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Summary

This dissertation reports on the development of the mathematical and statistical frame-

work that was necessary for the analysis of data from a novel single-cell assay designed

to address questions in fundamental biology. Many biological systems function by gen-

erating new cells from activated ancestors through cellular division. To investigate such

systems, a high throughput experimental protocol was recently developed that marks

initial cells so that their cellular offspring, the number of rounds of division from their

ancestor, and their phenotype can be determined. The clonal data that result from this

technique, however, are characterised by familial associations that impede their analysis

using classical quantitative tools, necessitating the development of a new mathematical

framework where suitable statistics are formulated that take these complex dependen-

cies into account. The design, development and implementation of that framework, as

well as inferences made from its use, are the subject of the present thesis.
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Chapter 1

Questions in quantitative

immunology

1.1 Abstract

In this chapter, we provide the minimal background in immunology that is required to

motivate our work. First, we outline the main features of the immune system, focusing

on how a particular cellular subgroup develops and functions, since it will be central

in the following chapters. These cells possess the ability to generate a population of

heterogeneous cell types through subsequent divisions, starting from a smaller pool

of progenitors that are homogeneous in appearance. To explain this phenomenon,

researchers have investigated different mechanisms, that drive the division process of

the cells and depend on the system conditions in which these proliferate. From the

literature, we report recent findings and the experimental methods employed to cast

light on this subject. The reader with a solid knowledge on immunology can skip to

Section 1.7, where we provide a summary for the thesis.

1.2 Characteristics of the immune system

The immune system is the part of the body that defends its host by foreign pathogens

(from the ancient Greek πάθoς pathos “suffering” and -γενής -genēs “generator of”).

This system is organized in primary lymphoid organs, including the bone marrow and

the thymus, where immune cells develop, and secondary lymphoid organs, such as the

spleen and the lymph nodes, where immunity is initiated and orchestrated.

The hallmarks of the immune system response are:
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Chapter 1. Questions in quantitative immunology

Recognition (Owen et al., 2013). As a pathogen breaks into the body, overcoming the

first physical line of defences, such as skin or mucous membranes, cells of the immune

system need way to detect the threat. Their main method to interact with the foreign

organism is through a specific set of receptor molecules that are present on their cellular

membrane. Any ligand capable of binding with these receptors is called an antigen, a

general term to refer to molecules that can trigger an immune response, which includes

whole pathogens or their fragments, or the products they secrete.

Activation and response (Owen et al., 2013). Upon pathogen recognition, the im-

mune cells are activated and initiate their program mounting the immune response.

The resulting population of cells is diverse, as some engage with the elimination of

the pathogen or virally infected cells (cellular immunity), while others release soluble

proteins to recruit and regulate the whole response (humoral immunity).

Tolerance (Murphy and Weaver, 2016). In order to avoid targeting cells of the host

itself, the immune system must be capable of self and non-self discrimination. The

current consensus is that tolerance is organised in layers and achieved through different

checkpoints. The central tolerance mechanism in the thymus eliminates cells that

would otherwise be activated by molecules of the host body. To avoid encounters

with cells that have survived central tolerance deletion, some organs (for example the

pancreas) restrict access to the immune system. If self-reaction occurs, peripheral

tolerance can suppress the response of the reacting cells, through internal controls or

inhibitory regulation from other immune cells.

Dysfunctions of these mechanisms may lead to severe consequences for the health of

the host body (Owen et al., 2013):

Hypersensitivity. An overreaction to an antigenic molecules that would not cause

any harm. Allergies are a manifestation of this effect.

Autoimmune diseases. Incorrect identification of self tissue as non-self may lead to

disease that are organ-specific (e.g. multiple sclerosis) or systemic (e.g. rheumatoid

arthritis).

Immunodeficiencies. These occur when the immune system fails to mount an ad-

equate response against a pathogen. Depending on their cause, immunodeficiencies

are separated in primary, due to genetic inheritance or developmental defects, and

secondary, if resulting from external agents or infections.

The immune system is distinguished into two parts that, although functionally different,

cooperate and interact together to provide defence against a wide range of infectious

agents:

2



Chapter 1. Questions in quantitative immunology

Innate immune system (Owen et al., 2013). Being one of the earliest form of protec-

tion in evolutionary terms, this system is found in all multicellular plant and animals.

Most cells from the innate immune system present Pattern Recognition Receptors

(PRRs) that recognise Pathogen-Associated Molecular Patterns (PAMPs), chemical

structures common to several pathogenic microbes. Upon activation through their

PRRs, cells from the innate immune system react with a quick response that is initi-

ated within minutes or hours (see Fig. 1.1). The specificity of PRRs ensures perfect

self/non-self discrimination, since PAMPs are not present in the healthy host body.

Adaptive immune system (Owen et al., 2013). This system arose in jawed verte-

brates as a result of evolution. An adaptive immune cell is characterised by the presence

of a receptor that binds to very small class of antigens, with a stronger or weaker in-

teraction that depends on the binding affinity. This biological recognition is based on

reciprocity of receptor-antigen shapes, which, in this system, restricts the interaction

of a given receptor to a small set antigens that are specific for it. The detection of a

multitude of antigens is then achieved by an army of cells, thus covering a wide range

of specificities.

Upon activation, cells from the adaptive system that have never experienced antigen

interaction (called “naive” cells), remain at rest for days, as opposed to the strategy of

the innate immune system, whose cells reaction triggers within hours. After this period

of latency, activated cells undergo extensive mitotic division generating a population

of clones that all express the same receptor and are capable of recognising the cells

infected by the pathogen they are specific for. In this way, the infected cell can be

eliminated and, if the immune response is adequate, the pathogen is eradicated (see

Fig. 1.1).

The principle that the protection against an antigen is achieved through a small subset

of specific cells that expands into a larger population of clones, was postulated by F.

M. Burnet in his clonal selection theory (Burnet, 1957). In that paper, he was the first

to propose that specificity in the adaptive immune system was achieved by stochastic

generation of antigen receptors. The implication of his idea were furtherer explored in

Burnet (1959). Revised over the time, clonal selection theory is currently the accepted

paradigm of adaptive immunity (Hodgkin et al., 2007).

Once the pathogen is eliminated, most of the cells produced from an adaptive response

die, leaving behind a small number of cells that will serve as long lived memory in case

the same antigen enters the host body again. Upon subsequent encounter, memory cells

generate an immune response of greater number and more quickly than their naive

progenitors (Murphy and Weaver, 2016), thus resulting in more effective protection

3
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Figure 1.1: Immune response phases. [Adapted from Fig. 1 of Kaech and Cui (2012)
and Fig. 1-8 of Owen et al. (2013)] Upon activation (0 time-points), the cells from the innate
immune system generate a response whose magnitude follows the same evolution (green line)
for both primary and subsequent antigen encounters (on the left and right side of the plot,
respectively). On the other hand, the cells from the adaptive immune system, that experience
the antigen for the first time, undergo a phase of latency, after which they commence division.
During this proliferation phase, the magnitude of the response (blue line) grows exponentially
until the pathogen is eradicated. Around this time, the magnitude of the response reaches its
peak that, in general, is higher than the one achieved from an innate response. Afterwards,
a contraction phase begins, where most of the newly generated adaptive system cells die. A
subset of these, larger in size than the initial number of responding naive progenitors, survives
to provide protection for future encounters of the same antigen. If this event occurs, the
subsequent response follows a pattern similar to the first, but generating a peak of greater size,
without latency phase.

(see Fig. 1.1). This feature of persistent memory is a fundamental characteristic of the

adaptive immune system.

An important cellular subgroup of the immune system are the lymphocytes, so called

for being the major subset of the cell found in the lymphatic system. Lymphocytes

include Natural Killer (NK) cells from the innate immune system, and both B and T

cells from the adaptive immune system (Murphy and Weaver, 2016). The generation

of randomised receptor, which are antigen specific, occurs in B and T cells through the

somatic rearrangement mechanism called V(D)J-recombination, an important discovery

accomplished by S. Tonegawa and co-workers (Tonegawa, 1983).

From this programme, the potential repertoire of different B-cell receptors (BCRs)

and T-cell receptors (TCRs) is vast. Concerning the latter, the number of possible

TCRs produced is of about 1015 (Davis and Bjorkman, 1988; Nikolich-Žugich et al.,
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2004; Sewell, 2012; Lythe et al., 2016), which is so large that presenting even one T

cell for each TCR would be physically impossible for any human body (Lythe et al.,

2016). In fact, the sets of cells with same TCR have been estimated to be between 106

and 108 (Qi et al., 2014; Lythe et al., 2016). Still, the TCR repertoire is so diverse

that two samples from the same individual present only a small portion of overlapping

repertoire (Heather et al., 2017). This poses important challenges in the estimation

of TCR repertoire, to the point that specific bioinformatic tools have been specifically

developed to analyse TCR sequencing data (Yu et al., 2015; Heather et al., 2017). The

interest in this problem is also explained as a precise method to determine the antigen

protection in single individuals, such as their TCR repertoire, would open the door to

personalised medical treatments.

In the next sections, we narrow in, outlining the development and function of T cells, in

order to provide the context for the research questions related, that will be addressed

in the following chapters.

1.3 Naive T-cell development

Hematopoietic stem cells (HSCs) are found in the bone marrow. This type of cells is

capable of renovating its own compartment (stemness property) and generating all the

cells from the blood and the immune system (multipotent property). Descendants of

the HSCs are the common lymphoid progenitors (CLPs), from which B and T cells

derive (Murphy and Weaver, 2016).

Once a CLP commits to the B-cell lineage, it becomes a pro-B cell that remains in the

bone marrow and, ultimately, develops into a B cell. During this process, the maturing

cell acquires a specific receptor by V(D)J recombination (Murphy and Weaver, 2016).

Although the “B” from B cell conveniently refers to the place where B cells develop, i.e.

the bone marrow, in fact the name originated from the Bursa of Fabricius, a lymphoid

organ in birds where these cells were first discovered to mature (Cooper et al., 1965;

Gitlin and Nussenzweig, 2015).

Similarly, the “T” of T cell is defined after the initial letter of the thymus, the organ

where the offspring of CLPs that committed to the T-cell lineage migrate to as T-cell

precursor and complete their development into T cells. It is in the thymus where the

maturing T cell, called thymocyte, undergoes V(D)J recombination that results in the

expression of a randomized TCR for a specific antigen (Murphy and Weaver, 2016).

In the thymic cortex, the thymocyte is selected for their TCR’s capacity to engage

the host Major Histocompatibility Complex (MHC) molecules. These molecules are a
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class of membrane proteins that can form complexes with an antigen to display it on

the surface of a cell, thus referred to as antigen-presenting cell (APC). The antigen so

exhibited can be a peptide either derived from a pathogenic agent or produced from the

host body, hence termed self-antigen in this second case (Murphy and Weaver, 2016).

To ensure MHC interaction from a newly generated TCR, the thymocyte undergoes

a process called positive selection, eliminating all T cells under development whose

TCR does not bind with sufficient strength to the MHC of the host body. If the

TCR-MHC interaction is too strong, instead, the maturing T cell bearing that TCR is

also eliminated from the thymus to preserve self-tolerance, through another mechanism

termed negative selection. In general, MHC proteins differ between individuals, in fact

the discrimination of antigen/self-antigen is host-dependent. This is a major cause of

transplant rejection, occurring when the cell from a donor body is not recognised as

“self” (Murphy and Weaver, 2016).

Among the relevant T-cell output from the thymus, we mention T helper (TH) cells,

regulatory T cells (TREG) and cytotoxic T lymphocytes (CTL). Characteristic of the

first two subgroups is the expression of Cluster Differentiation (CD) 4 on their mem-

brane surface, also said to be CD4 positive (CD4+). CTLs are CD4 negative (CD4−),

but have positive expression of CD8 instead, and for this reason are referred to as CD8+

T cells (Owen et al., 2013).

As these cells mature and exit the thymus, they join the naive T cell pool, waiting to

come in contact with the antigen they are specific to (Murphy and Weaver, 2016). In

the following section we focus on CD8+ T cells and provide some details about their

immune response following antigen recognition.

1.4 CD8+ T-cell response

The average human body is estimated to have 3.72 × 1013 total cells (Bianconi et al.,

2013). Of these, an order of 1011 consists of T cells (Jenkins et al., 2010). After

maturation, these lymphocytes exit the thymus and circulate in the secondary lymphoid

organs, checking other cells for the presence of the antigen specific to their TCR.

In a typical scenario, an APC, such as a dendritic cell, enters the draining lymph

node local to an ongoing infection while displaying on its surface a foreign antigenic

molecule in complex with the MHC. In the case where a naive T cell bearing the

specific TCR encounters such APC, the TCR binds with the antigen-MHC complex and

transmits a signal, i.e. any event inducing a cell state change, that activates the T cell

(activation signal) and triggers its subsequent immune response. This discrimination in
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favour of cells that are antigen-specific is referred to as clonal selection (see Fig. 1.2).

Additionally, T cells can also recognise costimulatory signal B7, a class of proteins

found on some APC, ligand to the CD28 receptor found on the T cell surface. B7-

CD28 interaction provides an additional stimulus that enhances the T cell response

(Murphy and Weaver, 2016).

Measurements in humans are uncommon, whereas the mouse is a standard scientific

model. In this system, the activated T cell, after a latency period from 30 to 50 hours

(h) (Hawkins et al., 2007a), undergoes mitosis producing two daughters. In turn, these

two cells and their offspring divide, for a total number spanning from 5 to 20 rounds

(Duffy and Hodgkin, 2012) with each subsequent division taking approximately 10 to

13 h (Dowling et al., 2014), thus generating a family of clonal duplicates. All the T cells

recruited from the same antigen undertake this pattern of proliferation and, together,

they build the immune response. As it grows, the resulting population differentiates

into two functionally distinct classes of effector and memory cells (see Fig. 1.2).

Effector cells travel to the site of infection, where they may interact with cytokines,

a wide class of proteins, which includes interleukins (ILs), secreted by other cells of the

immune system cell fighting the pathogen to amplify the effector efficacy (Owen et al.,

2013). Among the ILs, we mention IL-2 which is a signal for expansion and differ-

entiation of T cells, originally called T-cell growth factor (Smith and Cantrell, 1985).

In particular, when CD8+ T cells are activated, they are capable of IL-2 autocrine

production, namely they can release IL-2 and sense their own product to enhance their

immune response (Owen et al., 2013). Once the place of infection is reached, T cells

detect the diseased cells, which present the antigen on their surface. Upon interac-

tion, the T cell injects molecules into the infected cell inducing their apoptosis (see

Fig. 1.2), that is a mechanism of programmed cell death, thus eliminating it (Murphy

and Weaver, 2016). If the overall immune response produced is effective, the disease is

ultimately eradicated.

At this point, the population of specific T cells has reached its peak and the contraction

phase begins (see Fig. 1.2), when most of the T lymphocytes die, leaving behind 5-10%

of the population, which consists of the memory pool (Schumacher et al., 2010; Kaech

and Cui, 2012). These memory cells remain in the secondary lymphoid organs where

they maintain their number by homoeostatic equilibrium to provide long-lasting pro-

tection in case the pathogen they are specific for returns (Surh and Sprent, 2008). Upon

reinfection, these T cells behave similarly as their naive progenitors but their reaction

is more effective, as they commence proliferating in a shorter time after pathogen ex-

posure and generate an immune response of greater magnitude in terms of cell number

(Murphy and Weaver, 2016).
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Figure 1.2: Clonal selection and clonal expansion. (Top panel) When an Antigen
Presenting Cell (APC) enters the lymph node, it activates only the T cells that can recognize
the antigen, bound to the Major Histocompatibility Complex (MHC) molecules on the APC
surface, in a process called clonal selection. These cells are selected because they bear the
same T-Cell Receptor (TCR) that is specific for such antigen, thus termed clones with respect
to their TCR equivalence. (Bottom panel) As the antigen-specific T-cell clones are activated
through the process of clonal selection, they enter in a proliferating phase where they divide
and increase their total number. The result of this clonal expansion is a larger population of T
cells that are heterogeneous with respect to their function. Some cells have effector properties,
that will search for cells infected by the antigenic pathogen to eliminate them. When the threat
is eradicated, a contraction phase occurs, where effector cells die, leaving behind a smaller pool
of the cells that, instead, acquired memory function. These cells will protect the host in case
of subsequent antigen exposure, generating an immune response that is more effective that the
one from the first encounter.

Similarly to T cells, B cells are involved with a pattern of activation, proliferation and

differentiation into effector and memory. Effector B cells, however, are referred to as

plasma cells and produce antibodies that boost and regulate the elimination of the

pathogen, thus participating to the humoral, rather than cellular, immune response.

Another distinct feature of B cells is that a subgroup of these may aggregate in the

lymph nodes to form a germinal centre, where proliferating cells can alter their genes

in a process called somatic hypermutation, thus leading to affinity maturation. This

latter process consists in the selection for the mutated B cells presenting higher affinity

with the antigen that triggered the immune reaction.

While the T-cell immunity has been extensively studied at the population level, there

are still many open questions concerning how a single naive T cell contributes to the
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immunisation and what are the main drivers of such contribution. In fact, unveiling

these mechanisms is essential to predict how the T cell behaves upon different stimu-

lations and conditions, and to reprogram its processes for medical purposes. Advances

on this topic have already lead to new therapeutic solutions, particularly against can-

cer (Webster and Mentzer, 2014; Webster, 2014; Johnson et al., 2015; Johnson and

Sosman, 2015; June et al., 2015; Schumacher et al., 2015; Schumacher and Schreiber,

2015; Rosenberg and Restifo, 2015; Verdegaal et al., 2016; Zacharakis et al., 2018).

Chapter 2 of this dissertation is a study on the activation and proliferation of T cells

focusing, in particular, on how apparently homogeneous naive T cells develop into a

population of cells that are heterogeneous in function and familial size, even under

controlled conditions. In the next section, we report the latest results concerning this,

yet unexplained, heterogeneity, that are seminal for our work.

1.5 The problem of heterogeneity

In a mouse, there are reported to be about 6× 107 naive T cells (Jenkins et al., 2010),

102 of which are estimated to be specific to a given antigen (Schumacher et al., 2010).

This yields about 200 cells that can provide an adequate immune response to counter an

infection, making the chances of TCR-antigen interaction remarkably unlikely (Reiner

and Adams, 2014). Notwithstanding that, the immune response consistently generates

an heterogeneous population of lymphocytes, capable of effector and memory functions.

How these rare cells achieve this consistent heterogeneity remains a main conundrum

in contemporary immunological research. In particular, it is unclear how each naive

progenitor participates to the overall immunity and what are the cellular program

that drives the diversity in its offspring. Possible sources of heterogeneity have been

considered:

• Differences in the early progenitors (Lemâıtre et al., 2013; Rohr et al., 2014);

• Lineage priming (Hawkins et al., 2009; Duffy and Hodgkin, 2012; Gerlach et al.,

2013);

• Division-dependent processes during proliferation (Gett and Hodgkin, 1998; Jenk-

ins et al., 2008; Schlub et al., 2009; Kinjyo et al., 2015);

• Asymmetric inheritance of molecules, from mother to daughters, upon mitosis,

either deterministically or stochastically programmed (Chang et al., 2007; Reiner

and Adams, 2014);
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• Environmental niches providing various signals, each with possibly different im-

pact on the cell fate, depending on the location (Plumlee et al., 2013; Rohr et al.,

2014).

Among the mitosis-linked mechanisms, asymmetric cell division (ACD) has been one

of the most studied (Oliaro et al., 2010; Chang et al., 2011; Barnett et al., 2012; King

et al., 2012; Arsenio et al., 2014; Metz et al., 2015; Pollizzi et al., 2016; Verbist et al.,

2016; Yassin and Russell, 2016). ACD was first proposed in Chang et al. (2007) as the

key mechanism that enables the generation from each single cell of memory and effector

cells. In that study, it was suggested that T cell activation from an APC induces an

asymmetric segregation of molecules having the contact point with the APC as polar

cue. Thus, upon ACD, the two daughter cells would inherit molecules in different

quantities, with the sibling generated from the side of the interaction with the APC

(proximal cell) resulting in a profile that is consistent with the memory lineage, while

the other sibling (distal cell) would presents a profile closer to the effector trait.

In their Opinion paper, Reiner and Adams (2014) argued for ACD, as scarcity of

antigen specific cells requires a deterministic program in order to guarantee robust and

heterogeneous response, which could not be left to aleatory events. Of viewpoint differ-

ent than Reiner and Adams (2014), Hodgkin’s group suggested instead that stochastic

mechanisms may be consistent with experimental observations (Hodgkin et al., 2014).

They argued that, although subjected to variations, stochastic programs can achieve a

consistent outcome thanks to probabilistic properties, notably the law of large numbers,

already for a number of T cell recruited as “large” as 20. Thus, the stochastic variability

would ensure a diverse cellular commitment, even in absence of specific environmental

inputs. Moreover, in vivo experiments, using mice lacking of polarity protein Scribble,

supported that ACD is not necessary for T cells to mount a robust immune response

(Hawkins et al., 2013).

Since immune response diversity is achieved even in in vitro systems (Hodgkin et al.,

2014), which are characterised by simpler conditions than an in vivo response, it is rea-

sonable to undertake an experimental approach that is reductionist, that is unravelling

the problem of heterogeneity using in vitro protocols where more input signals can be

manually controlled.

As a result of their studies following this method of investigation (Gett and Hodgkin,

1998, 2000; Deenick et al., 2003; Tangye et al., 2003; Hasbold et al., 2004; Hawkins et al.,

2007b; Hodgkin, 2007; Hommel and Hodgkin, 2007; Turner et al., 2008; Hawkins et al.,

2009), Hodgkin’s group developed a stochastic, mathematical model, the Cyton Model,

of lymphocytes proliferation (Hawkins et al., 2007a). This model consists of different
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time variables, one per cellular fate (e.g. death, and division), that compete within

each cell in a stochastic manner, to determine the lymphocyte commitment to a certain

action. Such mechanism is referred to as stochastic competition. Under this paradigm,

the response heterogeneity is explained through the variabilities of these timers, whose

distributions are the result of cellular programs and environmental signals. Thus,

different system’s conditions push the odds in favour of a particular outcome (Duffy

and Hodgkin, 2012; Hodgkin et al., 2014).

While an analysis of the mean-population size per generation is provided in Hawkins

et al. (2007a), in Subramanian et al. (2008) extrapolations to higher moments were

determined by framing the Cyton Model as a non-standard branching process in which

lifetimes and offspring numbers are correlated. The use of branching processes the-

ory (Harris, 1964), provides a framework that is employed in many biological models

(Kimmel and Axelrod, 2002), although, in general, it requires the assumption that

each cell behaves independently of the others. Since strong correlation has been ob-

served between related cells in time lapse microscopy experiments (Hawkins et al.,

2009; Markham et al., 2010; Duffy et al., 2012; Dowling et al., 2014), the model was

furtherer adapted to account for dependencies among cells in the same generation, that

equals the number of divisions from the progenitor (Duffy and Subramanian, 2009).

Stochastic competition from the Cyton model recapitulates the sibling correlations, as

shown by Duffy et al. (2012) with time lapse microscopy of in vitro B cells.

The technique of time lapse microscopy consists of a sequence of microscope images

taken at a distance of minutes from one another, so that its accelerated reproduction

results in a video of the process. Applied to lymphocytes, this method can track

offspring from the same progenitor that progresses through the generations, recording

birth, division, and death times of the cells and their parental relations. In combination

with fluorescent markers, that bind with determined molecules to allow the recording of

cellular phenotypic information, time lapse microscopy enables the observation of time

and type of lineage commitment. Additional data can be obtained using cells from

genetically modified mice. Of note, we mention the Fluorescent, Ubiquitination-based

Cell Cycle Indicator (FUCCI) system (Sakaue-Sawano et al., 2008), which is a reporter

for cell cycle stages. Cells from FUCCI mouse express red fluorescent protein when in

resting phase (G0 and G1), while a green fluorescent protein is produced during the

cycling phase (S, G2 and M), indicating that the cell is preparing to undergo mitosis.

Although time lapse microscopy provides data that are not obtainable from other meth-

ods, this technique has limits. If the capture rate of the frames is too low, similar events

may not be distinguished from others, such as in the case when two co-cultured cells

divide between two consecutive frame-shots thus losing the familial separation of their
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progeny. If the frame rate is too high, instead, it may negatively impact on the cellular

survival due to photobleaching. Moreover, tracking is easily lost due to high motility of

cells (Zaretsky et al., 2012; Polonsky et al., 2016) or the formation of three-dimensional

structures occurs, which is a feature common to several systems. For example, prolifer-

ating B cells, under certain conditions, are characterised by homotypic adhesion (Klaus

et al., 1994), that is the formation of clusters between cells from the same type, which

can hide some cells from the microscope view. This was the case in Duffy et al. (2012),

where the experimental protocol was adjusted by sorting only one cell from generation

0, 2, 4 or 6 per culture well, thus limiting the analysis of siblings in generations 1, 3, 5

and 7, as a maximum of two cells could be tracked in the same time and place, due to

cellular adhesion.

Although, quantitative measurements from time lapse microscopy are possible, intrav-

itally, for in vivo systems at the cost of a complex set-up with a restricted recording

area and time (Hawkins et al., 2016). To cope with these difficulties and the remark-

able processing workload required (which may consist in the manual annotation of the

frames collected), several software solutions for automatised cell tracking have been

developed (Rieger et al., 2009; Kan et al., 2011; Pham et al., 2013; Shimoni et al.,

2013; Chakravorty et al., 2014; Mankowski et al., 2015). Still, thanks to time lapse

microscopy that synchrony in activated lymphocyte families was shown for the first

time (Hawkins et al., 2009; Markham et al., 2010; Duffy et al., 2012; Dowling et al.,

2014).

Other methods for clonal labelling, that allows the tracking even for subsequent antigen

encounters, were employed by Gerlach et al. (2013) and Buchholz et al. (2013) to

study CD8+ T cells in vivo. Gerlach et al. (2013) employed a cellular DNA-barcoding

technique to create T-cell progenitors with different genetic tags that are passed on to

their progeny. This enabled the separation of each of the families and the estimation

of their clonal size through barcode sequencing. Buchholz et al. (2013), instead, used

cells from mice that were genetically modified to allow for the expression of congenic

markers, up to eight distinguishable combinations. By adoptive cell transfer of eight

cells, one from each strain, into a ninth genetically different mouse, it was possible to

track the size of their progenies by sampling from the recipient mouse at a given time

after the immune response. Both these studies reported that the number of cells per

family is heterogeneous, as few “giant” clones composed the majority of the immune

response.

Moreover, in Buchholz et al. (2013) the analysis was extended to study the emergence

of effector and memory cellular subsets within the proliferating population, suggesting

that the memory compartment arises earlier than the effector one. Opposite conclusions
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were reached in another study, which supports the hypothesis that memory cells appears

after the effector ones (Kinjyo et al., 2015). This controversy points out that there is

no consensus yet concerning how and when T cells differentiate to build the memory

and effector pools.

The difficulties arise because, contrary to a B cell, the functional class of a T cell cannot

be precisely determined from its phenotype, which consists in a set of measurable

traits, including concentration of surface markers and transcription factors. The latter

are proteins that promote or inhibit gene expression by binding to the associated to

the gene DNA. Among these, we mention: Killer-cell-lectin-like-receptor-G1 (KLRG1)

(Voehringer et al., 2001), T box transcription factor (T-bet) (Xin et al., 2016), and PR

domain zinc finger protein 1 (Blimp-1) (Kallies et al., 2009; Rutishauser et al., 2009;

Xin et al., 2016), that are highly expressed in effector cells; Eomesodermin (Eomes)

(Banerjee et al., 2010), L-selectin (CD62L) (Sallusto et al., 1999; Buchholz et al., 2013;

Gerlach et al., 2013), CD27 (Hikono et al., 2007), CXCR3 (Groom and Luster, 2011),

and Bach2 (Sidwell and Kallies, 2016), that are highly expressed in memory cells.

Depending on the combined expression levels of these proteins, numerous phenotype

categorisations for effector and memory cells have been defined, but their value is

considered more semantic rather than functional (Mahnke et al., 2013). Some groups

proposed that T-cell differentiation occurs as a slow and gradual commitment, which

can be regulated by the initial stimulation strength and environmental cues (Kaech

et al., 2002; Sallusto et al., 2004; Gerlach et al., 2011; Kaech and Cui, 2012), and that

may be related to the activity of key transcription factor, such as Interferon-regulatory

factor IRF4 (Man and Kallies, 2015).

Unravelling the problem of differentiation and heterogeneity in CD8+ T cells is furtherer

hindered, since multiple sources of diversifications have been identified to impact the

phenotype “before, during, and after the first T cell division” (Lemâıtre et al., 2013),

thus confounding the contribution to heterogeneity from each stage. To overcome this

difficulty, one way is to study this problem on a reduced model where signal delivery

is highly controlled, so as to render the investigation of heterogeneity more tractable

by separating the early phases of T-cell immunity.

This methodology was employed in the experiments analysed in the present disserta-

tion, where we focus on the effects of activation and costimulatory signals to heterogene-

ity. For this reason, in the next section, we provide a brief summary of the “Two-signal

theory” for lymphocyte activation, reviewed in Baxter and Hodgkin (2002), and discuss

the findings of Marchingo et al. (2014) on this topic, which are seminal to our work.
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1.6 Theories of T-cell activation and flow cytometry

Under Burnet’s clonal selection theory, one of the keys for immunity specificity and

tolerance resides in the mechanism for lymphocyte activation. Late models for ac-

tivation, i.e. Janeway (1989) and Matzinger (1994), postulated that two stimuli are

required to trigger the immune response of naive lymphocytes: the antigenic signal,

and a costimulatory one as delivered, for example, by B7 molecules upon contact with

APC (Baxter and Hodgkin, 2002). Additional costimuli, such as inflammatory signals,

could also be provided from cytokines, which are typically localised near a site of infec-

tion, and have been shown to impact the proportion of naive cells that commit at least

one division (Voisinne et al., 2015). This two-signal theory of activation, however, has

been contradicted from experimental evidence where in vitro T cells proliferated when

cultured with anti-CD3, a ligand for CD3 (Gett and Hodgkin, 2000). In fact, CD3 is a

protein complex that associates with the TCR and participates to the transduction of

the antigenic signal.

A different mechanism for activation was presented in Heinzel et al. (2017), where it

was shown that stimulatory signals (antigenic, costimulatory, or inflammatory) induce

the production of Myc, a cell-cycle-regulating protein, that acts on lymphocytes as

a license for division, as long as its expression level is above a certain threshold. If

initial stimulation is strong, Myc surpasses this threshold and the progenitor starts

dividing. Over the time, Myc levels degrade at a given rate, the threshold is ultimately

reached, and the offspring undergo quiescence. If, instead, initial stimulation is weak,

Myc levels do not go beyond the threshold and the progenitor does not proliferate.

Under this paradigm, the antigenic signal alone would suffice to initiate proliferation if

the stimulus it provides is strong enough, which is the case when an antigen binds to

its cognate TCR with high affinity (Hommel and Hodgkin, 2007).

The first quantitative study to investigate the effect of stimuli combination to clonal

expansion was published by Marchingo et al. (2014). In that paper, in vitro and in

vivo evidence showed that the integration of different signals impacts linearly on the

statistic for the expansion of a population of CD8+ T cells, taking into account the

generation of the cells and thus termed mean division number. In fact, the overall

progression of the population under analysis could be predicted by the sum of the

contributions to the expansion of each stimulus present in the system condition. This

result is central for the biological investigation of Chapter 2, where we study if the

additivity of signals also emerges at the level of the clones. In the following, we detail

the part of the experimental methods from Marchingo et al. (2014) that is relevant in

the future chapters.
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To reduce the possible variables, the cells used in that study were obtained from OT-I

mice (Hogquist et al., 1994), which are genetically engineered so that all their T cells

possess the same TCR, specific for the ovalbumin (OVA) peptide. In particular, OVA

can present different variants, such as SIINFEKL (N4) and SIIQFEKL (Q4) that bind

to the TCR from the OT-I with high and low affinity, respectively.

T lymphocytes were analysed with the technique of flow cytometry (Owen et al., 2013),

a technology that allows the separation and measurement thousands of cells per second.

As a single cell is collected and isolated, it is focused in a fluid stream that flows past

laser beams. The cell is then shot by the lasers, scattering their light, which can then

be recorded as a spectrum profile of various intensities. Based on this information, a

flow cytometer can be programmed to sort cells with given specifications, in which case

it is referred to as a Fluorescence Activated Cell Sorter (FACS), so to provide one (or

many) subpopulation of cells in output.

In this way, several characteristics of a cell can be analysed. For example, the forward

scatter (FSC) and the side scatter (SSC) of the light are respectively associated with

cell size and granularity. Moreover, to measure other properties of the cell or the

expression level of its molecules, it is possible to use particular fluorescence markers

that emit light when excited by a laser, thus providing a measure for their related

molecule.

For example, mice can be engineered so that their cells express these markers. This is

the case for the FUCCI mouse (Sakaue-Sawano et al., 2008), the reporter for cell cycle,

whose cells produce a red protein during the resting phase, while a green protein is

expressed while cycling.

Other markers can be added in the system as ligand for specific receptors. For example,

expression levels of CD25, a component of the membrane receptor for IL-2, can be

measured through its ligand, anti-CD25, when this is coupled with a fluorescent protein.

Furthermore, with experimental manipulation, cells may also incorporate fluorescent

molecules which could serve to label a particular subpopulation, or to flag a given fea-

ture. We mention 5-(and -6)-carboxyfluorescein diacetate succinimidyl ester (CFSE),

a green fluorescent protein which can be cultured with cells so that they imbibe it and

whose dilution across divisions has been used to report the generation in which a cell

is found (Lyons and Parish, 1994; Gett and Hodgkin, 2000). Before the first division

occurs, CFSE dye is added to the culture wells and is accumulated by the cells therein.

From these, a subpopulation is sorted through the FACS machine for bearing a given

concentration of CFSE and is then re-cultured. As about half of the dye concentration

is inherited to the daughter cells from their mother, cells can be harvested at a later
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Figure 1.3: Determining cellular generation by CFSE dilution method. Provided
the progenitor cell with a known quantity of fluorescence protein, such as the CFSE, the con-
centration inherited to the offspring is halved upon every division. This mechanism enables the
identification of the generation in the cells recovered, by the amount of fluorescent protein they
express.

time and analysed via flow cytometry to measure their CFSE expression level. In this

way, their generation can be derived from how many times the CFSE concentration

has been halved from the progenitor (see Fig. 1.3).

The determination of generations also involves the process of gating. This step consists

in visualising the marker profile of the cells pooled, as recorded by the instruments, and

set the values that isolate the different clusters of cells (e.g. those in generation zero,

one, etc.), which are drawn to separate the peaks in the distribution of the expression

level.

1.7 Thesis outline

In this thesis we will analyse the effect of stimulatory signals, alone and combined, on

CD8+ T-cell proliferation, in order to study the mechanisms of activation and division

in T lymphocytes, and the properties of their clonal families.

In Chapter 2, we question the hypothesis of additive signal integration at the level of

the clones, that was experimentally shown at the population level in Marchingo et al.

(2014). To do so, we utilise data from a new clonal multiplex assay, which is based

on flow cytometry and multiple dyes dilution so to enable the recording of cellular
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generation and familial membership with high-throughput. The work in this Chapter

was published in Nature Communications (Marchingo, Prevedello et al., 2016).

To analyse the data in output from this method, in Chapter 3 we introduce a mathe-

matical framework for the structure of clones and study the effect of sampling on the

recovered data. As the cells from the same clone are arranged in a family-tree, which

is an object from the graph theory, we define a new operation of tree addition to rep-

resent the signal integration of the clones. The work in this Chapter is a mathematical

expansion of the version used in Marchingo, Prevedello et al., (2016).

A novel statistic, and hypothesis tests based on it, is designed in Chapter 4 to assess

the dependence between the contribution, to clonal expansion, from different costimula-

tory signals, and was put to use in Marchingo, Prevedello et al., (2016). This problem

reduces to comparing the equality in distribution between the sums of independent

random variables. From this setting, a statistic, based on the operation of discrete con-

volution, emerges as a consequence of a nonparametric, maximum likelihood approach.

The development of this statistical procedure has been submitted for publication in a

statistics journal.

Finally, in Chapter 5, the multiplex clonal assay, from Chapter 2, is expanded to

include the measurement of expression level from single-cell markers. We complement

the experimental protocol with the statistical methodology, based on permutation tests,

to evaluate the presence of significant structures in the data, such as clonal, generational

or environmental membership. The work in this Chapter was published in the Journal

of Immunology (Horton, Prevedello et al., 2018).
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Chapter 2

Independent signal integration

regulates T-cell clonal division

fate

2.1 Abstract

When stimulated with antigenic and costimulatory signals, T cells undergo a typical

response pattern of activation, expansion, quiescence and contraction. Recent studies

have shown that the heterogeneity observed at the population level is composed by

clonal families of highly different size, thus suggesting the importance of single-cell

studies. In this chapter, we present the work from Marchingo, Prevedello et al., (2016)

accomplished in collaboration with our partners in Prof. Philip Hodgkin’s lab at Walter

Eliza Hall Institute (WEHI), where a novel protocol for clonal data was implemented.

From the paper, one major experiment, in the main text, and its repeat, in the supple-

mentary information, were performed with such a method under controlled stimulation

environment. Here we report their findings alongside each other focusing on the data

analysis which we had the greatest contribution to, while complementary experimental

details are deferred to Appendix A. From these experiments, cells from the same clone

stopped dividing in the same or two consecutive generations, leading to an heteroge-

neous burst size at the population level that was determined by inter-clonal variability

of the generation reached by the clone. Comparing the familial expansion achieved

under different signals, we found that the costimulatory contributions were integrated

independently of each other. This evidence suggests that substantial heterogeneity can

be traced back to progenitor antigen interaction or costimulatory receptors variability.
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2.2 Introduction

To provide protection against pathogens, a portion of the T-cell pool that is specific to

the threat is activated and expands into a larger population of effector cells that kills

the infected cells (Moon et al., 2007). This population is created by the contribution of

each rare pathogen-specific clone and, under a given stimulation, the total population

size is broadly reproducible. Although the response is robust, recent studies have shown

that individual families present highly heterogeneous properties such as clonal size or

phenotype (Stemberger et al., 2007; Gerlach et al., 2010; Buchholz et al., 2013; Gerlach

et al., 2013; Plumlee et al., 2013; Tubo et al., 2013). This suggests that the analysis

at the single-cell level is necessary to cast light on the underling mechanism of T-cell

regulation.

In this chapter, the question is addressed concerning what is the main driver of cellular

heterogeneity, as at present it is unclear if the main factor is a stochastic or deterministic

programme or whether it is inherited from the ancestor cell or, instead, triggered in

each offspring cell (Rohr et al., 2014). To investigate the fundamental biology in the

absence of confounding factors, we employ an highly reduced system where activation

and co-stimulatory signals delivery is controlled and endogenous signals are blocked.

Previous studies showed that T cells with T-cell receptors (TCRs) specific for the same

antigen produce an heterogeneous population of cells and become quiescent within a

wide range of generations (Zehn et al., 2009; Marchingo et al., 2014; Starbeck-Miller

et al., 2014), even under highly controlled, homogeneous stimulation (Marchingo et al.,

2014). In recent results, our collaborators investigated how such heterogeneity arises

at the clonal level through the analysis of Division Destiny (DD) (Turner et al., 2008;

Hawkins et al., 2009; Marchingo et al., 2014), a term coined to indicate the generation

in which a lymphocyte returns to quiescence after mitogenic stimulus.

To explain how the reported heterogeneity in DD arises at the population level, we

consider two distinct clonal hypotheses (Fig. 2.1a): DD is determined by highly con-

cordant families that cease to divide in a narrow range of generations (Fig. 2.1b top

panel); DD is the result of discordant families whose cells undergo quiescence in very

diverse generations (Fig. 2.1b bottom panel). The first scenario would suggest that DD

is a clonal feature inherited and conserved through the daughter cells from their initial

naive ancestor. The second scenario may instead emerge from asymmetric cell divi-

sion (ACD) mechanism (Chang et al., 2007; Reiner and Adams, 2014) or by stochastic

regulation (Duffy and Hodgkin, 2012; Hodgkin et al., 2014). As indicated in Fig. 2.1,

studies with population data cannot identify if families are concordant or discordant

and therefore provide a deeper intuition on how clonal expansions is regulated.
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Whichever the generational profile type is, it must ultimately agree with the program

that is initiated in the founder cell by activation stimuli. As the kind and the strength

of certain stimulatory signals regulate the expansion, Marchingo et al. (2014) showed

that the combination of signals determines a population DD distribution with a mean

and a variance that is the sum of each signal contribution, thus visualised in Fig. 2.1c.

This result suggests the hypothesis that signals are integrated independently of one

another into the clone’s expansion programme, which leads to the problem of how

the DD profiles from different stimulatory contributions should be interlaced together

(Fig. 2.1d). We reason that, under independent integration of two signals, the family

tree generated by their combination must be regular if the families generated by each

signal alone is concordant as well (Fig. 2.1d, top panel). If one of these trees is not

concordant, it is unclear which tree should result from their addition and what the

notion of addition should be used (Fig. 2.1d, bottom panel).

In the following sections, we address how single clones participates to the population

DD and how signal integration occurs consistently with the clonal DD distribution.

We investigate these questions using a novel multiplex clonal division-tracking assay,

developed with our collaborators, which employs a combination of division tracking

dyes to identify the generation and the familial membership of each cell. Our analysis

of the data from this new method, applied to CD8+ T-cell cultures by our partners,

indicates that under controlled conditions these clones present strongly concordant

generations when quiescent, so that clone-to-clone variation is the key determinant of

population heterogeneous DD. This supports familial programming and is inconsistent

with the most widespread mathematical models, based on branching processes, which

assume related cells behave independently (Harris, 1964; Kimmel and Axelrod, 2002).

To address the question of whether costimulatory signals have a stochastic effect that

is independently integrated during T-cell activation, we develop a new operation for

the interlacement of family trees, a mathematical exposition of which is postponed to

Section 3.4 in Chapter 3. We report that, even if a consequence of the addition of

stochastic contributions, the population-level outcome is reproducible and the result-

ing heterogeneity can be substantially explained by stochastic antigen interaction and

initial receptor sensitivity.
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Clonal T-cell division progression was notably concordant
(Fig. 3c, Supplementary Fig. 3). At 54 h a considerable proportion
of the clones were still dividing (blue), with more quiescent
progeny cells (red) being found at 62 and 72 h. Irrespective of
time point or quiescence status, the progeny of an individual
clone exhibited strongly synchronous proliferation, with the
progeny of 85% of clones being detected in the same generation.
In all remaining clones, progeny were detected in adjacent
generations (Fig. 3c). This was also observed under conditions
when peptide persisted in the culture (Supplementary Fig. 5),
and was consistent with previous observations of a high degree
of synchrony in T- and B-cell sibling and cousin division
times12,20–22. In all mixed phenotype clones, the dividing progeny
were found in the same or previous generation compared with the
quiescent cells (Fig. 3c, Supplementary Fig. 3). This suggested that
the discordance observed arose through slight variations in

division timing or potential within an otherwise synchronized
clone, consistent with Fig. 1b, upper panel.

Division fate is concordant in response to different stimuli. For
this T-cell system, it has been shown that population level DD is
strongly influenced by a range of signals that act alone or in
concert to extend the number of mitotic cycles cells undergo9. To
add to the N4þ aCD28þ IL-2 data presented in Fig. 3, we set up
conditions to examine concordance with N4 alone, N4þaCD28,
and N4þ IL-2, added as hIL-2. To determine clonal DD for each
condition, we pooled data from 54, 62 and 72 h for families where
all detected progeny were quiescent (Fig. 4a, Supplementary
Fig. 6a). To summarize the concordance of a clonal family we
measured the difference in generation number between the
greatest and least DD of any descendant of a clone, a quantity we
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Figure 1 | How is T-cell division destiny (DD) regulated at a clonal level? Hypothetical data. (a) When apparently identical T cells are stimulated, they
proliferate to different extents, resulting in the population of progeny cells returning to quiescence (that is, DD) across multiple generations. (b) Two
distinct clonal family DD behaviours are consistent with the data in a; a highly concordant clonal DD that would arise if DD was inherited (top panel) or a
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Figure 2.1: How is T-cell division destiny (DD) regulated at a clonal level? [Corre-
sponding to Figure 1 from Marchingo, Prevedello et al., (2016)] Hypothetical data. (a) When
apparently identical T cells are stimulated, they proliferate to different extents, resulting in
the population of progeny cells returning to quiescence across multiple generations. (b) Two
distinct clonal family DD behaviours are consistent with the data in (a): a highly concordant
clonal DD (top panel) or a highly discordant family DD (bottom panel). Each row represents
a single clone, with circles showing progeny cells reaching DD per generation. Range is the
difference between maximum and minimum generation number. (c) Signals affecting T-cell
DD have been shown to add together at the population level (Marchingo et al., 2014). (d) If
signal effects are independent, addition of concordant trees must result in a tree that is also
concordant (top panel). If the families are discordant, it is unclear which tree should result
from their addition (bottom panel and Fig. 2.9).
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2.3 Results

2.3.1 A novel multiplex assay to measure clonal division

In order to study the regulation of T-cell DD at the clonal level, our collaborators em-

ployed an in vitro experimental method that can identify the stage of proliferation from

several naive T cells. In this section, we report the experimental protocol as our partners

implemented at WEHI laboratories. They labelled lymphocytes with distinct combi-

nations of division tracking dyes 5-(and 6)-carboxyfluorescein diacetate succinimidyl

ester (CFSE), CellTrace Violet (CTV) and Cell Proliferation Dye eFluor670 (CPD) at

different concentrations as illustrated in Fig. 2.2a,b (Lyons and Parish, 1994; Quah

and Parish, 2012), enabling the co-culture of 10 different clones in the same well. This

multiplex assay was used in combination with the same in vitro stimulatory conditions

that was previously applied to study DD at the population level (Marchingo et al.,

2014).

OT-I CD8+ T cells, which recognize SIINFEKL (N4) peptide presented on H2Kb, and

deficient for the pro-apoptotic protein Bim (OT-I/Bcl2l11−/−) were purified, labelled

with the division tracking dye multiplex and stimulated by peptide self-presentation

in the presence of anti-mouse Interleukin-2 (IL-2) blocking antibody (clone S4B6; Fig.

2.2a-c). Bim-deficiency enhanced cell survival without altering DD and addition of

anti-mouse IL-2 blocking antibody limited the autocrine IL-2 present in the culture,

allowing T cells to reach DD within the range of division tracking dyes (Marchingo

et al., 2014).

After 26 h (just prior to the first division) cells were sorted so that a single stimulated

but undivided cell, identified by high forward scatter (FSC) fluorescence and undiluted

division tracking dye, from each fluorescently distinct population was seeded per well.

Cells were returned to culture, without peptide but with S4B6, until analysis by flow

cytometry at 54, 62 and 72 h post stimulation (Fig. 2.2d-e), capturing times when most

cells were reaching DD without considerable cell death having occurred (Marchingo

et al., 2014).

Clonal family division fate from each labelling configuration was identified using the

fluorescent gating scheme outlined in Fig. 2.2f. Small cell size was used to indicate

return to quiescence, as previously defined by correlation with a cell cycle reporter of

G0 (Hawkins et al., 2009; Marchingo et al., 2014; Kinjyo et al., 2015); see Fig. A.1

from Appendix A Section A.1.6 for further details.

Data from the multiplex clonal assay for OT-I/Bcl2l11−/− CD8+ T cells, as described,

are shown later in Fig. 2.3a-c and Fig. 2.4. These cells were stimulated by N4,
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called the range. Fig. 4b and Supplementary Fig. 6b plots
the distribution of range for each culture condition, illustrating
that for the vast majority of families perfect concordance is
observed.

Clonal family DD is concordant. While superficially the data
indicate strong familial features for each stimulatory condition,
we sought to quantitatively investigate how much within-family
correlation in DD fate was necessary to explain the data in
Fig. 4b, taking into account that the experimental method does
not sample all cells. To that end, we developed a stochastic model
of family DD construction based on statistics from the data in
conjunction with a single tunable parameter that describes the
correlation in DD decision of cells within a family. For each
condition, data was pooled across families and the number of
cells, nk, observed to have undergone DD in each generation k
recorded. From these data, the proportion of cells, pk, that did not

undergo DD in generation k was determined taking cohort cor-
rection into account

pk ¼ 1" nkP
l#k nl2ðk" lÞ : ð1Þ

If cells within a family made independent DD decisions, a
binomial number of them, with probability pk would be observed
to progress without experiencing DD to generation kþ 1. To
capture within-family correlated DD fate, the long-established
correlated generalization of the binomial distribution, the
beta-binomial distribution, was employed. This distribution is
parameterized by the probability of progression, pk, and a value
rA[0,1] that captures the correlation in the fate of each pair of
cells within a family in the same generation. If r¼ 0, then all
clonal cells make independent DD decisions to progress to the
next generation with probability pk. If r¼ 1, then all clonal cells
in each generation share a single DD decision to progress to the
next generation with probability pk. As r ranges from 0 to 1,
this dependency is interpolated. The proportion of cells across
multiple families that progress from one generation to the next is
determined by pk : k ¼ 1; . . . ; 6f g, irrespective of the value of r.

Given fpk : k ¼ 1; . . . ; 6g, defined by a stimulation condition,
and a correlation r, the induced probability distribution on full
pre-sampled DD trees was determined (see Methods). Each cell
from a full clonal family is sampled independently with a
probability determined either by the per-condition average
proportion of beads recovered per well (Fig. 4c) or the average
per well volume measured (Supplementary Fig. 6c), from which
we computed the sampled-tree range distribution (see Methods).

For a variety of values of r, including the per-condition
maximum likelihood estimate, the resulting distribution of range
was determined. With 95% confidence intervals based on the
number of families that are experimentally recovered (see
Methods), Fig. 4c displays the range distributions that arise from
this model overlaid with the experimental data. For all conditions,
a substantial correlation of rZ0.8 is necessary to recapitulate the
data and, in particular, the range data is not consistent with a
family-independent DD mechanism.

Signal integration effects on clonal division fate. The above
analysis indicates that clonal DD is a strongly inherited,
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Figure 2 | A novel high-throughput clonal assay to measure T-cell
division fate. (a) OT-I/Bcl2l11" /" CD8þ T cells were purified and
(b) labelled sequentially with different combinations and concentrations of
CFSE, CTV and CPD. (c) T cells from the 10 different labelling configurations
indicated were mixed together and stimulated with N4 peptide±aCD28
(2 mg ml" 1). Between 500 and 2,000 cells from each of all 12 labelling
configurations were also cultured separately to use as compensation and
gating controls. (d) Just prior to first division (26 h) a single cell per
labelling configuration from each stimulation condition was sorted into new
wells and cultured±hIL-2 (1 U ml" 1). Thus there were four stimulation
conditions in total: N4-only, N4þ aCD28, N4þ IL-2, N4þaCD28þ IL-2.
(e) 7,500 beads and propidium iodide (PI) were added per well before
analysis to estimate sample recovery and detect dead cells. Cells were
carefully transferred to tubes and the complete sample was collected by
flow cytometry. Proliferation of clonal progeny cells was measured at 54, 62
and 72 h post stimulation. (f) Gates for data analysis were created using
control populations at each time-point then applied to the clonal samples.
FSC/SSC profile was used to gate beads and lymphocyte populations and
then PI exclusion used to identify live cells. Live cells were separated out
into differentially labelled populations by classifying cells as CPDþ or
CPD" then plotting CFSE versus CTV to distinguish the division number of
cells from different labelling populations. FSC/SSC was then used to classify
cells as small, thus having reached their DD (see Supplementary Fig. 2 and
Methods for further details on small cell gating).
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called the range. Fig. 4b and Supplementary Fig. 6b plots
the distribution of range for each culture condition, illustrating
that for the vast majority of families perfect concordance is
observed.

Clonal family DD is concordant. While superficially the data
indicate strong familial features for each stimulatory condition,
we sought to quantitatively investigate how much within-family
correlation in DD fate was necessary to explain the data in
Fig. 4b, taking into account that the experimental method does
not sample all cells. To that end, we developed a stochastic model
of family DD construction based on statistics from the data in
conjunction with a single tunable parameter that describes the
correlation in DD decision of cells within a family. For each
condition, data was pooled across families and the number of
cells, nk, observed to have undergone DD in each generation k
recorded. From these data, the proportion of cells, pk, that did not

undergo DD in generation k was determined taking cohort cor-
rection into account

pk ¼ 1" nkP
l#k nl2ðk" lÞ : ð1Þ

If cells within a family made independent DD decisions, a
binomial number of them, with probability pk would be observed
to progress without experiencing DD to generation kþ 1. To
capture within-family correlated DD fate, the long-established
correlated generalization of the binomial distribution, the
beta-binomial distribution, was employed. This distribution is
parameterized by the probability of progression, pk, and a value
rA[0,1] that captures the correlation in the fate of each pair of
cells within a family in the same generation. If r¼ 0, then all
clonal cells make independent DD decisions to progress to the
next generation with probability pk. If r¼ 1, then all clonal cells
in each generation share a single DD decision to progress to the
next generation with probability pk. As r ranges from 0 to 1,
this dependency is interpolated. The proportion of cells across
multiple families that progress from one generation to the next is
determined by pk : k ¼ 1; . . . ; 6f g, irrespective of the value of r.

Given fpk : k ¼ 1; . . . ; 6g, defined by a stimulation condition,
and a correlation r, the induced probability distribution on full
pre-sampled DD trees was determined (see Methods). Each cell
from a full clonal family is sampled independently with a
probability determined either by the per-condition average
proportion of beads recovered per well (Fig. 4c) or the average
per well volume measured (Supplementary Fig. 6c), from which
we computed the sampled-tree range distribution (see Methods).

For a variety of values of r, including the per-condition
maximum likelihood estimate, the resulting distribution of range
was determined. With 95% confidence intervals based on the
number of families that are experimentally recovered (see
Methods), Fig. 4c displays the range distributions that arise from
this model overlaid with the experimental data. For all conditions,
a substantial correlation of rZ0.8 is necessary to recapitulate the
data and, in particular, the range data is not consistent with a
family-independent DD mechanism.

Signal integration effects on clonal division fate. The above
analysis indicates that clonal DD is a strongly inherited,
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Figure 2 | A novel high-throughput clonal assay to measure T-cell
division fate. (a) OT-I/Bcl2l11" /" CD8þ T cells were purified and
(b) labelled sequentially with different combinations and concentrations of
CFSE, CTV and CPD. (c) T cells from the 10 different labelling configurations
indicated were mixed together and stimulated with N4 peptide±aCD28
(2 mg ml" 1). Between 500 and 2,000 cells from each of all 12 labelling
configurations were also cultured separately to use as compensation and
gating controls. (d) Just prior to first division (26 h) a single cell per
labelling configuration from each stimulation condition was sorted into new
wells and cultured±hIL-2 (1 U ml" 1). Thus there were four stimulation
conditions in total: N4-only, N4þ aCD28, N4þ IL-2, N4þaCD28þ IL-2.
(e) 7,500 beads and propidium iodide (PI) were added per well before
analysis to estimate sample recovery and detect dead cells. Cells were
carefully transferred to tubes and the complete sample was collected by
flow cytometry. Proliferation of clonal progeny cells was measured at 54, 62
and 72 h post stimulation. (f) Gates for data analysis were created using
control populations at each time-point then applied to the clonal samples.
FSC/SSC profile was used to gate beads and lymphocyte populations and
then PI exclusion used to identify live cells. Live cells were separated out
into differentially labelled populations by classifying cells as CPDþ or
CPD" then plotting CFSE versus CTV to distinguish the division number of
cells from different labelling populations. FSC/SSC was then used to classify
cells as small, thus having reached their DD (see Supplementary Fig. 2 and
Methods for further details on small cell gating).
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called the range. Fig. 4b and Supplementary Fig. 6b plots
the distribution of range for each culture condition, illustrating
that for the vast majority of families perfect concordance is
observed.

Clonal family DD is concordant. While superficially the data
indicate strong familial features for each stimulatory condition,
we sought to quantitatively investigate how much within-family
correlation in DD fate was necessary to explain the data in
Fig. 4b, taking into account that the experimental method does
not sample all cells. To that end, we developed a stochastic model
of family DD construction based on statistics from the data in
conjunction with a single tunable parameter that describes the
correlation in DD decision of cells within a family. For each
condition, data was pooled across families and the number of
cells, nk, observed to have undergone DD in each generation k
recorded. From these data, the proportion of cells, pk, that did not

undergo DD in generation k was determined taking cohort cor-
rection into account

pk ¼ 1" nkP
l#k nl2ðk" lÞ : ð1Þ

If cells within a family made independent DD decisions, a
binomial number of them, with probability pk would be observed
to progress without experiencing DD to generation kþ 1. To
capture within-family correlated DD fate, the long-established
correlated generalization of the binomial distribution, the
beta-binomial distribution, was employed. This distribution is
parameterized by the probability of progression, pk, and a value
rA[0,1] that captures the correlation in the fate of each pair of
cells within a family in the same generation. If r¼ 0, then all
clonal cells make independent DD decisions to progress to the
next generation with probability pk. If r¼ 1, then all clonal cells
in each generation share a single DD decision to progress to the
next generation with probability pk. As r ranges from 0 to 1,
this dependency is interpolated. The proportion of cells across
multiple families that progress from one generation to the next is
determined by pk : k ¼ 1; . . . ; 6f g, irrespective of the value of r.

Given fpk : k ¼ 1; . . . ; 6g, defined by a stimulation condition,
and a correlation r, the induced probability distribution on full
pre-sampled DD trees was determined (see Methods). Each cell
from a full clonal family is sampled independently with a
probability determined either by the per-condition average
proportion of beads recovered per well (Fig. 4c) or the average
per well volume measured (Supplementary Fig. 6c), from which
we computed the sampled-tree range distribution (see Methods).

For a variety of values of r, including the per-condition
maximum likelihood estimate, the resulting distribution of range
was determined. With 95% confidence intervals based on the
number of families that are experimentally recovered (see
Methods), Fig. 4c displays the range distributions that arise from
this model overlaid with the experimental data. For all conditions,
a substantial correlation of rZ0.8 is necessary to recapitulate the
data and, in particular, the range data is not consistent with a
family-independent DD mechanism.

Signal integration effects on clonal division fate. The above
analysis indicates that clonal DD is a strongly inherited,
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Figure 2 | A novel high-throughput clonal assay to measure T-cell
division fate. (a) OT-I/Bcl2l11" /" CD8þ T cells were purified and
(b) labelled sequentially with different combinations and concentrations of
CFSE, CTV and CPD. (c) T cells from the 10 different labelling configurations
indicated were mixed together and stimulated with N4 peptide±aCD28
(2 mg ml" 1). Between 500 and 2,000 cells from each of all 12 labelling
configurations were also cultured separately to use as compensation and
gating controls. (d) Just prior to first division (26 h) a single cell per
labelling configuration from each stimulation condition was sorted into new
wells and cultured±hIL-2 (1 U ml" 1). Thus there were four stimulation
conditions in total: N4-only, N4þ aCD28, N4þ IL-2, N4þaCD28þ IL-2.
(e) 7,500 beads and propidium iodide (PI) were added per well before
analysis to estimate sample recovery and detect dead cells. Cells were
carefully transferred to tubes and the complete sample was collected by
flow cytometry. Proliferation of clonal progeny cells was measured at 54, 62
and 72 h post stimulation. (f) Gates for data analysis were created using
control populations at each time-point then applied to the clonal samples.
FSC/SSC profile was used to gate beads and lymphocyte populations and
then PI exclusion used to identify live cells. Live cells were separated out
into differentially labelled populations by classifying cells as CPDþ or
CPD" then plotting CFSE versus CTV to distinguish the division number of
cells from different labelling populations. FSC/SSC was then used to classify
cells as small, thus having reached their DD (see Supplementary Fig. 2 and
Methods for further details on small cell gating).
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called the range. Fig. 4b and Supplementary Fig. 6b plots
the distribution of range for each culture condition, illustrating
that for the vast majority of families perfect concordance is
observed.

Clonal family DD is concordant. While superficially the data
indicate strong familial features for each stimulatory condition,
we sought to quantitatively investigate how much within-family
correlation in DD fate was necessary to explain the data in
Fig. 4b, taking into account that the experimental method does
not sample all cells. To that end, we developed a stochastic model
of family DD construction based on statistics from the data in
conjunction with a single tunable parameter that describes the
correlation in DD decision of cells within a family. For each
condition, data was pooled across families and the number of
cells, nk, observed to have undergone DD in each generation k
recorded. From these data, the proportion of cells, pk, that did not

undergo DD in generation k was determined taking cohort cor-
rection into account

pk ¼ 1" nkP
l#k nl2ðk" lÞ : ð1Þ

If cells within a family made independent DD decisions, a
binomial number of them, with probability pk would be observed
to progress without experiencing DD to generation kþ 1. To
capture within-family correlated DD fate, the long-established
correlated generalization of the binomial distribution, the
beta-binomial distribution, was employed. This distribution is
parameterized by the probability of progression, pk, and a value
rA[0,1] that captures the correlation in the fate of each pair of
cells within a family in the same generation. If r¼ 0, then all
clonal cells make independent DD decisions to progress to the
next generation with probability pk. If r¼ 1, then all clonal cells
in each generation share a single DD decision to progress to the
next generation with probability pk. As r ranges from 0 to 1,
this dependency is interpolated. The proportion of cells across
multiple families that progress from one generation to the next is
determined by pk : k ¼ 1; . . . ; 6f g, irrespective of the value of r.

Given fpk : k ¼ 1; . . . ; 6g, defined by a stimulation condition,
and a correlation r, the induced probability distribution on full
pre-sampled DD trees was determined (see Methods). Each cell
from a full clonal family is sampled independently with a
probability determined either by the per-condition average
proportion of beads recovered per well (Fig. 4c) or the average
per well volume measured (Supplementary Fig. 6c), from which
we computed the sampled-tree range distribution (see Methods).

For a variety of values of r, including the per-condition
maximum likelihood estimate, the resulting distribution of range
was determined. With 95% confidence intervals based on the
number of families that are experimentally recovered (see
Methods), Fig. 4c displays the range distributions that arise from
this model overlaid with the experimental data. For all conditions,
a substantial correlation of rZ0.8 is necessary to recapitulate the
data and, in particular, the range data is not consistent with a
family-independent DD mechanism.

Signal integration effects on clonal division fate. The above
analysis indicates that clonal DD is a strongly inherited,
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Figure 2 | A novel high-throughput clonal assay to measure T-cell
division fate. (a) OT-I/Bcl2l11" /" CD8þ T cells were purified and
(b) labelled sequentially with different combinations and concentrations of
CFSE, CTV and CPD. (c) T cells from the 10 different labelling configurations
indicated were mixed together and stimulated with N4 peptide±aCD28
(2 mg ml" 1). Between 500 and 2,000 cells from each of all 12 labelling
configurations were also cultured separately to use as compensation and
gating controls. (d) Just prior to first division (26 h) a single cell per
labelling configuration from each stimulation condition was sorted into new
wells and cultured±hIL-2 (1 U ml" 1). Thus there were four stimulation
conditions in total: N4-only, N4þ aCD28, N4þ IL-2, N4þaCD28þ IL-2.
(e) 7,500 beads and propidium iodide (PI) were added per well before
analysis to estimate sample recovery and detect dead cells. Cells were
carefully transferred to tubes and the complete sample was collected by
flow cytometry. Proliferation of clonal progeny cells was measured at 54, 62
and 72 h post stimulation. (f) Gates for data analysis were created using
control populations at each time-point then applied to the clonal samples.
FSC/SSC profile was used to gate beads and lymphocyte populations and
then PI exclusion used to identify live cells. Live cells were separated out
into differentially labelled populations by classifying cells as CPDþ or
CPD" then plotting CFSE versus CTV to distinguish the division number of
cells from different labelling populations. FSC/SSC was then used to classify
cells as small, thus having reached their DD (see Supplementary Fig. 2 and
Methods for further details on small cell gating).
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called the range. Fig. 4b and Supplementary Fig. 6b plots
the distribution of range for each culture condition, illustrating
that for the vast majority of families perfect concordance is
observed.

Clonal family DD is concordant. While superficially the data
indicate strong familial features for each stimulatory condition,
we sought to quantitatively investigate how much within-family
correlation in DD fate was necessary to explain the data in
Fig. 4b, taking into account that the experimental method does
not sample all cells. To that end, we developed a stochastic model
of family DD construction based on statistics from the data in
conjunction with a single tunable parameter that describes the
correlation in DD decision of cells within a family. For each
condition, data was pooled across families and the number of
cells, nk, observed to have undergone DD in each generation k
recorded. From these data, the proportion of cells, pk, that did not

undergo DD in generation k was determined taking cohort cor-
rection into account

pk ¼ 1" nkP
l#k nl2ðk" lÞ : ð1Þ

If cells within a family made independent DD decisions, a
binomial number of them, with probability pk would be observed
to progress without experiencing DD to generation kþ 1. To
capture within-family correlated DD fate, the long-established
correlated generalization of the binomial distribution, the
beta-binomial distribution, was employed. This distribution is
parameterized by the probability of progression, pk, and a value
rA[0,1] that captures the correlation in the fate of each pair of
cells within a family in the same generation. If r¼ 0, then all
clonal cells make independent DD decisions to progress to the
next generation with probability pk. If r¼ 1, then all clonal cells
in each generation share a single DD decision to progress to the
next generation with probability pk. As r ranges from 0 to 1,
this dependency is interpolated. The proportion of cells across
multiple families that progress from one generation to the next is
determined by pk : k ¼ 1; . . . ; 6f g, irrespective of the value of r.

Given fpk : k ¼ 1; . . . ; 6g, defined by a stimulation condition,
and a correlation r, the induced probability distribution on full
pre-sampled DD trees was determined (see Methods). Each cell
from a full clonal family is sampled independently with a
probability determined either by the per-condition average
proportion of beads recovered per well (Fig. 4c) or the average
per well volume measured (Supplementary Fig. 6c), from which
we computed the sampled-tree range distribution (see Methods).

For a variety of values of r, including the per-condition
maximum likelihood estimate, the resulting distribution of range
was determined. With 95% confidence intervals based on the
number of families that are experimentally recovered (see
Methods), Fig. 4c displays the range distributions that arise from
this model overlaid with the experimental data. For all conditions,
a substantial correlation of rZ0.8 is necessary to recapitulate the
data and, in particular, the range data is not consistent with a
family-independent DD mechanism.

Signal integration effects on clonal division fate. The above
analysis indicates that clonal DD is a strongly inherited,
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Figure 2 | A novel high-throughput clonal assay to measure T-cell
division fate. (a) OT-I/Bcl2l11" /" CD8þ T cells were purified and
(b) labelled sequentially with different combinations and concentrations of
CFSE, CTV and CPD. (c) T cells from the 10 different labelling configurations
indicated were mixed together and stimulated with N4 peptide±aCD28
(2 mg ml" 1). Between 500 and 2,000 cells from each of all 12 labelling
configurations were also cultured separately to use as compensation and
gating controls. (d) Just prior to first division (26 h) a single cell per
labelling configuration from each stimulation condition was sorted into new
wells and cultured±hIL-2 (1 U ml" 1). Thus there were four stimulation
conditions in total: N4-only, N4þ aCD28, N4þ IL-2, N4þaCD28þ IL-2.
(e) 7,500 beads and propidium iodide (PI) were added per well before
analysis to estimate sample recovery and detect dead cells. Cells were
carefully transferred to tubes and the complete sample was collected by
flow cytometry. Proliferation of clonal progeny cells was measured at 54, 62
and 72 h post stimulation. (f) Gates for data analysis were created using
control populations at each time-point then applied to the clonal samples.
FSC/SSC profile was used to gate beads and lymphocyte populations and
then PI exclusion used to identify live cells. Live cells were separated out
into differentially labelled populations by classifying cells as CPDþ or
CPD" then plotting CFSE versus CTV to distinguish the division number of
cells from different labelling populations. FSC/SSC was then used to classify
cells as small, thus having reached their DD (see Supplementary Fig. 2 and
Methods for further details on small cell gating).
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called the range. Fig. 4b and Supplementary Fig. 6b plots
the distribution of range for each culture condition, illustrating
that for the vast majority of families perfect concordance is
observed.

Clonal family DD is concordant. While superficially the data
indicate strong familial features for each stimulatory condition,
we sought to quantitatively investigate how much within-family
correlation in DD fate was necessary to explain the data in
Fig. 4b, taking into account that the experimental method does
not sample all cells. To that end, we developed a stochastic model
of family DD construction based on statistics from the data in
conjunction with a single tunable parameter that describes the
correlation in DD decision of cells within a family. For each
condition, data was pooled across families and the number of
cells, nk, observed to have undergone DD in each generation k
recorded. From these data, the proportion of cells, pk, that did not

undergo DD in generation k was determined taking cohort cor-
rection into account

pk ¼ 1" nkP
l#k nl2ðk" lÞ : ð1Þ

If cells within a family made independent DD decisions, a
binomial number of them, with probability pk would be observed
to progress without experiencing DD to generation kþ 1. To
capture within-family correlated DD fate, the long-established
correlated generalization of the binomial distribution, the
beta-binomial distribution, was employed. This distribution is
parameterized by the probability of progression, pk, and a value
rA[0,1] that captures the correlation in the fate of each pair of
cells within a family in the same generation. If r¼ 0, then all
clonal cells make independent DD decisions to progress to the
next generation with probability pk. If r¼ 1, then all clonal cells
in each generation share a single DD decision to progress to the
next generation with probability pk. As r ranges from 0 to 1,
this dependency is interpolated. The proportion of cells across
multiple families that progress from one generation to the next is
determined by pk : k ¼ 1; . . . ; 6f g, irrespective of the value of r.

Given fpk : k ¼ 1; . . . ; 6g, defined by a stimulation condition,
and a correlation r, the induced probability distribution on full
pre-sampled DD trees was determined (see Methods). Each cell
from a full clonal family is sampled independently with a
probability determined either by the per-condition average
proportion of beads recovered per well (Fig. 4c) or the average
per well volume measured (Supplementary Fig. 6c), from which
we computed the sampled-tree range distribution (see Methods).

For a variety of values of r, including the per-condition
maximum likelihood estimate, the resulting distribution of range
was determined. With 95% confidence intervals based on the
number of families that are experimentally recovered (see
Methods), Fig. 4c displays the range distributions that arise from
this model overlaid with the experimental data. For all conditions,
a substantial correlation of rZ0.8 is necessary to recapitulate the
data and, in particular, the range data is not consistent with a
family-independent DD mechanism.

Signal integration effects on clonal division fate. The above
analysis indicates that clonal DD is a strongly inherited,
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Figure 2 | A novel high-throughput clonal assay to measure T-cell
division fate. (a) OT-I/Bcl2l11" /" CD8þ T cells were purified and
(b) labelled sequentially with different combinations and concentrations of
CFSE, CTV and CPD. (c) T cells from the 10 different labelling configurations
indicated were mixed together and stimulated with N4 peptide±aCD28
(2 mg ml" 1). Between 500 and 2,000 cells from each of all 12 labelling
configurations were also cultured separately to use as compensation and
gating controls. (d) Just prior to first division (26 h) a single cell per
labelling configuration from each stimulation condition was sorted into new
wells and cultured±hIL-2 (1 U ml" 1). Thus there were four stimulation
conditions in total: N4-only, N4þ aCD28, N4þ IL-2, N4þaCD28þ IL-2.
(e) 7,500 beads and propidium iodide (PI) were added per well before
analysis to estimate sample recovery and detect dead cells. Cells were
carefully transferred to tubes and the complete sample was collected by
flow cytometry. Proliferation of clonal progeny cells was measured at 54, 62
and 72 h post stimulation. (f) Gates for data analysis were created using
control populations at each time-point then applied to the clonal samples.
FSC/SSC profile was used to gate beads and lymphocyte populations and
then PI exclusion used to identify live cells. Live cells were separated out
into differentially labelled populations by classifying cells as CPDþ or
CPD" then plotting CFSE versus CTV to distinguish the division number of
cells from different labelling populations. FSC/SSC was then used to classify
cells as small, thus having reached their DD (see Supplementary Fig. 2 and
Methods for further details on small cell gating).
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Figure 2.2: A novel high-throughput clonal assay to measure T-cell division fate.
[Corresponding to Figure 2 from Marchingo, Prevedello et al., (2016)] (a) OT-I/Bcl2l11−/−

CD8+ T cells were purified and (b) labelled sequentially with different combinations and con-
centrations of CFSE, CTV and CPD. (c) T cells from the 10 different labelling configurations
indicated were mixed together and stimulated with N4 peptide ±αCD28 (2 µg ml−1). Between
500 and 2,000 cells from each of all 12 labelling configurations were also cultured separately to
use as compensation and gating controls. (d) Just prior to first division (26 h) a single cell per
labelling configuration from each stimulation condition was sorted into new wells and cultured
±hIL-2 (1 U ml−1). Thus there were four stimulation conditions in total: N4-only, N4+αCD28,
N4+IL-2, N4+αCD28+IL-2. (e) 7,500 beads and propidium iodide (PI) were added per well
before analysis to estimate sample recovery and detect dead cells. Cells were sampled at 54,
62 and 72 h post stimulation and analysed through flow cytometry. (f) Gates for data analysis
were created using control populations at each time-point then applied to the clonal samples.

anti-CD28 (αCD28) and IL-2, the latter added as human IL-2 (hIL-2) to overcome

blocking by S4B6 present in the culture wells. In particular, S4B6 antibody is added

in the culture wells to exclude the contribution to DD of autocrine IL-2, i.e. sensed

by the same cell that produces it. The release of this cytokine by activated CD8+ T

cells would confound the precise assessment of the inflammatory signal contribution

to the expansion, initially added in known quantity as hIL-2. All these molecules

(N4, αCD28, hIL-2 and S4B6) are provided in precise quantities (see Section A.1.4 in

Appendix A) allowing the measurement and the comparison of their contribution to

the clonal expansion.

A culture of 500-2,000 cells served as population control with cells from 8 division

dye labelling combinations (Fig. 2.3a) that were harvested 72h after their stimula-

tion. This time point is chosen so that most cells have returned to quiescence, before

the contraction phase is of major impact (Marchingo et al., 2014). Here the use of
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Chapter 2. Independent signal integration regulates T-cell clonal division fate

OT-I/Bcl2l11−/− system is of essence, as T cells from these mice have reduced pro-

apoptotic molecule Bim and present enhanced survival time without other functions

being affected from the disabling of the Bcl2l11 gene (Marchingo et al., 2014), thus

increasing the chance of finding living cells in DD at later times. The control popu-

lation in Fig. 2.3a was used to determine the generation-gate from each one of the

dye-combinations, as summarised in Fig. 2.2. The control gating was then overlaid on

the data from single co-cultured wells harvested at the same time (Fig. 2.3b) in order

to determine the generation and the clonal membership of the recovered cells. The aim

of this procedure is to obtain data at the clonal level which we subsequently analyse to

investigate familial concordance under specific culture conditions.

2.3.2 T-cell proliferation is synchronous

We analyse the clones from Fig. 2.3c to assess their proliferation synchronicity. From

the initial culture of 224 clones, 171 (i.e. 76%) were recovered across three time points,

and were found having at least one cell. From 42% of these, all the daughter cells were

sampled. The recovery proportions from the multiplex assay are comparable to those

from time-lapse microscopy method of non-adherent cells (Hawkins et al., 2009). Also,

the distributions of cells across generations between clonal progeny and population

control are similar (Fig. 2.5).

Most of the collected T-cell families were concordant (Fig. 2.3c, Fig. 2.4). Clones

sampled at 54h presented many cells that were still dividing (blue), but when harvested

at 62h and 72h, the majority of the cells were in a quiescent state (red). Across time

points, 85% of the clones were found with their offspring in the same generation, while

in the remaining families their cells are situated in contiguous generations (Fig. 2.3c).

Mixed-type families were detected with cells in the same generation or with dividing

cells in the generation previous to the quiescent cells, indicating that a possible cause

of discordance may arise from small differences in division times from an otherwise

synchronous clone (as in Fig. 2.1b upper panel). Synchronous proliferation was also

observed when the antigenic signal persisted in the culture (Fig. 2.6). The strong

concordance is consistent with past experiments, where sibling and cousin cells were

analysed for their division times (Hawkins et al., 2009; Duffy et al., 2012; Dowling et al.,

2014; Kinjyo et al., 2015).

2.3.3 Division fate is concordant in response to different stimuli

As previously shown in Marchingo et al. (2014), the present T-cell system displays

a population level DD that is highly affected by the kind and the combination of
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Chapter 2. Independent signal integration regulates T-cell clonal division fate

concordant property within a family lineage under a range of
culture conditions. Given this conclusion, we turned our attention
to the question of how signal addition at the single cell level
operates. Results from signal addition studies at the population
level provide a hypothesis9 as the reported summation had an
additive effect on both the mean and variance of the population
DD distribution. When the implications of these observations are
considered at the family level, this finding suggests that signal
integration at the clonal level might be stochastically independent.
That is, each signal is responsible for heterogeneous levels of
expansion and the T-cell clones independently integrate each
signal. To test this prediction, we further interrogated the data
presented in Fig. 4.

Stimuli effects on clonal division fate add independently. To
enable quantitative comparison between the expansion effects of
distinct stimuli in combination, we developed a new theory for

the addition of family trees, presented in detail in Methods. The
most significant consequence of our mathematical analysis is that
in order to determine the generations in which cells become
quiescent in a concatenated tree, it is sufficient to know how
many cells become quiescent in each generation in the trees to be
added (Fig. 1d, Supplementary Fig. 1 and Methods). This feature
allows us to address questions of signal integration using data
from the multiplex clonal proliferation assay, which does not
provide entire family tree structure. Moreover, determination of
the generations in which cells are quiescent in the final tree does
not depend on how the participating trees are interlaced in the
addition procedure (Supplementary Fig. 1 and Methods). This
indicates that the mathematics is suitable for describing simul-
taneous application of mitogenic stimuli, as the DD outcome is
invariant to the order of their impact.

For each stimulation condition, we first summarized the DD
information of each clonal family with two expansion statistics,
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Figure 3 | Clonal T-cell family proliferation is synchronized. OT-I/Bcl2l11! /! CD8þ T cells were processed, stimulated and analysed as described in
Fig. 2. All cultures contained S4B6 (25mg ml! 1). (a) N4þaCD28þ IL-2 stimulated population of control cells labelled with CTV and CFSE to distinguish
generation number for four distinct labelling configurations. Cells were separated into CPDþ and CPD! , allowing division tracking in eight populations per
well. (b) Examples of clonal progeny detected in individual wells. Example data shown for 72 h time point. (c) Generation number of progeny cells detected
from individual clonal families at each time point from N4þ aCD28þ IL-2 stimulation condition. Progeny cells were classified as quiescent based upon
small cell size (refer to Methods). Clonal range¼maximum!minimum generation number. The symbol # at the end of a line denotes clones where all
progeny cells were detected. Founder cell input after sorting was 80, 80 and 64 for data from 54, 62 and 72 h respectively. Results from a second
independent experiment are shown in Supplementary Fig. 3.
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Figure 2.3: Clonal T-cell family proliferation is synchronized. [Corresponding to Fig-
ure 3 from Marchingo, Prevedello et al., (2016)] OT-I/Bcl2l11−/− CD8+ T cells were processed,
stimulated and analysed as described in Fig. 2.2. All cultures contained S4B6 (25 mg ml−1).
(a) N4+αCD28+IL-2 stimulated population of control cells labelled with CTV and CFSE to
distinguish generation number for four distinct labelling configurations. Cells were separated
into CPD+ and CPD−, allowing division tracking in eight populations per well. (b) Examples
of clonal progeny detected in individual wells. Example data shown for 72 h time point. (c)
Generation number of progeny cells detected from individual clonal families at each time point
from N4+αCD28+IL-2 stimulation condition. Progeny cells were classified as quiescent based
upon small cell size (refer to Section A.1.6). Range is the difference between maximum and
minimum generation number. The symbol # at the end of a line denotes clones where all
progeny cells were detected. Founder cell input after sorting was 80, 80 and 64 for data from
54, 62 and 72 h respectively. Results from a second independent experiment are shown in Fig.
2.4.
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Supplementary Figure 3. Clonal T cell family proliferation is synchronized.  
OT-I/Bcl2l11-/- CD8+ T cells were processed, stimulated and analysed as described in Fig. 2 with the exception 
that cells were analysed only at 62 and 72 hours. Generation number of progeny cells detected from individual 
clonal families at each time point from N4 + αCD28 + IL-2 stimulation condition. Progeny cells were 
classified as quiescent based upon small cell size (Supplementary Fig. 2 and Methods). Clonal range = 
maximum – minimum generation number. # denotes clones where all progeny cells were detected. Founder 
cell input after sorting was 168 and 168 for data from 62 and 72 hours respectively. Note that the lower clonal 
recovery in this experiment is likely attributable to a longer time spent out of culture during cell sorting, which 
reduces clone viability. All cultures contained S4B6 (25 µg mL-1). 
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Supplementary Figure 3. Clonal T cell family proliferation is synchronized.  
OT-I/Bcl2l11-/- CD8+ T cells were processed, stimulated and analysed as described in Fig. 2 with the exception 
that cells were analysed only at 62 and 72 hours. Generation number of progeny cells detected from individual 
clonal families at each time point from N4 + αCD28 + IL-2 stimulation condition. Progeny cells were 
classified as quiescent based upon small cell size (Supplementary Fig. 2 and Methods). Clonal range = 
maximum – minimum generation number. # denotes clones where all progeny cells were detected. Founder 
cell input after sorting was 168 and 168 for data from 62 and 72 hours respectively. Note that the lower clonal 
recovery in this experiment is likely attributable to a longer time spent out of culture during cell sorting, which 
reduces clone viability. All cultures contained S4B6 (25 µg mL-1). 
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Figure 2.4: Clonal T-cell family proliferation is synchronized, experimental repeat.
[Corresponding to Supplementary Figure 3 from Marchingo, Prevedello et al., (2016)] Repeat
of the experience as described in Fig. 2.3 with the exception that cells were analysed only at
62 and 72 h. Founder cell input after sorting was 168 and 168 for data from 62 and 72 hours
respectively. Note that the lower clonal recovery in this experiment is likely attributable to a
longer time spent out of culture during cell sorting, which reduces clone viability.
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Supplementary Figure 4. Pooled clonal proliferation data recapitulates population response. 
OT-I/Bcl2l11-/- CD8+ T cells were isolated and stimulated with N4 peptide (0.01 µg mL-1), αCD28 (2 µg mL-1) 
and hIL-2 (1 U mL-1) in the presence of S4B6 (25 µg mL-1) as described in Fig. 2a-e and gated as outlined in 
Fig. 2f. At each time point the total progeny cell number detected per generation was pooled for all clones, the 
percentage of progeny cells per generation calculated (dotted lines) and compared to the percentage cells per 
generation detected in the population control (solid lines) (based on CTV dilution in 0 µM CFSE + 5 µM CTV 
± 5 µM CPD labelling conditions). Graphs are representative of 2 independent experiments. Mean ± s.e.m. 
from triplicate culture wells. 
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Figure 2.5: Pooled clonal proliferation data recapitulates population response.
[Corresponding to Supplementary Figure 4 from Marchingo, Prevedello et al., (2016)] OT-
I/Bcl2l11−/− CD8+ T cells were isolated and stimulated with N4 peptide (0.01 µg ml−1),
αCD28 (2 µg ml−1) and hIL-2 (1 U ml−1) in the presence of S4B6 (25 µg ml−1) as described in
Fig. 2.2a-e and gated as outlined in Fig. 2.2f. At each time point the total progeny cell number
detected per generation was pooled for all clones, the percentage of progeny cells per generation
calculated (dotted lines) and compared to the percentage cells per generation detected in the
population control (solid lines) (based on CTV dilution in 0 µM CFSE + 5 µM CTV ± 5 µM
CPD labelling conditions). Graphs are representative of 2 independent experiments. Mean ±
s.e.m. from triplicate culture wells.
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Supplementary Figure 5. Clonal T cell division destiny is concordant when peptide persists. 
OT-I/Bcl2l11-/- CD8+ T cells were isolated and labelled with division tracking dye combinations as outlined in 
Fig. 2a, b. One cell from each of the ten differentially labelled populations indicated in Fig. 2c were sorted into 
96-well round-bottomed plates and 10,000 unlabelled filler cells were added to each of the sample wells. Cells 
were stimulated with N4 peptide (0.01 µg mL-1) in the presence of S4B6 (25 µg mL-1) for 50.5, 62.5 or 72.5 
hours before analysis by flow cytometry as outlined in Fig. 2e. Cells were gated according to Fig. 2f only 
including data from the clones that were CPD+, due to background autofluorescence into the CTV and CFSE 
channels by the unlabelled cells. (a) The generation in which progeny cells were detected, from clones in 
which all the progeny cells were quiescent. (b) Percentage of clones vs. clonal range (i.e. maxDD – minDD). 
Data from one experiment  
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Supplementary Figure 5. Clonal T cell division destiny is concordant when peptide persists. 
OT-I/Bcl2l11-/- CD8+ T cells were isolated and labelled with division tracking dye combinations as outlined in 
Fig. 2a, b. One cell from each of the ten differentially labelled populations indicated in Fig. 2c were sorted into 
96-well round-bottomed plates and 10,000 unlabelled filler cells were added to each of the sample wells. Cells 
were stimulated with N4 peptide (0.01 µg mL-1) in the presence of S4B6 (25 µg mL-1) for 50.5, 62.5 or 72.5 
hours before analysis by flow cytometry as outlined in Fig. 2e. Cells were gated according to Fig. 2f only 
including data from the clones that were CPD+, due to background autofluorescence into the CTV and CFSE 
channels by the unlabelled cells. (a) The generation in which progeny cells were detected, from clones in 
which all the progeny cells were quiescent. (b) Percentage of clones vs. clonal range (i.e. maxDD – minDD). 
Data from one experiment  
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Supplementary Figure 5. Clonal T cell division destiny is concordant when peptide persists. 
OT-I/Bcl2l11-/- CD8+ T cells were isolated and labelled with division tracking dye combinations as outlined in 
Fig. 2a, b. One cell from each of the ten differentially labelled populations indicated in Fig. 2c were sorted into 
96-well round-bottomed plates and 10,000 unlabelled filler cells were added to each of the sample wells. Cells 
were stimulated with N4 peptide (0.01 µg mL-1) in the presence of S4B6 (25 µg mL-1) for 50.5, 62.5 or 72.5 
hours before analysis by flow cytometry as outlined in Fig. 2e. Cells were gated according to Fig. 2f only 
including data from the clones that were CPD+, due to background autofluorescence into the CTV and CFSE 
channels by the unlabelled cells. (a) The generation in which progeny cells were detected, from clones in 
which all the progeny cells were quiescent. (b) Percentage of clones vs. clonal range (i.e. maxDD – minDD). 
Data from one experiment  
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Figure 2.6: Clonal T cell division destiny is concordant when peptide persists.
[Corresponding to Supplementary Figure 5 from Marchingo, Prevedello et al., (2016)] OT-
I/Bcl2l11−/− CD8+ T cells were isolated and labelled with division tracking dye combinations
as outlined in Fig. 2.2a-c. Cells were stimulated with N4 peptide (0.01 µg ml−1) in the presence
of S4B6 (25 µg ml−1) for 50.5, 62.5 or 72.5 h before analysis by flow cytometry as outlined in
Fig. 2.2e. Cells were gated according to Fig. 2.2f only including data from the clones that were
CPD+, due to background autofluorescence into the CTV and CFSE channels by the unlabelled
cells. (a) The generation in which progeny cells were detected, from clones in which all the
progeny cells were quiescent. (b) Percentage of clones vs. range (i.e. maxDD−minDD). Data
from one experiment.

stimulatory signals received. To explore this effect, the multiplex assay was applied to

different conditions: N4 alone, N4 + αCD28, N4 + IL-2, and N4 + αCD28 + IL-2,

where IL-2 was added as hIL-2. In order to investigate the DD at the clonal level

for each condition, data from quiescent-only families were pooled across 54, 62 and 72

h time points, thus excluding clones recovered with at least one dividing cell for not

being fully expanded (Fig. 2.7a, Fig. 2.8a). Moreover, families composed of one cell in

generation 0 were also excluded as their lack of division could have been the result of

stimulatory failure.

To quantify the degree of clonal concordance, we defined the difference between maxi-

mum and the minimum clonal DD and termed this measure range (see 3.2.3 in Chapter

3). For perfectly concordant families the range is zero, and null range was detected for

most of the observed clones (2.7b and Fig. 2.8b).
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the maximum DD (maxDD), that is, the greatest generation
observed in a quiescent family, and the cohort normalized
mean DD (mDD) (see Methods). The empirical cumulative
distributions of these statistics are plotted in the left panels of
Fig. 5a and b, respectively. Crucially, in the framework of tree
concatenation both maxDD and mDD are linear operators.
Consequently, if signal integration were independent, then the
distribution of the maxDD or mDD determined from data
generated by two stimuli would necessarily coincide with the

convolution of the distributions generated by each stimulus alone.
In particular, if the influence of aCD28 and IL-2 on DD were
independent, with no more than one of them correlated to the
N4 effect, then the distribution of the sum of the maxDD or
mDD statistics of (N4þaCD28) and (N4þ IL-2), which is the
convolution of those two distributions, would correspond
with the distribution created from the sum of (N4) and
(N4þaCD28þ IL-2). As shown in the right panels of Fig. 5a
and b, respectively, these convoluted distributions align
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Figure 4 | Clonal family DD is highly concordant. OT-I/Bcl2l11" /" CD8þ T cells labelled with a division tracking dye multiplex were stimulated with
N4 peptide±aCD28 (2 mg ml" 1) for 26 h, sorted for one clone per labelling configuration per new well then cultured±hIL-2 (1 U ml" 1) as described in
Fig. 2. All cultures contained S4B6 (25mg ml" 1). (a) Generation number in which progeny cells reached DD. Data pooled from 54, 62 and 72 h from
families where all detected progeny were quiescent. Founder cell input after sorting was 96, 224, 96 and 224 for N4, N4þaCD28, N4þ IL-2 and
N4þaCD28þ IL-2, respectively. (b) Percentage of clones with concordant (range¼0) or discordant (range 40) DD. (c) To quantitatively question the
level of familial correlation in DD required to explain the range data in b, a mathematical model was constructed and parameterized by the data and
pairwise correlation, r, in DD fate (see Methods). The empirical range distribution for each condition is shown (black dots within 95% confidence intervals,
see Methods), in addition to model the range distribution for different values of r, including the per-condition best-fit. Results from a second independent
experiment are shown in Supplementary Fig. 6.
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Figure 2.7: Clonal family DD is highly concordant. [Corresponding to Figure 4 from
Marchingo, Prevedello et al., (2016)] OT-I/Bcl2l11−/− CD8+ T cells labelled with a division
tracking dye multiplex were stimulated with N4 peptide ±αCD28 (2 µg ml−1) for 26 h, sorted
for one clone per labelling configuration per new well then cultured ±hIL-2 (1 U ml−1) as
described in Fig. 2.2. All cultures contained S4B6 (25 µg ml−1). (a) Generation number in
which progeny cells reached DD. Data pooled from 54, 62 and 72 h from families where all
detected progeny were quiescent. Founder cell input after sorting was 96, 224, 96 and 224 for
N4, N4+αCD28, N4+IL-2 and N4+αCD28+IL-2, respectively. (b) Percentage of clones with
concordant (range = 0) or discordant (range > 0) DD. (c) To quantitatively question the level of
familial correlation in DD required to explain the range data in (b), a mathematical model was
constructed and parametrized by the data and pairwise correlation, ρ, in DD fate (see Section
3.3.2 in Chapter 3). The empirical distribution of range is shown for each condition (black dots
within 95% confidence intervals, see Section 2.3.4), in addition to the range distribution for
different values of ρ, including the per-condition best-fit. Results from a second independent
experiment are shown in Fig. 2.8.
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Supplementary Figure 6. Clonal family DD is highly concordant.  
OT-I/Bcl2l11-/- CD8+ T cells labelled with a division tracking dye multiplex were stimulated with N4 peptide ± 
αCD28 (2 µg mL-1) for 26 hours, sorted for one clone per labelling configuration per new well then cultured ± 
hIL-2 (1 U mL-1) as described in Fig. 2. All cultures contained S4B6 (25 µg mL-1). (a) Generation number in 
which progeny cells reached DD. Data pooled from 62 and 72-hours from families where all detected progeny 
were quiescent. Founder cell input after sorting was 168 for all conditions. (b) Proportion of clones with 
concordant (range = 0) or discordant (range > 0) DD. (c) To quantitatively question the level of familial 
correlation in DD required to explain the clonal range data in b a mathematical model was constructed (see 
Methods) parameterized by the data and pairwise correlation, ρ, in DD fate. The empirical range distribution 
for each condition is shown (black dots within 95% confidence intervals, see Methods), in addition to model 
distribution for a range of values of ρ, including the per-condition best-fit. 

Figure 2.8: Clonal family DD is highly concordant, experimental repeat [Corre-
sponding to Supplementary Figure 6 from Marchingo, Prevedello et al., (2016)] Repeat of the
experience as described in Fig. 2.7, with the exception that cells were analysed only at 62 and
72 h. Founder cell input after sorting was 168 for all conditions. Condition N4+αCD28+IL-2
is pooled from families in Fig. 2.4 where all detected progeny were quiescent.
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2.3.4 Clonal family DD is concordant

T cells originated from the same clone looked highly correlated in their DD (Fig. 2.7b).

This evidence, however, was influenced by partial recovery as a discordant family may

look concordant if some of its cells are not sampled. To take this effect into account

for DD analysis, we developed a stochastic model of quiescence cell range, introducing

a parameter for the correlation between cells within a family. We defer to Section 3.3.2

in Chapter 3 for a formal description of such model.

For a fixed conditions, families were selected if all their cells had undergone DD. From

this pool, the proportion of cohort that reached generation i and divided to generation

i+ 1 was estimated as

p̂i =

∑
j≥i+1 2−jnj∑
j≥i 2−jnj

, (2.1)

where ni is the number of cells in generation i from the pool.

Assuming that each cell reverts to quiescence independently of the others, then the

number of cells that divides to generation i + 1 from i would be distributed as a

binomial with parameter p̂i. To include the possibility that cell fate is correlated within

the family, the binomial variable is replaced by a beta-binomial with probability of

progression p̂i and intra-class correlation ρ ∈ [0, 1]. The latter parameter modulates the

extent of dependence across cells when deciding whether dividing to the next generation

or becoming quiescent. In particular, for ρ = 0, we recapitulate the binomial behaviour

described above. For ρ = 1, instead, cells in the same generation share a common

fate and all divides, with probability p̂i, or all reach DD, with probability 1 − p̂i. In

this setting, the proportion of clonal cohort that divides from one generation to the

subsequent, i.e. {p̂i : i = 0, . . . , 6}, does not depend on the intra-clonal correlation ρ.

From the parameters {p̂i : i = 0, . . . , 6} and ρ, for each condition, we computed the

distribution of DD configuration of a clonal family before its recovery. Cells must then

be sampled, independently of their fate, with probability that is estimated either from

the average proportion of beads recovered per well (Fig. 2.7c) or the average per well

volume collected (Fig. 2.8c). In this way, we derived the distribution of the range for

a sampled clone (see Section 3.3.2), from which the maximum likelihood estimate ρ̂ of

ρ was calculated.

The resulting correlation fits were high across all conditions, as ρ̂ ≥ 0.8 in all cases,

thus indicating that a mechanism where DD is regulated in each cell, independently

of their clone, may be inappropriate. Moreover, the distributions from these estimate

were comparable with the empirical distributions of the range data (Fig. 2.7c) and

were included within their 95% confidence intervals (CIs). In order to produce these
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intervals, we used the following standard bootstrap technique to create asymmetric

95% confidence intervals (CIs) (Beran, 1984).

For a given estimator θ̂ for a statistic θ ∈ R of the data, this method consists in

generating bootstrap datasets, by sampling the original data with replacement K =

10, 000 times, and calculate the statistic of interest θ̂ on each bootstrapped dataset, to

obtain {θ̂∗1, . . . , θ̂∗K}. Then, the bias corrected bootstrap CI for θ̂ is defined as[
2θ̂ − θ∗(u), 2θ̂ − θ

∗
(l)

]
(2.2)

where u = dK 0.975e and l = bK 0.025c (Efron and Tibshirani, 1993). The procedure

was applied in Fig. 2.7 and 2.8 to create CIs for θ being the probability mass function

of range calculated in k = 0, . . . , 4. We used the same technique in Fig. 2.10 and 2.11,

where an additional step was necessary to calculate the CIs, as θ is the cumulative

distribution function of the sum of two random variables X and Y , such as maxDD

from (N4) and (N4+αCD28+IL-2). In this case, each bootstrap iteration consisted of

sampling with replacement data fromX and, independently, data from Y then following

the same rationale as above.

2.3.5 Stimuli effects on clonal division fate add independently

Data in Fig. 2.7, from the multiplex assay with selected stimulatory signals, shows that

T cells present a concordant clonal DD that is inherited from the founder to the off-

spring. We now investigate how different co-stimulations regulate such concordant DD.

As reported in Marchingo et al. (2014), the conditions under analysis, when combined,

displayed a linear additive effect to the mean and variance of the population DD: this

suggests that the integration of each costimulatory signal may contribute independently

to the clonal DD distribution.

To test this prediction quantitatively, we defined a novel class of operations between

two family trees, that will be detailed in Section 3.4 of Chapter 3. As a consequence

of the analysis therein, the DD configuration from the resulting can be deduced from

the number of quiescence cells per generations of the trees that are combined (Fig.

2.1d, Fig. 2.9), regardless the operation, from the new class, considered. This prop-

erty enabled us to study signal integration using multiplexed data, which provides the

necessary clonal information of quiescence cell count per generation. Such a notion

of tree addition is particularly suitable to study clones expanded under more than

one mitogenic signal, as no assumption is made concerning the order of each stimulus

contribution.
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Supplementary Figure 1. Combinatorial summation of discordant family trees. 
The addition of discordant clonal family trees could depend on the time and place of contributing stimuli. As a 
result, the addition is complex as many distinct appending interlacements are needed to represent all possible 
stimulation orders. This is demonstrated here using an example of two clonal family trees X and Y. The open 
circles represent cells that will go on to divide further. The black circles represent cells that have reached DD. 
Thus, both families X and Y contain one progeny cell reaching DD in generation 1 and two progeny cells 
reaching DD in generation 2 (represented by the vectors X = (gen 0, gen 1, gen 2) = (0,1,2) and Y = (0,1,2)). 
(a) Illustrates the explicit construction of one possible addition that gives rise to one appropriate summed tree. 
Each clonal family tree can be broken up into multiple subsections as indicated by the different numbers and 
colours above (e.g. X is split into 1 and 3, blue and green respectively). These subsections of division may be 
programmed into the clone at the start of the response or, alternatively, a later encounter with a stimulus may 
be the cause of subsequent branching subsections (i.e. 3 and 4, green and purple respectively). Thus when 
summing discordant trees all possible permutations of subsection addition must be considered. In the worked 
example, the X stimulation first causes a division (I), followed by the Y stimulation (II), followed by what 
remains of the X stimulation (III) and finally the remainder of the Y stimulation (IV). All other possible 
permutations are shown in (b). Based upon the structure of the original clonal family trees not all orders of 
subsection addition are possible. Namely, the “root” of the original tree (i.e. 1 and 2) must come before the 
“branch” subsection (3 and 4 respectively) in the resultant summation of stimuli effects. For the remaining 
possible permutations the division effect of the subsection on each section of the clone is maintained 
irrespective of order. That is, the “root” subsection always adds onto all available arms of the clone, the 
“branch” subsections only add on the same side of the “root” as they were in the original tree. For this example 
this means that 3 can only add onto the top arm of 1 and 4 can only add to the bottom arm of 2. Based on all 
possible permutations of addition there are two unique branching histories generated when orientation of clonal 
arms are not considered. Strikingly, irrespective of the branching history the resultant division in which 
progeny reach DD is the same. 
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Figure 2.9: Combinatorial summation of discordant family trees. [Corresponding
to Supplementary Figure 1 from Marchingo, Prevedello et al., (2016)] Example of two clonal
family trees X and Y that contain one progeny cell reaching DD in generation 1 and two progeny
cells reaching DD in generation 2, generating the vectors X=(0,1,2) and Y=(0,1,2). The open
circles represent cells that will go on to divide further. The black circles represent cells that have
reached DD. (a) Explicit construction of one possible addition that gives rise to one appropriate
summed tree. Each clonal family tree can be broken up into multiple subtrees as specified by the
different numbers and colours above (e.g. X is split into 1 and 3, blue and green respectively).
The arrangement of these subtrees indicates the order of the contributions from X and Y when
merged. Such order cannot violate the configuration from the original trees (e.g. subtree 1
must not descend from a copy of subtree 3, as only 3 descends from 1 in their original tree X).
In the example, I-IV show the iterative appending of subtrees 1, 2, 3, 4 in this order. All other
possible rearrangements of these contributions are shown in (b). Strikingly, irrespective of the
arrangement, the division in which progeny reach DD is unchanged in the consequent tree and
produces a vector that is the discrete convolution between X and Y, namely X∗Y=(0,0,1,4,4).
A formal derivation of this result is postponed to Section 3.4 of Chapter 3.

To describe the clonal participation to the overall expansion under each condition, we

plotted the empirical cumulative distribution functions of maximum DD (maxDD) and

cohort normalised mean DD (mDD) in Fig. 2.10a and b, respectively, whose formal

definition will be postponed to Chapter 3. These measures of clonal expansion (see

Section 3.2.3) are linear with respect to the operators for trees combination (see Section

3.4.3). Therefore, under independent signal integration, the distribution of maxDD or

mDD, for trees expanded under two stimuli, would be characterised by the convolution

of the distributions relative to each single stimulus.
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Analogously, if the contributions of αCD28 and IL-2 on DD configuration were indepen-

dent, even if one or the other were correlated to the contribution of N4, the convolution

of the distributions of maxDD (or mDD) on (N4 + αCD28) and (N4 + IL-2) would

correspond with the convolution of the distributions generated from (N4) and (N4 +

αCD28 + IL-2). This similarity is illustrated in Fig. 2.10 and Fig. 2.11.

If the distributions to be compared result from convolution, the requirements for stan-

dard testing procedures are violated. To overcome this problem, we tested the hypoth-

esis of statistical independence between αCD28 and IL-2 contributions developing a

new testing procedure, whose details we defer to Chapter 4. The p-values so produced

corresponded to 0.399 and 0.377 for maxDD and mDD, respectively, and the hypothesis

of independent additivity of αCD28 and IL-2 was not rejected.

2.3.6 Signal sensitivity regulates clonal family DD

The findings of clonal concordance in DD and independent signal integration indicates

that a major decision is taken by the mother cell and passed along the offspring to

ultimately shape the whole family. We question if the inherited features can be ex-

plained by signal perception. In particular, we reason that if the signal receptor levels

are uncorrelated then, at the clonal level, stimuli contributions should be independent.

Otherwise, we would expect that receptor correlation would lead to dependent signal

integration, which is not supported by our findings. Under the conditions previously

considered (Figs. 2.2, 2.3, 2.7 and 2.10), CD28 and interleukin-2 receptor chain alpha

(IL-2Rα) levels were found relatively uniform, with a Spearman’s correlation of 0.16

(Fig. 2.12). This agreed with our hypothesis of costimuli independence.

Subsequently, we investigated whether difference in the mother cell’s receptor levels

correlate with the clonal size at quiescence. To this end, we measured mDD regulations

from naive OT-I/Bcl2l11−/− CD8+ T cells that were sorted into high and low CD28

level populations, noted CD28hi and CD28lo respectively (Fig. 2.13a). Little expansion

was observed from sorting when no αCD28 was added to the culture (open circles, Fig.

2.13b-d). With the inclusion of such costimulatory signal, we recorded a 50% increase

in the population size (closed circles, Fig. 2.13b,c) and an increase in mDD up to

approximatively 0.6 relative to the CD28lo population (black arrow, Fig. 2.13c,d). We

conclude that initial differences in CD28 receptor levels contributes to the variation of

clonal DD.

A different behaviour was observed when naive T cells were sorted for IL-2Rα high

(IL-2Rαhi) and low (IL-2Rαlo) levels prior to first division (Fig. 2.13e): the sorting
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remarkably well (see also, Supplementary Fig. 7). In order to test
the statistical hypothesis that the convolutions are independent it
was necessary to create a non-standard test based on previous
results (explained in Methods), giving P values of 0.399 and 0.237
for maxDD and mDD, respectively, and thus the hypothesis of
independent additivity of aCD28 and IL-2 is not rejected.

Signal sensitivity regulates clonal family DD. Taken together,
the combination of strong clonal concordance in DD and
independent additivity of signals traces a large component of DD
fate programming to the initial founder cells. Thus we speculated
that variation in clonal fates might be traced to measurable
differences in levels of cellular components associated with signal
perception. In particular, for signal integration to be independent
at the clonal level, we reasoned that receptor levels for different
signals would be uncorrelated in activated cells. If this were not
correct, we expect correlated receptor levels would lead to
dependence of signal strength between costimuli, which was not
observed.

To identify possible sources of individual founder cell variation
we asked whether differences in critical receptor levels for the
stimuli tested in Figs 2–5 correlated with subsequent family clone
size. CD28 and interleukin-2 receptor chain alpha (IL-2Ra) levels
just prior to the first division were relatively uniform
(Supplementary Fig. 8) (Spearman’s correlation of 0.16),
supporting the finding of independence of signal effect on DD
in clonal families. To investigate if CD28 levels influenced DD, we
sorted naive OT-I/Bcl2l11! /! CD8þ T cells into CD28 high
(CD28hi) and low (CD28lo) expressing populations (Fig. 6a) and
measured the effect on mDD. Residual aCD28 antibody from
sorting had little effect on cell expansion (open circles, Fig. 6b–d).
When aCD28 was added to the culture the CD28hi population
had a B0.6 division increase in mDD relative to CD28lo cells
(black arrow, Fig. 6c,d), resulting in an B50% increase in cell
expansion (closed circles, Fig. 6b,c). Thus, differences in initial
CD28 receptor level exhibited by the naive T-cell population did
contribute to the founder cell variation in DD.

In contrast, sorting for IL-2Ra high (IL-2Rahi) and low
(IL-2Ralo) levels prior to first division (Fig. 6e) gave a shift of
B0.73 divisions in mDD irrespective of whether IL-2 was present
in the culture (Fig. 6f–h). As IL-2Ra is regulated by the strength
of TCR stimulation11,23,24, the difference in expression between
IL-2Rahi and IL-2Ralo cells likely reflects intrinsic differences
in cellular TCR stimulation strength due to stochastic antigen

encounter, consistent with the observation that TCR stimulation
strength regulates DD9.

The observation that mDD in this system was not affected by
IL-2Ra level, but was altered by the ligand IL-2, implies that
within the range of IL-2Ra levels found in the stimulated
population transmission of signal was not limited by this
component of the multi-subunit receptor. We suggest this result
is explained by previous studies that demonstrate the IL-2Ra
expression is in excess and far exceeds the number of IL-2Rb and
g chains, the receptor units required to transmit IL-2 signals25,26.
Given this conclusion, IL-2Ra expression would not affect the
independence of IL-2 signal integration with other co-receptors.
Thus uncorrelated signal integration is dependent not only on the
receptor levels, but the degree to which this variation changes
signal sensitivity.

The conclusion that DD fate identifies with IL-2Ra and CD28
expression levels before first division is further illustrated
in Supplementary Fig. 9. OT-I/Bcl2l11! /! CD8þ T cells were
sorted for CD28hi expression (top 20%), stimulated by N4
self-presentation, then sorted at 26 h for IL-2Rahi (top 35% of
population) and monitored for 72 h in media supplemented with
hIL-2. The variation in division fate in these cells was compared
with that of an unsorted population control. As predicted, sorting
significantly reduced the variation in DD outcomes, with a
reduction in the population variance from 1.3 to 0.67.

Discussion
Cellular replication is a simple, effective mechanism for
generating a large number of antigen-specific clones from rare
precursor cells. During an acute response in vivo a CD8þ T cell
can divide up to 15–20 times27–29 and give rise to numerous
classes of effector and memory cell types, all with identical
antigen receptors. In vivo single-family tracking studies have
revealed significant heterogeneity in the family size of identical
cells and a strong concordance in familial differentiation fate2,3.
Other studies have ascribed variation in fates to early
division bifurcations, and numerous extrinsic signals known to
influence the pattern of T-cell regulation14,15,30. Thus, the relative
contribution of extrinsic and intrinsic differences to the fate of
otherwise identical cells following stimulation is currently of great
interest.

We sought to gain insight into this question by investigating
the genesis of heterogeneity following stimulation of apparently
identical T cells placed under controlled stimulatory conditions.
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Figure 5 | Stimuli effects on DD sum independently at the level of the clonal family tree. OT-I/Bcl2l11! /! CD8þ T cells labelled with a division tracking
dye multiplex were stimulated with N4 peptide±aCD28 (2mg ml! 1) for 26 h, sorted for one clone per labelling configuration per new well then
cultured±hIL-2 (1 U ml! 1) as described in Fig. 2. All cultures contained S4B6 (25mg ml! 1). Empirical cumulative distribution functions (eCDF) of
measures of clonal expansion (a) maximum DD (maxDD) and (b) mean DD (mDD) for each individual stimulation condition (left panel). To test clonal
signal addition, the convoluted distribution of the statistics from (N4)þ (N4þ aCD28þ IL-2) and (N4þaCD28)þ (N4þ IL-2) were compared (right
panel, see Methods). Vertical dashed lines represent mean of the pooled clones. Dotted lines show 95% confidence intervals. A non-standard w2-test of
independence (see Methods) was not rejected for either maxDD (P¼0.399) or mDD (P¼0.237). Results from a second independent experiment are
shown in Supplementary Fig. 7.
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remarkably well (see also, Supplementary Fig. 7). In order to test
the statistical hypothesis that the convolutions are independent it
was necessary to create a non-standard test based on previous
results (explained in Methods), giving P values of 0.399 and 0.237
for maxDD and mDD, respectively, and thus the hypothesis of
independent additivity of aCD28 and IL-2 is not rejected.

Signal sensitivity regulates clonal family DD. Taken together,
the combination of strong clonal concordance in DD and
independent additivity of signals traces a large component of DD
fate programming to the initial founder cells. Thus we speculated
that variation in clonal fates might be traced to measurable
differences in levels of cellular components associated with signal
perception. In particular, for signal integration to be independent
at the clonal level, we reasoned that receptor levels for different
signals would be uncorrelated in activated cells. If this were not
correct, we expect correlated receptor levels would lead to
dependence of signal strength between costimuli, which was not
observed.

To identify possible sources of individual founder cell variation
we asked whether differences in critical receptor levels for the
stimuli tested in Figs 2–5 correlated with subsequent family clone
size. CD28 and interleukin-2 receptor chain alpha (IL-2Ra) levels
just prior to the first division were relatively uniform
(Supplementary Fig. 8) (Spearman’s correlation of 0.16),
supporting the finding of independence of signal effect on DD
in clonal families. To investigate if CD28 levels influenced DD, we
sorted naive OT-I/Bcl2l11! /! CD8þ T cells into CD28 high
(CD28hi) and low (CD28lo) expressing populations (Fig. 6a) and
measured the effect on mDD. Residual aCD28 antibody from
sorting had little effect on cell expansion (open circles, Fig. 6b–d).
When aCD28 was added to the culture the CD28hi population
had a B0.6 division increase in mDD relative to CD28lo cells
(black arrow, Fig. 6c,d), resulting in an B50% increase in cell
expansion (closed circles, Fig. 6b,c). Thus, differences in initial
CD28 receptor level exhibited by the naive T-cell population did
contribute to the founder cell variation in DD.

In contrast, sorting for IL-2Ra high (IL-2Rahi) and low
(IL-2Ralo) levels prior to first division (Fig. 6e) gave a shift of
B0.73 divisions in mDD irrespective of whether IL-2 was present
in the culture (Fig. 6f–h). As IL-2Ra is regulated by the strength
of TCR stimulation11,23,24, the difference in expression between
IL-2Rahi and IL-2Ralo cells likely reflects intrinsic differences
in cellular TCR stimulation strength due to stochastic antigen

encounter, consistent with the observation that TCR stimulation
strength regulates DD9.

The observation that mDD in this system was not affected by
IL-2Ra level, but was altered by the ligand IL-2, implies that
within the range of IL-2Ra levels found in the stimulated
population transmission of signal was not limited by this
component of the multi-subunit receptor. We suggest this result
is explained by previous studies that demonstrate the IL-2Ra
expression is in excess and far exceeds the number of IL-2Rb and
g chains, the receptor units required to transmit IL-2 signals25,26.
Given this conclusion, IL-2Ra expression would not affect the
independence of IL-2 signal integration with other co-receptors.
Thus uncorrelated signal integration is dependent not only on the
receptor levels, but the degree to which this variation changes
signal sensitivity.

The conclusion that DD fate identifies with IL-2Ra and CD28
expression levels before first division is further illustrated
in Supplementary Fig. 9. OT-I/Bcl2l11! /! CD8þ T cells were
sorted for CD28hi expression (top 20%), stimulated by N4
self-presentation, then sorted at 26 h for IL-2Rahi (top 35% of
population) and monitored for 72 h in media supplemented with
hIL-2. The variation in division fate in these cells was compared
with that of an unsorted population control. As predicted, sorting
significantly reduced the variation in DD outcomes, with a
reduction in the population variance from 1.3 to 0.67.

Discussion
Cellular replication is a simple, effective mechanism for
generating a large number of antigen-specific clones from rare
precursor cells. During an acute response in vivo a CD8þ T cell
can divide up to 15–20 times27–29 and give rise to numerous
classes of effector and memory cell types, all with identical
antigen receptors. In vivo single-family tracking studies have
revealed significant heterogeneity in the family size of identical
cells and a strong concordance in familial differentiation fate2,3.
Other studies have ascribed variation in fates to early
division bifurcations, and numerous extrinsic signals known to
influence the pattern of T-cell regulation14,15,30. Thus, the relative
contribution of extrinsic and intrinsic differences to the fate of
otherwise identical cells following stimulation is currently of great
interest.

We sought to gain insight into this question by investigating
the genesis of heterogeneity following stimulation of apparently
identical T cells placed under controlled stimulatory conditions.
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Figure 5 | Stimuli effects on DD sum independently at the level of the clonal family tree. OT-I/Bcl2l11! /! CD8þ T cells labelled with a division tracking
dye multiplex were stimulated with N4 peptide±aCD28 (2mg ml! 1) for 26 h, sorted for one clone per labelling configuration per new well then
cultured±hIL-2 (1 U ml! 1) as described in Fig. 2. All cultures contained S4B6 (25mg ml! 1). Empirical cumulative distribution functions (eCDF) of
measures of clonal expansion (a) maximum DD (maxDD) and (b) mean DD (mDD) for each individual stimulation condition (left panel). To test clonal
signal addition, the convoluted distribution of the statistics from (N4)þ (N4þ aCD28þ IL-2) and (N4þaCD28)þ (N4þ IL-2) were compared (right
panel, see Methods). Vertical dashed lines represent mean of the pooled clones. Dotted lines show 95% confidence intervals. A non-standard w2-test of
independence (see Methods) was not rejected for either maxDD (P¼0.399) or mDD (P¼0.237). Results from a second independent experiment are
shown in Supplementary Fig. 7.
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Figure 2.10: Stimuli effects on DD sum independently at the level of the clonal
family tree. [Corresponding to Figure 5 from Marchingo, Prevedello et al., (2016)] From
the data as in Figure 2.8, empirical cumulative distribution functions (eCDF) for measures of
clonal expansion, (a) maximum DD (maxDD) and (b) mean DD (mDD), are plotted for each
individual stimulation condition (left panel). To test clonal signal addition, the convoluted
distribution of the statistics from (N4)+(N4+αCD28+IL-2) and (N4+αCD28) +(N4+IL-2)
were compared (right panel and Section 3.4). Vertical dashed lines represent mean of the
pooled clones. Dotted lines show 95% confidence intervals (see Section 2.3.4). A non-standard
χ2-test of independence (see Chapter 4) was not rejected for either maxDD (p-value = 0.399)
or mDD (p-value = 0.377). Results from a second independent experiment are shown in Fig.
2.11.

for IL-2Rα induced a 0.73 increase in mDD irrespective of IL-2 addition to the culture

(Fig. 2.13f-h).

It was previously shown that IL-2Rα is regulated by the TCR stimulation strength

(Zehn et al., 2009; Wensveen et al., 2010; Gottschalk et al., 2012). Therefore, we

reason that sorting for IL-2Rα is a proxy for a discrimination based on intrinsic TCR

stimulation strength, which itself impacts on DD (Marchingo et al., 2014). Given that

mDD was extended by IL-2 presence, but left unaffected by initial IL-2Rα expression,

indicates that the inflammatory signal integration was not entirely explained on this

multi-subunit receptor. Previous studies showed that IL-2Rα level exceeds the IL-2Rβ

and γ chains level, whose compound is necessary for the IL-2 transmission (Smith
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Supplementary Figure 7. Stimuli effects on DD sum independently at the level of the clonal family tree. 
OT-I/Bcl2l11-/- CD8+ T cells labelled with a division tracking dye multiplex were stimulated with N4 peptide ± 
αCD28 (2 µg mL-1) for 26 hours, sorted for one clone per labelling configuration per new well then cultured ± 
hIL-2 (1 U mL-1) as described in Fig. 2. All cultures contained S4B6 (25 µg mL-1). Empirical cumulative 
distribution functions (Ecdf) of clonal (a) maxDD and (b) mDD for individual stimulation condition (left 
panel). To test clonal signal addition the convoluted distribution of the statistics from (N4) + (N4 + αCD28 + 
IL-2), with (N4 + αCD28) + (N4 + IL-2) were compared (right panel and Methods). Vertical dashed lines 
represent mean of the pooled clones. Dotted lines show 95% confidence intervals. A non-standard chi-square 
test for independence (see Methods) was not rejected for either maxDD (P=0.613) or mDD (P=0.6).
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Supplementary Figure 7. Stimuli effects on DD sum independently at the level of the clonal family tree. 
OT-I/Bcl2l11-/- CD8+ T cells labelled with a division tracking dye multiplex were stimulated with N4 peptide ± 
αCD28 (2 µg mL-1) for 26 hours, sorted for one clone per labelling configuration per new well then cultured ± 
hIL-2 (1 U mL-1) as described in Fig. 2. All cultures contained S4B6 (25 µg mL-1). Empirical cumulative 
distribution functions (Ecdf) of clonal (a) maxDD and (b) mDD for individual stimulation condition (left 
panel). To test clonal signal addition the convoluted distribution of the statistics from (N4) + (N4 + αCD28 + 
IL-2), with (N4 + αCD28) + (N4 + IL-2) were compared (right panel and Methods). Vertical dashed lines 
represent mean of the pooled clones. Dotted lines show 95% confidence intervals. A non-standard chi-square 
test for independence (see Methods) was not rejected for either maxDD (P=0.613) or mDD (P=0.6).
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Figure 2.11: Stimuli effects on DD sum independently at the level of the clonal fam-
ily tree, experimental repeat. [Corresponding to Supplementary Figure 7 from Marchingo,
Prevedello et al., (2016)] Procedure described in 2.10 for data as in Fig. 2.8. A non-standard
χ2-square test for independence (see Chapter 4) was not rejected for either maxDD (p-value
= 0.613) or mDD (p-value = 0.6).

and Cantrell, 1985; Feinerman et al., 2010). From these findings, we reason that IL-2

integration is independent of other co-receptor and the independence not affected by

IL-2Rα expression. In particular, the dependence of signal integration with the receptor

levels is conditioned by the extent of signal sensitivity ultimately achieved.

Fig. 2.14 recapitulates the effect that sorting for CD28 and IL-2Rα has on DD expan-

sion. OT-I/Bcl2l11−/− CD8+ T cells were selected for CD28hi expression (top 20%)

and stimulated by N4 self-presentation. At 26 h the population was sorted for IL-2Rαhi

(top 35%), cultivated with the addition of hIL-2 and harvested at 72 h for the com-

parison with the unsorted control population. As expected, the DD variance decreased

from 1.3 in the unsorted pool to 0.67 in the sorted one.
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Supplementary Figure 8. CD28 and IL-2Rα levels prior to the first division are relatively uniform. 
CD28 and IL-2R� expression of activated CTV labelled OT-I/Bcl2l11-/- CD8+ T cells stimulated for 24 hours 
with N4 peptide (0.01 µg mL-1) in the presence of �CD28	(2 µg mL-1), S4B6, (25 µg mL-1) and hIL-2 (1 U 
mL-1). Representative of duplicate culture wells from 3 independent experiments.  
	
	 	

IL-2Rɑ
CD

28

101 102 103 104 105
101

102

103

104

105

Figure 2.12: CD28 and IL-2Rα levels prior to the first division are relatively uni-
form. [Corresponding to Supplementary Figure 8 from Marchingo, Prevedello et al., (2016)]
CD28 and IL-2Rα expression of activated CTV labelled OT-I/Bcl2l11−/− CD8+ T cells stimu-
lated for 24 h with N4 peptide (0.01 µg ml−1) in the presence of αCD28 (2 µg ml−1), S4B6, (25
µg ml−1) and hIL-2 (1 U ml−1). Representative of duplicate culture wells from 3 independent
experiments.

To do so we have introduced a novel multiplex clonal
division-tracking assay based on the combinatorial use of
division tracking dyes. This method allowed us to detect
cell division fate of clonal families of identical TCR transgenic
T cells for up to 6–7 generations using the single-cell technology
of flow cytometry.

We applied this method to examine the clonal influence
on variation in DD, the generation at which a stimulated cell
returns to a quiescent state, a feature known to be highly variable
within a population of stimulated cells9,12,13. The results were
unequivocal: our experiments revealed progeny cells from clonal
families ceased dividing in the same or adjacent generations with
high probability, identifying inter-clonal variation as the principle
source of DD diversity under these conditions. This conclusion
for T cells aligns with earlier results from B-cell filming that
revealed similarly strong concordance in family DD after
stimulation by the toll-like receptor agonist CpG DNA12.
Together these data lead us to a general hypothesis: that
stimulation of a resting T or B cell initiates an intrinsic
sequence of symmetric divisions with an automated return to
quiescence.

Our investigation of DD highlights strong familial concordance
raising the question of how branches or discordance might occur.
Many studies have shown that T-cell fate is influenced by
extrinsic signals30–32. The relative contribution of for example,
ligands found on an antigen presenting cell (APC) fostering an
asymmetry in an early division14,33, or variation in exposure to
APC and different antigen experiences as the cells divide will also
percolate through to branching changes in family responses.
Depending on where alternative signals are experienced,
whole families with alternative branching could be created.
Our assay is well suited to investigate the contribution of
controlled delivery of extrinsic systems especially where direct
filming would be technically difficult, as is the case when
stimulation is provided by antigen presenting cells or a stromal
cell source is necessary.

For T cells, DD is sensitive to costimulatory and cytokine
signals, and our multiplex dye method allowed us to assess the
manner of signal addition. To do so we developed a new
mathematical framework to study the addition, or concatenation,
of family trees, as well as developing a novel statistical test to
challenge the hypothesis of independent signal integration.
Application of these techniques established that the clonal level
effects on generation number of summation of T-cell stimuli are
consistent with them being stochastic and independent. Given the
simplicity of our system, this conclusion allowed us to trace the
source of the stochastic heterogeneity in DD to differences in
programming of the initial naive cell.

These findings turned our attention to identifying cellular
features and molecular determinants that might account for the
differences in DD imprinting in each founder cell. Here the
results for CD28 were informative. OT-I/Bcl2l11! /! CD8þ

T cells express a broad log-normally distributed range of CD28
on the ‘identical’ population. This variation has significant
consequences as the expansion achieved corresponds to the
strength of signal integrated and the resulting DD of the cell. The
cytokine IL-2 is an important contributor to T-cell responses.
Our culture system eliminated autocrine IL-2 contributions that
would likely serve to increase the variation in each family tree as
local concentrations develop. Furthermore, our analysis of the
receptor indicated a broad distribution following this high affinity
stimulation level, but receptor numbers were not limiting for
the transmission of the IL-2 signal. Published studies show
that weaker stimulation leads to lesser expression of the
receptor11,23,24. For sufficiently weak stimulation, we expect a
point will be reached where the IL-2 produced and the receptor
level expressed promote variation in DD among similar cells due
to changes in local conditions. Examining this possibility requires
further in vitro studies, followed by in vivo experiments to
determine its functional significance.

Many additional receptors transmit signals that influence the
final extent of expansion and division progression including
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Figure 6 | Inter-clonal variation in DD is regulated by receptor sensitivity and clonal experience. (a–d) Naive CTV-labelled OT-I/Bcl2l11! /! CD8þ

T cells were sorted into (a) CD28 high and low expressing populations and stimulated with N4 peptide±aCD28 agonist antibody (20 mg ml! 1).
All cultures contained S4B6 (25mg ml! 1). Cell number versus (b) time and (c) mean division number (MDN) were measured. (d) An estimation of the
percentage of the starting cells whose progeny are contributing to the response at that time point, calculated by removing the effect of cell expansion
(percentage cohort number, see Methods) versus MDN. (e–h) Naive CTV-labelled OT-I/Bcl2l11! /! CD8þ T cells were stimulated with N4 peptide and
aCD28 (2mg ml! 1) for 25 h then sorted for (e) IL-2Ra high or low expression. Cells were placed back into culture±hIL-2 (3.16 U ml! 1) and cell number
versus (f) time and (g) MDN were measured and (h) percentage cohort number versus MDN calculated. Arrows indicate the difference in mDD between
populations when no additional ligand (grey) or ligand at the specified concentration (black) was added to the culture. Representative of two (a–d) or three
(e–h) independent experiments. Mean±s.e.m. of triplicate culture wells.
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Figure 2.13: Inter-clonal variation in DD is regulated by receptor sensitivity and
clonal experience. [Corresponding to Figure 6 from Marchingo, Prevedello et al., (2016)]
(a-d) Naive CTV-labelled OT-I/Bcl2l11−/− CD8+ T cells were sorted into (a) CD28 high and
low expressing populations and stimulated with N4 peptide ±αCD28 agonist antibody (20 µg
ml−1). All cultures contained S4B6 (25 µg ml−1). Cell number versus (b) time and (c) mean
division number (MDN) were measured (see A.1.7). (d) An estimation of the percentage of
the starting cells whose progeny are contributing to the response at that time point, calculated
by removing the effect of cell expansion (percentage cohort number, see A.1.8) versus MDN.
(e-h) Naive CTV-labelled OT-I/Bcl2l11−/− CD8+ T cells were stimulated with N4 peptide
and αCD28 (2 µg ml−1) for 25 h then sorted for (e) IL-2Rα high or low expression. Cells were
placed back into culture ±hIL-2 (3.16 U ml−1) and cell number versus (f) time and (g) MDN
were measured and (h) percentage cohort number versus MDN calculated. Arrows indicate
the difference in mDD between populations when no additional ligand (grey) or ligand at the
specified concentration (black) was added to the culture. Representative of two (a-d) or three
(e-h) independent experiments. Mean ± s.e.m. of triplicate culture wells.
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Supplementary	Figure	9.	Variation	in	DD	is	reduced	when	restricted	to	a	constrained	receptor	
range.	
Naïve	CTV	labelled	OT-I/Bcl2l11-/-	CD8+	T	cells	were	sorted	for	CD28hi	expression	(top	20%)	and	
stimulated	with	N4	peptide	+	αCD28	(2	µg	mL-1).	After	26	hours	cells	were	sorted	for	IL-2Rαhi	
expression	(top	35%)	and	placed	back	in	culture	with	hIL-2	(3.16	U	mL-1).	After	75	hours	cell	
proliferation	of	sorted	cells	and	unsorted	control	was	compared.	Cohort	number	vs	division	number	
fitted	with	normal	distributions.	Data	from	one	experiment. Mean ± s.e.m. of triplicate culture wells.  

Figure 2.14: Variation in DD is reduced when restricted to a constrained receptor
range. [Corresponding to Supplementary Figure 9 from Marchingo, Prevedello et al., (2016)]
Naive CTV labelled OT-I/Bcl2l11−/− CD8+ T cells were sorted for CD28hi expression (top
20%) and stimulated with N4 peptide + αCD28 (2 µg ml−1). After 26 h cells were sorted for
IL-2Rαhi expression (top 35%) and placed back in culture with hIL-2 (3.16 U ml−1). After
75 h cell proliferation of sorted cells and unsorted control was compared. Cohort number vs.
division number fitted with normal distributions. Data from one experiment. Mean ± s.e.m.
of triplicate culture wells.

2.4 Discussion

Given the small number of cells in the immune system that are specific to any one

antigen, their clones undergo extensive mitotic divisions in order to mount a robust

response. At the peak of their expansion, in vivo naive CD8+ T-cells can divide up to

15-20 times (Butz and Bevan, 1998; Murali-Krishna et al., 1998; De Boer et al., 2003)

and commit to different classes, such as memory or effector cells, that share the same

specificity to the antigen that initially activated the founder cell. Previous studies,

using single clone tracking methods, showed that highly heterogeneous family size and

similar cell specialisation arose in vivo from identical precursors cells (Buchholz et al.,

2013; Gerlach et al., 2013). In order to explain the heterogeneity of a T-cell population,

other research teams have proposed mechanism of asymmetric cell division (ACD) that

takes place at the early stages of the expansion phase (Chang et al., 2007; Reiner and

Adams, 2014; Buchholz et al., 2016). Given the growing interest surrounding how

extrinsic and intrinsic factors generate diversity from a pool of similar cells, we analyse

T cells in a controlled in vitro environment to study their external and programmed

regulation.

To this end, our collaborators implemented a novel multiplex clonal assay that allowed

the tracking of division fate up to 6-7 generations from cells of the same progeny and

identical TCR, thanks to the combination of division tracking dyes and flow cytometry

technology. Together, we analysed the output from this method to study the clonal
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Chapter 2. Independent signal integration regulates T-cell clonal division fate

contribution to population DD, as the generation in which cells stop dividing is highly

variable (Turner et al., 2008; Hawkins et al., 2009; Marchingo et al., 2014). Under

different stimuli, we observed that cells from the same clone turn quiescent in the

same or adjacent generation, thus indicating inter-clonal variation as the main cause

for population DD heterogeneity. Results for T cells are analogous to those for B cells,

where time-lapse microscopy technique showed DD fate in related cells was highly

correlated when stimulated by the toll-like receptor agonist CpG DNA (Hawkins et al.,

2009).

To explain these findings we hypothesise that, when stimulated, resting T or B cells

undergo several rounds of divisions until destiny is reached, which is programmed

and inherited from the founder. While this possibility accounts for strong concordant

families, the discordance that arises must be explained. Previous studies have analysed

the effect of extrinsic signals on T-cell fate (Mescher et al., 2006; Chen and Flies, 2013;

Buchholz et al., 2016). In particular, costimuli provided by the contact with antigen

presenting cell (APC) promotes asymmetric division in early generations (Chang et al.,

2007; King et al., 2012), and variation in APC or antigen exposure can shape the fate

of a single familial branch. The multiplex assay, presented in this chapter, is ideal for

the study of the effect of extrinsic signals in a controlled environment, as it avoids the

technical difficulties of time-lapse microscopy that are crucial in some systems such as

with APC or stromal cells stimulation.

With the multiplex method we investigated the effects of costimulatory and cytokine

signals to T-cell DD. Our analysis necessitated the development of a new mathematical

framework for the concatenation of family trees to study signal additivity (see Section

3.4). Using a novel statistical test (see Chapter 4) we probed the hypothesis that the

contribution to DD of CD28 was not affected by IL-2 and vice versa. Together, these

techniques support the view that in T cells signal integration occurs as a linear and

independent sum of stochastic contributions from costimulatory and cytokine signals.

These conclusions indicated that a DD variability is an inherited feature that may be

traced back to differences in molecular determinants of founder cells.

Thanks to the controlled system in consideration, it was possible to investigate if cos-

timulatory receptors CD28 and IL-2Rα were responsible of the early DD programming.

In naive OT-I/Bcl2l11−/− CD8+ T cells, CD28 is approximatively log-normally dis-

tributed and higher levels induce a stronger signal reception that leads to an increased

DD expansion. To analyse the role of cytokine IL-2 in T-cell DD, we eliminated au-

tocrine IL-2 in the culture to avoid local influence that may add uncontrolled variations

to the system. As for CD28, we studied the effect on clonal DD of IL-2Rα initial levels,

which is highly variable under N4 antigen stimulation. We found that this receptor
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was not the limiting factor for the transmission of the IL-2 signal. Previous studies

have shown that IL-2Rα expression is correlated with stimulation strength (Zehn et al.,

2009; Wensveen et al., 2010; Gottschalk et al., 2012). If this stimulation were sufficiently

weak, the reception of autocrine IL-2 could lead to local effects that may increase the

clonal DD variation. More in vitro studies are required to interrogate such hypothesis,

with subsequent in vivo experiments to determine its functional significance.

There are other receptors that affect the progression through division of T-cell clones,

such as CD27, IL12, IL-4, IL-2 and IL-6 (Curtsinger and Mescher, 2010; Marchingo

et al., 2014; Starbeck-Miller et al., 2014; Voisinne et al., 2015). Assuming that these

receptors are variable from cell to cell and expressed independently to one another, the

resulting population would present heterogeneous potentials with different behaviours

under the same condition. We speculate that the diversity of receptor combinations

in the initial pool would ultimately display a consistent behaviour, given that the

stochastic drivers of receptor heterogeneity are reproducible. Consequence of this would

be a population with heterogeneous DD fate and in various state, such as effector or

memory, which was found to be related with division progression (Gett and Hodgkin,

1998; Schlub et al., 2009). Further investigation combining index sorting and multiplex

assay methods together would cast light on these effects due to different receptor levels.

Given the remarkable concordance from the controlled in vitro experiments we anal-

ysed, a question arises concerning how much heterogeneity is determined by inter-clonal

variation of concordant clones, rather than extrinsic factors, during an in vivo infec-

tion of CD8+ T cell. Current in vivo experiments cannot distinguish between these two

sources of variation, but in vivo data can be interrogated to test whether a programmed

and concordant DD is admissible. Thus, the DD distribution from Marchingo et al.

(2014) in vivo population experiments was estimated to infer the relative familial size

distribution under the hypothesis of concordant clonal DD. As a result, a small number

of large clones were responsible for most of the total response size, an outcome that is

quantitatively similar to in vivo studies from Buchholz et al. (2013) and Gerlach et al.

(2013) (Fig. 2.15a).

To achieve this comparison, data for the burst size of individual OT-I CD8+ T-cell

clones at response peak during a Listeria monocytogenes-OVA infection was obtained

from previous clonal studies from Gerlach and colleagues (data from Fig. 2.1c, clones

distinguished using genetic barcoding technology from Gerlach et al. (2013)) and Buch-

holz and colleagues (data from Fig. 2.1e, clones distinguished using a congenic marker

matrix from Buchholz et al. (2013)). This was compared to a previously published

population time course of OT-I/FucciRG CD8+ T cells responding to an HKx31-OVA

influenza infection (Fig. 2.1d,e from Marchingo et al. (2014)). The DD distribution for
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Supplementary Figure 10. Concordant T cell division destiny is consistent with previous in vivo 
population and clonal response data. 
Data for the burst size of individual OT-I CD8+ T cell clones at response peak during a Listeria 
monocytogenes-OVA infection was obtained from previous clonal studies from Gerlach and colleagues (data 
from Fig. 1C, clones distinguished using genetic barcoding technology 1) and Buchholz and colleagues (data 
from Fig. 1E, clones distinguished using a congenic marker matrix 2). This was compared to a previously 
published population time course of OT-I/FucciRG CD8+ T cells responding to an HKx31-OVA influenza 
infection (Fig. 1D, E from Marchingo et al.3). The DD distribution for the OT-I/FucciRG CD8+ T cells in this 
experiment was estimated by mathematical fitting using the Cyton model (a) The clonal contribution to T cell 
response magnitude was predicted for population response data (black circles) by assuming the clonal progeny 
exhibited concordant DD and followed the DD distribution estimated previously by Cyton fitting3. This was 
compared to the contribution to response magnitude of individual OT-I CD8+ T cell clones from Gerlach and 
colleagues (blue lines, each line shows data from an individual mouse) and Buchholz and colleagues (red line). 
(b) By assuming that DD was clonally concordant the DD distribution generated by individual clonal families 
in Buchholz et. al. 2 was estimated from the response magnitude (see Methods) and compared to the DD 
distribution estimated by Cyton fitting to the population data in Marchingo et al.3. Note: Due to the read-count 
threshold that was applied to remove background noise in Gerlach et al. 1, data on small families is also lost. 
As a result it is not possible to estimate the full response DD distribution for this data. 
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Figure 2.15: Concordant T-cell division destiny is consistent with previous in vivo
population and clonal response data. [Corresponding to Supplementary Figure 10 from
Marchingo, Prevedello et al., (2016)] (a) The clonal contribution to T cell response magnitude
was predicted for population response data (black circles) by assuming the clonal progeny
exhibited concordant DD and followed the DD distribution estimated previously by Cyton
fitting (Marchingo et al., 2014). This was compared to the contribution to response magnitude
of individual OT-I CD8+ T-cell clones from Gerlach and colleagues (blue lines, each line shows
data from an individual mouse) and Buchholz and colleagues (red line). (b) By assuming
that DD was clonally concordant the DD distribution generated by individual clonal families
in Buchholz et al. (2013) was estimated from the response magnitude (see Section A.1.9 in
Appendix A) and compared to the DD distribution estimated by Cyton fitting to the population
data in Marchingo et al. (2014). Due to the read-count threshold that was applied to remove
background noise in Gerlach et al. (2013), data on small families is also lost. As a result it is
not possible to estimate the full response DD distribution for this data.

the OT-I/FucciRG CD8+ T cells in this experiment was estimated by mathematical

fitting using the Cyton model. The inferred DD distribution of Marchingo et al. (2014)

was also compared with Buchholz et al. (2013), which were both distributed over 10-15

generations (Fig. 2.15b).

Although these comparisons are consistent with the hypothesis of clonally regulated

DD, more investigations are required to confirm in vivo intrinsic concordance of DD

under a wider range of conditions, the interplay with extrinsic signals and the conse-

quences for cellular differentiation to effector or memory state. The findings discussed

so far are of fundamental importance to understand clonal regulation of T cells and

will impact the design of predictive models for T-cell response. Given the growing

importance of anti-cancer therapies that expand and reinvigorate highly clonal in vitro

and in vivo T-cell responses (Restifo et al., 2012; June et al., 2015), this better un-

derstanding of the fundamental nature and source of the variation in burst-size will

facilitate rational optimization of T-cell manipulation.
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Chapter 3

Mathematical methods for

multiplex clonal assay data

analysis

3.1 Abstract

In this chapter we present the mathematical framework we developed for the analysis

of the multiplex clonal assay output. We motivate the mathematical assumptions by

referring to the biological and experimental constraints reported in Chapter 2. First,

we introduce the data structures for clones and multiplexed data, i.e. family trees and

family vectors respectively. Then, we formalise the statistics for clonal progression and

study how these are affected by partial recovery of the cells within a clone. In order

to probe linear signal integration (as in Section 2.3.5 of Chapter 2), we define a novel

class of operations between family trees that describes the action of two stimuli linearly

contributing to the clonal expansion when simultaneously provided. When two family

trees are transformed by any operation from this class, the resulting tree presents a

family vector that is the discrete convolution of the family vectors relative to the initial

family trees. As a consequence, we set the discrete convolution as the all-encompassing

representative for the rooted trees operations considered. Since the statistics for clonal

progression are linear with respect to discrete convolution, we set the basis to assess

the hypothesis that signal integration is independent using a statistical test for equality

in distribution of two distinct sums of independent and discrete random variables that

is derived in Chapter 4.
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3.2 Structures for clonal data

3.2.1 Family trees

In Chapter 1 we discussed how various experimental protocols provide different infor-

mations concerning a particular system under analysis. We mentioned methods that

provide the clonal size or a proxy for it, exploiting adoptive transfer of labelled single

cells (Buchholz et al., 2013) or cellular barcoding technique (Gerlach et al., 2013), or

population cell number, through cohort experiments (King et al., 2012; Lemâıtre et al.,

2013; Marchingo et al., 2014; Kinjyo et al., 2015; Heinzel et al., 2017). Time-lapse mi-

croscopy (Hawkins et al., 2009; Zaretsky et al., 2012; Dowling et al., 2014) is a technique

that, in vitro, allows the recording of the entire clonal history, that consists in division

and death times plus familial relation of each cell (see Fig. 3.1 top), although it typ-

ically requires a substantial processing workload, to the point that software solutions

for automatised cell tracking have been developed (Rieger et al., 2009; Kan et al., 2011;

Pham et al., 2013; Shimoni et al., 2013; Chakravorty et al., 2014; Mankowski et al.,

2015). Because of the amount of details that can be recovered, time-lapse microscopy

provides remarkable information at the single-cell level and serves as benchmark for

other methods’ output.

Although, time-lapse microscopy presents some limitations. For example, tracking is

lost when cells cannot be distinguished from one frame to the next, which occurs in case

of high motility or when a cell, adjacent to another one, divides. Also, the formation of

three-dimensional blocks, that would impede the detection of some cells, is an hindrance

that concerns systems where cells adhere to each other or that must be cultured with

other cell types. We mention Duffy et al. (2012) as an example where an experimental

protocol was designed ad hoc to film the proliferation of B cells affected by cellular

adhesion.

The multiplex clonal assay, as described in Chapter 2, overcomes these physical limita-

tions as cells are separated when analysed through flow cytometry, which then enables

the recording of clonal membership, generation and state (quiescent or dividing) from

all the observed cells at a fixed time (see Fig. 3.1 middle).

Later, in Chapter 5, we shall see that multiple cell surface makers can also be mea-

sured simultaneously, allowing the statistical testing of independence of these markers,

or the phenotypes derived from them, with clonal or environmental structures and

the visualisation of division pattern in the first generation of cells. Still, one of the

main drawbacks is the impossibility of recovering the information concerning familial

relationships.
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As a clonal family is a collection of the single initial progenitor plus its offspring cells and

the genealogical relationships they establish, it is naturally represented by a rooted tree

(see Fig. 3.1 bottom), which is an element from graph theory whose formal definition

we report here adapted from Rosen (2011). We forewarn that this notation does not

account for any temporal information, concerning, for example, the occurrence and

duration of division events. In fact, we study a clonal family only as the generational

configuration of its cells at a fixed time, either when quiescent (see Chapter 2) or during

the expansion phase (see Chapter 5).

Time

Generations:
0 1 2

t1 t2 t3

Dividing cell

Quiescent cell

Cell death

CLONAL HISTORY

MULTIPLEX DATA

FAMILY TREES

Figure 3.1: Genealogical structure of a clonal history at a given time. (Top panel)
Starting from a progenitor cell, a clonal family develops with time (from left to right) gener-
ating cells that have different lifespans (horizontal lines length) before dividing (blue circles),
turning quiescence (red circles) or ultimately dying (red crosses). (Middle panel) Data from
the multiplex clonal assay described in Chapter 2 are a sample of the evolving clone at a given
moment. Given three time points 0 < t1 < t2 < t3, the data recovered from the clone in top
panel are: a dividing clone with two cells in generation 1 (t1, left); a mixed-type clone with one
dividing cell in generation 1 and two quiescent in generation 2 (t2, centre); a quiescent clone
with four cells in generation 2 (t3, right). (Bottom panel) Below each sample from the middle
panel, the genealogical structure achieved by the recovery time point, relative to the sample, is
summarised into a rooted tree, whose root corresponds to the initial progenitor and is oriented
from left to right mirroring the temporal progression.

Definition 3.1 (Graph). A graph G = (V,E) consists of V , a non empty set of vertices
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(or nodes) and E, a set of edges. Each edge has either one or two vertices associated

with it, called its endpoints. An edge is said to connect its endpoints and the vertices

associated to such endpoints are said adjacent (or neighbours).

Definition 3.2 (Subgraph). A subgraph of a graph G = (V,E) is a graph H = (W,F ),

where W ⊆ V and F ⊆ E.

Definition 3.3 (Simple graph). A graph in which each edge connects two different

vertices and where no two edges connect the same pair of vertices is called a simple

graph.

Definition 3.4 (Directed/Undirected graph). A graphG = (V,E) is said to be directed

if each edge is associated with an ordered pair of vertices. A graph G = (V,E) is said

to be undirected if each edge is associated with an unordered pair of vertices.

Definition 3.5 (Path and circuit). Let n be a nonnegative integer and G an undirected

graph. A path of length n from u to v in G is a sequence of n edges e1, . . . , en of G

for which there exists a sequence x0 = u, x1, . . . , xn−1, xn = v of vertices such that ei

has, for i = 1, . . . , n, the endpoints xi−1 and xi. When the graph is simple, we denote

this path by its vertex sequence x0, x1, . . . , xn (because listing these vertices uniquely

determines the path). The path is a circuit if it begins and ends at the same vertex,

that is, if u = v, and has length greater than zero. The path or circuit is said to

pass through the vertices x1, x2, . . . , xn−1 or traverse the edges e1, e2, . . . , en. A path

or circuit is simple if it does not contain the same edge more than once.

Definition 3.6 (Connectivity). An undirected graph is called connected if there is a

path between every pair of distinct vertices of the graph. An undirected graph that

is not connected is called disconnected. We say that we disconnect a graph when we

remove vertices or edges, or both, to produce a disconnected subgraph.

Definition 3.7 (Tree). A tree is a connected undirected graph with no simple circuits.

In particular, for any two vertices v, w in a tree there exists one and only one path

having v and w as endpoints.

Definition 3.8 (Rooted tree). A rooted tree is a tree in which one vertex has been

designated as the root. A vertex different than the root that is connected to one and

only one other node is called leaf. A vertex that is neither root or leaf is referred to as

internal. If the rooted tree is degenerate, presenting only one the root node, then we

set the convention that such node is also a leaf. Given two vertices v, w of a rooted

tree, w is said descendent of v if the only path from the root to w passes through v.

In particular, w is called a child (or daughter) of v if w is also adjacent to v. Given a

rooted tree T and a vertex v of T , the generation of v in T is defined as length of the

only path from the root of T to v.
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• a is mother of b and c
• b and c are daughters of a
• b and c are siblings

Generations: 0 1 2 3

Progenitor/
Root node

Descendants of a

Dividing cell

Quiescent cell
a

b

c
rT

Clone/
Family tree

Subtree of T

T
T(a)

Figure 3.2: Family tree for the representation of a clone. A full binary rooted tree
T displays the familial configuration of a clonal family generated from a single progenitor rT ,
the root node in generation 0. Every cell is represented by a vertex whose colour indicates if
the cell ultimately divides (blue) or becomes quiescent (red). Every edge connects two nodes if
their cells establish a mother-daughter relationship. In particular, the mother cell is always in
previous generation than its daughter cell. Moreover, no cells in the same generation (siblings)
can be linked by an edge. The descendants of a cell is the collection its daughters and all their
subsequent offspring. Thus, the subtree rooted in a, i.e. T(a) within the box, is the subgraph
generated by a and all its descendants together connected.

Definition 3.9 (Subtree of a rooted tree). Given a tree T and a node v of T , the

subtree of T rooted in v is the subgraph of T obtained removing all nodes other than v

and its descendants and all the edges with at least one endpoint connecting a removed

node. We denote T (v) the subtree so defined.

As illustrated in Fig. 3.2, the representation of a clonal family through a rooted tree,

is achieved by identifying each cell with a different node and setting the ancestor cell’s

node as the root. Subsequently, the graph edges are determined so as to connect each

pair of nodes that are related to a mother-daughter pair of cells. We call such graph a

family tree.

In a family tree, the generation of a node is the length of the only path from the root

to such a node. This value indicates the number of mitotic division undergone from the

progenitor to obtain the cell relative to the node in question. The root-to-node paths

induce a natural orientation in a rooted trees placing mother cells closer to the root

node, previous in generation than their descendants. In particular, the left-to-right

orientation reflects the temporal direction (see Fig. 3.1). Moreover, as each cell has

either two daughters or none, a family tree belongs to a special class of trees called full

binary tree.
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Definition 3.10 (Full binary tree). A binary tree is a rooted tree such that its root

vertex is connected to a maximum of two nodes and every internal node has no more

than 2 children. In particular, for a binary tree, the maximum number of nodes in

generation k ≥ 0 attainable is 2k. A binary tree is full if its root vertex is connected

to either two or no nodes and every internal vertex has exactly 2 children.

Definition 3.11 (Family tree). For any fixed k ∈ N, Tk is the set of full binary trees

with nodes non-exceeding generation k. Any element of Tk is referred to as family tree.

The binary nature of family trees has important ramifications, from cohort normalisa-

tion to cell recovery quantification, which will be evident in the following sections.

3.2.2 Family vectors

In order to describe data from the experimental protocol presented in Chapter 2, we

need to find an alternative representation other than rooted trees, since familial rela-

tionships cannot be recorded by the multiplexed clonal assay. To this end, we associate

each clone to the vector of the counts of cells at a given time, which we call a family

vector. A family vector is an element v ∈ Nk0 such that vi is the number of cells found in

generation i, where by N0 = N ∪ {0} = {0, 1, 2, . . .} we indicate the set of nonnegative

integers. As for the binary property of family trees (Section 3.2.1), family vectors can

be characterised by the feature that every cell gives birth to either two or no cells.

Definition 3.12 (Family vectors). Let k ≥ 0. For any element v ∈ Nk+1
0 , the cohort

correction of v, or say that v is cohort corrected, is

cc(v) = (v0, 2
−1v1, . . . , 2

−kvk) ∈ Rk+1
0 (3.1)

and the cohort number of v is

cn(v) =

k∑
i=0

2−ivi =

k∑
i=0

cc(v)i. (3.2)

Then

Vk =
{
v ∈ Nk+1

0 : cn(v) = 1
}

(3.3)

is the set of family vectors with maximum generation k.

Of note, for a fixed k ∈ N0, any full binary tree T ∈ Tk (i.e. a family tree) can be

mapped to the vector v ∈ Vk such that vi is the number of leaves in generation i of T ,

see Fig. 3.3.
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(0, 2) (0, 1, 2)
FAMILY VECTORS

(0, 0, 4)

FAMILY TREES

MULTIPLEX DATA

Figure 3.3: Family tree and family vector relation with multiplex clonal assay
data. Given the multiplex data and the relative family trees as in Fig. 3.1, the family vectors
associated to them are (0, 2) (left), (0, 1, 2) (centre) and (0, 0, 4) (right), whose entries are the
count of leaves per generation.

Proposition 3.13 (Projection of family trees into family vectors). Let k ∈ N0 and

T ∈ Tk a family tree. Given the vector v ∈ Nk+1
0 such that vi is the number of leaves

in generation i of T , for i = 1, . . . , k, then

cn(v) = 1 (3.4)

and v ∈ Vk.

Proof. We recall that, for fixed i ∈ {0, . . . , k}, 2i is a sharp upper bound for the number

of leaves in generation i, by Definition 3.10 of a binary tree. Hence, introducing the

variables wi, for the number of cells in generation i that undergo division, and ui, for

the number of cells in generation i that could have descended from cells that stopped

dividing in earlier generations, we deduce that

2i − ui = vi + wi. (3.5)

For i > 0 and j ≤ i − 1, let ui,j be defined as the number of cells in generation i

that could have been generated by cells that, instead, stopped dividing in generations

j, . . . , i− 1, then ui = ui,0. In particular, since T is a full binary tree, ui,i−1 = 2vi−1 as

each cell that stopped dividing in generation i− 1 would have contributed with 2 cells

in generation i. Analogously, u1,0 = 2v0. Finally, from the recursive relation

ui,i−2 = ui,i−1 + ui−1,i−2, (3.6)
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we obtain

ui =
i−1∑
j=0

2i−jvj . (3.7)

By substitution of ui in (3.5) we find

wi = 2i − ui − vi = 2i −
i∑

j=0

2i−jvj . (3.8)

As T ∈ Tk, then no cell divides in generation k and wk = 0, leading to

2k =
k∑
j=0

2k−jvj . (3.9)

Dividing by 2k, we deduce that cn(v) = 1.

Proposition 3.13 justifies the constraint cn(v) = 1 required in the definition of a family

vector v ∈ Vk, for any k ∈ N0. Moreover, this result evidences that the map from Tk
to Vk of the counting of the leaves per generation is a surjection, thus enabling the

extension to family vectors of properties from the family trees.

3.2.3 Statistics of progression

We introduce several statistics that summarize the extent of clonal progression as mea-

sured from family vectors. To be consistent with the analysis in Chapter 2, we use the

language of Division Destiny (DD), but, mathematically, it is not necessary that the

family vectors correspond to final expansion of clones (see Fig. 3.3).

Definition 3.14 (Expansion statistics). Given k ≥ 0 and v ∈ Nk+1
0 such that v 6=

(0, . . . , 0) = v0, we define: the mean division destiny,

mDD(v) =

∑k
i=0 i2

−ivi∑k
i=0 2−ivi

; (3.10)

the maximum division destiny,

maxDD(v) = max
{
i ∈ {0, . . . , k} : vi 6= 0

}
; (3.11)

the minimum division destiny,

minDD(v) = min
{
i ∈ {0, . . . , k} : vi 6= 0

}
; (3.12)
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v = (0, 0, 2, 4)

minDD(v) = 2
mDD(v) = 2.5
agDD(v) = 2.(6)
maxDD(v) = 3
range(v) = 1

v = (0, 2)

minDD(v) = 1
mDD(v) = 1
agDD(v) = 1
maxDD(v) = 1
range(v) = 0

IRREGULAR CLONE REGULAR CLONE

Figure 3.4: DD statistics. Example of DD statistics on irregular (left, range > 0) and
regular clones (range, range = 0), with associated family vector v equal to (0, 0, 2, 4) and (0, 2),
respectively.

and the average-generation division destiny,

agDD(v) =

∑k
i=0 ivi∑k
i=0 vi

. (3.13)

We adopt the convention that mDD(v0) = maxDD(v0) = minDD(v0) = agDD(v0) = 0.

See Fig. 3.4 as a visual example of the statistic introduced above. Note that, for any

k ≥ 0, these functions are well-defined for elements other than Vk. This will be useful

in Section 3.3, when we will introduce the set family vectors for clones that are partially

recovered.

While maxDD and minDD are intuitive mathematical descriptions for the expansion

of a clone, in terms of maximal and minimal generation reached, mDD and agDD

are two averages of the generations that were considered in recent publications. In

particular, agDD (Turner et al., 2008; Weber et al., 2016) weights each generation on

the proportion of cells that falls in it, thus considering all cells as equivalent. Instead,

mDD (Hommel and Hodgkin, 2007; Marchingo et al., 2014) bases its weighting on the

proportion of cohort vector, so to evaluate a cell in generation i equivalent to two cells

in generations i+ 1, for i ≥ 0, that is accounting for a cell’s generative potential.

Simple inequalities relate the four statistics of progression defined above.

Proposition 3.15 (Order of expansion statistics). Let k ≥ 0, v ∈ Nk+1
0 . Then

minDD(v) ≤ mDD(v) ≤ agDD(v) ≤ maxDD(v). (3.14)
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Proof. The relation is true for the degenerate case v = (0, . . . , 0) ∈ Nk+1
0 , for any k ≥ 0.

For v 6= (0, . . . , 0), the first and third inequalities result from

minDD(v) =

∑k
i=0 minDD(v)2−ivi∑k

i=0 2−ivi
≤ mDD(v) (3.15)

agDD(v) ≤
∑k

i=0 maxDD(v)vi∑k
i=0 vi

= maxDD(v) (3.16)

We prove the second inequality by induction on k. For k = 0, it is trivial, since

mDD(v) = agDD(v) = 0. So, assuming the relation holds true for k, we obtain that

k∑
i=0

i2−ivi

k∑
j=0

vj ≤
k∑
j=0

jvj

k∑
i=0

2−ivi. (3.17)

We can then compare

mDD(v)
k+1∑
j=0

vj

k+1∑
i=0

2−ivi =
k∑
i=0

i2−ivi

k∑
j=0

vj

+ (k + 1)2−(k+1)vk+1

k∑
j=0

vj + vk+1

k∑
i=0

i2−ivi + (k + 1)2−(k+1)v2
k+1 (3.18)

with

agDD(v)
k+1∑
j=0

vj

k+1∑
i=0

2−ivi =
k∑
j=0

jvj

k∑
i=0

2−ivi

+ (k + 1)vk+1

k∑
i=0

2−ivi + 2−(k+1)vk+1

k∑
j=0

vj + (k + 1)2−(k+1)v2
k+1. (3.19)

Thus, subtracting (k+ 1)2−(k+1)v2
k+1 on both (3.18) and (3.19) and recalling (3.17), it

suffices to show that

vk+1

(k + 1)2−(k+1)
k∑
j=0

vj +

k∑
i=0

i2−ivi


≤ vk+1

(
(k + 1)

k∑
i=0

2−ivi + 2−(k+1)
k∑
i=0

jvj

)
, (3.20)

or, equivalently,

k∑
i=0

vi

(
(k + 1)2−(k+1) + i2−i

)
≤

k∑
i=0

vi

(
(k + 1)2−i + i2−(k+1)

)
, (3.21)
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which holds true since, for every i = 0, . . . , k, vi ≥ 0 and

(k + 1)2−(k+1) + i2−i ≤ (k + 1)2−i + i2−(k+1), (3.22)

since

(k + 1− i)2−(k+1) ≤ (k + 1− i)2−i. (3.23)

We now introduce one last description for the configuration of a clone in DD.

Definition 3.16 (Clonal range). Let k ≥ 0, v ∈ Nk+1
0 . The range of v is

range(v) = maxDD(v)−minDD(v) ≥ 0. (3.24)

If range(v) = 0 we say that v, and the clone associated to it, is regular, and irregular

otherwise.

The statistic of range enables the quantification of the generations span in which all

the cells of a clone are found. Fig. 3.4 offers a visual example of range computation.

By Proposition 3.15, all DD statistics must coincide on every family vector v that is

regular, as range(v) = 0 implies maxDD(v) = minDD(v).

While these are descriptions of clonal properties in general, range was introduced in

Chapter 2 to investigate the division patterns underwent by the expanding clone (see

Fig. 2.1b). If cells were highly correlated and stop dividing in the same generation, the

clone produced would be regular with null range. On the other hand, if cells underwent

division independently of each other, the resulting family would be irregular, with cells

that revert to quiescence over several generations. As multiplexed data consist of

sampled clones (see Fig. 2.2 and Section A.1.6), the recorded range may be reduced

(e.g. in Fig. 3.6), thus biasing the division pattern in favour of the correlated cells

scenario. To quantify the impact of partial recovery, in the next section we define a

simple parametric model that describes the pattern of division through the generations,

to calculate the range distribution while taking cell loss into account.

3.3 The effect of sampling on the clonal range

3.3.1 Sampled family vectors

In the experimental practice, researchers often must deal with incomplete data recovery.

To design the multiplex clonal assay presented in Chapter 2, our collaborators had to
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Time t

Dividing cell

Quiescent cell

Cell death

Time t
OT-I OT-I/Bcl2l11-/-

Figure 3.5: Enhanced cell survival increases sample recovery. If a clonal family is
sampled at a given time t > 0 of its development from the OT-I mice, some quiescent cells may
already be dead (left). As knocking-out the Bcl2l11 gene from the OT-I system increases the
survival time of the cells, the time window in which all quiescent cells can be recovered becomes
larger, greatly reducing the data loss by cell death.

deal with data loss due to partial recovery of samples or cell death, which mainly

occurs soon after the expansion phase. In order to avoid missing cells by apoptosis, our

collaborators employed the OT-I/Bcl2l11−/− mice (see Section A.1.1 from Appendix

A), which is transgenically modified for enhanced cell survival (Fig. 3.5).

As a consequence, we can ascribe incomplete recovery solely to experimental sampling,

and account for its effect in a model if recovery ratio is available. This parameter

is then estimated adding a certain number of calibrating beads to the culture wells,

and calculating the proportion of these extracted (see Section A.1.5). If the beads are

not included in the experiment, the estimate can be substituted by the percentage of

volume collected. To study sampling effects, we need to extend the set of family vectors

so to include partial recovery in the data structure.

Definition 3.17 (Sampled family vectors). Given k ≥ 0,

Sk =
{
v ∈ Nk+1

0 : cn(v) ≤ 1
}
, (3.25)

is the set of sampled family vectors whose generation do not exceed k.

Thus the data from a multiplex clonal assay method take value in Sk, defined in (3.25),

for an appropriate k ≥ 0. For example, k = 2 in Fig. 3.6.
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Sampled cell

Unsampled cell

Original family vector: (0, 1, 2)
Range = 1

Sampled family vector: (0, 0, 2)
Range = 0

Original family vector: (0, 0, 4)
Range = 0

Sampled family vector: (0, 0, 2)
Range = 0

Figure 3.6: Sampled family vectors. Example of sampling effect on irregular (left, range >
0) and regular clones (right, range = 0). If one cell is lost (barred red dot) in generation 1 from
the family vector (0, 1, 2) (left) the resulting vector becomes (0, 0, 2), the same as when two
cells in generation 2 are lost from the family vector (0, 0, 4) (right). In particular, the range in
the former clone is reduced to 0. This example shows that it is not always possible to trace
back the original family vector from its sampled version, as the same sampled family vector
may result from the partial recovery of different clones.

3.3.2 Beta-binomial model

From the multiplexed experiments on CD8+ T cells whose data are summarised in Fig.

2.7 and 2.8 in Chapter 2, clones stimulated in a controlled system were found regular in

most cases, whereas only a minority were mildly irregular with range equal to 1. This

evidence suggested that homogeneity in DD may be due to some features inherited

from the progenitor cell to its descendants, envisaging a correlated behaviour, between

related cells, about whether to divide or to become quiescent (see Fig. 2.1b). To inves-

tigate whether the observed homogeneity was a consequence of sampling that reduces

familial range, we propose a minimalistic model for the clonal expansion, realised by

correlated divisions through the generations, and subsequent sampling.

Suppose the experimental data consist of N > 0 sampled family vectors, z1, . . . , zN ∈
Sk, with k ≥ 0. Each of these vectors must have been sampled from a fully expanded

clone whose associated family vector is in Vk. Let w ∈ Vk be one of such vectors.

To describe the development of w, we introduce the parameters pi ∈ [0, 1], with i =

0, . . . , k − 1 of the probability for a cell in generation i to divide to generation i + 1,

thus 1− pi is the probability for that cell to become quiescent.

Let ui denote the number of cells that reached generation i, the decision whether to

divide or not, may be concerted within the clone. We quantify the extent of such

coordination with the parameter ρ ∈ [0, 1] and model the number of cells that divide to

generation i with a beta-binomial random variable β(ui, ai, bi), where ai = pi(1− ρ)/ρ
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and bi = (1− pi)(1− ρ)/ρ. In fact, ai and bi are defined as solution to the equations

pi =
ai

ai + bi
(3.26)

ρ =
1

1 + ai + bi
, (3.27)

so that ρ is defined as the intraclass correlation of the cells, whose marginal distribution

is binomial with parameter pi. With this description, when ρ = 0 each cell behaves

independently from the others, whereas for ρ = 1 all cells in one generation either divide

or become quiescent. In any case, we assume that these decisions are independent across

generations.

Since a clone starts with one cell in generation zero, and all dividing cells give birth to

two others in the subsequent generation, then u0, . . . , uk are defined from w through

the recursive relation

u0 = 1 (3.28)

ui+1 = 2(ui − wi) for i = 0, . . . , k − 1. (3.29)

With some manipulation, for every i = 1, . . . , k we find

ui = 2i −
i−1∑
j=0

2i−jwj = 2i(1−
i−1∑
j=0

2−jwj). (3.30)

This implies the existence of a solution such that u0, . . . , uk−1 ≥ 0 and uk = 0, since

w ∈ Vk and cn(w) =
∑k

j=0 2−jwj = 1. If W denotes the distribution of a family vector

generated from the model described above, then the probability of W taking value

w ∈ Vk is

P(W = w)

= P(1− β(1, a0, b0) = w0, . . . , uk−1 − β(uk−1, ak−1, bk−1) = wk−1)

=
k−1∏
i=0

P(ui − β(ui, ai, bi) = wi) =
k−1∏
i=0

P(β(ui, bi, ai) = wi)

(3.31)

where the last relation is possible thanks to the properties of beta-binomial distribu-

tions. Cellular development under the beta-binomial model is illustrated in Fig. 3.7.

Next, we introduce the recovery proportion and assume that each cell of w ∈ Vk is

independently sampled with probability r. As a consequence, the number of cells

sampled in generation i = 0, . . . , k is distributed as B(wi, r), a binomial variable with

wi trials and success probability r. Let V be the random variable for the sampled

family vectors. Then, the conditional probability of observing the sample v ∈ Sk given
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u0 = 1
b(1, b0, a0) ® 0 = w0

u1 = 2(u0-w0) = 2
b(2, b1, a1) ® 1 = w1

u2 = 2(u1-w1) = 2
b(2, b2, a2) ® 2 = w2

GEN. 0 GEN. 1 GEN. 2

Figure 3.7: Cellular expansion under the beta-binomial model. Example of clonal
development, starting from u0 = 1, the one progenitor cell in generation 0 (left) that progress
through the generations (from left to right) until all cells have reverted to quiescence (red dots),
instead of dividing (blue dots). Given i = {0, 1, 2}, ui is the number of cells born in generation
i. Of these, the number of cells that revert to quiescence is wi, which is the outcome of a
beta-binomial distribution β(ui, bi, ai) where ai = pi(1− ρ)/ρ, bi = (1− pi)(1− ρ)/ρ. pi and ρ
are the parameters of the beta-binomial model.

w ∈ Vk, the family vector subjected to sampling, is

P(V = v|W = w)

= P

(
B(w0, r) = v0, . . . ,B(wk, r) = vk

∣∣∣∣∣
k∑
i=0

B(wi, r) > 0,W = w

)

=

(∏k
i=0

(
wi
vi

))
r
∑k
i=0 vi(1− r)

∑k
i=0 wi−vi

1− (1− r)
∑k
i=0 wi

1C(w,v),

(3.32)

where C(w, v) is the shorthand for the event {v0 ≤ w0; . . . ; vk ≤ wk;
∑k

i=0 vi > 0}. Note

that the probability above is conditioned on the event that at least one cell is recovered

from the clone w (of probability 1 − (1 − r)
∑k
i=0 wi). In fact, the observation of {V =

(0, . . . , 0)} is censored, since a clone is not reported as sampled unless one of its cells

is recovered (Fig. 3.8).

Putting (3.31) and (3.32) together, we finally derive the distribution for V by the law

of total probabilities, that is

P(V = v) =
∑
w∈Vk

P(W = w)P(V = v|W = w) , (3.33)

which depends on the parameters r, p0, . . . , pk, ρ. First, r, p0, . . . , pk are inferred by

method of moments. As such, the sample proportion r is estimated by r̂ as the average,

across culture wells, of the percentage of beads or volume recovered which are part of

the experimental method for this specific purpose. For any fixed i = 0, . . . , k, pi is the

55



Chapter 3. Mathematical methods for multiplex clonal assay data analysis

All cells are sampled 2 out of 3 cells are sampled

1 out of 3 cells are sampled No cells are sampled and
the clone is censored

Figure 3.8: Sampling effect on family vectors. Given the clone with underlying family
vector (0, 1, 2) (top left), the number of possible sampled family vectors derived from it are:
one, if all cells are sampled (top left); three, if two cells are sampled (top right); three, if one
cell is sampled (bottom left). If none of the cells are sampled, the clone is not recovered and
the observation of sampled family vector (0, 0, 0) is censored.

probability of that a cell in generation i divides to generation i+ 1. Thus we calculate

the estimate p̂i of pi from the sampled clones z1, . . . , zN , as the expected proportion of

cells that divide to generation i+ 1, out of those that reached generation i, namely

p̂i =

∑N
l=1

∑k
j=i+1 2i−jzlj∑N

l=1

∑k
j=i 2i−jzlj

. (3.34)

Finally, ρ is estimated by the ρ̂ that maximises the log-likelihood of the clonal range

data. That is

ρ̂ = argmax
ρ∈[0,1]

N∑
n=1

logP(range(V ) = range(vn))

= argmax
ρ∈[0,1]

N∑
n=1

log

∑
w∈Vk

c(w, range(vn))
k−1∏
i=0

P

(
β
(
ui, (1− p̂i)

1− ρ
ρ

, p̂i
1− ρ
ρ

)
= wi

)
(3.35)

with

c(w, j) =
∑
v∈Sk

1{range(v)=j}1C(w,v)

(∏k
i=0

(
wi
vi

))
r̂
∑k
i=0 vi(1− r̂)

∑k
i=0 wi−vi

1− (1− r̂)
∑k
i=0 wi

(3.36)

for every j = 0, . . . , k − 1.
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Figure 3.9: Likelihood function of clonal range under the beta-binomial model.
Log-likelihood of parameter ρ ∈ [0, 1] is plotted for range distributions under conditions N4,
N4+αCD28, N4+IL2 and N4+αCD28+IL2 (from left to right), for multiplex data as in Fig.
2.7, assuming they progressed as in the beta-binomial model. Red crosses indicate the best fit
solutions of ρ̂ (3.35).

For k ≤ 6, the cardinality of Vk, written |Vk|, is small enough so that the summation

over all family vectors w ∈ Vk is computationally feasible. The optimisation can then

be achieved using Python software’s standard tools (i.e. the “scipy.optimize.minimize”

function from Scipy library version 0.19.1) and this is the case for the data acquired

in Chapter 2. As evidenced in Fig. 3.9, ρ̂ is well determined for the multiplexed data

under analysis.

As shown in Fig. 2.7c of Chapter 2, ρ̂ offers a fit distribution that recapitulates range

empirical distribution accurately. In particular, ρ̂ ≥ 0.8 for all four stimulatory con-

ditions tested, supporting the view that cell divisions are highly correlated within

generations and the observed clonal regularity is not a mere result of sampling, but

a biological feature inherited along the family. As a consequence, clonal expansion

appears to be programmed by the progenitor cell at the moment of activation, raising

questions on how such programmed mechanism occurs. In this regards, in Section 2.3.5

we investigated how stimulatory signals are integrated by the initial cell thus, in the

next section, we present the mathematical framework that enables such study.

3.4 Rooted tree operations

3.4.1 Motivation

In the recent study from our collaborators, in vitro and in vivo experiments showed

that stimulatory signals (i.e. costimulus αCD28 and cytokine IL2) contributed linearly

to the average expansion of a population of T cells (Marchingo et al., 2014) with mean
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A B A+B

Figure 3.10: Linear integration, regular case. Two regular rooted trees A, with all leaves
in generation 2 (left), and B, with all leaves in generation 1 (centre), are associated to clonal
families developed under two distinct stimulatory conditions. If these stimuli were provided
together and linearly integrated, the resulting rooted tree A+B (right) would be regular with
all leaves in generation 3, as the linear sum of the contributions from A and B, singularly, to
the expansion. For example, A+B can be defined by appending copies of B to the leaves of A
or vice versa.

and variance that were both additive. In Chapter 2, using multiplex clonal assay data,

we addressed the same question at the single cell level. In the following, we describe

the mathematics that enabled this analysis. The main goal is to build a framework

for rooted tree addition that allows the comparison between family trees stimulated by

different signals.

To illustrate the complication we encounter, consider two family trees relative to clones

receiving stimulation A and B respectively, plus a third one, generated by those stimuli

combined, namely A+B. How should we “linearly” merge the trees A and B together

to compare them with A + B? As an answer, we introduce a novel operation to

describe tree addition, where the linear property is defined with respect to the number

of divisions realised.

Suppose the family trees generated under stimuli A and B are regular, with the first

stimulus providing two rounds of division and the second only one. Then, if the stimuli

combined were linearly integrated, the family tree of A + B would be regular as well,

presenting three rounds of divisions, as in Figure 3.10. Many operations between the

trees would fulfil this requirement. For example, we mention the appending of copies

of B to each terminal node of A, or vice versa.

The difficulties arise when the trees of A and B are irregular, as in Fig. 3.11. In this

instance, the appending of copies of one tree to the end of the other would not even

be commutative. Furthermore, any partition of the initial trees and the procedural

appending of the consequent subtrees that does not violate the original order (i.e. no

mother cell copy can be descendant from a copy of its progeny), would produce several
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A
A+B

B

B+A

vA = (0, 1, 2) vA+B = vB+A = (0, 0, 2, 4)vB = (0, 2)

Figure 3.11: Linear integration, irregular case. Two rooted trees A, irregular (top left),
and B, regular (bottom left), are associated to two clonal families developed under two distinct
stimulatory conditions. To the right, the rooted tree A + B (respectively B + A) results from
appending copies of B (respectively A) to the leaves of A (respectively B), the same operation
proposed in Fig. 3.10 that respected linearity in the regular case. Since A is irregular, this
operation is not commutative as A+B is different from B+A. However, both these trees present
(0, 0, 2, 4) for the family vectors vA+B and vB+A, which results from the discrete convolution
of vA and vB , the family vectors associated to A and B ((0, 1, 2) and (0, 2), respectively).

notions of tree addition that respect the linearity observed in the regular case (see Fig.

2.9).

Strikingly, one common trait emerges from this class of operations: the family vector

relative to the resulting tree is equal to the discrete convolution between the family

vectors of the initial trees irrespective of the interlacement choice, which may produce

trees that are not isomorphic as in the example of Fig. 3.11. This property will result

from Theorem 3.27, justifying the choice of discrete convolution as representative for

the class of tree operations that satisfy linearity and commutativity, even for irregular

families, and whose result does not violate the original order of the combined trees. As

a consequence, to combine two clones, only their family vectors are required, which is

the information provided by the multiplex clonal assay.

This rationale will not provide us with a specific procedure of trees combination. How-

ever, while this lack of uniqueness seems inconvenient, it reflects the absence of knowl-

edge concerning the order –if any exists– for the integration of stimulatory impulses:

for example, if the choice of tree operation were the appending of copies of the second

tree B to the terminal nodes of the first A, as previously mentioned, this would have the

biological implication that signal B is integrated only after A stimulation is depleted.
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3.4.2 Definition

The aim of this section is to formalise the class of operations on rooted trees described

in the previous paragraph and show their equivalence in terms of the resulting family

vectors. To do so we define a novel generating function associated to a rooted tree

that is based on its leaves count and distance from the root, thus termed the leaf-depth

generating function, and exploit the framework of generating functions (Wilf, 1990;

Flajolet and Sedgewick, 2009). Subsequently, we introduce two basic operations, of

tree appending (Fig. 3.12) and subtree removal (Fig. 3.13), and determine their action

on the leaf-depth generating functions relative to the trees being transformed. We will

then proceed with the definition of sequential appending and tree insertion. These

satisfy the property of linear integration for regular trees (as in Fig. 3.10) and respect

the original order of the trees they operate on. Finally, we show that the leaf-depth

generating functions produced from these operations are the same.

Definition 3.18 (Leaf-depth generating function from a rooted tree). Let A = (V,E)

be a rooted tree. Let L(A) ⊆ V be the set of leaves of A and, for every v ∈ V , let

g(A, v) ∈ N0 indicate the generation of v in A. Then, the leaf-depth generating function

associated to A is the polynomial GA ∈ N0[x], with integer coefficients and variable x,

defined as

GA(x) =
∑

v∈L(A)

xg(A,v) =
∑
i≥0

aix
i (3.37)

where a is the vector of leaves count of A, that is

ai =
∣∣{v ∈ L(A) : g(A, v) = i}

∣∣, (3.38)

for every i ≥ 0, with |S| denoting the number of elements, or cardinality, of any set S.

Note that a family vector, as introduced in Section 3.2.2, is a vector of leaves count for

a full binary tree.

Definition 3.19 (Tree appending). Given A = (VA, EA) and B = (VB, EB), two trees

rooted at rA ∈ VA and rB ∈ VB, respectively, with VA∩VB = ∅ and v ∈ L(A) a leaf node

of A, we define the appending of B to A at v as the rooted tree A(A,B, v) = (V ′, E′)

with root rA, such that

V ′ = VA ∪ VB \ {rB}

E′ = EA ∪ EB ∪R′ \R,
(3.39)

where R ⊆ EB is the set of edges with endpoint in rB and R′ is the set of edges

connecting v to each neighbour of rB.
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A B A(A,B,v)v

rB

v

Figure 3.12: Tree appending. A(A,B, v) (right, blue and green) is the rooted tree obtained
by appending the tree B, with root at rB , (centre, green) to the rooted tree A (left, blue) at
the node v (red outline).

Definition 3.20 (Subtree removal). Given a rooted tree A = (VA, EA) with root at

rA ∈ VA, w ∈ VA a node of A and A(w) = (Vw, Ew) the subtree of A rooted at w, we

define A \ A(w) = (V ′, E′) as the tree rooted at rA obtained by the removal of A(w)

from A, as

V ′ = VA \ Vw ∪ {w}

E′ = EA \ Ew.
(3.40)

w

A(w)

A \ A(w)A w

Figure 3.13: Subtree removal. A\A(w) (right, blue) is the rooted tree obtained by removing
A(w) (left, green), the subtree of A rooted at w (red outline), from A (left, blue and green).

The following lemma shows the action, on the leaf-depth generating functions, induced

by tree appending and subtree removal.

Lemma 3.21 (Leaf-depth generating function from tree appending and removal). Let

A and B be rooted trees with leaf-depth generating functions GA and GB and let v ∈
L(A). The leaf-depth generating function of the tree obtained appending B to A at v,

namely C = A(A,B, v), is

GC(x) = GA(x) + xg(A,v)(GB(x)− 1). (3.41)
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In particular, given w a node of A, then the leaf-depth generating function of the tree

obtained removing the subtree A(w) from A, namely D = A \A(w), is

GD(x) = GA(x)− xg(A,w)(GA(w)(x)− 1). (3.42)

Proof. To prove (3.41), we reason on the number and position of the leaves in C. In

fact, the leaf v in generation g(A, v) is removed, while each leaf w ∈ L(B) ⊆ L(C) is

added, with a path from the root rA, in C, of length g(C,w) = g(A, v) + g(B,w). This

implies

GC(x) = GA(x)−xg(A,v) +
∑

w∈L(B)

xg(A,v)+g(B,w) = GA(x) +xg(A,v)(GB(x)−1). (3.43)

To show (3.42), it suffices to notice that A = A(D,A(w), w) and apply (3.41).

We can now define the sequential appending of copies of one tree to the terminal nodes

of another (Fig. 3.14) as a simple iteration of the tree appending operation.

Definition 3.22 (Sequential appending). Let A be a tree rooted at rA with a finite

number n of leaves and let B be another rooted tree. Given any indexing of the leaves

of A, namely L(A) = {vi}ni=1, the sequential appending of copies of B to A is defined

as

I(A,B,L(A)) = A(· · · A(A(A,B1, v1), B2, v2), · · · , Bn, vn). (3.44)

This is the tree, rooted at rA, obtained by appending n different copies B1, . . . , Bn of

B to A. If the number of leaves is countably infinite then, given any indexing of the

leaves L(A) = {vi}i≥1, I(A,B,L(A)) is defined as the limit, for n large, of the sequence

A(· · · A(A(A,B1, v1), B2, v2), · · · , Bn, vn).

A B I(A,B,L(A))

Figure 3.14: Sequential appending. I(A,B,L(A)) (right, blue and green) is the rooted
tree obtained by appending copies of the rooted tree B (centre, green) to the rooted tree A
(left, blue) at its leaves L(A) (red outline).
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Note that choosing an indexing different to {vi}i≥1 does not modify the final result,

as every appending operation in one node does not affect the appending operations

of others. It is also necessary to introduce the sequence B1 = (VB1 , EB1), . . . , Bn =

(VBn , EBn) of copies of B = (VB, EB), so that VBi ∩ VBj = ∅ for every i, j ∈ {1, . . . , n}
and i 6= j, and each tree appending iteration adds a different tree, in accordance with

(3.39). In particular, it holds that

GBi(x) = GB(x), (3.45)

as Bi is isomorphic to B for every i ≥ 0.

If B is the degenerate rooted tree, namely VB = {rB} with rB the root and EB = ∅,
then B is the identity element for the operation of tree appending, that is

A(A,B, v) = A (3.46)

for every v ∈ L(A). Therefore, the degenerate tree is also the identity element for the

sequential appending, that is

I(A,B,L(A)) = A, (3.47)

and, in particular, GB(x) = 1.

The leaf-depth generating function from the sequential appending is immediately de-

rived through the tree appending properties.

Proposition 3.23 (Leaf-depth generating function from sequential appending). Given

two rooted trees A and B, the leaf-depth generating function associated to C = I(A,B,L(A))

is

GC(x) = GA(x)GB(x). (3.48)

In particular, if GA(x) =
∑

k≥0 akx
k and GB(x) =

∑
k≥0 bkx

k, then

GA(x)GB(x) =
∑
k≥0

(a ∗ b)kxk, (3.49)

where (a∗b) indicated the discrete convolution of a and b, namely (a∗b)k =
∑k

i=0 aibk−i

Proof. Given the indexing L(A) = {vi}i≥1, let

Cn = A(· · · A(A(A,B1, v1), B2, v2) · · · , Bn, vn) (3.50)
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for every n ≥ 1. Then, by Lemma 3.21, we obtain the recursive relation

GC1(x) = GA(x) + xg(A,v1)(GB(x)− 1)

...

GCn(x) = GCn−1(x) + xg(A,vn)(GB(x)− 1).

(3.51)

This implies

GCn(x) = GA(x) +

n∑
i=1

xg(A,vi)(GB(x)− 1), (3.52)

from which we deduce

GC(x) = GA(x) +
∑
i≥1

xg(A,vi)(GB(x)− 1)

= GA(x) +GA(x)(GB(x)− 1) = GA(x)GB(x).

(3.53)

The fact that GA(x)GB(x) =
∑

k≥0(a ∗ b)kxk is deduced by the relations between

discrete convolution and polynomial multiplication.

To define the operation of sequential tree insertion which extends the sequential ap-

pending, first we need to identify the set of nodes where a tree can be inserted without

violating linearity property (Fig. 3.10) and the original structure of the two tree com-

bined (Fig. 3.15).

Definition 3.24 (Leaves partition). Let A = (VA, EA) be a rooted tree. We call

P ⊆ VA a leaves partition of A, if each leaf of A is a descendent of one and only one

node in P . Additionally, we call AP the tree rooted at rA that is obtained removing

each subtree Av from A, for v ∈ P .

Definition 3.25 (Tree insertion). Let A and B be two rooted trees. Given P , a leaves

partition of A such that |P | = n and any indexing of P , namely P = {vi}ni=1, the

sequential insertion of copies of B into A at P is defined as

I(A,B, P ) = I(· · · I(I(AP , Z1, v1), Z2, v2) · · · , Zn, vn), (3.54)

where B1, . . . , Bn are different copies of B and Zi = I(Bi, Avi , L(Bi)) for i = 1, . . . , n. If

|P | is countably infinite and given any indexing P = {vi}i≥1, then I(A,B, P ) is defined

as the limit, for n large, of the sequence I(· · · I(I(AP , Z1, v1), Z2, v2) · · · , Zn, vn).

We highlight that each leaf of A is required to descend from at least one node of the

leaves partition P so that the insertion of copies of a tree B into A at the nodes of P

respects the property of linearity. Furthermore, to ensure that the original order of the
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BA

I(A,B,P2) I(A,B,P3)I(A,B,P1)

P2

P1

P3

Figure 3.15: Leaves partition and tree insertion. For the rooted tree A (top, blue), all
possible leaves partitions P1, P2 and P3 are shown (nodes within a box). For each of these
partitions, copies of the rooted tree B (top, green) are inserted into A at the nodes of the
partition (full red outline), resulting in I(A,B, P1), I(A,B, P2) and I(A,B, P3) (bottom, blue
and green). For P1 and P2, at least one non-degenerate subtree of A is rooted at a node of the
partition, so every such subtree must be sequentially appended at the leaves of the copy of B
(dashed red outline) that is inserted in the root node of the subtree.

trees A and B is preserved, it is necessary that each leaf of A descend from only one

node of P . Otherwise new familial relationships may be established between copies of

nodes that were not present in their original trees. Both cases are illustrated in Fig.

3.16. In particular, sequential appending is included by setting P = L(A). Similarly as

for that operation, tree insertion does not change with different indexing of the leaves

partition P . Furthermore, the degenerate tree B = ({rB}, ∅) is the identity element for

tree insertion, that is

I(A,B, P ) = A, (3.55)

as in (3.47), for any P leaves partition of A.

From the definition of leaves partition, we have the following useful property for the

leaf-depth generating function.

Corollary 3.26 (Leaf-depth generating function arising from a leaves partition). Let

A be a rooted tree and P a partition of its leaves. Then

GA(x) =
∑
v∈P

xg(A,v)GAv(x). (3.56)

Proof. The statement is deduced by applying (3.41) from Lemma 3.21 and noting that

A results from the appending of Av to v for every v ∈ P .
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P is a leaves partition If one leaf does not descend from P Leaves descend from more than one node of P

P

A B

P
B 

in
se

rte
d 

to
 A

 in
 P

P

A B A B

Figure 3.16: Leaves partition requirements. The regular rooted tree B (top, green) is
inserted into the regular rooted tree A (top, blue) at P (red outline nodes within a square).
If P is a leaves partition (left) the resulting rooted tree (bottom left) respects linearity for the
regular case as in Fig. 3.10. If at least one leaf node of A does not descend from P (centre),
the rooted tree obtained (bottom centre) does not satisfy the linearity property. If a node of P
descends from another node of P (right), the insertion produces a rooted tree (bottom right)
that does not comply with linearity and also violates the original arrangement of the trees. To
illustrate the latter fact, note that the leaves from the resulting tree, which are copies of the
leaves of B, descend from the leaves in generation 1, that are copies of the leaves of B. As this
familial relationship was absent in the original tree B (each leaf of B is not descendants of the
other), the order of B is not respected by the operation considered.

We are ready to prove the main result of this section, which shows how the operation

of tree insertion produces trees that share the same leaf-depth generating function,

irrespective of the choice for the leaves partition P .

Theorem 3.27 (Leaf-depth generating function from tree insertion). Let A and B be

two rooted trees and let P be a leaves partition of A. Then the leaf-depth generating

function associated to C = I(A,B, P ) is

GC(x) = GA(x)GB(x). (3.57)

In particular, GC does not depend on the choice of P .

Proof. Given the indexing P = {vi}i≥1, let

Cn = I(· · · I(I(AP , Z1, v1), Z2, v2) · · · , Zn, vn) (3.58)
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for every n ≥ 1, with Zi = I(Bi, Avi , L(Bi)) for i ≥ 1. Then, by Lemma 3.21 and

Proposition 3.23, we obtain the recursive relation

GC1(x) = GAP (x) + xg(AP ,v1)(G(Z1)− 1)

= GAP (x) + xg(AP ,v1)(GB(x)GAv1 (x)− 1)

...

GCn(x) = GCn−1(x) + xg(AP ,vn)(GB(x)GAvn (x)− 1).

(3.59)

This implies

GCn(x) = GAP (x) +
n∑
i=1

xg(AP ,vi)(GB(x)GAvi (x)− 1), (3.60)

from which we deduce

GC(x) = GAP (x)−
∑
i≥1

xg(AP ,vi) +GB(x)
∑
i≥1

xg(AP ,vi)GAvi (x) = GA(x)GB(x), (3.61)

where the last equality holds thanks to the definitions of leaves partition and by Corol-

lary 3.26.

As tree insertion makes use of tree appending in its definition, specifically for Zi =

I(Bi, Avi , L(Bi)) with i = 1, . . . , n, it allows for greater generalisation in a similar way

as we extended tree insertion from tree appending. In fact, given A, B, Bi for i ≥ 1

and P = {vi}i≥1 as in Theorem 3.27 and let, for each i ≥ 1, Pvi be a leaves partition

of B. Then each Zi in Definition 3.25 can be replaced by

Zi = I(Bi, Avi , Pvi), (3.62)

leading to a more nuanced definition of tree insertion, that we write as I(A,B, {P, (Pv)v∈P })
with abuse of notation. This new operation first demands the insertion of Avi into Bi

at Pvi , to obtain Zi, and the subsequent insertion of Zi into AP at P . As we are

replacing Zi = I(Bi, Avi , L(B)) with Zi = I(Bi, Avi , Pvi), that have identical leaf-

depth generating functions by Theorem 3.27, the leaf-depth generating function for

I(A,B, {P, (Pv)v∈P }) would still be GA(x)GB(x). This line of reasoning can be re-

peated indefinitely, by replacing each I(Bi, Avi , Pvi) with I(Bi, Avi , {Pvi , (Pviw)w∈Pvi}),
where Pviw is now a leaves partition of Avi for every w ∈ Pvi and i ≥ 0, and so on.

In conclusion, any combination of two rooted trees A and B, based on tree insertion

operations, results in a tree whose leaf-depth generating function is GA(x)GB(x) =∑
k≥0(a∗b)kxk, thus supporting our claim that discrete convolution is the encompassing
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notion of addition that we initially sought. In the next section, we will examine the

relation of this operation with the statistics of clonal expansion presented in Section

3.2.3.

3.4.3 Linearity of expansion statistics

As discrete convolution was appointed to satisfy linearity for regular trees addition, with

respect to the number of divisions, we expect that linearity also arises for expansion

statistics from Section 3.2.3, at least in in the regular case. Actually, this is holds true

even for family vectors that are irregular.

Proposition 3.28 (Linearity of expansion statistics with discrete convolution). Given

k, h ≥ 1 and two vectors a ∈ Nk0, b ∈ Nh0 , then

mDD(a ∗ b) = mDD(a) + mDD(b),

maxDD(a ∗ b) = maxDD(a) + maxDD(b),

minDD(a ∗ b) = minDD(a) + minDD(b),

agDD(a ∗ b) = agDD(a) + agDD(b).

(3.63)

Proof. We prove the relations in order. For mDD, we first define GA(x) =
∑k

i=0 aix
i,

GB(x) =
∑h

j=0 bjx
j and C = I(A,B,L(A)), so that GC(x) = GA(x)GB(x) (by Propo-

sition 3.23) and G′C(x) = G′A(x)GB(x) +GA(x)G′B(x). We can now write

mDD(a) =

∑k
i=0 i2

−iai∑k
i=0 2−iai

=
G′A(2−1)

2GA(2−1)
, mDD(b) =

∑h
j=0 j2

−jbj∑h
j=0 2−jbj

=
G′B(2−1)

2GB(2−1)
(3.64)

and

mDD(a ∗ b) =
G′C(2−1)

2GC(2−1)
=
G′A(2−1)GB(2−1) +GA(2−1)G′B(2−1)

2GA(2−1)GB(2−1)

=

∑k
i=0 i2

−iai∑k
i=0 2−iai

=
G′A(2−1)

2GA(2−1)
+

G′B(2−1)

2GB(2−1)
= mDD(a) + mDD(b)

(3.65)

to conclude.

For maxDD, let ma = maxDD(a), mb = maxDD(b) and m∗ = maxDD(a ∗ b). First

note that

(a ∗ b)ma+mb =
k∑
i=0

h∑
j=0

aibj1{i+j=l} ≥ amabmb > 0 (3.66)

by definition of ma and mb, thus m∗ ≥ k1+k2. Let u ≥ 0 be such that m∗ = ma+mb+u,

then as (a ∗ b)m∗ = (a ∗ b)ma+mb+u > 0 there exist i, j such that ai > 0, bj > 0 and
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i+j = ma+mb+u. But, by definition of ma and mb, it holds that i ≤ ma and j ≥ mb,

therefore 0 ≤ ma+mb+u ≤ ma+mb, implying u = 0 and m∗ = ma+mb. Linearity for

minDD and agDD are deduced following the same reasoning as for maxDD and mDD,

respectively, using agDD(a) = G′A(1)GA(1)−1 for the latter.

3.4.4 Consequences

We now have acquired all the elements to formalise the initial problem from Section

3.4.1, where we sought to question whether linear contribution of stimulatory signals

for the clonal expansion arises at the single cell level.

Recollecting the setting from Chapter 2, we have three signals, that are N4 (antigenic),

αCD28 (costimulatory) and IL2 (cytokine), and cell count vector data for clones stim-

ulated with N4, N4+αCD28, N4+IL2 and N4+αCD28+IL2. We assume these vector

are observation from the random variables VN4, VN4+αCD28, VN4+IL2 and VN4+αCD28+IL2

respectively. We want to verify that stimuli αCD28 and IL2 contribute independently

to the expansion, as hypothesised from Marchingo et al. (2014). In particular, we sup-

pose that αCD28 is independent with N4, while IL2 is not, due to the documented

correlations between antigen signal strength and IL2 receptor expression (Zehn et al.,

2009; Wensveen et al., 2010; Gottschalk et al., 2012). If the integration of αCD28 with

N4 or with N4+IL2 occur independently, then their contribution must be linear at the

level of family trees, that is

VN4+αCD28 ∼ VN4 ∗ VαCD28 (3.67)

and

VN4+αCD28+IL2 ∼ VN4+IL2 ∗ VαCD28, (3.68)

where the symbol ∼ refers to equality in distribution. Using maxDD as a description

of the expansion and its linear property with respect to discrete convolution ∗ (by

Proposition 3.28), we deduce that

maxDD(VN4) + maxDD(VN4+αCD28+IL2)

∼ maxDD(VN4) + maxDD(VN4+IL2) + maxDD(VαCD28)

∼ maxDD(VN4+αCD28) + maxDD(VN4+IL2).

(3.69)

Of note, the variables in the first and last terms of this relation are observables of

the multiplex assay method. In addition, the strong clonal regularity (Section 2.3.4),

supported from the beta-binomial model fits (Section 3.3.2), assures that deviations
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of maxDD distribution on the sampled family vectors from the unsampled ones are

negligible.

Now that the question of linearity of expansion effects of the stimuli αCD28 and IL2

is formally expressed (3.69), we seek to test it statistically. This problem can be

formulated as

H0 : X1 +X2 ∼ Y1 + Y2, (3.70)

with X1, X2, Y1, Y2 independent, integer random variables in place of maxDD(VN4),

maxDD(VN4+αCD28+IL2), maxDD(VN4+αCD28), maxDD(VN4+IL2) respectively. In the

following chapter, we develop a statistical testing procedure for a larger class of null

hypothesis, which includes (3.70). This was applied to obtain the p-values presented

in Fig. 2.10 and 2.11 of Chapter 2.
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Chapter 4

Testing for the sum of discrete

and independent random

variables

4.1 Abstract

In order to study how stimulatory signals αCD28 and IL-2 are integrated by naive

CD8+ T cells to enhance their expansion (Section 2.3.5 of Chapter 2), we interrogated

the output from the new multiplex clonal assay (Section 2.3.1 of Chapter 2) through

our novel framework of family vectors and rooted tree addition (Chapter 3). In Section

3.4.4 of Chapter 3, we showed that the hypothesis of independent signal integration

can be assessed by statistically testing for equality in distribution between two sums

of discrete and independent random variables. Since the experimental data available

(Fig. 2.7 and 2.8 of Chapter 2) consisted of unequal sample size for each addend

variable of the sum, the computation of classical χ2 statistics (e.g. Pearson, 1900),

which would not include all observations, results in loss of power, especially when

samples are small. As an alternative, the nonparametric maximum likelihood estimator

for the distribution of the sum of discrete and independent random variables, named

convolution statistic, is proposed and its limiting normal covariance matrix defined. To

challenge the null hypothesis of equality in distribution, the generalised Wald’s method

(Moore, 1977) is applied to define a testing statistic asymptotically distributed as a

χ2 with as many degrees of freedom as the rank of such covariance matrix. Rank

analysis also reveals a connection with the roots of the probability generating functions

associated to the addend variables of the sum. A simulation study is performed to

compare the convolution test with Pearson’s χ2, and to provide usage guidelines.
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4.2 Introduction

We examine the problem of testing the null hypothesis of equality in distribution,

denoted ∼, for two linear models with distinct observables, that is

H0 : a0 +

k∑
i=1

aiAi ∼ b0 +

h∑
i=1

biBi. (4.1)

We assume that the random variablesA1, . . . , Ak, B1, . . . , Bh are bounded, independent,

of possibly different distribution and all take values in a real lattice Λ(ζ) = {ζu : u ∈ Z}
for some ζ ∈ R and that a0, b0 ∈ Λ(ζ), a1, . . . , ak, b1, . . . , bh ∈ Z, the set of integers.

Equality in distribution between random variables can be tested by using statistics

such as Pearson’s χ2 (Pearson, 1900) or the more general power-divergence family

(Cressie and Read, 1984). The computation of these statistics, however, assumes that

the number of observations of each of A1, . . . , Ak (and B1, . . . , Bh) are equal. If that

is not the case, it would seem that the data sets must be truncated for application of

those methods, which could prove wasteful if samples come in unequal counts and their

collection is costly or laborious.

For example, consider a problem in meta-analysis, where two studies are described by

linear models with distinct independent variables, and we wish to test for equality in

distribution between these models as in (4.1). In the simplest case, for k = 2, h = 1

with H0 : A1 + A2 ∼ B1, the independent variables observed are n1 distributed as

A1, n2 as A2 and n3 as B1, respectively noted {A11, . . . , A1n1}, {A21, . . . , A2n1} and

{B11, . . . , B1n3}, with n1, n2, n3 ∈ N. This scenario may arise because the independent

variables are grouped differently in the studies (e.g., A1 occurrences of event E1, A2

occurrences of event E2, B1 occurrences of any event E1 or E2) or because the model

choice is different (e.g., model one is A1 + A2 and model two is B1 ∼ f(A1, A2) for a

given function f). Then, to test H0, Pearson’s χ2 could be computed using B1, . . . , Bn3

and the data from A1 and A2 paired as, for example, {A11 +A21, . . . , A1m+A2m} with

m = n1 = n2, so that these m variables are independent and identically distributed as

A1+A2 to comply with Pearson’s statistic assumptions. If observation sizes are unequal,

e.g. n1 > n2, then n1 − n2 > 0 variables from {A11, . . . , A1n1} could be excluded

from the calculation of {A11 + A21, . . . , A1m + A2m}, now with m = min(n1, n2). But

any pairing or variables exclusion are two choices that, either arbitrarily or randomly

determined, influences the outcome of the test.

Using data from the multiplex clonal assay (Fig. 2.7 and 2.8 of Chapter 2), we seek to

statistically test the hypothesis that the expansion impetus of two stimuli were inte-

grated independently by cells when the signals were provided together, which had been
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hypothesised in a previously published study (Marchingo et al., 2014). The experi-

mental data obtained for Marchingo, Prevedello et al., (2016) was costly to produce,

both in terms of manpower and reagents, and inherently came with distinct numbers of

observations of all variables. Thus we sought to develop a statistical test that utilised

all available data. The resulting test may prove useful in other fields, such as medicine

for efficacy evaluation of combination therapies (e.g. Wolchok et al., 2013), which is a

topic of growing interest (Editorial, 2017).

We first show that the null hypothesis in (4.1) is equivalent to one without the scalar

multipliers,
∑k

i=1Xi ∼
∑h

i=1 Yi, which simplifies notation (Lemma 4.1). To obtain a

test statistic that utilises all data and therefore outperforms methods that require equal

sized data sets, in Section 4.3 we study the maximum likelihood estimator (MLE) for

the probability mass vector (PMV) of
∑k

i=1Xi. This transpires to be the discrete con-

volution of the empirical probability mass vector (EPMV) of each variable X1, . . . , Xk

and so we refer to it as the “convolution statistic” (Proposition 4.2).

We then derive the asymptotic distribution of the convolution statistic and build a

testing procedure for both goodness-of-fit and equality in distribution versions (Propo-

sition 4.3), leveraging the generalised Wald’s method. This technique was introduced

in Moore’s work (Moore and Spruill, 1975; Moore, 1977; Mihalko and Moore, 1980;

Moore, 1982), as an extension of Wald’s method (Wald, 1943), to build χ2 tests for

statistics that are asymptotically normal distributed with a singular covariance matrix.

It was subsequently adjusted in Hadi and Wells (1990), whose version we employ. Such

methodology found applications in the fields of econometrics (Vuong, 1987; Andrews,

1987, 1988; Wilson and Koehler, 1991), biology (Zhang, 1999; Marchingo, Prevedello

et al., 2016) and statistical theory (Tyler, 1981; Drost, 1989; Voinov et al., 2008).

In Section 4.4, we investigate the rank from the covariance matrix asymptotic of the

convolution statistic (Theorem 4.7 and Corollary 4.8), which is the central problem

for the derivation of a testing procedure through the generalised Wald’s framework.

Interestingly, such rank is related to the roots of the probability generating functions

of X1, . . . , Xk and Y1, . . . , Yh (Lemma 4.6).

Finally, in Section 4.5 we provide simulated performance analysis for the convolution

statistic against Person’s χ2, and in Section 4.6 we discuss the guidelines for its appli-

cation.
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4.3 Convolution statistic

To derive a statistic for the testing of H0 : a0 +
∑k

i=1 aiAi ∼ b0 +
∑h

i=1 biBi, we begin by

showing that this null hypothesis is equivalent to another in which the variables have

finite, positive integer support and no parameters a0, . . . , ak, b0, . . . , bh are present. As

a consequence, we will work in this new setting as it facilitates the definition of the

convolution statistic for the testing of H0, especially in regard to a simpler notation.

Lemma 4.1 (Null hypothesis simplification). Let A1, . . . , Ak, B1, . . . , Bh be a sequence

of finite and independent random variables that map the probability space (Ω,F ,P) into

a lattice Λ(ζ) with ζ ∈ R. Given the null hypothesis

H0 : a0 +
k∑
i=1

aiAi ∼ b0 +
h∑
i=1

biBi, (4.2)

with a0, b0 ∈ Λ(ζ), a1, . . . , ak, b1, . . . , bh ∈ Z, there exists a sequence of positive, finite

and independent random variables X1, . . . , Xk, Y1, . . . , Yh from the probability space

(Ω,F ,P) into {0, . . . , rl}, respectively, with rl ∈ N for l = 1, . . . , k + h, P(Xi = 0) > 0

for i = 1, . . . , k, P(Yj = 0) > 0 for j = 1, . . . , h, and such that

H0 :

k∑
i=1

Xi ∼
h∑
i=1

Yi, (4.3)

is equivalent to (4.2).

Proof. Without loss of generality, it is possible to shift from the lattice Λ(ζ) to the

set of integers Z through the natural isomorphism φ : Λ(ζ) → Z, φ(ζu) = u for every

u ∈ Z. Using this function, we define A′i = aiφ(Ai) and B′j = bjφ(Bj) for i = 1, . . . , k,

j = 1, . . . , h, so as to account for the multiplicative constants a1, . . . , ak, b1, . . . , bh in

the variables A′1, . . . , A
′
k, B

′
1, . . . , B

′
h mapping Ω to N0, and reduce (4.2) into

H0 : φ(a0) +

k∑
i=1

A′i ∼ φ(b0) +
h∑
i=1

B′i. (4.4)

Given τi = min{j : P(A′i = j) > 0} for i = 1, . . . , k and τk+i = min{j : P(B′i = j) > 0}
for i = 1, . . . , h, that are well defined since the variables A′1, . . . , A

′
k, B

′
1, . . . , B

′
h are

assumed finite, we rewrite (4.4) as

H0 : φ(a0) +
k∑
i=1

τi +
k∑
i=1

(A′i − τi) ∼ φ(b0) +
h∑
i=1

τk+i +
h∑
i=1

(B′i − τk+i). (4.5)
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For the null hypothesis (4.5) to be true, φ(a0) +
∑k

i=1 τi = φ(b0) +
∑h

i=1 τk+i must

hold. Otherwise, for example, if φ(a0) +
∑k

i=1 τi < φ(b0) +
∑h

i=1 τk+i, by definition of

τ1, . . . , τk+h we would have

0 = P

(
φ(b0) +

h∑
i=1

τk+i +

h∑
i=1

(B′i − τk+i) = φ(a0) +

k∑
i=1

τi

)

= P

(
φ(a0) +

k∑
i=1

τi +
k∑
i=1

(A′i − τi) = φ(a0) +
k∑
i=1

τi

)
≥

k∏
i=1

P
(
A′i = τi

)
> 0,

that is impossible. Therefore (4.5) is equivalent to

H0 :
k∑
i=1

(A′i − τi) ∼
h∑
i=1

(B′i − τk+i),

which, in turn, can be reduced to the form (4.3) by defining Xi = A′i−τi for i = 1, . . . , k

and Yi = B′i− τk+i for i = 1, . . . , h thus accounting for the subtraction of the constants

in the distribution of Xi and Yi. As a consequence, the support of Xi is {0, . . . , ri} for

some positive integer ri ∈ N and

P(Xi = 0) > 0 (4.6)

for every i = 1, . . . , k. The same applies to Y1, . . . , Yh.

As a result of Lemma 4.1, we need only to consider H0 stated in equation (4.3). Thus

given a sequence of k ≥ 2 integer and independent random variables X1, . . . , Xk we

write, for fixed i ∈ {1, . . . , k}, that Xi ∼ xi ∈ ∆ri with

∆ri =

v = (v0, . . . , vri) ∈ Rri+1 : v0, vri∈ (0, 1); vj ≥ 0, j = 1, . . . , ri − 1;

ri∑
j=1

vj = 1


to indicate that Xi takes values in {0, . . . , ri} ⊆ N0, with ri > 0, and is distributed

with PMV xi = (xi0, . . . , xiri), that is P(Xi = j) = xij for j = 0, . . . , ri.

We remark that xi0, xiri ∈ (0, 1), for every i = 1, . . . , k, are assumed to avoid degenerate

cases, without loss of generality. In fact, xi0 > 0 descends from (4.6). Moreover, given

any t ≤ k such that xtrt = P(Xt = rt) = 0, there exists τ = max{j : xtj > 0} < rt,

so that Xt can be replaced by X̃t ∼ x̃t = (x̃t0, . . . , x̃tτ ) ∈ ∆τ , with x̃tj = xtj for

j = 0, . . . , τ . Lastly, the constraint xi0, xiri < 1 for every i = 1, . . . , k ensures that Xi

is not a constant value.
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From now on, with these assumptions and notation, for the null hypothesis of goodness-

of-fit test we consider

H0 :

k∑
i=1

Xi ∼ z (4.7)

with s =
∑k

i=1 ri and z ∈ ∆s. By independence, the sum of X1, . . . , Xk is distributed

as the discrete convolution, denoted ∗, of their PMVs, that is

k∑
i=1

Xi ∼ x1 ∗ . . . ∗ xk,

where, for any two vectors v = (v0, . . . , va) ∈ Ra+1, w = (w0, . . . , wb) ∈ Rb+1 with

a, b > 0, we have v ∗ w ∈ Ra+b+1 and (v ∗ w)i =
∑a

j=0

∑b
l=0 vjwlδj+l,i with δi,j = 1 if

i = j and being null otherwise. In particular, the null hypothesis for the goodness-of-

fit-test (4.7) is equivalent to

H0 : x1 ∗ . . . ∗ xk = z.

Our first goal is to determine a statistic to test (4.7), which will subsequently be

extended to assess the equality in distribution between
∑k

i=1Xi and
∑h

i=1 Yi, where

Y1 ∼ y1 ∈ ∆rk+1 , . . . , Yh ∼ yh ∈ ∆rk+h are other h ≥ 1 independent random variables,

with s =
∑k

i=1 ri =
∑h

i=1 rk+i, namely

H0 :

k∑
i=1

Xi ∼
h∑
i=1

Yi, (4.8)

or, equivalently,

H0 : x1 ∗ . . . ∗ xk = y1 ∗ . . . ∗ yh.

When the PMVs xi for i = 1, . . . , k and yj for j = 1, . . . , h are unknown, care must be

taken to define the test statistics for (4.7) and (4.8) based only on available information.

In this regard, the data consist of the observation of ni independent random variables

{Xi1, . . . , Xini} identically distributed as Xi for i = 1, . . . , k and nk+i independent ran-

dom variables {Yi1, . . . , Yink+i
} identically distributed as Yi for i = 1, . . . , h. Following

a nonparametric approach, we fix i ∈ {1, . . . , k} and define x̂ini ∈ ∆ri the MLE of xi,

that is

(x̂ini)u =
1

ni

ni∑
j=1

1{Xij=u}

for u = 0, . . . , ri, with 1A being the indicator function of the event A. In particular, by

the multivariate central limit theorem (Serfling, 1980),
√
ni(x̂ini−xi) is asymptotically

distributed as a centred normal random variable with covariance Σ(xi) for ni large,
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namely
√
ni(x̂ini − xi) ∼ni→∞ N (Σ(xi)), where, for any PMV v = (v0, . . . , va) ∈ ∆a

and a ≥ 0, we define Σ(v) ∈ Ra+1 × Ra+1 such that (Σ(v))ij = viδi,j − vivj for

i, j = 0, . . . , a. With this notation, we derive the MLE for the distribution of
∑k

i=1Xi.

Proposition 4.2 (MLE for a sum of independent random variables). Given k ≥ 2, let

{Xi1, . . . , Xini} be ni ∈ N random variables independent and identically distributed as

Xi ∼ xi ∈ ∆ri with ri ∈ N, for i = 1, . . . , k. Set s =
∑k

i=1 ri. The MLE for the PMV

x1 ∗ . . . ∗ xk ∈ ∆s of
∑k

i=1Xi is x̂1n1 ∗ . . . ∗ x̂knk ∈ ∆s, defined as

(x̂1n1 ∗ . . . ∗ x̂knk)u =

 k∏
j=1

nj

−1
n1∑
i1=1

· · ·
nk∑
ik=1

1{
∑k
j=1Xjij=u},

for every u = 0, . . . , s.

Proof. Noting aij ∈ {0, . . . , ri} the independent sample from Xij for i = 1, . . . , k and

j = 1, . . . , ni, the MLE of x1 ∗ . . . ∗ xk is the element θ ∈ ∆s that maximises

P(X11 = a11, . . . , X1n1 = a1n1 , . . . , Xk1 = ak1, . . . , Xknk = aknk |θ)

=

k∏
i=1

P(Xi1 = ai1, . . . , Xini = aini |θ) .

On the right hand side, for fixed i ∈ {1, . . . , k}, P(Xi1 = ai1, . . . , Xini = aini |θ) achieves

maximum value for any θ = θ1 ∗ . . . ∗ θk such that θi = x̂ini , with θj ∈ ∆rj for any j.

In particular θ = x̂1n1 ∗ . . . ∗ x̂knk maximises all factors, hence the whole product.

Of note, Proposition 4.2 shows that the MLE for x1 ∗ . . . ∗ xk is calculated using all

observables Xij for j = 1, . . . , ni and i = 1, . . . , k, which may not be the case for

Person’s statistic, as explained in Section 4.2, if at least one sample size of n1, . . . , nk

differs from another.

We introduce additional notation for what follows: A+, A′, Ker(A), nul(A), rk(A)

for the Moore-Penrose inverse, transpose, kernel, nullity and rank of a matrix A, re-

spectively (Horn and Johnson, 1986; Hagen et al., 2000); χ2(s) to indicate the χ2

distribution with s > 0 degrees of freedom; T b+1(v) ∈ Rb+1 × Ra+b+1 for the matrix

of the discrete convolution between v ∈ Ra+1 and any b+1-dimensional vector, i.e.

T b+1(v)w = v ∗ w ∈ Ra+b+1 with w ∈ Rb+1, given a, b ≥ 0. We write T (v) without

explicit domain dimension if this is stated or clear from the context.

We are now ready to determine the asymptotic behaviour of x̂1n1 ∗ . . . ∗ x̂knk , which

follows from an application of the delta method as well as properties of quadratic

transformation of asymptotically multivariate normal vectors (Serfling, 1980). In order
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for the MLE x̂1n1 ∗ . . . ∗ x̂knk to converge to x1 ∗ . . . ∗ xk it is necessary that the sample

sizes n1, . . . , nk grow with proportional rates. For this reason, from now on, we set

m = min(n1, . . . , nk+h) and assume ci = lim
m→∞

m

ni

is finite and positive for every i = 1, . . . , k + h.

Proposition 4.3 (Asymptotic normality of convolutions). Under the null hypothesis

(4.7), that x1 ∗ . . . ∗ xk = z, it holds that

Vm =
√
m (x̂1n1 ∗ . . . ∗ x̂knk − z) ∼

m→∞
N (Ψ) (4.9)

and

V ′mΨ+Vm ∼
m→∞

χ2 (rk(Ψ)) (4.10)

where Ψ =
∑k

i=1 ciT (x(i))Σ(xi)T (x(i))
′ and x(i) = x1 ∗ . . . ∗ xi−1 ∗ xi+1 ∗ . . . ∗ xk for

i = 1, . . . , k. Alternatively, under the null hypothesis (4.8), that x1∗. . .∗xk = y1∗. . .∗yh,

it holds that

Wm =
√
m
(
x̂1n1 ∗ . . . ∗ x̂knk − ŷ1nk+1

∗ . . . ∗ ŷhnk+h

)
∼

m→∞
N (Ψ + Ξ) (4.11)

and

W ′m(Ψ + Ξ)+Wm ∼
m→∞

χ2 (rk(Ψ + Ξ)) (4.12)

where Ξ =
∑h

i=1 ck+iT (y(i))Σ(yi)T (y(i))
′ and y(i) = y1 ∗ . . . ∗ yi−1 ∗ yi+1 ∗ . . . ∗ yk for

i = 1, . . . , h.

We remark that expressions (4.10) and (4.12) require the knowledge of Ψ and Ψ + Ξ,

but these may, in general, be unknown. Thus we take advantage of the generalised

Wald’s method (Moore, 1977), which shows how to construct χ2 tests from consistent

estimators of the covariance matrices such as Ψ and Ψ+Ξ. We recall here Moore (1977,

Theorem 2) which will serve as backbone for the subsequent results.

Proposition 4.4 (Generalised Wald’s method (Moore, 1977, Theorem 2)). Suppose a

sequence of estimators {θ̂m}m≥1 of a parameter θ0 ∈ Rd, with d > 0, is such that

√
m
(
θ̂m − θ0

)
∼

m→∞
N (Σ)

with rk(Σ) ≤ d. Noted {Bm}m≥1 a sequence of d-dimensional square matrices such

that Bm ∼m→∞ B with B generalised-inverse of Σ, then

m
(
θ̂m − θ0

)′
Bm

(
θ̂m − θ0

)
∼

m→∞
χ2(rk(Σ)).
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Since the entries of

Ψ̂m =

k∑
i=1

ciT (x̂(i)ni)Σ(x̂ini)T (x̂(i)ni)
′

are continuous functions of x1, . . . , xk, whose consistent estimators are x̂1n1 , . . . , x̂knk

respectively, then Ψ̂m is a consistent estimator of Ψ and similarly

Ξ̂m =

h∑
i=1

ck+iT (ŷ(i)nk+i
)Σ(ŷink+i

)T (ŷ(i)nk+i
)′

for Ξ.

Note that Proposition 4.4 cannot be directly applied to (4.9) by setting Bm = Ψ̂+
m, as

Ψ̂+
m may not be a consistent estimator of Ψ+. Given a sequence of consistent estimators

{Am}m≥1 for a matrix A of finite dimensions, then {A+
m}m≥1 is a sequence of consistent

estimators for A+ if and only if rk(Am) = rk(A) for m large (Nashed, 1976). In partic-

ular, as the rank is a lower-semicontinuous operator on the space of finite dimensional

matrices, then only rk(Ψ̂m) ≥ rk(Ψ) is guaranteed as m tends to infinity.

If the limiting rank is known, consistency is ensured by applying the Eckart-Young-

Mirsky theorem (Eckart and Young, 1936), which is the solution to the basic low

rank approximation of a finite dimensional matrix (Markovsky, 2012). To this end,

given any d-dimensional symmetric matrix A ∈ Rd × Rd with d ∈ N and its eigen-

decomposition A = P ′ΛP , with 0 < rk(A) ≤ d, Λ diagonal matrix of the decreas-

ing eigenvalues and P orthogonal matrix, then for any 0 < r ≤ rk(A) we define a

rank-r matrix that approximates A (in light of the Eckart-Young-Mirsky theorem) as

Ar = (DrP )′ΛrDrP ∈ Rd × Rd, where Dr is a Rr × Rd matrix with 1 at the diagonal

and 0 elsewhere and Λr is the Rr × Rr diagonal matrix of the largest r eigenvalues

of Σ. In particular, Ar may not be unique, as for the case when the rth and r + 1th

eigenvalues are equal. The following result is found in Hadi and Wells (1990, Theorem

2.3) for the generalised inverses and we report it here for the case of Moore-Penrose

inverses.

Proposition 4.5 (Rank approximation (Hadi and Wells, 1990, Theorem 2.3)). Suppose

a sequence of centred random variables {Um}m≥1 ∈ Rd is asymptotically distributed as

N (Σ) for m large, with 0 < rk(Σ) ≤ d where d > 0. Let {Σ̂m}m≥1 be a sequence of

square matrices that are consistent estimators of Σ, then for every 0 < r ≤ rk(Σ)

U ′m(Σ̂r
m)+Um ∼

m→∞
χ2(r),

where Σ̂r
m is a rank-r approximation of Σ̂m.
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Proposition 4.5 highlights the central role of the rank of Σ, which will be derived in

the next section for Σ = Ψ and Σ = Ψ + Ξ. In general, the determination of rk(Σ)

may be a difficult problem that depends on the structure of the Σ under consideration,

and this limitation may explain why an otherwise flexible tool such as the generalised

Wald’s method from Proposition 4.4 is not more widely employed. But, if the rank is

known, Proposition 4.5 provides a method for statistical testing the null hypotheses,

such as H0 : x1 ∗ . . . ∗ xk = z and H0 : x1 ∗ . . . ∗ xk = y1 ∗ . . . ∗ yh, under which Σ is not

invertible. This result also assures a solution if only a lower bound of the rank is given,

at the cost of statistical power. Furthermore, the exclusion of smaller eigenvalues may

still be necessary to achieve numerical stability when calculating the pseudo-inverse of

Σ̂m, as due to Proposition 4.5, the effect of that truncation can be accounted for in the

statistic formulation.

4.4 Determining the covariance matrix rank

In this section, we investigate the rank of Ψ and Ψ + Ξ, the covariance matrices from

(4.9) and (4.11) of Proposition 4.3, in order to derive the number of degrees of freedom

from the limiting statistics for the goodness-of-fit (4.10) and equality in distribution

(4.12) tests. Focusing on Ψ, we begin by showing that ciT (x(i))Σ(xi)T (x(i))
′ is a

positive semidefinite matrix for any fixed i ∈ {1, . . . , k}. In fact, since Σ(xi) is positive

semidefinite, for every v ∈ Rs+1

civ
′T (x(i))Σ(xi)T (x(i))

′v = ciw
′Σ(xi)w ≥ 0, (4.13)

where w = T (x(i))
′v. Additionally, we deduce from Horn and Johnson (1986, Obser-

vation 7.1.3) that given A and B two positive semidefinite matrices with the same

dimensions, then

Ker(A+B) = Ker(A) ∩Ker(B) . (4.14)

Taken together, (4.13) and (4.14) imply

Ker(Ψ) =

k⋂
i=1

Ker
(
T (x(i))Σ(xi)T (x(i))

′) . (4.15)

Using kernel properties, we write

Ker
(
T (x(i))Σ(xi)T (x(i))

′) = Ker
(
Σ(xi)T (x(i))

′)
= Ker

(
T (x(i))

′)⊕ {v ∈ Rs+1 : T (x(i))
′v ∈ Ker(Σ(xi))} (4.16)
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where the first relation descends from Σ(xi) and T (x(i))Σ(xi)T (x(i))
′ being positive

semidefinite matrices and ⊕ represents the direct sum operation.

Let i ∈ {1, . . . , k} be fixed and let Li = {l : xil = 0} be the set of indexes of the

null entries of xi ∈ ∆ri . In general, the kernel of Σ(xi) is generated by the ri+1-

dimensional all-ones vector 1ri and the canonical vectors eil = (eil0, . . . , e
i
lri

) ∈ Rri+1 for

every l ∈ Li, where eilu = δl,u for u = 0, . . . , ri, that is Ker(Σ(xi)) = 〈1ri〉 ⊕ Ei, where

Ei = 〈{eil : l ∈ Li}〉.

Denoting r(i) =
∑k

j 6=i rj , we can expand T (x(i)) into

T (x(i)) =



x(i)0 0 . . . 0

x(i)1 x(i)0
. . .

...
...

...
. . . 0

x(i)r(i) x(i)r(i)−1
. . . x(i)0

0 x(i)r(i)

. . .
...

...
. . .

. . .
...

0 . . . 0 x(i)r(i)


,

from which we deduce T (x(i))
′1s = 1ri , for every x(i) ∈ ∆r(i) , and in particular 1s /∈

Ker
(
T (x(i))

′).
To achieve an explicit formulation for the rank of Ψ (and analogously for Ψ + Ξ), in

Theorem 4.7 we will assume that xi ∈ ∆ri
Int ⊂ ∆ri , defined as

∆ri
Int = {v = (v0, . . . , vri) ∈ Rri+1 :

ri∑
j=1

vj = 1; 0 < vj < 1, j = 0, . . . , ri}

for every i = 1, . . . , k. This ensures that Ei = ∅, so that Ker(Σ(xi)) = 〈1ri〉. Under

this hypothesis, from (4.15) and (4.16) we deduce that

Ker(Ψ) =

k⋂
i=1

Ker
(
T (x(i))Σ(xi)T (x(i))

′) = 〈1s〉 ⊕
k⋂
i=1

Ker
(
T (x(i))

′) , (4.17)

and, with the same reasoning applied to Ψ + Ξ, it follows that

Ker(Ψ + Ξ) = 〈1s〉 ⊕
(( k⋂

i=1

Ker
(
T (x(i))

′) ) ∩ ( h⋂
j=1

Ker
(
T (y(j))

′) )). (4.18)
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In the following Lemma we show how

k⋂
i=1

Ker
(
T (x(i))

′) (4.19)

and ( k⋂
i=1

Ker
(
T (x(i))

′)) ∩ ( h⋂
j=1

Ker
(
T (y(j))

′)) (4.20)

depend on the roots in common between the probability generating functions of the

random variables X1, . . . , Xk, Y1, . . . , Yh. This result will be achieved in full gener-

ality without restrictions for the PMVs, that is with x1 ∈ ∆r1 , . . . , xk ∈ ∆rk , y1 ∈
∆rk+1 , . . . , yh ∈ ∆rk+h . We first provide some insight into this connection by consider-

ing the case k = 2

Ker
(
T (x(1))

′) ∩Ker
(
T (x(2))

′) = Ker

([
T (x2) T (x1)

]′)
.

In fact,

[
T (x2) T (x1)

]
=



x20 0 . . . 0 x10 0 . . . 0

x21 x20
. . .

... x11 x10
. . .

...
...

...
. . . 0

...
...

. . . 0

x2r2 x2r2−1
. . . x20 x1r1 x1r1−1

. . . x10

0 x2r2
. . .

... 0 x1r1
. . .

...
...

. . .
. . .

...
...

. . .
. . .

...

0 . . . 0 x2r2 0 . . . 0 x1r1


belongs to Rr1+r2+2 ×Rr1+r2+1 and has the same structure, with different dimensions,

of a Sylvester matrix (Markovsky, 2012), whose nullity is the degree of the polynomial

from the greatest common divisor of the probability generating functions associated to

x1 and x2.

To formalise the connection with PMVs and polynomials, we introduce the bijection

ϕ : ∪a≥0 {u = (u0, . . . , ua) ∈ Ra+1 :
∑a

i=0 ui = 1;ua 6= 0} → {u(t) ∈ R[t] : u(1) = 1}
that, for any a ≥ 0, maps a vector v = (v0, . . . , va) ∈ {u = (u0, . . . , ua) ∈ Ra+1 :∑a

i=0 ui = 1;ua 6= 0} to the polynomial ϕ(v)(t) =
∑a

i=0 vit
i ∈ R[t] of degree degϕ(v) =

a with coefficients v. In particular, this map transforms the convolution of vectors into

the product of polynomials: given w ∈ {u = (u0, . . . , ub) ∈ Rb+1 :
∑b

i=0 ui = 1;ub 6= 0},
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for any b ≥ 0, we have

ϕ(v ∗ w)(t) =
a∑
i=0

(v ∗ w)it
i = ϕ(v)(t)ϕ(w)(t).

The map ϕ allows the extension of the notion of greatest common divisor between any

two polynomials gcd(ϕ(v), ϕ(w)) to their related vectors v, w. This is achieved by

establishing gcd(u1(t), u2(t)) ∈ {u(t) ∈ R[t] : u(1) = 1} for any u1(t), u2(t) ∈ {u(t) ∈
R[t] : u(1) = 1}, so that the greatest common divisor is uniquely defined, and by setting,

for any v, w ∈ ∪a≥0{u = (u0, . . . , ua) ∈ Ra+1 :
∑a

i=0 ui = 1;ua 6= 0},

gcd(v, w) = ϕ−1(gcd(ϕ(v)(t), ϕ(w)(t)))

∈ {u = (u0, . . . , urg) ∈ Rrg+1 :

rg∑
i=0

ui = 1;urg 6= 0}

with rg = deg gcd(ϕ(v)(t), ϕ(w)(t)) ≥ 0. In particular, we say the vectors v, w are

coprime if and only if rg = 0. Following the same logic, we import the concept of least

common multiple between v and w, denoted lcm(v, w), and the property of divisibility

between vectors. Of note, with the notation above, the probability generating functions

of x1, . . . , xk, y1, . . . , yh are, respectively, ϕ(x1), . . . , ϕ(xk), ϕ(y1), . . . , ϕ(yh).

We now establish the relation between the kernels of (4.19), (4.20) and the greatest

common divisors gk = gcd(x(1), . . . , x(k)) and ḡh = gcd(y(1), . . . , y(h)).

Lemma 4.6 (Kernels from gcd of PMVs). Let k ≥ 2 and x1 ∈ ∆r1 , . . . , xk ∈ ∆rk .

Given gk = gcd(x(1), . . . , x(k)) ∈ Rrgk+1, it holds that T (gk)
′ ∈ R

∑k
i=1 ri−rgk+1 ×

R
∑k
i=1 ri+1 and

k⋂
i=1

Ker
(
T (x(i))

′) = Ker
(
T (gk)

′) . (4.21)

Additionally, let h ≥ 1 and y1 ∈ ∆rk+1 , . . . , yh ∈ ∆rk+h. Given ḡh = gcd(y(1), . . . , y(h)) ∈
Rrḡh+1 and g̃ = gcd(gk, ḡh)∈Rrg̃+1, it holds that T (ḡh)′∈R

∑k
i=1 ri−rḡh+1 × R

∑k
i=1 ri+1,

T (g̃)′∈R
∑k
i=1 ri−rg̃+1 × R

∑k
i=1 ri+1 and

k⋂
i=1

Ker
(
T (x(i))

′) ∩ h⋂
j=1

Ker
(
T (y(j))

′) = Ker

([
T (gk)

′

T (ḡh)′

])
= Ker

(
T (g̃)′

)
(4.22)

Proof. We first prove (4.21) by induction on k. For k = 2 we have to show that

Ker
(
T (x(1))

′) ∩Ker
(
T (x(2))

′) = Ker

([
T (x(1))

′

T (x(2))
′

])
= Ker

(
T (g2)′

)
,
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where g2 = gcd (x(1), x(2)) = gcd (x2, x1) ∈ Rrg2+1 and rg2 ≥ 0. By definition of g2,

there exist two coprime vectors z1 ∈ Rr1−rg2+1, z2 ∈ Rr2−rg2+1 such that x(1) = z1 ∗ g2

and x(2) = z2 ∗ g2 so that, by composition of discrete convolution, we can write

[
T (x(1))

′

T (x(2))
′

]
=

[
T (z1)′

T (z2)′

]
T (g2)′,

where T (g2)′ ∈ Rr1+r2−rg2+1 × Rr1+r2+1, T (z1)′ ∈ Rr2+1 × Rr1+r2−rg2+1 and T (z2)′ ∈
Rr1+1 × Rr1+r2−rg2+1. As the number of columns of

[
T (z1) T (z2)

]′
is lesser than the

number of rows, since r1 + r2 − rg2 + 1 ≤ r1 + r2 + 2 ⇔ rg2 + 1 ≥ 0, to prove (4.4),

it suffices to show that
[
T (z1) T (z2)

]′
is of full rank r1 + r2 − rg2 + 1. Thus, from

rank-nullity theorem,

r1 + r2 − rg2 + 1 = rk

([
T (z1)′

T (z2)′

])
= rk

([
T (z1) T (z2)

])
= r1 + r2 + 2− nul

([
T (z1) T (z2)

])
holds if and only if nul

([
T (z1) T (z2)

])
= rg2 + 1. The latter is true by coprimeness

between z1 and z2 and by matrix dimensionality, since the solutions (a, b) with a ∈
Rr1+1, b ∈ Rr2+1, to the homogeneous system of equations T (z1)a+ T (z2)b = z1 ∗ a+

z2 ∗ b = 0, are characterised by a = z2 ∗ u, b = −z1 ∗ u with u ∈ Rrg2+1 vector of

free parameters. Assuming (4.21) for k, we now prove the case k + 1 to conclude. By

inductive step and associative property of convolution, we can write

k+1⋂
i=1

Ker
(
T (x(i))

′) = Ker



T (x(1))

′

...

T (x(k+1))
′




= Ker

([
T (gk)

′T (xk+1)′

T (x(k+1))
′

])
= Ker

([
T (gk ∗ xk+1)′

T (x(k+1))
′

])
.

(4.23)

Thus, by the definition of gk+1 = gcd(x(1), . . . , x(k+1)) ∈ Rrgk+1
+1, the properties of

gcd lead to gk+1 = gcd(gk ∗ xk+1, x1 ∗ . . . ∗ xk) = gk gcd(xk+1, uk+1), where uk+1 ∈
R
∑k
i=1 ri−rgk+1 is such that uk+1 ∗ gk+1 = x1 ∗ . . . ∗ xk. In particular, we deduce

rgk+1
≥ rgk . (4.24)

As in the previous step, we introduce z1 ∈ Rrgk+rk+1−rgk+1
+1 and z2 ∈ R

∑k
i=1 ri−rgk+1

+1

coprime vectors such that z1 ∗ gk+1 = gk ∗ xk+1 and z2 ∗ gk+1 = x1 ∗ . . . ∗ xk. Thus,
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resuming (4.23),

k+1⋂
i=1

Ker
(
T (x(i))

′) = Ker

([
T (z1)′

T (z2)′

]
T (gk+1)′

)
= Ker

(
T (gk+1)′

)
where last equality is analogous as for the case k = 2, given that the number of columns

of
[
T (z1) T (z2)

]′
∈ R

∑k+1
i=1 ri−rgk+2 × R

∑k+1
i=1 ri−rgk+1

+1 is lesser than the number of

rows, that is

k+1∑
i=1

ri − rgk+1
+ 1 ≤

k+1∑
i=1

ri − rgk + 2 ⇔ rgk+1
+ 1 ≥ rgk ,

which holds true by (4.24). To prove (4.22), we note that the first equation therein is

established by (4.21), thus only the second equivalence shall be proved. Once more,

we define z1 and z2 such that such that
[
T (z1) T (z2)

]′
T (g̃)′ =

[
T (gk) T (ḡh)

]′
with

T (z1)′ ∈ R
∑k
i=1 ri−rgk+1×R

∑k
i=1 ri−rg̃+1, T (z2)′ ∈ R

∑k
i=1 ri−rḡh+1×R

∑k
i=1 ri−rg̃+1. Again,

the conclusion is verified by checking that, in the matrix
[
T (z1) T (z2)

]′
, there are less

rows than columns, namely

k∑
i=1

ri + rg̃ + 1 ≥ rgk + rḡh ,

which holds true since gk ∗ ḡh = gcd(gk, ḡh) ∗ lcm(gk, ḡh) = g̃ ∗ lcm(gk, ḡh) and lcm(gk,

ḡh) is a divisor of z = x1 ∗ . . . ∗ xk = y1 ∗ . . . ∗ yh (as polynomials), so deg lcm(gk, ḡh) ≤∑k
i=1 ri.

As consequence of Lemma 4.6, we can finally determine the rank of the covariance

matrices Ψ and Ψ + Ξ assuming x1 ∈ ∆r1
Int, . . . , xk ∈ ∆rk

Int, y1 ∈ ∆
rk+1

Int , . . . , yh ∈ ∆
rk+h

Int ,

in order to calculate the number of degrees of freedom of the limiting χ2 distribution

in (4.10) and (4.12) from Proposition 4.3 for this case.

Theorem 4.7 (Covariance matrix rank). Under the assumptions of Proposition 4.3 and

the notations of Lemma 4.6 and given x1 ∈ ∆r1
Int, . . . , xk ∈ ∆rk

Int, y1 ∈ ∆
rk+1

Int , . . . , yh ∈
∆
rk+h

Int , it follows that

Ker(Ψ) = 〈1s〉 ⊕Ker
(
T (gk)

′) (4.25)

and

Ker(Ψ + Ξ) = 〈1s〉 ⊕Ker
(
T (g̃)′

)
. (4.26)

In particular, with s defined immediately prior to equation (4.8),

rk(Ψ) = s− rgk (4.27)
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and

rk(Ψ + Ξ) = s− rg̃. (4.28)

Proof. The relations (4.25) and (4.26) derive as applications of Lemma 4.6 to (4.17) and

(4.18), respectively. Lastly, (4.27) and (4.28) follow from (4.25) and (4.26), respectively,

through rank-nullity properties of linear transformations from a finite-dimensional do-

main.

In the case where x1, . . . , xk, y1, . . . , yh are coprime, that is when their probability

generating functions ϕ(x1), . . . , ϕ(xk), ϕ(y1), . . . , ϕ(yh) have no root in common, we

can simplify Theorem 4.7 as follows.

Corollary 4.8 (Rank from the coprime case). Under the assumptions of Theorem 4.7,

if x1, . . . , xk, y1, . . . , yh are coprime vectors, then rk(Ψ) = rk(Ψ + Ξ) = s, where s is

defined immediately prior to equation (4.8).

Proof. This follows from Theorem 4.7, as Ker(T (gk)
′) = Ker(T (g̃)′) = {(0, . . . , 0)} ⊆

Rs+1 by coprimeness.

Taken together, Lemma 4.6 and Theorem 4.7 serve as example of how to determine

the covariance matrix rank upon application of the generalised Wald’s framework.

Moreover, Theorem 4.7 and Corollary 4.8 offer a way to study estimators such as

f(x̂1n1 ∗ . . . ∗ x̂knk) of f(x1 ∗ . . . ∗ xk) through the application of the delta method

(Serfling, 1980), for all f : Rs+1 → Rm, with m ∈ N, such that the differential of f in

x1 ∗ . . . ∗ xk is not null.

4.5 Power comparison

We evaluate the performances of the convolution test in terms of type I error and

power (1 minus type II error), which are the proportion of rejections with significance

level α = 0.05 under the null and alternative hypothesis respectively, setting Pearson’s

χ2 test as the benchmark. To do so, we simulate the smallest parametrised model

that enables the investigation of how samples size, degrees of freedom reduction, and

observables distribution affect the convolution test, using different parameters choices.

It also allows the transition from the null to alternative hypotheses by modulating a

single parameter.

We consider k = 2, h = 1 and X1, X2 are two Bernoulli random variables with pa-

rameters p, q ∈ (0, 1) so that x1 = (1 − p, p), x2 = (1 − q, q) and x1, x2 ∈ ∆1
Int. With
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a = pq +
√
pq(1− p)(1− q), we define for ρ ∈ [0, 1]

z(ρ) = (1− ρ)x1 ∗ x2 + ρ(1− a, 0, a)

=
(
(1−ρ)(1−p)(1−q)+ρ(1−a), (1−ρ)(p+q−2pq), (1−ρ)pq+ρa

)
,

(4.29)

where a is defined so that z(ρ) = (z(ρ)0, z(ρ)1, z(ρ)2) ∈ ∆2
Int is the PMV for the

distribution of Z1 + Z2, where Z1 and Z2 are two Bernoulli random variables with

parameter p and q, respectively, and ρ is their correlation. The null hypothesis for the

goodness-of-fit (GF) test is

H0 : X1 +X2 ∼ z(0)

and we set a family of alternative hypotheses parametrized over ρ ∈ (0, 1] as

Hρ
1 : X1 +X2 � z(ρ).

Similarly, the null and the alternative hypotheses of the test for equality in distribution

(ED) are defined as

H0 : X1 +X2 ∼ Y1 with Y1 ∼ z(0) and

Hρ
1 : X1 +X2 � Y1 with Y1 ∼ z(ρ), ρ ∈ (0, 1].

To facilitate the following discussion, we set the sample sizes n1, n2 and n3 for X1,

X2 and Y1, respectively, so that n1, n2 ≤ n3 and m = min(n1, n2, n3) = min(n1, n2).

Since we are interested in the comparison between the convolution and Pearson’s χ2

statistics, we need to calculate the latter even in the case of unequal sample size, i.e.

when n1 6= n2. Thus, we define

PGF
m =

2∑
j=0

(
∑m

i=1 1{X1i+X2i=j} −mz(ρ)j)
2

mz(ρ)j
and

PED
m =

2∑
j=0

(
( n3
m+n3

∑m
i=1 1{X1i+X2i=j} −

m
m+n3

∑n3
i=1 1{Yi=j})

2

m
m+n3

(
∑m

i=1 1{X1i+X2i=j} +
∑n3

i=1 1{Yi=j})

+
( m
m+n3

∑n3
i=1 1{Yi=j} −

n3
m+n3

∑m
i=1 1{X1i+X2i=j})

2

n3
m+n3

(
∑m

i=1 1{X1i+X2i=j} +
∑n3

i=1 1{Yi=j})

)

for Pearson’s goodness-of-fit and equality in distribution testing statistic, respectively.

In particular, n1 + n2 − 2m observations will not be used in the computation of PGF
m

and PED
m .

We define the convolution statistic with fixed rank r = 1, 2 from the notation in Propo-

sition 4.3 and Proposition 4.5 as V ′m(Ψ̂r
m)+Vm and W ′m((Ψ̂m + Ξ̂m)r)+Wm. In the case

where the n1 and n2 observations from the random variables X1 and X2, respectively,
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are all equal, the sample covariance matrix is null, i.e. Ψ̂m = 0, and (Ψ̂r
m)+ is not

well defined. In this scenario, Pearson’s PGF
m can still be calculated. As we aim to

compare the power gain over Pearson’s procedures, we calculate the convolution statis-

tics for goodness-of-fit test as V ′m(Ψ̂r
m)+Vm, where well defined, otherwise we set it to

PGF
m . With the same reasoning for the equality in distribution case, for the following

simulations we define the convolution statistic as

CGF
rm = V ′m(Ψ̂r

m)+Vm(1− 1{Ψ̂m=0}) + PGF
m 1{Ψ̂m=0} and

CED
rm = W ′m((Ψ̂m + Ξ̂m)r)+Wm(1− 1{Ψ̂m+Ξ̂m=0}) + PED

m 1{Ψ̂m+Ξ̂m=0},

for goodness-of-fit and equality in distribution tests, respectively. Note that limm→∞C
GF
rm

∼ χ2(r), since Ψ̂m = 0 if and only if x̂1n1 , x̂2n2 ∈ {(1, 0), (0, 1)}, but, for j = 1, 2,

limm→∞P
(
x̂jnj ∈ {(1, 0), (0, 1)}

)
= 0. From analogous reasoning, also limm→∞C

ED
rm ∼

χ2(r) holds true.

Moreover, in order not to confound the comparative analysis, we do not reduce the

limiting χ2 degrees of freedom in the case where a positive eigenvalue of Ψ̂m, or Ψ̂m+Ξ̂m,

is set to 0 for being smaller than 10−ε (here ε = 15 is the machine precision from

Python’s floating point number in Numpy 1.13.1).

Finally, to assess whether deviations from the limit of the convolution statistic are due

to the estimate of the covariance matrix pseudo-inverse, we introduce

ZGF
rm = V ′mΨ+Vm and ZED

rm = W ′m(Ψ + Ξ)+Wm

for r = 1, 2, which are the convolution statistics calculated with the true covariance

matrices.

For all these statistics, we evaluate the proportion of hypothesis rejection for the sig-

nificance level α = 0.05 by Monte Carlo approximation over L = 100,000 independent

instances of the data. That is, given Sr(t) = P
(
χ2(r) ≥ t

)
the survival function for a

χ2 distribution with r degrees of freedom, the proportions of rejections for PGF
m , CGF

rm

and ZGF
rm , respectively, are

1

L

L∑
l=1

1{S2(PGF
ml )<α},

1

L

L∑
l=1

1{Sr(CGF
rml)<α}

,
1

L

L∑
l=1

1{Sr(ZGF
rml)<α}

, (4.30)

where {PGF
m1 , . . . , P

GF
mL}, {CGF

rm1, . . . , C
GF
rmL} and {ZGF

rm1, . . . , Z
GF
rmL} are L independent

simulation from the statistics for the goodness-of-fit testing PGF
m , CGF

r , ZGF
rm , respec-

tively. Similarly, we set the proportion of rejections for their equality in distribution
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counterparts as

1

L

L∑
l=1

1{S2(PED
ml )<α},

1

L

L∑
l=1

1{Sr(CED
rml)<α}

,
1

L

L∑
l=1

1{Sr(ZED
rml)<α}

, (4.31)

for PED
m , CED

rm and ZED
rm , respectively.

In Fig. 4.1, we report the statistical power under H0 and a range of alternative hy-

potheses Hρ
1. We implement these comparisons for small and large samples with respect

to m = min(n1, n2, n3), and with equal and unequal sizes.

To comply with the rule-of-thumb recommendation for Pearson’s χ2 statistic applica-

tion (Cressie and Read, 1984), the requirement for the expected frequencies m(x1 ∗
x2)u ≥ 1 for the categories u = 0, 1, 2, must be met when m observations are sampled

from the distribution of X1 + X2. Thus, we select two cases for the parameters (p, q)

so that, under small samples m = 10, all three constraints from the rule-of-thumb

are satisfied when (p, q) = (0.3, 0.8), while only one, i.e. m(x1 ∗ x2)1 ≥ 1, holds for

(p, q) = (0.1, 0.9).

We select these parameters in order to check whether the convolution statistic offers

a better alternative over Pearson’s χ2, under cases favourable to PGF
m and PED

m , when

(p, q) = (0.3, 0.8) and sample sizes are equal, or unfavourable, when n1 + n2 − 2m > 0

observations are excluded and the rule-of-thumb is violated.

For the small sample cases when (p, q) = (0.3, 0.8), CGF
2m provides better power over

PGF
m , and the latter over CGF

1m , but CGF
2m shows a proportion of rejections that is above α

under H0 (Fig. 4.1a, top left and middle left panels). When (p, q) = (0.1, 0.9), CGF
1m and

CGF
2m have similar behaviour which outperforms PGF

m (Fig. 4.1a, top right and middle

right panels). Equivalent conclusions are inferred for the equality in distribution testing

statistic counterparts (Fig. 4.1b, top and middle panels). For large samples, under H0,

the proportion of rejections becomes closer to α for CGF
2m (Fig. 4.1a, bottom panels) and

it coincides for CED
2m (Fig. 4.1b, bottom panels); in terms of power, convolution statistics

outperform Pearson’s χ2, with the exception of CGF
1m and CED

1m when (p, q) = (0.3, 0.8)

(Fig. 4.1a-b, bottom left panels).

In Fig. 4.2 we illustrate the convergence of the rejection rate for m large to the signif-

icance level α under H0 and the power convergence under the alternative hypothesis

H0.25
1 . When testing for goodness-of-fit, CGF

2m shows the highest rejection proportion

which leads to good power under the alternative hypothesis (Fig. 4.2b), but a slow

convergence to α under H0, reaching peaks of rejection up to 2α (Fig. 4.2a). CGF
1m and

PGF
m , instead, have similar behaviours better than CGF

2m , with PGF
m outperforming CGF

1m

in its most favourable case ((p, q) = (0.3, 0.8), bottom left panels from Fig. 4.2a,b)
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Figure 4.1: Power comparison. Solid lines correspond to Pearson’s χ2 statistics PGF
m and

PED
m (red), convolution statistic with rank 1 CGF

1m and CED
1m (blue) and with rank 2 CGF

2m and
CED

2m (green). Dashed lines indicate convolution statistics calculated from the true covariance
matrix, approximated to rank 1 ZGF

1m and ZED
1m (blue) and to rank 2 ZGF

2m and ZED
2m (green).

These statistics are sorted for those testing goodness-of-fit, H0 : X1 + X2 ∼ z(0) against
Hρ

1 : X1 + X2 � z(ρ) (grid a), and equality in distribution, H0 : X1 + X2 ∼ Y1 against
Hρ

1 : X1 +X2 � Y1 (grid b), where X1 ∼ (1−p, p), X2 ∼ (1−q, q) and Y1 ∼ z(ρ) as from (4.29).
Distinct choices of (p, q) are used for each column of one grid ((0.3, 0.8) left, (0.1, 0.9) right).
Different sample sizes (n1, n2, n3), for X1, X2 and Y1 respectively, are employed for each row
within a grid (small sample sizes that are equal (10, 10, 10) or unequal (10, 20, 20) and equally
large sample sizes (100, 100, 100) from top to bottom). The proportion of rejections (see (4.30)
and (4.31)) is plotted as function of the parameter ρ = 0, 0.01, . . . , 0.4, so as to indicate the
power under the null hypothesis H0, when ρ = 0, and under the alternative hypothesis Hρ

1,
when ρ > 0. A dotted black horizontal line is depicted at α = 0.05, the nominal rejection level
for H0

while the converse holds in the other cases. When testing for equality in distribution,

results for CED
1m and PED

m are similar (Fig. 4.2c,d), while CED
2m presents a much faster

convergence under H0 than its goodness-of-fit counterpart, as it approaches α already

at m = 100 (Fig. 4.2c).

Together, Figs. 4.1 and 4.2 suggest a tendency of the convolution statistics to attain

a more anti-conservative behaviour (type I error higher than α), while for Person’s χ2

statistic this is more conservative (type I error lower than α).

Lastly, in Fig. 4.3 we analyse the convolution statistic in the case of a covariance matrix

that is near a reduced rank form, when its smallest positive eigenvalue approaches zero.

Equivalently, this situation occurs if the roots of the PMVs for X1 and X2 are close,

i.e. (p− 1)/p− (q− 1)/q becomes null. To this end, we fix q ∈ (0, 1), so that rk(Ψ) = 1
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Figure 4.2: Speed of convergence comparison. Solid lines correspond to Pearson’s χ2

statistics PGF
m and PED

m (red), convolution statistic with rank 1 CGF
1m and CED

1m (blue) and with
rank 2 CGF

2m and CED
2m (green). Dashed lines indicate convolution statistics calculated from the

true covariance matrix, approximated to rank 1 ZGF
1m and ZED

1m (blue) and to rank 2 ZGF
2m and

ZED
2m (green). These statistics are sorted for those testing goodness-of-fit, H0 : X1 +X2 ∼ z(0)

(grid a) against H0.25
1 : X1+X2 � z(0.25) (grid b), and equality in distribution, H0 : X1+X2 ∼

Y1 (grid c) against H0.25
1 : X1 + X2 � Y1 (grid d), where X1 ∼ (1 − p, p), X2 ∼ (1 − q, q) and

Y1 ∼ z(ρ) as from (4.29), with ρ = 0, 0.25. Distinct proportions of sample sizes (n1, n2, n3),
for X1, X2 and Y1 respectively, are used for each row of the grids: equal n1 = n2 = n3
(top row) or unequal 2n1 = n2 = n3 (bottom row). Different choices of (p, q) are used for
each column of one grid ((0.3, 0.8) left, (0.1, 0.9) right). The proportion of rejections (see
(4.30) and (4.31)) is plotted as a function of the minimum sample size m = min(n1, n2, n3) =
10, 25, 50, 75, 100, 250, 500, 750, 1000. A dotted black horizontal line is depicted at α = 0.05, the
nominal rejection level for H0
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Figure 4.3: Proportion of rejections comparison as the smallest positive eigen-
value of Ψ tends to zero. Solid lines correspond to Pearson’s χ2 statistics PGF

m and PED
m

(red), convolution statistic with rank 1 CGF
1m and CED

1m (blue) and with rank 2 CGF
2m and CED

2m

(green). Dashed lines indicate convolution statistics calculated from the true covariance ma-
trix, approximated to rank 1 ZGF

1m and ZED
1m (blue) and to rank 2 ZGF

2m and ZED
2m (green). These

statistics are sorted for those testing goodness-of-fit, H0 : X1 + X2 ∼ z(0) (gird a, left col-
umn) against H0.25

1 : X1 + X2 � z(0.25) (grid a, right column), and equality in distribution,
H0 : X1 + X2 ∼ Y1 (gird b, left column) against H0.25

1 : X1 + X2 � Y1 (gird b, right column),
where X1 ∼ (1− p, p), X2 ∼ (1− q, q) and Y1 ∼ z(ρ) as from (4.29), with ρ = 0, 0.25. Different
sample sizes (n1, n2, n3), for X1, X2 and Y1 respectively, are employed for each row within
a grid ((10, 10, 10), (10, 20, 20), (100, 100, 100) from top to bottom). With q fixed to 0.8, the
proportion of rejections (see (4.30) and (4.31)) is plotted as a function of p for values far from
q (p = 0.01, 0.02, . . . , 0.25, left side of the plot) or close to it (p = 0.55, 0.56, . . . , 0.79, right side
of the plot). A dotted black horizontal line is depicted at α = 0.05, the nominal rejection level
for H0

if p = q (but still rk(Ψ + Ξ) = 2), and we compare the proportion of rejections when

the roots are well separated or close each other, under both H0 and H0.25
1 .

For small samples, we observe that CGF
1m and PGF

m present similar performance under

H0 (Fig. 4.3a, left panels), while PED
m and CED

1m are, respectively, conservative and

anti-conservative (Fig. 4.3b, left panels). The power under H0.25
1 favours the use of

CGF
1m over PGF

m in the small sample setting, but, for large samples, PGF
m outperforms

CGF
1m when p is near q (Fig. 4.3a, right panels). As the spread between p and q

widens, eventually CGF
1m performs better than PGF

m . This commentary is also true for

the equality in distribution statistic counterparts (Fig. 4.3b, right panels).

As predicted from Figs. 4.1 and 4.2 analyses, the behaviour of CGF
2m is of higher propor-

tion of rejections. Furthermore, due to rk(Ψ) = 1, as p approaches q, CGF
2m undertakes
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a dramatic deviation from the nominal rejection proportion α, indicative of the con-

sistency failure of (Ψ̂2
m)+ in the estimation of Ψ+ when p = q (Fig. 4.3a, bottom

left panels). For large samples, we see that CED
2m is more powerful than CED

1m , since

rk(Ψ + Ξ) = 2, and also more powerful than PED
m when the roots are close (Fig. 4.3b,

bottom panels).

The discrepancy between CGF
2m and CED

2m behaviours highlights the merit for the rank

analysis of Section 4.4 and shows the danger of setting the same degrees of freedom for

the convolution as for Pearson’s χ2 statistics without careful consideration.

4.6 Discussion

Providing a thorough comparison between convolution statistic and Pearson’s χ2 would

be very laborious for scenarios more complex than the one discussed above. In particu-

lar, the combination of cases rapidly increases when selecting different parameters for:

small and large samples, of either equal or unequal size; alternative hypotheses; spread

between PMVs’ roots; number of random variables to be summed. Based on the results

from the previous section, however, we propose the following as general indications:

- When the number of samples is large and PMV’s roots are distinct, the convolu-

tion statistic CGF
rm with r = rk(Ψ), or CED

rm with r = rk(Ψ + Ξ), provides the best

power;

- When samples are small or some PMV’s roots are close, CGF
rm for r < rk(Ψ), or

CED
rm for r < rk(Ψ + Ξ) provides a good compromise between type I and type II

errors control;

- Pearson’s χ2 is recommended over the convolution statistic approach only for

small samples in which the rule-of-thumb is not violated, especially when the

type I error is allowed to be smaller than the nominal level α and type II error is

considered of secondary importance.

Ultimately, it is desirable to run the comparison over any scenario of interest, partic-

ularly to evaluate the optimal extent of rank reduction for the convolution statistic.

Figs. 4.1–4.3 also show that the convolution statistics ZGF
rm and ZED

rm , calculated with

the exact covariance matrix (dashed lines), would provide the best results in most sit-

uations considered. Thus, we speculate that any improvement on the estimation of the

covariance matrix pseudo-inverse would lead to an even better power.
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Chapter 5

Multiplexed division tracking

dyes for clonal lineage tracing

5.1 Abstract

In this chapter, we present the work from Horton, Prevedello et al., (2018)1 accom-

plished in collaboration with our partners in Prof. Philip Hodgkin’s lab at Walter Eliza

Hall Institute (WEHI). As activated lymphocytes undergo several rounds of division

and result in a population of cells with diverse traits and functions, distinguishing be-

tween intrinsic and extrinsic sources of such heterogeneity is difficult with the current

experimental techniques and would benefit from new, more practical methods. To this

end, the high-throughput procedure based on the multiplex clonal assay from Chapter

2 is improved to include the measure of cellular expression levels, together with clonal

and generational information. The output data are analysed through statistical tech-

niques that account for complex dependence associations between clonally related cells.

The method is illustrated by studying the in vitro activation of murine CD8+ T-cell

cultures. This approach has broad utility as it can be applied to other in vitro culture

systems and, potentially, in vivo.

5.2 Introduction

Determining the contribution of asymmetric cell division, intercellular communication,

quorum sensing, lineage priming, and autonomous programming to clonal cell fate is

a key focus of immunology and many other fields of biology (Snippert et al., 2010;

1Miles B. Horton and Giulio Prevedello equally contributed to this work.

94



Chapter 5. Multiplexed division tracking dyes for clonal lineage tracing

Buchholz et al., 2013; Gerlach et al., 2013; Perié et al., 2015; Yu et al., 2016; Heinzel

et al., 2018). However, progress has been impeded by the low throughput and laborious

nature of common lineage tracing and fate mapping approaches such as time lapse

microscopy. Recently introduced technologies such as retroviral barcoding (Gerlach

et al., 2013; Naik et al., 2013), CRISPR-induced heritable genetic lesions (McKenna

et al., 2016), and the development of fluorescent lineage reporters (Livet et al., 2007; Tas

et al., 2016; Yu et al., 2016) have contributed to improved throughput in lineage tracing

experiments, and thus revealed important discoveries into the emergence of diverse

cell types across multiple systems. Despite this success, such methods remain highly

resource-dependent and time-consuming. Furthermore, these methods typically lack

information regarding clonal division progression, an important source of information

in understanding the mechanisms that drive cell fate decisions (Hodgkin et al., 1996;

Bird et al., 1998; Gett and Hodgkin, 1998; Tangye et al., 2003; Jenkins et al., 2008;

Kueh et al., 2013; Kinjyo et al., 2015).

Although many cellular processes across multiple systems have demonstrated an asso-

ciation between cell state transitions and division (Bird et al., 1998; Gett and Hodgkin,

1998; Kueh et al., 2013; Bernitz et al., 2016; Kueh et al., 2016; Polonsky et al., 2016),

thorough examination of these associations across the progeny of expanding single cell

lineages has, to date, been limited. A fast, easy, high-throughput method that, for

individual clones, simultaneously measured division progression as well as cell state,

in the form of marker and/or fluorescent reporter expression, could therefore signifi-

cantly contribute to progress in this field. In this chapter, we introduce such a method,

utilising multiplexed division tracking dyes in combination with flow cytometry-based

phenotyping.

Earlier variants of the dye-multiplexing approach have been applied to high-throughput

cytotoxicity assays (Quah and Parish, 2012), analysis of clonal division progression

(Marchingo, Prevedello et al., 2016), and identification of distinct co-cultured cell pop-

ulations (Voisinne et al., 2015). Here, we demonstrate that the utility of this method

can be significantly extended by integrating phenotypic information with proliferation-

based lineage tracing and by provision of the statistical tools necessary for data inter-

rogation.

5.3 Multiplexing division tracking dyes

The premise of the method is to label the cells under consideration with distinct combi-

nations and concentrations of division tracking dyes, generating multiple unique fluores-

cence profiles (Fig. 5.1a). After labelling, cells are sorted according to their fluorescence
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Figure 5.1: Dye labelling strategy to generate multiple unique fluorescence profiles.
[Corresponding to Figure 1 from Horton, Prevedello et al., (2018)] Protocol schematic. (a) Cells
of interest are sequentially labelled with combinations of division diluting fluorescent dyes to
generate distinct fluorescence profiles. Numbers depict micromolar dye concentration. (b) For
each profile, the proliferation of bulk populations is used to identify generation-determining
gates. (c) Single representatives from each profile are sorted and placed in the system of
interest. On harvest, FACS measurement reveals clonal membership, cell division number, and
phenotype. (d) Example data of bulk population controls used to set lineage and proliferation
gates. Cells are first separated into CPD+ and CPD- and the combinations of CFSE and CTV
are used to define 5 distinct fluorescence signatures for both populations. (e) Example data of
an individual well showing the implementation of the gating strategy used in (d). Shown are
cells first gated on CPD+ and clones are then identified using control-generated gates and their
division progression and marker expression is analysed.

profile and placed in a system of interest, such as an in vitro or in vivo environment. In

concert, bulk populations of labelled cells are used to identify generation-determining

gates for each unique profile (Fig. 5.1b). On recovery at a later time, the lineage-

membership, generation-number, and phenotypic state of each cell can be determined

by flow cytometry (Fig. 5.1c).

As a number of division-diluting dyes with distinct fluorescent spectra are commercially

available, the number of the combinatorially-created distinguishable profiles generated

can be optimized for the system of interest. Furthermore, the use of division track-

ing dyes to monitor clonal lineages is a significant feature of this approach, enabling

simultaneous measurement of phenotypic changes and clonal division progression.

5.4 Tracing fluorescently-labelled CD8+ T-cell clonal progeny

For illustration of the method, we analysed the in vitro differentiation of stimulated,

purified murine CD8+ T cells at the level of individual clones. Upon activation, CD8+
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T cells generate substantial population-level heterogeneity, which is underpinned by a

significant familial component (Buchholz et al., 2013; Gerlach et al., 2013; Lemâıtre

et al., 2013; Plumlee et al., 2013; Marchingo, Prevedello et al., 2016). In this section,

the experimental protocol for the multiplex clonal assay is reported as designed by

our WEHI partners M. B. Horton, J. M. Marchingo, J. H. S. Zhou, S. Heinzel, P. D.

Hodgkin and my supervisor K. R. Duffy2, and also implemented from M. B. Horton.

Additional details of the protocol are deferred to Appendix A. Subsequent sections

will cover our contribution to the visualisation and the statistical analysis of the data

produced from this method.

Purified murine CD8+ T cells were labelled with three division-tracking dyes, CFSE,

CTV and CPD, resulting in 10 distinct combinations, and then stimulated with anti-

CD3, anti-CD28 and rhIL-2. Anti-mouse IL-2 blocking antibody was also added to

remove the effect of any endogenous production (Deenick et al., 2003; Marchingo et al.,

2014). After 24 hours, just prior to their first division (Marchingo et al., 2014), a single

founder cell from each of the fluorescence profiles was sorted and mixed into each of 29

tissue culture wells, allowing analysis of up to 10 distinct, co-cultured clonal families

per well. In parallel cultures, cells from each fluorescence signature were sorted into

new tissue culture plates. In all cases the cells were maintained in the same stimulatory

conditions as during the initial activation period.

Sixty hours after initial stimulation, cells were harvested and analysed for division

progression (Fig. 5.1d) and expression of CD8, CD62L and CD25 by flow cytometry

(Fig. 5.1e). A known number of beads was added to each well to enable estimation

of sample recovery. Pooled across wells, 156 clonal families constituting a total of 865

cells spread over 4 generations were recovered. The resulting data is presented in Fig.

5.2 and permits the concurrent visualisation of clonal lineage, marker expression level

and division progression.

Additional independent experiments were performed using the same stimulation con-

ditions described in Fig. 5.2 and analysed at different time-points (Fig. 5.3), as well

as experiments utilising CD8+ T cells from distinct transgenic and reporter mice un-

der different culture conditions. Data from these further experiments are provided in

Fig. 5.4 and 5.5, respectively including the clonal expression of the transcription factor

Blimp-1 and the chemokine receptor CXCR3. For additional information concerning

the experimental methods, we defer the reader to Section A.2 of Appendix A.

Upon visualisation it is clear that, complementary to previously demonstrated divi-

sion synchrony (Marchingo, Prevedello et al., 2016), clones display substantial familial

homogeneity. For each marker, CD8, CD62L and CD25, the overall distribution in

2K. R. Duffy, S. Heinzel and P. D. Hodgkin share senior authorship.
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CD8 CD62L CD25

Figure 5.2: Simultaneous visualisation of marker expression, division progression
and clonal lineage membership in activated CD8+ T cells. [Corresponding to Figure 2
from Horton, Prevedello et al., (2018)] Purified C57BL/6 CD8+ T cells were sequentially dye
labelled with CFSE, CTV and CPD, resulting in 10 unique profiles (Fig. 5.1). These cells were
stimulated with anti-CD3 (10 µg ml−1), anti-CD28 (2 µg ml−1) and rhIL-2 (31.6 U ml−1) for
24h in the presence of an anti-mouse IL-2 blocking antibody clone S4B6 (25 µg ml−1). Single
cells from each of the 10 combinations were sorted and pooled into each of 29 individual wells
followed by culture for a further 36h. Generation number and fluorescence intensity of CD8
(APC-Cy7), CD62L (PE) and CD25 (PE-Cy7) expression were determined by flow cytometry
60h post-stimulation. Image displays data pooled from all wells. Vertical column bins represent
generation numbers, rows represent clonal families and data points represent cells. Cell colour
indicates marker fluorescence intensity according to the provided legend. Clones whose cells
were found in the same generation are ordered first, followed by clones whose cells were found
in adjacent generations, and are rank ordered within groups by geometric mean fluorescence.
‘]’ denotes fully recovered clones - those for whom every cell is measured. Of 300 clones initially
seeded, 156 families were detected with at least 2 members, yielding a recovery of 52%.

expression level varies over one-to-two orders of magnitude across the CD8+ T-cell

population, whereas the intraclonal distribution of expression is far narrower. This

suggests that, under these stimulation conditions, a key source of phenotypic hetero-

geneity across a population of CD8+ T cells early after in vitro activation is underpinned

by intraclonal concordance and interclonal variation.

5.5 Statistical tools for the analysis of phenotypic clonal

data

The data produced by the assay has an unusual structure that necessitates careful

consideration for statistical hypothesis testing. The primary concern is that clones
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CD8 CD62L CD25

Figure 5.3: Multiplexing tracking dyes to determine clonal membership, genera-
tion number and cell phenotype is reproducible across time points. [Correspond-
ing to Supplemental Figure 1 from Horton, Prevedello et al., (2018)] Purified murine CD8+

T cells were processed analogously as in Fig. 5.2, and multiplex dye labelled with 5-(and
6)-carboxyfluorescein diacetate succinimidyl ester (CFSE), CellTrace Violet (CTV) and Cell
Proliferation dye eFluor670 (CPD), resulting in 10 profiles. These cells were stimulated with
anti-CD3 (10 µg ml−1), anti-CD28 (2 µg ml−1) and rhIL-2 (31.6 U ml−1) for 24h in the pres-
ence of the anti-mouse IL-2 blocking antibody clone S4B6 (25 µg ml−1). Single cells from each
of the 10 combinations were sorted and pooled into 20 individual wells followed by culture for
a further 27h without additional anti-CD3 stimulation. Generation number and fluorescence
intensity of CD8 (APC-Cy7), CD62L (PE) and CD25 (PE-Cy7) expression were determined by
flow cytometry 51h post-stimulation. Of 160 clones initially seeded, 91 families were detected
with at least 2 members, yielding a recovery of 56.9%.

consist of a relatively small number of cells so that statistical tests based on asymptotic

results may be inappropriate. A secondary concern is that the proportion of each clone

recovered from a single captive environment (culture well, animal, etc.) can result in

a systemic, rather than biological, statistical coupling between co-habiting clones that

must be circumvented. Thus, to complement the experimental method implemented

by our collaborators, we developed a choice of simple-to-implement, non-asymptotic

permutation tests (Lehmann and Romano, 2005) to interrogate the data (Fig. 5.6a)

for a range of null hypotheses. Before their application, the principles of this statistical

procedure are outlined in Section 5.5.1.

A natural exploratory statistic based on the label-permuted data can also be plotted,

providing visual cues as to the likely outcome of such tests (Fig. 5.6b).
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CD62L CXCR3

Figure 5.4: Multiplexed tracking dyes to de-
termine clonal membership and generation
number can be adjusted to assess distinct com-
ponents of cell phenotype. [Corresponding to
Supplemental Figure 2 from Horton, Prevedello et al.,
(2018)] Purified OT-I/Bcl2l11−/− CD8+ T cells were
multiplex dye labelled with CFSE, CTV and CPD,
resulting in 10 profiles. These cells were stimulated
with N4 peptide (0.01 µg ml−1) and IL-4 (1,000 U
ml−1) for 24h in the presence of the anti-mouse IL-2
blocking antibody clone S4B6 (25 µg ml−1). Single
cells from each of the 10 combinations were sorted
and pooled into 59 individual wells followed by cul-
ture for a further 22h. Generation number and flu-
orescence intensity of CXCR3 (PE-Cy7) and CD62L
(PE) expression were determined by flow cytometry
46h post-stimulation. Image displays data pooled
from all wells. Vertical column bins represent genera-
tion numbers, rows represent clonal families and data
points represent cells. Cell colour indicates marker
fluorescence intensity according to the provided leg-
end. Clones whose cells were found in the same gener-
ation are ordered first, followed by clones whose cells
were found in adjacent generations, and are rank or-
dered within groups by geometric mean fluorescence.
‘]’ denotes fully recovered clones. Of 600 clones ini-
tially seeded, 337 families were detected with at least
2 members, yielding a recovery of 56.2%.
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CD62L Blimp1

Figure 5.5: Distinct tracking dyes can be multiplexed to allow for compatibil-
ity with fluorescent reporters. [Corresponding to Supplemental Figure 3 from Horton,
Prevedello et al., (2018)] Purified Blimpgfp/+ CD8+ T cells were multiplex dye labelled with
CellTrace Yellow (CTY), CTV and CPD, resulting in 6 profiles. These cells were stimulated
with anti-CD3 (10 µg ml−1), rhIL-2 (31.6 U ml−1) and mIL-12 (10 ng ml−1) for 24h in the
presence of the anti-mouse IL-2 blocking antibody clone S4B6 (25 µg ml−1). Single cells from
each of the 6 combinations were sorted and pooled into 49 individual wells followed by culture
for a further 42h. Generation number and fluorescence intensity of CD62L (APC-Cy7) and
Blimp1 (GFP-reporter) expression were determined by flow cytometry 66h post-stimulation.
Image displays data pooled from all wells. Vertical column bins represent generation numbers,
rows represent clonal families and data points represent cells. Cell colour indicates marker fluo-
rescence intensity according to the provided legend. Clones whose cells were found in the same
generation are ordered first, followed by clones whose cells were found in adjacent generations,
and are rank ordered within groups by geometric mean fluorescence. ‘]’ denotes fully recovered
clones. Of 360 clones initially seeded, 109 families were detected with at least 2 members,
yielding a recovery of 30.3%.

For illustration, the statistical pipeline described in Fig. 5.6c-e was applied to the

data shown in Fig. 5.2. Fig. 5.6f plots the CD62L expression levels of all 865 cells

pooled, as well as fractionated per-well (i.e. per-environment) and per-clone, where the

latter two are rank ordered from highest mean geometric fluorescence to lowest. Fig.

5.6g plots the difference between the rank ordered geometric mean fluorescence of the

data and the geometric mean fluorescence of the label-reassigned data, averaged over

reassignments, as well as 95% confidence intervals under the null hypothesis. For these

data, the per-well statistic consistently lies within the confidence intervals, while the

per-clone statistic falls far outside.
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Figure 5.6: Testing for independence of phenotype and clonal membership or envi-
ronment. [Corresponding to Figure 3 from Horton, Prevedello et al., (2018)] (a-e) Statistical
schematic. (a) Multiplex data are collected from the in vitro or in vivo system and frac-
tioned in distinct clones (C1, C2, . . .) or environments (E1, E2, . . .), e.g. wells or animals.
(b) For a given per-clone or per-environment statistic, the data are rank-ordered (blue line),
and compared against the 95% confidence intervals of the centred distribution obtained from
the rank-ordered of the permuted datasets (red lines). (c) To test the null hypothesis that
the expression level of cells is independent of generation, clone and environment, cell-to-clone
labels are permuted. (d) To test the null hypothesis that the expression levels, expansion and
recovery of clones are independent of the environment, clone-to-environment labels are per-
muted. The resulting p-value for both (c-d) is the proportion of testing statistics, calculated
on the permuted datasets, as extreme as observed for the true assignment (see Section 5.5.1).
(f-h) Example data with CD62L expression levels from Fig. 5.1d. (f) The data are pooled,
and fractionated by environment (i.e. well) and clone, and rank-ordered from highest-to-lowest
geometric mean. (g) The blue line is the difference between the rank ordered true data and the
mean label-permuted data. Dashed red lines indicate 95% confidence intervals under the null
hypothesis that expression is independent of label, as in (b). (h) The vertical red line indicates
the location of the data statistic and, with a null hypothesis as in (c) (top panel) or (d) (bottom
panel), the histogram shows the density of the same statistic determined for 250,000 uniformly-
at-random permuted assignments of cell-to-clone (top panel) or clone-to-environment (bottom
panel), with the lower one-sided p-value being the fraction whose statistic were smaller than
for the true data (see equation (5.3) of Section 5.5.1).

5.5.1 Principles of permutation test procedures

Given a data set of n ∈ N ordered observations D = (Z1, Z2, . . . , Zn), a permutation π

of them is a reassignment of the labels of the individual datum, i→ π(i), to create the

reordered data set Dπ = (Zπ(1), Zπ(2), . . . , Zπ(n)). For example, if π(i) = n + 1 − i for

all i = 1, . . . , n, then Dπ = (Zn, Zn−1, . . . , Z1) is the original data but in reverse order.

The principle of permutation testing is to evaluate a real valued statistic on the recorded

data, denoted T (D) ∈ R, where the statistic depends on the data order. If, for a given

null hypothesis H0, a collection of data permutations Q can be characterised so that
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all data reorderings {Dπ}π∈Q are equally likely under H0, then T (D) can be compared

with the distribution of the statistic computed on the reordered datasets T (Dπ)π∈Q.

In particular, denoting by |Q| the number of elements in a set Q, the proportion of

permutations that lead to a statistic that is lower than that observed for the true data

order is the lower p-value

pl =
|{π ∈ Q : T (D) ≥ T (Dπ)}|

|Q|
, (5.1)

while the proportion of permutations that lead to a statistic that is higher than that

observed for the true data order is the upper p-value

pu =
|{π ∈ Q : T (D) ≤ T (Dπ)}|

|Q|
, (5.2)

To realize a permutation test successfully, it is important that the collection of allowed

permutations accurately describe the null hypothesis, and that the test statistic tends

to deviate from the true statistic if the null hypothesis is not true.

For many tests, the number of possible permutations |Q| is too large for T (Dπ) to be

computed for every permutation π ∈ Q. For example, for data with n interchangeable

elements under a null hypothesis, there are n factorial, permutations, which grows

faster than exponentially in n. Thus it is common to use Monte Carlo methods to

estimate pl and pu. This achieved by drawing a large number, B ∈ N, of samples from

Q uniformly at random and then making empirical estimates of the p-values pl (5.1)

and pu (5.2), respectively as

p̂Bl =

1 +

B∑
i=1

1{T (D)≥T (Dπi )}

B + 1
(5.3)

and

p̂Bu =

1 +

B∑
i=1

1{T (D)≤T (Dπi )}

B + 1
.

5.5.2 Implementation of permutation test procedures

The data from the multiplex clonal assay can be defined as a sequence of four elements

D =
(

(xi, gi, ci, e(ci))
)N
i=1
, (5.4)
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where N is the total number of cells recovered and the ith cell is encoded by the

expression level xi ∈ R, its generation gi ∈ G = {0, . . . , G}, its familial label ci ∈ C =

{1, . . . ,M}, and the environment label associated to its family e(ci) ∈ E = {1, . . . , E},
with G,M,E ∈ N. Depending on the hypothesis to be tested, a statistic T on these

data can be computed and compared with the distribution of the same statistic for a

collection of permutations, as previously explained (Section 5.5.1).

An all-encompassing hypothesis would posit that each cell’s expression level is inde-

pendent of its clone, generation, and environment. Thus, in Fig. 5.6c, we tested for

the null hypothesis H0 that every cell’s fluorescence is equal in distribution irrespective

of generation, clone and environment. Our test statistic was the per-clone variance in

fluorescence averaged across all clones, that is

T (D) =
1

M

∑
a∈C

σ2
(

(xi, i = 1, . . . , N : ci = a)
)
, (5.5)

where

σ2(A) =
1

|A| − 1

∑
z∈A

(
z − |A|−1

∑
z′∈A

z′

)2

(5.6)

is the sample variance over a finite sequence A of values in R. The set Q of allowable

permutations was all possible reordering of cell labels, resulting in cells being reassigned

amongst clones and environments. Formally, an element π ∈ Q was defined such that

π : D 7→ Dπ =
(

(xπ̃(i), gi, ci, e(ci))
)N
i=1
, (5.7)

with π̃ permutation of {1, . . . , N}. In total there were 865 cells, then there were 865

factorial allowable permutations, requiring Monte Carlo methods to compute the one-

sided test p-values as described in Section 5.5.1.

In order to challenge the null hypothesis that the expression levels of clones, rather

than cells, are independent of their environment, in Fig. 5.6d we set H0 such that each

clone’s expansion, recovery and fluorescence levels are equal in distribution across envi-

ronments. We defined the statistic to be the per-environment variance in fluorescence

averaged across environments, that is

T (D) =
1

E

∑
a∈E

σ2
(
(xi, i = 1, . . . , N : e(ci) = a)

)
. (5.8)

There, permutations (i.e. Q) were all possible relabelings of the environment label of

clones, effectively swapping whole clones across environments. This was achieved by
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defining every π ∈ Q such that

π : D 7→ Dπ =
(
(xi, gi, ci, e(π̃(ci)))

)N
i=1
, (5.9)

with π̃ permutation of {1, . . . ,M}. The resulting p-value for these, and all other per-

mutation tests, were the proportion of permuted assignments that resulted in a statistic

that was at least as extreme as for the true assignment (Fig. 5.6e).

The application of these two testing procedures to the CD62L data from Fig. 5.2,

demonstrated strong evidence that the expression of this cell surface receptor depends

on clone (p < 10−5), but no evidence of per-environment dependence (p = 0.56), for

this system.

To challenge more nuanced hypotheses, a similar procedure can be used in conjunc-

tion with suitable restrictions on the class of allowed reassignments. For example, if

one suspected that recovery of clones were environment-dependent but still wished to

challenge if clonal expression was independent of the environment, one cannot arbitrar-

ily reassign clones amongst environments as the test described in Fig. 5.6d could fail

due to correlations in the level of clone recovery rather than any inherent biological

environmental dependence. Instead, the desired test can be achieved by restricting re-

assignments across environments only to clones that are fully recovered (i.e. for which

every expected cell is measured) and have the same generation structure.

In Fig. 5.7a we tested the null hypothesis that, regardless of the environment in which

they are found, each clone’s fluorescence levels are equal in distribution for clones at

the same developmental stage (i.e. for clones that have the same number of cells in each

generation). As in the previous test, the statistic T was the average per-environment

variance in fluorescence (5.8). What had changed was that not all permutations of

clones were allowable. Instead we first identified all families in which all cells were

measured. Following the notation from Section 3.2.2 of Chapter 3, this requirement was

verified if v(ci) ∈ SG ⊆ NG+1
0 , the sampled family vector associated to the ith clone ci,

was such that its cohort number is equal to one, i.e. cn(v) = 1 and v(ci) ∈ VG. Among

the clones whose all cells were recovered, those that were characterised by the same

family vector (i.e. generation profile) were interchangeable under the null hypothesis,

and swapping these formed the basis of the permutations in Q. This worked as these

clones were conditioned to not be subject to sampling bias. Therefore, the allowed

transformation of the data was identified, in this case, as the set of maps π ∈ Q such

that

π : D 7→ Dπ =
(
(xi, gi, ci, e(π̃(ci)))

)N
i=1
, (5.10)
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with

π̃(c) =

π̃w(c) if v(c) = w

c otherwise
, (5.11)

for any π̃w permutation of the set {c, c = 1, . . . ,M : v(c) = w}, where w is any family

vector in VG, that is cc(w) = 1.

Similar approaches can be used to test several alternate and restricted hypotheses

regarding other dependencies of clonal progression and cellular phenotype.

In Fig. 5.7b we tested the null hypothesis that fluorescence levels are equal in distri-

bution between cells from the same environment and generation, irrespective of their

clone membership. The test statistic was the average per-clone variance (5.5) as in

Fig. 5.6c, but again not all permutations of cell labels were allowed. Instead cells were

only permuted with other cells of the same generation. To this end, a possible data

rearrangement was identified by π ∈ Q such that

π : D 7→ Dπ =
(
(xπ̃(i), gi, ci, e(ci))

)N
i=1
, (5.12)

with

π̃(i) =

π̃g,e(i) if gi = g and e(ci) = e

i otherwise
, (5.13)

where π̃g,e is any permutation of the set {i, i = 1, . . . , N : gi = g, e(ci) = e}, for any

choice of g ∈ {0, . . . , G} and e ∈ {1, . . . , E}, .

Finally, in Fig. 5.7c we tested the null hypothesis that clonal expansion and recovery

are equal in distribution across different environments. The statistic was the average

per-environment variance in clone size, that is

T (D) =
1

E

∑
a∈E

σ2

(( N∑
i=1

1{ci=c}, c ≤M : e(ci) = a

))
. (5.14)

The collection of permutations Q was the swapping of clones across environments, such

as in (5.9).

In all cases described, we reported the lower p-value approximated via Monte Carlo

with B = 250, 000 permutations, that is p̂Bl from equation (5.3). This tests whether

the data has lower average variance, and thus has greater within-group (i.e. clone or

environment) relatedness, than one would expect under one of the null hypotheses.

Analysis for CD8 and CD25, equivalent as for CD62L, is presented in Fig. 5.8.
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p<10-5p=0.8 p=0.92

a b c

Figure 5.7: Testing null hypotheses of independence. [Corresponding to Supplemental
Figure 4 from Horton, Prevedello et al., (2018)] Analysis of the CD62L data presented in Fig.
5.2. (a) To test the null hypothesis that each cell’s fluorescence is independent of its membership
of an environment, but potentially dependent on its generation, while also being cognizant that
the sampling of clones in the same environment may lead to a coupling in their recovery, data
permutation is restricted to clones that have the same generational structure and for whom all
cells in each clone are measured (see Section 5.5.2). (b) To test the null hypothesis that each
cell’s fluorescence is independent of its clonal membership, but potentially dependent upon its
generation, data permutation is restricted to cells across clones within the same generation
(see Section 5.5.2). (c) To test for the null hypothesis that clonal expansion and recovery
are independent of environmental membership, clones are permuted across environments (see
Section 5.5.2). The vertical red line indicates the location of the data statistic of the originally
ordered data. The histogram shows the density of the same statistic determined for 250,000
uniformly-at-random permutations of the data. The lower one-sided p-value is depicted in
legend (see equation (5.3) of Section 5.5.1), resulting in rejection of the hypothesis in b and
non-rejection of the hypotheses in a and c with a significance level of 0.05.
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Figure 5.8: Visualization, and testing for environment and clone independence.
[Corresponding to Supplemental Figure 5 from Horton, Prevedello et al., (2018)] Analogous
analysis as in Fig. 5.6f-h for the CD8 (top row) and CD25 (bottom row) data in Fig. 5.2.
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5.6 Analysis of first generation siblings for patterns of

phenotypic inheritance

As this method enables identification of clonal progression and phenotypic expression, it

allows for the direct measurement of asymmetric expression amongst sibling cells after

the first division following stimulation (Fig. 5.9). Asymmetric Cell Division (ACD) is

a key driver of cellular diversity during development (Knoblich, 2008) that has been

implicated in mature stem cell systems (Morrison and Kimble, 2006) as well as the

adaptive immune response (Chang et al., 2007; Barnett et al., 2012; Hawkins et al.,

2013; Arsenio et al., 2014).

In order to determine if ACD has occurred, it is necessary to identify cells that are

siblings and to measure properties of each. This is typically challenging as generating

statistically meaningful numbers of sibling cell pairs is highly time-consuming by con-

ventional methods, such as fixed-image microscopy or live filming, but is made much

more attainable with the multiplex assay. On plotting the expression levels of siblings,

one anticipates distinct patterns (Fig. 5.9 upper panels) dependent on whether the

underlying biology was: ACD with identifiable sibling polarity, achievable by specific

ligand-receptor labelling (Pasqual et al., 2018) or asymmetrically segregating endocy-

tosed fluorescent beads (Thaunat et al., 2012), ACD with undetermined sibling polarity;

if there were no inheritance; or if there were symmetric inheritance.

For illustration, we repeated the experimental setup described in Fig. 5.2 using plate-

bound CD3 in the presence of anti-CD28 and rhIL-2, but harvested cells 42 hours

post-stimulation to observe more clonal families after only one division event. 178

clonal families with two or more members were recovered, totalling 427 cells (see Fig.

5.10). Clonal and environmental statistical analysis, analogous as from Fig. 5.6 and

5.8, is also reported in Fig. 5.11, leading to similar outcome. Of these data, 96 clones

consisted of two sibling-cells in generation one allowing us to examine their expression

relationships. Plots for each of CD8, CD25 and CD62L are provided in Fig. 5.9 lower

panels and are redolent of Fig. 5.9 upper right panel, indicating highly symmetric

divisions for this system under these stimulation conditions.

5.7 Discussion

The clonal basis of T-cell activation and subsequent emergence of phenotypic hetero-

geneity is an important focus in furthering our understanding of lymphocyte biology

(Rohr et al., 2014; Buchholz et al., 2016; Polonsky et al., 2016). Using example data
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Figure 5.9: First division siblings reveal symmetrical pattern of inheritance for
marker expression. [Corresponding to Figure 4 from Horton, Prevedello et al., (2018)] (Up-
per panels) Asymmetric versus symmetric cell division sketch. Expression levels of a given
phenotypic marker across sibling cells assuming asymmetry with measurable polarity, asymme-
try without measurable polarity, independence and symmetric inheritance (from left to right).
(Lower panels) Experimental data as in Fig. 5.7, from the same system as in Fig. 5.2 but
harvested at 42h, showing expression levels (fluorescence intensities) of CD8, CD25 and CD62L
(from left to right) for 96 first generation siblings, resembling symmetric inheritance (right
upper panel).

sets we have demonstrated the utility of combining multiplexed division tracking dyes

with single cell sorting and conventional flow cytometry-based phenotyping to analyse

the clonal lineage properties of CD8+ T cells with simplicity and high-throughput.

Using this method, we observed a striking and significant concordance in marker ex-

pression amongst the progeny of single T-cell clones after standard in vitro culture.

These data imply that activated founder CD8+ T cells have the potential to pass on

a heritable, phenotype-determining program to their progeny through multiple rounds

of cell division. The nature of this program, and how it is preserved to such a precise

degree through numerous repetitions of the cell cycle, is unknown. The relative contri-

bution of shared heritable fate determinants, as seen here in vitro, and the imposition

of lineage branching points by, for example asymmetric cell division, or a chance en-

counter with a cytokine, will require further experiments tracing cells during ongoing

immune responses in vivo.

A key advantage of the method is the ability to undertake direct measurement of sib-

ling phenotype generated after the first division following stimulation. As the system
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CD8 CD62L CD25

Figure 5.10: Multiplexed tracking dyes to determine clonal membership, genera-
tion number and cell phenotype can identify clones as early as the first division.
[Corresponding to Supplemental Figure 6 from Horton, Prevedello et al., (2018)] Purified murine
CD8+ T cells were processed analogously as in Fig. 5.2, and multiplex dye labelled with CFSE,
CTV and CPD, resulting in 10 profiles. These cells were stimulated with anti-CD3 (10 µg ml−1),
anti-CD28 (2 µg ml−1) and rhIL-2 (31.6 U ml−1) for 24h in the presence of the anti-mouse
IL-2 blocking antibody clone S4B6 (25 µg ml−1). Single cells from each of the 10 combinations
were sorted and pooled into 30 individual wells followed by culture for a further 18h. Genera-
tion number and fluorescence intensity of CD8 (APC-Cy7), CD62L (PE) and CD25 (PE-Cy7)
expression were determined by flow cytometry 42h post-stimulation. Of 300 clones initially
seeded, 178 families were detected with at least 2 members, yielding a recovery of 59.3%.
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Figure 5.11: Visualization and testing of environment and clonal independence.
[Corresponding to Supplemental Figure 7 from Horton, Prevedello et al., (2018)] Analogous
analysis as in Fig. 5.6f-h and 5.8 for the data presented in Fig. 5.10.

can identify siblings in the presence of other accessory cells it will be possible to sys-

tematically investigate how manipulation of the activation conditions affects the fate

of each sibling in a pair. For example, it has been suggested that the synapse that

forms between a dendritic cell and a T cell provides polarity cues for an asymmetric

division and that this cue is further enhanced by the affinity of interaction (Plumlee

et al., 2013; Rohr et al., 2014; Polonsky et al., 2016). The method is well suited to

systematically measure how such culture and stimulation variables affect concordance

and fate in first generation siblings and later generation relatives.

Existing lineage tracing technologies have contributed significantly to the understand-

ing of the clonal basis of many biological processes. Those methods, however, have

a number of caveats that leave important aspects of biological systems unmeasured.

Measuring division progression, as enabled by the approach described here, ameliorates

some of these shortcomings and allows the development of the customised statistical

methodology presented here alongside the clonal data. These tools provide prospec-

tive users with a robust means of assessing the relative impact of clonal lineage and
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environmental influence on cell fate selection.

Perhaps the most significant advantage of this method is its ease of implementation.

By making use of affordable, commercially available reagents and widely accessibly

technology, any researcher with access to flow cytometry services can easily apply this

method to study clonal dynamics in their system of interest. Therefore, while we

have illustrated the method here for in vitro T cell systems, we believe it will find

wide use including application to in vivo cell tracing systems, although this is not

yet validated. This method does not require genetic manipulation, cell infection, or

breeding of fluorescent or congenic reporter systems. It can identify lineages of adherent

cells in vivo, or in vitro within complex cultures that include additional cell types,

provided they are labelled and/or identified using compatible cell-specific markers.

Consequently, it is broadly applicable and well suited to address questions of expansion

and differentiation at the level of clones.
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Experimental systems

implemented by collaborators

In this appendix, we provide information concerning the experimental design, as per-

formed by our collaborators, for completeness. In Section A.1, we present the addi-

tional methods required for the multiplex assay from Chapter 2 as implemented by

J. M. Marchingo in Marchingo, Prevedello et al., (2016). In Section A.2, we report

the technical details for the experiments of Chapter 5 from Horton, Prevedello et al.,

(2018), performed by M. B. Horton.

A.1 Marchingo, Prevedello et al., (2016)

A.1.1 Mice

OT-I/Bcl2l11−/− and OT-I/FucciRG mice (Marchingo et al., 2014) were bred and

maintained under specific pathogen-free conditions in the WEHI animal facilities (Parkville,

Victoria, Australia) and used between 6-10 weeks of age. OT-I/FucciRG mice were bred

from the red (R) FucciG1-#639 and green (G) FucciS/G2/M-#492 mouse lines. All

experiments were performed under the approval of the WEHI Animal Ethics Commit-

tee.

A.1.2 CD8+ T-cell purification

CD8+ T cells were isolated from mouse lymph nodes and spleens by negative selection

using EasySep Mouse CD8+ T-cell Isolation kit (StemCell Technologies) according to
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the manufacturer’s protocols. Enrichment of OT-I CD8+ T-cells was confirmed by flow

cytometry with a yield of 90-95% CD8+Vα2+ lymphocytes.

A.1.3 Labelling with division tracking dyes

OT-I/Bcl2l11−/− CD8+ T cells were labelled with the indicated combinations and

concentrations of the division tracking dyes CTV, CFSE (both Invitrogen) and CPD

(eBioscience) in PBS (WEHI media) containing 0.1% BSA (Sigma) (PBS 0.1% BSA)

at a density of ≤ 107 cells ml−1 at 37 ◦C for 20, 10 and 10 min, respectively. The

reaction was quenched by washing with 2 ml ice-cold RPMI 5% FCS.

A.1.4 In vitro cell culture

Complete tissue culture medium was RPMI 1640 medium supplemented with 10% FCS,

non-essential amino acids, 1 mM Sodium-pyruvate, 10 mM HEPES, 2 mM GlutaMAX,

100 U ml−1 Penicillin, 100 µg ml−1 Streptomycin (all Invitrogen) and 50 µM 2β-

mercaptoethanol (Sigma). OT-I/Bcl2l11−/− CD8+ T cells were stimulated with 0.01

µg ml−1 SIINFEKL (N4) peptide (Auspep) in 96 well round-bottomed plates by self-

presentation at a density of 10,000 cells per well in 200 µl complete tissue culture

medium, as described previously (Marchingo et al., 2014).

All cultures contained 25 µg ml−1 of anti-mouse IL-2 monoclonal antibody (supernatant

from hybridoma cell line S4B6, WEHI monoclonal antibody facility) that blocks the

activity of mouse IL-2 in vitro but does not recognize human IL-2 (hIL-2) (Marchingo

et al., 2014). Recombinant hIL-2 (Peprotech) and anti-CD28 (clone 37.51, WEHI mon-

oclonal antibody facility) were added to cultures where indicated. Cells were incubated

in a humidified environment at 37 ◦C in 5% CO2.

A.1.5 Cell sorting and flow cytometry

Cell sorting was performed on a FACSAria W or L (BD Biosciences) cell sorter. For

IL-2Rα and CD28 level sorting, cells were labelled with anti-CD28-PECy7 (clone 37.51,

eBioscience) or anti-CD25-FITC (clone 7D4, BD). Flow cytometry was performed on

a FACSCanto II or LSRFortessa X-20 cytometer (both BD Biosciences). Data were

analysed using FlowJo software (Treestar). A known number of beads (Rainbow cal-

ibration particles, BD Biosciences) and propidium iodide (0.2 µg ml−1, Sigma) was

added to samples immediately prior to analysis. The ratio of beads to live cells was

used to estimate the absolute cell number.
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The following monoclonal antibodies were used for the detection of cell surface markers:

anti-CD25-PECy7, or -APC (clone PC61, BD Biosciences) anti-CD28-PECy7 (clone

37.51, eBioscience). Staining was performed in PBS containing 0.1% BSA and 0.1%

sodium azide (Sigma). In Fig. 2.12, activated cells were defined as the 50% of cells

with the highest FSC fluorescence. Spearman’s correlation was calculated using Matlab

2011a’s “corr” function.

A.1.6 High-throughput clonal multiplex assay to measure DD

Naive OT-I/Bcl2l11−/− CD8+ T cells were purified and sequentially labelled with

CFSE (5, 2.5, 0 µM), CTV (5, 2.5, 0 µM) and CDP (5, 0 µM) (Fig. 2.2a,b). After

the population labelling controls were plated, cells from the 10 labelling combinations

indicated in Fig. 2.2c were pooled together and 10,000 cells were added per well for

stimulation with N4 peptide in the presence of S4B6, either with or without anti-CD28

(2 µg ml−1, Fig. 2.2c). After 26 h (just prior to the first division), cells were sorted so

that a single stimulated (estimated based upon high FSC fluorescence) but undivided

cell from each fluorescently distinct population was sorted into each “sample” well of

96-well round-bottomed plates (Fig. 2.2d). Cells were cultured in the presence of S4B6

either with or without hIL-2 (1 U ml−1). Four different stimulation combinations were

monitored: N4, N4 + anti-CD28, N4 + IL-2 and N4 + anti-CD28 + IL-2. Cells were

collected for analysis by flow cytometry at 54, 62 and 72 h post stimulation. At each

analysis time point, 7,500 beads were added to measure sample recovery (>90% of the

sample for >90% of the tubes in the experiment shown), and PI (0.2 µg ml−1) for

dead cell exclusion. Samples were carefully transferred into 5 ml polystyrene tubes and

entire sample was analysed (Fig. 2.2e).

For data analysis, gates were set using single label configuration population controls

then applied to clonal data as shown in Fig. 2.2f. Briefly, lymphocytes were identi-

fied from FSC/side scatter (SSC) profiles and dead cells excluded using PI. Cells were

divided into CPD− and CPD+ then division gating for each labelling configuration

was performed on CFSE versus CTV dot plots. Finally cells were gated as “small”

or “not small” from FSC/SSC profiles to classify cells as quiescent or dividing respec-

tively. Small cell size has previously been demonstrated to be a good surrogate of

lymphocyte quiescence (Hawkins et al., 2009; Marchingo et al., 2014; Kinjyo et al.,

2015). We further demonstrated this with independent experiments using OT-I/Fucci

cell cycle reporter mice, in which cells accumulate the FucciRed reporter when they

have reverted to a quiescent state, or express the FucciGreen reporter when progress-

ing through the S/G2/M phases of the cell cycle (Sakaue-Sawano et al., 2008; Tomura

et al., 2013; Marchingo et al., 2014; Dowling et al., 2014). OT-I/FucciRG CD8+ T
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cells were stimulated in similar conditions to those used in the clonal studies and cell

size and Fucci reporter fluorescence measured across several time points where the cells

were reaching DD to estimate the accuracy of small cell gates to classify cellular qui-

escence (Fig. A.1). Forward-scatter side scatter profiles were used to set small cell

gates (Fig. A.1, left columns) then Fucci fluorescence used to gauge the proportion of

incorrectly classified cells (that is, FucciG+ cells that fell within the “small” gate and

FucciR+ quiescent cells that fell within the “large” gate). In this example, 3.3%, 2.9%

and 4.7% of cells were incorrectly classified by size-based gating at the 50.5, 66 and

73 h time-points, respectively (Fig. A.1). Extrapolating these error rates to the data

shown in Fig. 2.3 we can estimate that the quiescence status of 165 of the 171 clones

in this example has been correctly classified. Collectively, along with previous findings

these results indicate that small cell size is an accurate method to estimate cellular

quiescence in these studies.

A.1.7 Population DD measurements

The definition and methods by which DD can be estimated during a population re-

sponse have been published previously (Marchingo et al., 2014). Briefly, the cohort

number (an estimate of the number of starting cells whose progeny are contributing to

the response at a time point) was calculated by dividing the cell number per division by

2i, where i is the cell’s generation. The population mean division number (MDN) was

calculated as the arithmetic mean of the cohort numbers at each time point. Assuming

little death, the MDN will increase in time, plateauing at the point where the cells

reach DD. Thus, the population total expansion was estimated as the maximum MDN

measured over all the time points.

A.1.8 Estimating clonal contributions to in vivo population DD

To calculate the percentage contribution of clonal families to the magnitude of the total

response (Fig. 2.15), it was assumed that all progeny cells would adopt a concordant

DD. The probability of a clone reaching DD in a given division was obtained from Cyton

fitting to the OT-I/FucciRG CD8+ T cell in vivo influenza (HKx31-OVA) infection

data in Fig. 2.1d,e and Supplementary Table 1 from Marchingo et al. (2014). The

discretised probability function was multiplied by the mean initial cell number for the

two experiments (N0 = 1, 808, Supplementary Table 1 from Marchingo et al. (2014))

and only divisions that contained at least one clone were used to determine clonal family

contribution to response magnitude (that is, divisions from 4 to 19). The probabilities

in each division were normalized so that the discretised probability distribution (fi) for
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Supplementary Figure 2. Small cell size is an accurate estimator of quiescence. 
CTV labelled OT-I/FucciR+G+ CD8+ T cells stimulated with N4 peptide (0.01 µg mL-1) and cultured with 
S4B6 (25 µg mL-1) and hIL-2 (1 U mL-1). FSC-A vs SSC-A profiles were used to visually determine “small” 
cell (red) and “large” cell (blue) gates (left column, black dots show dead cells and debris). Subsequently 
FucciRed vs. FucciGreen fluorescence was used to assess the frequency with which gating upon cell size 
incorrectly classifies FucciG+ as small and FucciR+ cells as large (right column, numbers are the average 
percentage of the live cell population from technical replicates). Representative of triplicate culture wells from 
2 independent experiments.  
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Figure A.1: Small cell size is an accurate estimator of quiescence. [Correspond-
ing to Supplementary Figure 2 from Marchingo, Prevedello et al., (2016)] CTV labelled OT-
I/FucciR+G+ CD8+ T cells stimulated with N4 peptide (0.01 µg ml−1) and cultured with
S4B6 (25 µg ml−1) and hIL-2 (1 U ml−1). FSC-A vs SSC-A profiles were used to visually
determine “small” cell (red) and “large” cell (blue) gates (left column, black dots show dead
cells and debris). Subsequently FucciRed vs. FucciGreen fluorescence was used to assess the
frequency with which gating upon cell size incorrectly classifies FucciG+ as small and FucciR+

cells as large (right column, numbers are the average percentage of the live cell population from
technical replicates). Representative of triplicate culture wells from 2 independent experiments.

i ∈ {4, . . . , 19} summed to 1. The number of progeny cells produced by clones reaching

DD in division i was corrected to reintroduce the effects of cell expansion as follows:

Nqui
i = N0fi2

i. (A.1)
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The percentage contribution to the total response magnitude of progeny cells reaching

DD in each division i ∈ [4, 19] was calculated as follows:

100
Nqui
i

19∑
j=4

Nqui
j

. (A.2)

This was then plotted as a cumulative function against the percentage of the total

clones that generated these cells.

A.1.9 Inference of DD distribution from in vivo clonal studies

The percentage contribution of clonal families to the magnitude of the total response

was obtained directly from Buchholz et al. (2013). To estimate the DD distribution

for this in vivo clonal data, we assumed that in vivo DD was concordant and that

minimal cell death had occurred at the time point measured. We estimated the DD as

log2(N), where N is the total number of progeny cells detected per clone. Clonal DD

was rounded up to the next integer value and binned for every second division.

A.2 Horton, Prevedello et al., (2018)

A.2.1 Mice

The three murine strains, wild-type C57BL/6, ovalbumin specific OT-I/Bcl2l11−/−

Marchingo, Prevedello et al., 2016, and Blimpgfp/+ (Kallies et al., 2004) mice were

maintained under specific pathogen-free conditions in the Walter and Eliza Hall Insti-

tute (WEHI) animal facilities and were used at 6-10 weeks of age. All experiments

were performed under the approval of the WEHI Animal Ethics Committee.

A.2.2 CD8+ T-cell purification

Spleens and lymph nodes were homogenised through a 70 µM cell strainer to generate

single cell suspensions. CD8+ T cells were isolated by negative selection using Easy-

Sep Mouse CD8+ T cell Isolation Kit according to manufacturer protocol (StemCell

Technologies).
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A.2.3 Sequential labelling protocol using CFSE, CTV and CPD

CFSE label. Purified CD8+ T cells were resuspended in sterile phosphate buffered

saline containing 0.1% bovine serum albumin (PBS 0.1% BSA) and labelled with either

5 µM, 2.5 µM or 0 µM CFSE (Invitrogen) at a density of ≤ 2×107 cells ml−1 at 37 ◦C

for 10 minutes and washed twice with 10 ml ice-cold RPMI-1640 10% FCS.

CTV label. Cells were resuspended in PBS 0.1% BSA and those labelled with 5

µM CFSE were further labelled with either 5 µM, 2.5 µM or 0 µM CTV (Invitrogen).

Cells labelled with 2.5 µM CFSE were labelled with 5 µM CTV. Cells labelled with 0

µM CFSE were labelled with either 5 µM or 0 µM CTV. All labelling performed at a

density of ≤ 2×107 cells ml−1 at 37 ◦C for 20 minutes and all cells were washed twice

with 10 ml ice-cold RPMI-1640 10% FCS.

CPD label. Cells were resuspended in PBS 0.1% BSA and labelled with either 5 µM

or 0 µM CPD eFluor670 (eBioscience) at a density of ≤ 2×107 cells ml−1 at 37 ◦C for

10 minutes and washed once with 10 ml ice-cold RPMI-1640 10% FCS and once with

tissue culture medium.

A.2.4 Sequential labelling protocol using CTY, CTV and CPD

CTY label. Purified CD8+ T cells were resuspended in PBS 0.1% BSA and labelled

with either 10 µM or 0 µM CTY (Invitrogen) at a density of ≤ 2×107 cells ml−1 at 37

◦C for 20 minutes and washed twice with 10 ml ice-cold RPMI-1640 10% FCS.

CTV label. Cells were resuspended in PBS 0.1% BSA and labelled with either 5 µM

or 0 µM CTV at a density of ≤ 2×107 cells ml−1 at 37 ◦C for 20 minutes and washed

twice with 10 ml ice-cold RPMI-1640 10% FCS.

CPD label. Cells were resuspended in PBS 0.1% BSA and labelled with either 5 µM

or 0 µM CPD at a density of ≤ 2×107 cells ml−1 at 37 ◦C for 10 minutes and washed

once with 10 ml ice-cold RPMI-1640 10% FCS and once with tissue culture medium.

A.2.5 In vitro cell culture

Tissue culture medium was RPMI-1640 with 10% FCS, 1 mM sodium-pyruvate, 2 mM

GlutaMAX, 10 mM HEPES, 100 U ml−1 Penicillin, 100 µg ml−1 Streptomycin (all

Invitrogen) and 50 µM 2β-mercaptoethanol (Sigma). Purified C57BL/6 CD8+ T cells

were stimulated with 10 µg ml−1 plate-bound anti-CD3 monoclonal antibody in flat-

bottomed 96 well plates (WEHI monoclonal antibody facility, clone 145-2C11). For
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some experiments OT-I/Bcl2l11−/− CD8+ T cells were stimulated with 0.01 µg ml−1

SIINFEKL (N4) peptide (Auspep). The use of Bim-deficient T cells enhances survival

in vitro but does not affect proliferative or phenotypic behaviours (Prlic and Bevan,

2008; Marchingo et al., 2014). These cells were stimulated in round-bottomed 96 well

plates at a density of 20,000 cells per well. This protocol leads to the self-presentation

of peptide by T cells and is used as a minimal culture system to enable the addition of

further costimulatory signals (Denton et al., 2011; Marchingo et al., 2014; Marchingo,

Prevedello et al., 2016; Heinzel et al., 2017).

Cells were cultured in 200 µL of tissue culture medium in the presence of 25 µg ml−1

anti-mouse IL-2 monoclonal antibody (WEHI monoclonal antibody facility, clone S4B6)

that inhibits the activity of mouse IL-2 but does not act on rhIL-2 (Deenick et al.,

2003). RhIL-2 (Peprotech), anti-CD28 (WEHI monoclonal antibody facility, clone

37.51), mouse IL-4 (purified from baculovirus transfected Sf21 insect cells) and mouse

IL-12 (Miltenyi Biotec, 130-096-707) were added to cultures where indicated. Cells

were incubated at 37 ◦C in 5% CO2.

A.2.6 Stimulation and sorting

Purified C57BL/6 and OT-I/Bcl2l11−/− CD8+ T cells were sequentially labelled with

CFSE, CTV and CPD. The uniquely labelled cell populations were mixed (except

for the unlabelled and CPD-only labelled controls) and stimulated under conditions

indicated. After 22-26 hours, prior to the first division, cells from across multiple

wells stimulated under the same conditions were pooled and sorted according to their

distinct fluorescence profiles into new wells such that each well contained a single cell

from each unique labelling profile, with the exception of cells labelled with only 5 µM

CPD or unlabelled cells. Wells contained the same conditions under which the cells

were initially stimulated. Bulk population controls were also sorted into new wells,

with 1,000 cells from each labelling profile sorted into separate wells, in addition to

100 cells from each population sorted into the same well. This gave bulk populations

of each fluorescence profile both separately and in combination. This included cells

labelled with 5 µM CPD only and unlabelled cells.

Purified Blimpgfp/+ CD8+ T cells were sequentially labelled with CTY, CTV and CPD

and stimulated with plate-bound anti-CD3 (10 µg ml−1), rhIL-2 (31.6 U ml−1) and

mIL-12 (10 ng ml−1) in the presence of S4B6 (25 µg ml−1) and were subsequently

cultured and sorted according to the same criteria as above. Sorting was performed on

either a BD Biosciences FACSAria III or a BD Biosciences Influx.
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A.2.7 Antibody staining, flow cytometry and analysis

At time points indicated cells were stained on ice with indicated antibodies used at

the following concentrations; 1:400 dilution anti-CD8-APCCy7 (BD Biosciences clone

53-6.7), 1:1600 dilution anti-CD62L-PE (BD Biosciences clone MEL-14), 1:1600 anti-

CD62L-APCCy7 (BD Biosciences clone MEL-14), 1:400 dilution anti-CD25-PECy7

(BD Biosciences clone PC61) and 1:3200 dilution anti-CXCR3-PECy7 (eBioscience).

104 beads (Rainbow calibration particles BD Biosciences) and 0.2 µg ml−1 propidium

iodide (PI, Sigma) was also added to samples prior to analysis. An antibody stain-

ing mix containing all relevant antibodies along with beads and PI was prepared for

each experiment. Antibody staining mix was added at staggered time points (∼2-3

minutes apart) to each sample in the 96-well culture plates and later transferred to 5

ml polystyrene tubes such that each sample was stained for as close to 30 minutes as

possible prior to immediate acquisition of as much of the sample as possible (duration

of acquisition lasted ∼2-3 minutes per sample).

Analysis was performed on a BD Biosciences LSRFortessa-X20. Gates were set using

labelled bulk population controls and these were then applied to clonal data. Live

lymphocytes were identified using forward and side scatter and PI exclusion. Cells

were separated into CPD+ and CPD- populations and division gates were identified for

each labelling profile on CFSE versus CTV for C57BL/6 and OT-I/Bcl2l11−/−, or CTY

versus CTV for Blimpgfp/+. Clonal families were identified and the division numbers

and expression levels of surface markers or Blimpgfp/+ of each cell was enumerated and

exported for data visualization and further analysis.
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