoms in a three-dimensional lattice by performing
collisional gates in parallel on entire planes of atoms at a
time.

III. ANALYSIS

Having quantified the various sources of error in the pre-
vious section �summarized in Table I�, we now make use of
these results to analyze the extent to which single-qubit op-
erations can be performed in parallel in an optical lattice. We
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shall first determine an estimate of the lower bound on the
error rate due to single-qubit gate errors for the case of a
blue-detuned lattice with Raman-transition-based single-
qubit gates. We then discuss the implications of these gate
errors and lattice based storage errors, together with lattice
addressability issues for the scalability of quantum computa-
tion in three- and two-dimensional lattices. Following this
analysis of Raman gates, we then discuss how the corre-
sponding arguments apply in the case of the microwave
single-qubit gate.

A. Raman-based single-qubit gate errors

We sum the EPG for each relevant error mechanism to
obtain a total error rate for the gate. Using �7� and the
expression for the intensity of a Gaussian beam of power
PR, we see that we can replace ��R� by �8.3�1012

W−1 m2 s−2�
2PR

�w0
2��1� . We also require that the Raman beam

laser power PR not exceed some realistic value Pmax. We then
numerically minimize the resulting expression for the total
Raman gate error over the parameters a, w0, �1, UL, and �R
�see the Raman gate terms in Table I�. Carrying out this
procedure, we find that even if we choose an exceedingly
high value of Raman laser power, Pmax=10 W, and allow
the other parameters to attain unrealistic values, we do not
obtain a minimum EPG below 10−7 for the combined total
Raman gate error mechanisms listed in Table I. In fact, this
minimum value is already unrealistically low since at these
laser powers ionization of the Cs atoms would also be ex-
pected to come into play.

If we now use a more realistic value of Raman laser
power of Pmax=10 mW, and impose realistic constraints on
the other parameters, corresponding to a�10 �m, UL
�500 �K, and ��1��2��5 THz, we obtain a minimum
EPG of 1�10−5. This minimum occurs when the aforemen-
tioned parameters reach their constraint values and w0
=5.0 �m. This EPG is roughly an order of magnitude better
than can be achieved with our reference parameters of a
=5 �m, UL=200 �K from Sec. I. A plot of the EPG as a
function of a and w0 is shown in Fig. 4. In this Raman-based
single-qubit gate scenario, polarization effects are the domi-
nant source of gate errors, and the minimum achievable EPG
is consequently most sensitive to changes in the lattice spac-
ing a. A doubling of amax to 20 �m �and appropriate adjust-
ment of w0� results in an EPG that is approximately threefold
smaller. It is also worth noting that, although the EPG is

TABLE I. Error per gate �EPG� due to various sources. It is assumed that atoms are in the vibrational
ground state �i.e., nx=ny =0�. The first two sources listed produce storage errors, while the rest cause gate
errors.

Source Section EPG

Raman scattering �blue-detuned lattice� II A 1 T1
N
nA

�c
0

a	L

�UL�	L,E0
2�

2m

��	L�
���	L��

Raman scattering �red-detuned lattice� II A 1 T1
N
nA

2c
0

�	L
UL�	L ,E0

2�
��	L�

���	L��

Neighbor atom errors �Raman gate� Prn II B 1 2�2

3 �1+
a2R

2

�2w0
4 �−2exp�− 4a2

w0
2 �

Spontaneous emission �Raman gate� Prs II B 2 �

2��1��

ac Stark shift �Raman gate� Pra II B 3 4
3�2

�2a2

mw0
4UL

� 6�1010 s−1

�1
�2

Atomic-motion-reduced pulse area �Raman gate�
Prpa

II B 4 1
12

�2a2

mw0
4UL

Detuning Doppler shift �Raman gate� Prm II B 4 0.98� 2�
R�R

�2 �

m3/2a
UL

1/2
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FIG. 4. �Color online� 3D plot of gate error �
� versus lattice
spacing �a� and beam waist �w0� for the Raman single-qubit gate,
with lattice depth UL=500 �K and detuning ��1�=2��5 THz.
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sensitive to the laser power at the unrealistically high values
discussed above, it is not sensitive to Pmax in this regime.

This analysis suggests that one consider whether it is pos-
sible to further increase the lattice spacing a beyond the
maximum value 10 �m specified above. While in principle,
this would improve �reduce� the EPG, we note that the laser
power at a particular frequency required to generate an opti-
cal lattice of given depth and a given number of atoms scales
with the square of a. Thus scaling to larger lattice sizes will
necessarily entail significant increases in laser power that
may not be realistic. We note that, while larger lattice spac-
ings are beneficial for the single-qubit Raman gate, they will
result in slower gate times for two-qubit gates, as a result of
the weaker interaction strengths for long-range-interaction-
based gates such as the Rydberg gate and of longer travel
distances in the case of collisional gates.

B. Lattice size and scaling with Raman-based
single-qubit gates

We now examine the implications of this analysis of the
total Raman-based single-qubit gate EPG for lattice size and
scaling.

1. 3D lattices

With three sets of 10 W laser beams, we can produce a 3D
lattice of �100�100�100 sites, a lattice spacing of
10 �m, and a lattice depth of �500 �K, by tuning the laser
to �851.7 nm �which is very close to the D2 transition at
852.1 nm�. With this small a detuning, there is a substantial
and undesirable �3% difference in trap depth for atoms in
the �0	 state versus the �1	 state. This mismatch could cause
entanglement of motional and internal qubit degrees of free-
dom and should be avoided. Rayleigh scattering would also
cause rapid heating of the trapped atoms, requiring frequent
re-cooling operations. There is thus little if any room to de-
crease detuning further. Consequently, larger lattices with the
same trap depth that might allow a lowering of the EPG
according to our analysis above would be possible only by
making substantial increases in laser power.

What are the implications of these results for the comput-
ing power of a 3D optical-lattice-based scheme? Obviously,
given some limit on the available lattice laser power, the
lattice size and thus the number of physical qubits will be
limited, with the number of qubits scaling as �Pmax

3/2 . Another
constraint is the degree of parallelizability of performing
gates in an optical lattice. As discussed earlier in Sec. II,
fault-tolerance threshold theorems assume maximal parallel-
izability �13�, which implies that all or nearly all qubits need
to be addressable simultaneously �nA�N, where nA is the
number of addressable qubits and N is the total number of
physical qubits�. In the case of 3D addressable optical lat-
tices, one might imagine using microlens arrays �84� to allow
simultaneous focusing of many addressing beams. It may
initially appear possible to address �N2/3 atoms in a 3D
lattice with this approach, using arrays of �N1/3�N1/3 lenses
placed adjacent to the lattice. However, these lenses must be
able to focus on sites deep inside the lattice. Since the linear
size of the lattice and thus the distance to such sites scales as

N1/3, the diameter of the lenses must also scale linearly with
N1/3. This implies that the number of addressable atoms nA in
a 3D lattice is more or less constant, and does not scale with
N. We note that 2D optical lattices �see below� do not nec-
essarily have the same limitation, since the distance from the
microlens array to the focal plane would be constant rather
than scaling with the linear lattice dimension.

Another approach for 3D lattices would allow addressing
of up to N2/3 sites in parallel, using a single large lens and a
2D array of light sources �see Fig. 5�. It is in principle pos-
sible to address up to all �N atoms using a setup similar to
Fig. 5 but with the “point sources” replaced by a spatial light
modulator. However, the resolution �total number of pixels�
of the spatial light modulator would have to scale with N,
posing considerable challenges for implementing such an ap-
proach.

Given these constraints, how large a computation could be
performed with a 3D lattice using current technology? To
address this question, let us consider the aforementioned
�100�100�100�-site lattice �generated with three 10 W
beams�. In this scenario, the per atom Raman scattering rate
for lattice light is approximately 0.4 s−1. If we use 1 W
Raman beams, we can perform single-qubit gates in approxi-
mately half a nanosecond on up to 104 qubits in parallel. This
means that the single-qubit lifetime due to Raman scattering
of lattice light is approximately 109 time steps, and that 107

gates per qubit could be performed in that time.
We see that, in such a scenario, the storage error rate due

to Raman scattering rate of lattice light are almost two orders
of magnitude smaller than the gate error rate, which we cal-
culated above to be EPG=1�10−5. It is useful to compare
these numbers with the most optimistic rigorous threshold
result for local gates in a 2D architecture, which is currently
1.85�10−5, with storage errors an order of magnitude
smaller �12�. This comparison is complicated by the fact that
we are considering a 3D lattice and not a 2D architecture.
The use of a 3D lattice implies a somewhat better threshold
due to the reduced average distance between qubits in 3D.

FIG. 5. �Color online� A method for addressing some or all of
the atoms in a single 2D plane of a 3D optical lattice. The circles on
the right represent atoms in an optical lattice �only a cross-sectional
plane of atoms is shown�. The stars on the left represent point
sources of light, which could consist of lenses on the end of indi-
vidual optical fibers, with each fiber coupled to a light source and
independently controlled. The lens in the center focuses the light
from the point sources onto corresponding atoms in a plane �i.e., the
vertical plane perpendicular to the page surface�. By adjusting ei-
ther the location of the lens or the array of point sources, different
planes of atoms could be targeted.
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Overall, this analysis suggests that Raman gates may indeed
meet the fault-tolerance threshold within the assumptions of
our analysis �i.e., realistic laser power�, if parallelizability
limitations can be overcome.

2. 2D lattices

2D lattices are subject to the same basic size constraint in
terms of laser power. This reduces the number of qubits ac-
cessible, relative to a 3D lattice formed with equivalent
power. Thus, a 2D lattice with �106 physical qubits can be
formed in a �1000�1000�-site lattice with spacing a
�10 �m and depth UL�500 �K. It is straightforward to
show from the analysis above that this does however now
require kilowatts of power, even with the small lattice light
detuning given earlier. A 100�100 lattice with the same
depth and spacing could be created with more realistic
�10 W laser beams, and this would then accommodate only
�104 physical qubits, in contrast to the 106 that were pos-
sible with the 3D lattice above.

2D lattices are more attractive from the perspective of
simultaneous addressability. A microlens array or the method
described in Fig. 5 can in principle be used for addressing
lattice sites in a 2D lattice in such a way as to allow the
number of simultaneously addressable sites nA to scale lin-
early with the total number of lattice sites N. This is possible
for a 2D lattice because such methods allow for parallel ad-
dressing of at most all the atoms in one plane, and a 2D
lattice of course consists only of a single plane of atoms. It
was recently shown that multiple standing-wave fields can
also be used to address a periodic subset of the atoms �43�.

Gates performed in a 2D lattice will also not be subject to
all the same error mechanisms that we would find in a 3D
lattice. In particular, in a 2D lattice it may be possible to use
a first-order Doppler-free configuration for the Raman
beams, which would substantially reduce the detuning Dop-
pler shift error. Nevertheless, for the Raman-based single-
qubit gates, polarization effects are the dominant error

mechanism, and these remain more or less unchanged by the
switch to a 2D lattice. Thus we still obtain an EPG value of
1�10−5 using the same parameters given above for the 3D
lattice analysis. As noted there, if no restrictions on laser
power existed, we could increase the lattice spacing a and
the beam waist w0 to reduce the EPG. In practice, laser
power is likely to be the limiting factor on scaling of 2D
lattices of the type considered here.

C. Lattice scaling with microwave-based single-qubit gates

Our scaling analysis above has focused on the Raman
single-qubit gate. The microwave gate is subject to the same
fundamental constraint on scaling in a 3D lattice, since it
also requires a focused beam to address individual lattice
sites. Microwave-based gates are typically substantially
slower than Raman gates, taking on the order of tens of
microseconds. This implies that lattice light scattering rates
would need to be lower for a fault-tolerant quantum com-
puter employing microwave-based gates, which could be
achieved with larger lattice light detuning and increased laser
power. On the other hand, lattice spacings need not be quite
as large for microwave-based gates, reducing the laser power
required for a lattice with a given number of sites. As the
former effect is larger than the latter, we expect systems of a
given number of qubits employing microwave-based single-
qubit gates to require more power than systems of a similar
number of qubits using Raman single-qubit gates.

For example, using the parameter values given in Table II
for a microwave single-qubit gate-based scheme, three 75 W
lasers would be required to create a 100�100�100 lattice
of depth UL=200 �K with spacing a=5 �m and a lattice
laser wavelength of L=800 nm; despite the large detuning,
atoms in such a lattice would still suffer from a large effec-
tive EPG of 2.4�10−4 from Raman scattering of lattice light,
due to the slow gate times and limited parallelizability of
microwave gates. Note that this error rate for scattering of

TABLE II. Error per gate �EPG� due to various sources. In calculating a numerical value of the EPG, we
used the parameters N=106 , nA=100, �T1

=10−10 s , �x=0.01 �m, 	L=2�c /800 nm, with the other pa-
rameters as defined as in Sec. II C �a=5 �m, UL=200 �K, T1=76 �s , �ac=0.2 MHz, w0=1.2 �m�

Source Section EPG Numerical EPG

Raman scattering �blue-detuned lattice� II A 1 T1
N
nA

�c
0

a	L

�UL�	L,E0
2�

2m

��	L�
���	L��

2.4�10−4

Off-resonant transitions �microwave gate� Pmo II C 1 N
nA

� �

2

�T1

T1
�2 4.3�10−8

Addressing beam-induced heating �microwave
gate� Pmh

II C 2 1
64�4

�2�ac
2 ma6

T1
2UL

3w0
4

1�10−6 a

Raman scattering �microwave gate� Pms II C 3 3.4�10−6�acT1 5.2�10−5

Addressing beam position �microwave gate� Pmph II C 3 �2
�3

��ac
2 �x

2a5m3/2

T1
2UL

5/2w0
4

2�10−5 a

aWe use numerical values obtained from simulations rather than from the analytical approximations listed.
We treat heating “events” as errors, although it is worth noting that, if a recooling mechanism is imple-
mented, the effect of such errors can be reduce.
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lattice light is substantially larger than the total error rate of
�7�10−5 for effects intrinsic to the microwave gate itself.
By comparison, a Raman single-qubit-gate-based setup with
the same number of lattice sites could make do with laser
powers of 10 W per laser and still have an effective EPG for
lattice light-induced Raman scattering that is five orders of
magnitude smaller than that for the microwave gate scenario
�see Sec. III B 1 for details�.

While Raman single-qubit gates are likely to be preferable
for scaling to very large system sizes, microwave-based
gates may nevertheless prove easier to implement, due to the
simpler optical requirements. In particular, beam alignment
is simplified in the case of microwave gates, and since they
require only a single laser, they will be less sensitive to
alignment errors than the Raman single-qubit gates.

IV. CONCLUSION

We have investigated the effects of single-qubit gate er-
rors and lattice storage errors for neutral atom qubits trapped
in addressable optical lattices, and analyzed the role of these
errors and of other technical factors such as finite laser power
in limiting the size of a quantum computation. We find that,
under realistic current limitations on laser power, computa-
tion with lattices containing up to 106 qubits in three dimen-
sions and up to 104 qubits in two dimensions may be achiev-
able. Considerations of parallelizability and optical access
are seen to impose additional limits on the scalability of such
quantum computation with individually addressed gates.
These constraints are more severe for a 3D lattice than for a
2D lattice, where it is comparatively easier to develop tech-
nologies for addressing all or nearly all atoms in parallel
�i.e., nA�N�.

Our quantitative scaling analysis has not included the ef-
fects of two-qubit gate errors and measurement errors. For
the single-qubit gates, we compared the accuracy of imple-
mentation for two candidate gates: the stimulated Raman
two-photon gate, and the microwave gate with ac Stark shift
addressing beam.

We find that Raman-based single-qubit gates can be
implemented for 133Cs in times on the order of 1 ns with an
error rate of �1�10−5 and that microwave-based single-
qubit gates can be implemented in times on the order of
100 �s with an error rate of �7�10−5. �Note that neither
error rate includes scattering of lattice light, which is a more
serious limitation for the microwave gates due to their slower
gate times.� The microwave gates are simpler to implement
�e.g., require less laser alignment�, but are more severely
limited by constraints on site-specific parallelization due to
the global nature of the microwave pulse. Consequently, mi-
crowave gates appear to be a viable intermediate option for
testing single-qubit gates and realizing small-scale quantum
algorithms, although Raman-based gates may be preferable
for eventual operation at the full capacity of addressable op-
tical lattices. The gate error for Raman-based single-qubit
operations is very close to the current best estimate for the
fault-tolerant threshold for computation using local gates in a
2D architecture. The latter would be expected to be some-
what higher in a 3D architecture, suggesting that further in-

novations in error correction protocols may make reasonably
large computations, i.e., with up to 106 qubits, achievable
with 3D addressable optical lattices.

The focus of this work was a realistic analysis of techno-
logical limitations on scalability of fault-tolerant quantum
computation with neutral atoms in addressable optical lat-
tices. Our analysis identified laser power and parallel addres-
sability as primary factors that will eventually restrict the
number of qubits for this implementation of quantum com-
putation. We hope that this detailed analysis will stimulate
similar investigations of physical and technological limits to
other proposed implementations of fault-tolerant quantum
computation, each of which has very different limiting physi-
cal features whose effect on scalability needs to be examined
in detail.

It may also be possible to overcome the limits identified
here for scalable quantum computation in 3D lattices, by
making use of methods other than single-site focused beams
in order to address large numbers of atoms in parallel. Thus,
entire planes of atoms can be addressed using a magnetic
field gradient �3�. Alternatively, periodically spaced arrays of
atoms can be addressed with a second optical lattice of larger
lattice constant �a “superlattice”� �43,85�. Both of these tech-
niques offer high degrees of parallelization at the cost of
flexibility in choosing which atoms are simultaneously ad-
dressed. Research on quantum cellular automata �86� and
global control schemes �87� has shown that such a constraint
on simultaneous addressing does not necessarily preclude ef-
ficient quantum computation, but further work is needed to
understand the effect on error correction protocols and to
determine fault-tolerance thresholds for such schemes.

Finally, we note that despite the limitations established
here for performing large-scale quantum computations,
optical-lattice-based schemes may also be very useful for
simulating other quantum systems �88�. Quantum simula-
tions have different requirements than fault-tolerant quantum
computation, generally requiring less stringent accuracy of
quantum operations. Optical-lattice-based quantum comput-
ers may also be useful for small-scale quantum-information
processing, such as a quantum repeater in a quantum key
distribution network �89�. The long coherence time of opti-
cally trapped neutral atoms is particularly valuable for this
application.
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APPENDIX: SCATTERING CROSS SECTIONS AND
DYNAMIC POLARIZABILITIES IN GROUND-

STATE ALKALI-METAL ATOMS

In analyzing optical-lattice-based quantum computing,
one frequently has to calculate optical-frequency scattering
cross sections or polarizabilities for an alkali-metal atom in a
particular hyperfine sublevel of the ground state �e.g., in
133Cs, 6 2S1/2, F=3, mF=1�. Such calculations can be per-
formed using well-known formulas; unfortunately, due to the
tedious and somewhat subtle nature of these calculations,
various approximations are sometimes employed as short-
cuts. Such approximations are valid far from resonance, but
result in significant errors when close enough to resonance to
resolve the hyperfine structure, as is the case for an address-
ing beam at the magic wavelength M. We find it valuable to
review proper methods for these calculations.

For a quantum treatment of scattering, the relevant start-
ing point is the Kramers-Heisenberg formula �A1�, which
can be derived using second-order time-dependent perturba-
tion theory:

d�ab =
�2		�3

c2 ��
i
� �xbi · �����xia · ��

	ia − 	

+
�xbi · 
��xia · ����

	ia + 	� ��2

d� , �A1�

where � is the fine structure constant, the indices a, b, and i
denote initial, final, and intermediate states, xia is the dipole
matrix element and 	ia=	i−	a the frequency for the a→ i
transition, 	 and 	� are the frequencies of the incoming and
scattered photons, and � and �� are the polarization vectors
of the incoming and scattered photons. In the most general
case, the sum over discrete intermediate states i should be
extended to include an integration over continuum interme-
diate states, but, for our purposes we can safely neglect con-
tinuum states and other far-detuned intermediate states. Inte-

grating over d� and multiplying by 2 to account for the two
possible independent photon polarizations, we obtain the
cross section for a state a to scatter into a state b �A2��:

�ab =
8�

3

�2		�3

c2 ��
i
� �xia · ��xbi

	ia − 	
+

�xbi · ��xia

	ia + 	� ��2

.

�A2�

The Raman scattering cross section is given by �Raman,a
=�b�a�ab, while the Rayleigh scattering cross section is
�Rayleigh,a=�aa.

The dynamic polarizability for an atom in state a �e.g., for
an ac Stark shift� is given by �A3�, which can be derived
using second-order time-independent perturbation theory:

�a =
e2

�
�

i
� �xia · ��2

	ia − 	
+

�xai · ��2

	ia + 	
� . �A3�

For both �A2� and �A3�, the matrix elements we need to
calculate are between a hyperfine sublevel �FmF	 of the S1/2
ground state, and a hyperfine sublevel �F�mF�	 of either the
P1/2 or P3/2 �D1 line or D2 line� excited states. Such matrix
elements can be calculated using the Wigner-Eckart theorem
and measured values for the appropriate reduced matrix ele-
ments �60,90�. The expression is given in the following Eq.
�A4�:

�FmF�x · �q
��F�mF�	

= �J�x�J�	�− 1�J+I+mF��2F + 1��2F� + 1��2J + 1�

�� F 1 F�

mF q − mF�
�� J J� 1

F� F I
� , �A4�

where �0= ẑ and ��1= � �x̂� iŷ� /�2 �note that ��1 corre-
sponds to ��-polarized light, and also that ��1=−��1

� �. Care
must be taken with polarization vectors, as in general xia ·�
�xai ·�. Thus, a particular intermediate state i may contrib-
ute to the resonant term but not the antiresonant term of Eq.
�A2� or �A3�, or vice versa.
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