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Abstract The Morris water maze is an experimental
procedure in which animals learn to escape swimming
in a pool using environmental cues. Despite its suc-
cess in neuroscience and psychology for studying spa-
tial learning and memory, the exact mnemonic and
navigational demands of the task are not well under-
stood. Here, we provide a mathematical model of rat
swimming dynamics on a behavioural level. The model
consists of a random walk, a heading change and a feed-
back control component in which learning is reflected
in parameter changes of the feedback mechanism. The
simplicity of the model renders it accessible and useful
for analysis of experiments in which swimming paths
are recorded. Here, we used the model to analyse an
experiment in which rats were trained to find the plat-
form with either three or one extramaze cue. Results
indicate that the 3-cues group employs stronger feed-
back relying only on the actual visual input, whereas the
1-cue group employs weaker feedback relying to some
extent on memory. Because the model parameters are
linked to neurological processes, identifying different
parameter values suggests the activation of different
neuronal pathways.

Action Editor: Carson C. Chow

D. Fey (B) · E. Bullinger
Systems and Modeling, Montefiore Institute,
University of Liege, 4000 Liege, Belgium
e-mail: fey@montefiore.ulg.ac.be

S. Commins
Department of Psychology, National University of Ireland,
Maynooth, Co. Kildare, Ireland

Keywords Autoregression · Dynamic modelling ·
Learning and memory · Random walk · Navigation ·
Spatial memory · Water maze · Autocorrelation ·
Autoregressive model

1 Introduction

The Morris water maze (Morris et al. 1982) is a stan-
dard test for studying spatial learning and memory.
In order to escape swimming in the surrounding wa-
ter, animals are required to locate a hidden platform
(positioned just below the surface of the water). They
do this by making use of the available cues in the en-
vironment. Although the task is widely used in neuro-
science and experimental psychology to understand the
behavioural and neural underpinnings of spatial learn-
ing, the exact mnemonic and navigational demands of
the task are unclear. There is general acceptance that
animals rely on distal cues to infer the platform location
(often referred to as an allocentric learning), the exact
strategy used depends on the number, location and
availability of the cues (see Kealy et al. 2008 and ref-
erences therein). Further, animals can adopt strategies
that use cues in a beacon-like fashion or that are solely
based on self movements and memorised motor actions
(egocentric learning; see Moghaddam and Bures 1996).
However, the dissociation of spatial from nonspatial
strategies is not always possible (Harrison et al. 2006).
It is therefore crucial for any study of spatial learning
and memory, to understand the navigational demands
of the tasks and the strategies solving it. The present
study clarifies the navigational demands of the Morris
water maze and quantifies the effectiveness of different
strategies using a (data-driven) dynamic modelling
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approach. In contrast to other modelling studies in the
field of neuroscience that utilise and examine com-
plex networks of neurons (Burgess 2008), the approach
presented here focuses on whole behaviour (Cain and
Saucier 1996) and offers a simple model that is iden-
tifiable from experimental data of swimming paths.

Traditionally, rather crude performance measures
are employed to assess learning, such as escape laten-
cies or the time spend in different areas of the pool
(Maei et al. 2009). In contrast, we provide a more com-
prehensive time series analysis of rat swimming dynam-
ics and propose a mathematical model of navigation as
a stochastic process. The basic idea is that prior to train-
ing, rats exhibit random movements and with learning
these movements become increasingly goal oriented.
Between two measuring points, a rat moves a certain
distance (step size) in a certain direction (heading).
This movement can be described by a directed random
walk, whereby the step size and heading change are
random processes.

The dynamic modelling approach offers full control
over multiple variables and a much richer analysis
compared to measuring only simple performance sta-
tistics. For example it allows testing whether a purely
egocentric strategy would be sufficient to solve the
task. Real animals in the watermaze may employ a
variety of different strategies (even in a single trial)
such as avoiding the pool border, approaching a cue,
etc (Harvey et al. 2009), which makes it very difficult
to assess the effectiveness of these individual strategies
experimentally. Using a modelling approach, one can
formally specify different strategies, and then analyse
these in simulations, either individually or in combina-
tion. As such the effectiveness of different strategies
and their relative contribution to the performance in
terms of escape latencies can be assessed effectively.

2 Experimental data

The data was obtained by Harvey et al. (2009). Male
Wistar rats (aged 3 months 250–350 g, Biomedical
Facility, University College Dublin) were divided into
two groups (1 cue and 3 cues). All animals (n = 16)
were given 4 trials per day for 5 days to acquire the
watermaze task. The Morris water maze consisted of
a circular pool (1.7 m diameter). Rats could escape
from swimming by locating a hidden platform (9 cm
diameter) located in all experiments in the middle of
the northeast quadrant of the pool. The platform was
submerged 2 cm, rendering it invisible to the rats. The
pool was surrounded by a black curtain located approx-
imately 50 cm from the pool wall. Different numbers

of cues suspended on the inside of the curtains were
available for the different groups. The 3 cues group had
two light bulbs (in the northwest and northeast corner),
and a rectangular sheet of white paper (55 cm × 81 cm,
east side). The 1 cue group had a single light bulb
located in the northeast corner. Collected data consists
of recordings of rat swimming paths (x–y coordinates)
in successive trials with neglectable positional error and
a temporal resolution of 0.2 s over at most 60 s (after
which the trial classifies as unsuccessful), resulting in 50
to 300 data points per trial.

3 Stochastic process modelling

The dynamic model is conceptually based on a directed
random walk (Fig. 1(a)) and a feedback loop of the
heading change having a modular structure (Fig. 1(b)).
The random walk is modelled as a discrete-time system:

xt = xt−�t + �rt sin(αt), (1a)

yt = yt−�t + �rt cos(αt), (1b)

αt = αt−�t + �αt, (1c)

where xt, yt and αt denote position and heading of the
rat at time t. �t is the sampling time of the experimental
data. The step size �rt and the heading change �αt are
random processes to be identified from the data. Based
on our data analysis, we assume that the step size is
an independent random variable (the crosscorrelation
between step size and heading change shows a high p-
value of >0.2 and values 20× smaller than the autocor-
relation of the heading change), whereas the heading
change is a standard autoregression model extended by
an input term u:

�αt =
∑

Ai�αt−i�t + u, (2)

where Ai are coefficients describing the relative con-
tributions of the past values on the current value. Two
considerations motivated Eq. (2). First, rats do not
change their heading completely randomly, as they tend
to swim coherent curves. For example, when the rat
turns left at one time instant, it tends to keep turning
left for a certain amount of time, thus swimming a left
curve. This effect can be modelled mathematically by
making the change of heading dependent on previous
heading changes, i.e. nonzero coefficients Ai. Second,
rats are able to control their change of heading, which is
mathematically modelled by the input term u realising
a feedback mechanism:

ut = Kêt + νt. (3)
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Fig. 1 Sketch of the model. (a) Illustration of the random walk
with �r denoting the step size and �α the heading change.
(b) Overview of the heading change model (dynamics) and its
relations to the neurophysiology (cognitive functions). On the
path dynamics level, x, y is the rat’s location, α is the rat’s actual
heading, αdesired the rats desired heading, e the heading error,
ê the rats estimate of the heading error, u the input to the

heading change model and η a random variable with a normal
distribution. The variable z arises from the z-Transform of the
system, and can be understood as a time shift operator, i.e.
z−ix(t) = x(t − i�t). The neurological level comprised different
brain regions and neuronal pathways and determines αdesired as
well as the model parameters F, K and Ai. (c) Illustration of the
angle at which the rat leaves the pool border

Table 1 Overview of the
model and the distributions
identified from the data
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Here, êt is the rat’s estimate of its heading error, K is a
proportional feedback gain and νt a normal distributed
random number (Gaussian noise). The higher the gain,
the faster the desired heading is achieved. We assume
that the error estimate is realised as a low pass filter

êt = (1 − F)êt−1 + F(αdesired − αt), (4)

where 0 ≤ F ≤ 1 is a weighting factor. Loosely speak-
ing, the higher the weighting factor, the more the rat
trusts its visual input; the smaller the weighting factor,
the more the rat trusts its memory. Using an error
estimate rather than the actual error directly achieves
a much better model fit to the data (Section 4) and is
further interpreted in Section 5.

The above considerations mainly concern the rats
swimming behaviour in the interior of the pool. Along
the pool border, rats exhibit a distinct swimming be-
haviour termed thigmotaxis (Fig. 1(b)). The complete
model captures both behaviours and is summarised in
Table 1.

4 Results

This section identifies the mathematical model from
experimental data and analyses different navigational
strategies. Estimating all parameters from the recorded
swimming paths is possible because the described
model is simple and largely linear (except for Eq. (1)).

4.1 Learning not reflected in the distribution,
but in the autocorrelation of the heading change

The probability density functions of the random vari-
ables were identified by analysing the recorded swim-
ming paths using the MATLAB® Statistics Toolbox™
(Fig. 2(a)–(d)). The distributions of step size and head-
ing change do not change significantly with training
(Fig. 2(e), (f)). This is not surprising, because those
variables do not contain positional information. How-
ever, the autocorrelation of the heading change, which
describes how current heading changes correlate to past
heading changes for one time step back (lag one, i.e.
0.2 s), two time steps back (lag two, i.e. 0.4 s) and so
forth:

∑
i �αi�αi−lag, increases over days, reflecting the

rats learning progress (Fig. 2(g)).

4.2 Open loop model mimics swimming behaviour
of day one

We identified the parameters Ai of the heading change
model in open loop using the data of day one, when

we assume the rat’s swimming behaviour is not directed
towards a particular goal (αdesired = α) and the input
u is Gaussian noise (ut = νt). This renders Eq. (2)
a simple autoregressive model that can be identified
using the Yule–Walker equations. We found that a
second order model (i.e. Ai = 0 for i > 2) explains the
observed autocorrelation sufficiently well (Fig. 2(h)).
Only slightly different coefficients were obtained for
the 3-cues and 1-cue group. The simulated swimming
paths and the resulting simulated escape latencies are in
good accordance with those of the wet lab experiments.

4.3 Closed loop model reveals different
feedback mechanisms

We identified the parameters K and F of controller
and filter in closed loop using the data of day five,
when the rats direct their heading using the described
feedback mechanism. Here, the Yule–Walker equa-
tions are not applicable due to the feedback. Instead,
we used simulations to minimise the least squares
error of the autocorrelation of the heading change
(Fig. 2(i)–(l)).

We found an inherent difference in the navigational
control strategy depending on whether one or three
cues were available. Despite the fact that learning oc-
curs equally fast in both cases, 3-cues rats employ a
stronger feedback (K = 0.42), compared to the 1-cue
rats (K = 0.32). In addition, the 3-cues group seem to
rely only on the currently observed error, i.e. F = 1,
whereas the 1-cue group rely to 24% on their memo-
rised estimate, i.e. F = 0.76. We repeated this analysis
using different, more complex control models (data
not shown). All gave similar results, showing higher,
immediate control for 3-cue rats, and lower, delayed
control for 1-cue rats.

4.4 Model analysis assesses efficiency
of navigational strategies

A first simulation experiment implemented a purely
egocentric strategy in which rats learn to avoid the bor-
der (platform located somewhere in the interior of the
pool). Border avoidance is modelled by a change of the
probability to leave the border. Simulations revealed
that solely avoiding the border slightly decreases the
escape latencies, but that this effect is rather minor
(Fig. 3(a)).

A second simulation experiment implemented a cue-
based egocentric strategy in which the rats approach
different cues for a certain (random) amount of time.
Unsurprisingly, the analysis of the resulting escape
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Fig. 2 Comparing data and model. (a)–(f) Visualisation of the
random variables distributions: histograms show the data, solid
lines the fitted probability density functions as used in the model.
(a) Rayleigh distribution of the step size (b) normal distribution
of the heading change (c) exponential distribution of the path
length on the pool border (d) log-normal distribution of the
angle at which rats leave the border (e), (f) Comparison of the
distributions for untrained (day 1, trial 1) vs. trained rats (day
5, trial 4). Fitted distributions show no significant difference. (g)
Lag 1 (0.2 s) autocorrelation of the heading change over days.
Markers indicate the mean over 8 rats and 4 trials, errorbars
indicate the standard error of the mean (SEM). (h) Fit of the
open loop model, i.e. identification of the parameters Ai. Solid:

3 cues case. Dashed: 1 cue case. (i)–(l) Fit of the closed loop
model, i.e. identification of the feedback parameters K and F.
(i), (j) Colour contour plot visualising the values of the cost-
function (sum of squares error of the autocorrelation function)
for different control parameters. Darker areas correspond to a
better fit, the white circle indicates the best fit. (k), (l) Comparison
of the autocorrelation function of the heading change of data
and model. Box plots show the data, horizontal lines indicate the
median, notches the 95% confidence interval, boxes the lower and
upper quadrille, whiskers the extreme values and “+” outliers.
The exmarks “×” indicate the mean autocorrelation function of
the model as obtained from >500 simulation runs

latencies shows that this cue-based egocentric strategy
is more efficient in the 3-cues case than in the 1-cue
case (Fig. 3(b)). Although the escape latencies were
significantly reduced compared to random swimming
(50% and 32% for 3-cues and 1-cue group, respec-
tively), they did not reach the performance of fully
trained rats. For example, Fig. 3(b) demonstrates that
simulated animals in the 3-cues group reach escape
latencies of 19 s whereas animals in the laboratory
typically reach 10 s or less following 5 days of training
(Kealy et al. 2008). At this point it is important to note
that simulating the one cue experiment with the strong

control parameters (as identified from the 3-cues data)
increases the escape latencies significantly compared
to the nominal control parameters (as identified from
the 1-cue data) for cue usages of more than 60%. This
decrease of performance worsens the more the rat uses
the cue (Fig. 3(b), red-dash-dotted line). A weaker
control is therefore beneficial in a 1-cue scenario, ex-
plaining the difference of feedback strength identified
in the previous section (K3-cues > K1-cue).

A third simulation experiment, implemented an al-
locentric place navigation strategy, assuming the rats
know the platform location with varying degrees of
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Fig. 3 Analysis and predictions of the model. (a)–(c) Analysis
in terms of mean escape latency (y-axis for all plots). Markers
present mean values of at least 500 simulations with SEM’s
<1 s (dots for 3-cues, x-marks for 1-cue model). Lines present a
smooth fit to the simulated data (solid for 3-cues, dashed for 1-cue
model). (a) Strategy for leaving the border: at each time step the
simulated rat leaves the border with a certain probability. The
two open loop models (αdesired = α) were simulated for a range
of probabilities to leave the border (x-axis). Thick vertical dotted
lines indicates the probability to leave the border as estimated
from the experimental data of day 1 and 5. Horizontal dash-dotted
lines indicate the mean escape latencies of the experimental data
in trials 1 & 2 of day 1. (b) Egocentric cue-based strategy: the
simulated rat swims in episodes of random length in which the
rat either approaches a cue (αdesired = αcue) or swims randomly
(αdesired = α). In the 3-cue case, the target cue was chosen ran-
domly with equal probability. The two models were simulated
in their corresponding environment for a range of probabilities
to choose a cue (x-axis). We also simulated the 3-cues model
(K high, F = 1) in the 1-cue environment (circles, dash-dotted
line). (c) Allocentric place navigation strategy: in each episode,
the simulated rat swims to a randomly chosen target location
(αdesired = αPF, rat). Once reached, another episode begins and
the rat chooses a new target. Target location is the platform
location plus a random error with a Gaussian distribution of zero
mean. The two models were simulated for a range of standard
deviations of the error, which can be understood as the uncer-
tainty with which the rat knows the platform location (x-axis).
(d)–(f) Exemplary predictions of the model. (d), (e) Prediction of
expected escape latencies (y-axis), middle lines indicate medians,
boxes upper and lower quartile, percentage on top of each box is

the percentage of unsuccessful trials. (d) Different pool sizes (x-
axis). Blue, left-hand-side: random walk model (untrained rats of
day one, i.e. probability to leave border = 1/8). Red, right-hand-
side: place control model (trained rats of day five, i.e. probability
to leave border = 1/2). (e) Different cue locations. Green, left-
hand-side: egocentric cue-based strategy (3 cues, probability to
use cues = 100%); S: cues in same quadrant as platform, sim-
ulated rats approach cues (αdesired = αcues); O: cues in opposite
quadrant as platform, simulated rats swim away from cues per-
fectly (αdesired = αcues + 180◦); O + E: cues in opposite quadrant
as platform, simulated rats swim away from cues but with an
directional error (αdesired = αcues + 180◦ + ε, where ε is normal
distributed with zero mean and standard deviation 10◦). Red,
right-hand-side: place-control strategy (uncertainty = 30%); S,
O: rat swims to its assumed platform location directly (αdesired =
αPF, rat), O + E: rat swimms to its assumed platform location
with an directional error (αdesired = αPF, rat + ε). (f) Predictions
of different performance measures for the random walk model
(blue, left-hand-side bars), the egocentric cue-based strategy with
3 cues (green, middle boxes) and the place-control strategy (red,
right-hand-side bars). In the simulations, trained rats are allowed
to swim for 60 s without an escape platform. Errorbars indicate
standard variations. TQ time in quadrant, i.e. percentage of time
the rat swims within the correct pool quadrant. PZ Percentage
zone, i.e percentage of time the rat swims within a circular zone
around the correct location. (Zone covers 1/9 of the total pool
area.) GM Gallagher measure or average distance (in percent,
normalised to pool radius), i.e the mean distance to the correct
location over the trial. NC Number of crossings, i.e. the number
of times the rat swims over the correct location
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uncertainty (similar to a cognitive map, Burgess 2008).
These uncertainties were represented by two dimen-
sional Gaussian distributions with varying degrees of
standard deviation. The simulated rats’ assumed plat-
form location is the true platform location plus a ran-
dom deviation drawn from the uncertainty distribution:

xPF, rat = xPF, true + ρ sin(θ), (5a)

yPF, rat = yPF, true + ρ cos(θ), (5b)

where ρ is a normally distributed random number
with zero mean and θ a uniformly distributed ran-
dom number in the interval [0, 180). Once the simu-
lated rat successfully navigated to its assumed platform
location while realising there was no platform, it
dropped that assumption and chose a new platform
location, again by drawing from the uncertainty dis-
tribution. An analysis of the resulting escape latencies
demonstrates that animals possessing little knowledge
of the platform location (large uncertainty) can solve
the task very effectively. Indeed, an uncertainty of
about half the pool radius is sufficient to explain the
escape latencies after 5 days of training (10 s, Fig. 3(c)).
The situation of a perfectly learned platform location,
i.e. with no uncertainty, results in very low escape laten-
cies (4 s). Such low escape latencies have been observed
for over-trained rats (12 days of training, Kealy et al.
2008).

4.5 Model predictions

Water maze experiments depend on several factors:
physical ones such as pool size and platform or cue
location as well as behavioural ones. All are reflected as
model parameters, which can easily be altered in sim-
ulations for generating model-based predictions. This
is illustrated at the example of three types of experi-
ments. First, changing the pool size has a major effect
for untrained rats (random walk strategy), but not for
trained rats (place-control strategy), see Fig. 3(d). Sec-
ond, having the platform on the opposite side of the
clues is more difficult with a cue-based strategy, but
identical for a place navigation (Fig. 3(e)). Finally, sim-
ulated retention trials allow for comparison of different
strategies and performance measures. For example, the
Gallagher measure is best suited to distinguish the cue-
based from the place-control strategy (no overlap of er-
rorbars, Fig. 3(f)). Summarising, such model prediction
are helpful in screening through possible experimental
setups to uncover the most promising ones that should
be performed in a real experiment.

5 Discussion

5.1 The role of feedback control

Developing a control system that robustly tracks a
desired variable is a problem commonly faced by en-
gineers. The standard solution is integral feedback con-
trol, in which the time integral of difference between
actual value and desired value, is fed back into the
system. A heating system controlled by a thermostat is
one well-known example. Because temperature, which
is proportional to the integral of heat (the output of the
heater), is compared to the desired temperature and
fed back into this closed-loop system, the difference
between the room temperature and the desired temper-
ature approaches zero despite external environmental
disturbances or variations in the heater. Here, we have
the same situation. The heading, which is the integral
of the heading change, is fed back (Fig. 1(c)). Hereby,
the role of the integrator is taken by the random walk
model. It is therefore not necessary to use integral
action within in the controller in order to achieve a zero
tracking error in steady state.

The identified feedback parameters (K1-cue < K3-cues,
see Section 4) suggest that the more navigational cues
are available, the more the animal seems confident,
i.e. applies a stronger, more stringent control strategy.
Our simulations showed the advantage of weaker, more
moderate control in the one cue case as it allows for
exploring a greater area.

5.2 The role of the filter

In engineering, a low pass filter is a simple but effective
way to reduce (measurement) noise. Here we have a
somewhat noisy situation in the one cue case where the
rat’s positional inference is impaired. It makes there-
fore sense that rats use a filter if only few or uncer-
tain navigational cues are available (F1-cue < F3-cues, see
Section 4). A biological interpretation of this result is
that animals navigating with more available cues rely
on their immediate visual information, whereas animals
with a limited number of available cues rely more on
past information.

5.3 Fitting the model into underlying neural circuits

The neurophysiology of spatial memory and learning
involves different brain regions depending on environ-
ment, experimental conditions and strategy employed
by the rat (Fig. 1(b)). For example, the taxon (egocen-
tric) pathway directly projects the visual cortex onto
motor neurons in the striatum (Sheynikhovich et al.
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2009). In contrast, the locale (allocentric) pathway ad-
ditionally involves hippocampal and parahippocampal
regions and the brain’s spatial representation system.
In these (para) hippocampal regions, the rats location
and head direction is represented by neurons called
place cells and head direction cells, respectively. In the
parahippocampus, grid cells of the entorhinal cortex
are thought of incorporating the rats self movements
(motor actions) in a process called path integration
(Burgess 2008).

There is an extensive literature modelling the neu-
ronal processes (e.g. Sheynikhovich et al. 2009; Burgess
2008) which ultimately cause the animal’s movements.
In contrast, the here proposed behavioural model
focuses on the dynamics of the resulting movements.
Models on both levels, the neuronal and the behav-
ioural one, are necessary for a complete picture in
which the loop can be closed via the environment
(Fig. 1(b)). We suggest that the parameters of the
dynamic model change depending on which neuronal
pathway is activated. For example, the higher control
gain K in the 3-cue case might be linked to the synaptic
projections from place cells to motor neurons in the
nucleus accumbens in the ventral striatum (locale sys-
tem). Further, the increased filter constant F in the
1-cue case could be linked to increased activation of
the projections from view cells to motor neurons in the
caudate putamen in the dorsal striatum (taxon system,
Sheynikhovich et al. 2009). However, the parameters K
and F are probably not independent from each other
and both are likely to be influenced by several, possibly
overlapping neuronal processes.

6 Conclusions

Our modelling results concerning the 3-cues and 1-
cue group are in concordance with earlier reports.
Harvey et al. (2009) revealed no significant difference
between the groups in terms of the gross measures used
(e.g escape latencies) demonstrating that both groups
learned the task effectively, but also found different
behavioural patterns. Here we provide a mathematical
model explaining the group differences and revealing
that both groups control their movements differently.

The parameters of the heading change model were
identified in open loop and seem not to differ con-
siderably. In contrast, the feedback parameters as
identified in closed loop are clearly distinct. This
demonstrates that the model can reveal inherent pro-
cedural differences not visible in gross measures. The
model parameters are influenced by several factors that
could be controlled in experiments (e.g. brain lesions,
training schemes). This makes the model a useful tool
for analysis of experiments for which swimming paths
are recorded. The fitted model parameters can be un-
derstood as higher level measures reflecting behav-
ioural and neurophysiological differences.
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