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Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental condition characterised by
impulsivity, inattention and hyperactivity. Aside from these core psychopathologies, sleep disturbances are
found to behighly comorbidwithADHD, and indeed dysregulated sleepmay contribute to someof the symptoms
of the disorder. It is not clear how sleep disturbances come to be so common in ADHD, but one putative mecha-
nism is through the circadian timekeeping system. This system underpins the generation of near 24-hour
rhythms in a host of physiological, behavioural and psychological parameters, and is a key determinant of the
sleep/wake cycle. In this paper we review the evidence for sleep and circadian rhythm disturbance in ADHD, ex-
amine the possible mechanistic links between these factors and the disorder and discuss future directions
through which the circadian clock can be targetted for ADHD symptom relief.
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1.1. Introduction

Circadian rhythms are recurring patterns in a host of physiological,
behavioural and psychological domains that repeat on a near 24-hour
basis. Disturbances in circadian rhythms are implicated in a large num-
ber of significant and common medical conditions (Smolensky et al.,
2015). Circadian rhythm abnormalities are associated with key and
disorder; DSPS, delayed sleep
al axis; SCN, suprachiasmatic
tar Kyoto rat.
Maynooth University, National

).
common psychiatric conditions, including major depression, schizo-
phrenia and bipolar disorder (Lall et al., 2012; Pritchet et al., 2012). Fur-
ther, sleep is significantly disturbed in such conditions: prevalence rates
of DSM-defined insomnia in major depression is found to be 41%
(Stewart et al., 2006), and sleep disturbance/dysfunction is present in
90% of patients with major depression (Breslau et al., 1996). Distur-
bance of the circadian clock may be a key factor in explaining the high
level of sleep disturbances co-morbid with common psychiatric condi-
tions. As such, the circadian systemsmaybe a therapeutic target for psy-
chiatric and psychological disorders, as well as for psychiatric and
psychological co-morbidities of common physical diseases (Buttgereit
et al., 2015). As circadian abnormalities are implicated in attention def-
icit hyperactivity disorder (ADHD; Kooij and Bijlenga, 2013), and sleep
disturbances in ADHD are also common (Schredl et al., 2007), we will
explore the mechanisms through which circadian abnormalities may
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come to be co-morbid with ADHD and examine their potential thera-
peutic consequences.

1.2. The circadian system and clock genes

The circadian system underpins the generation and maintenance of
self-sustained, ~24-hour oscillations in physiological and behavioural
processes that are linked to, and amendable by, internal and environ-
mental changes. Circadian rhythms are sustained at the molecular
level by a series of interconnected transcription–translation feedback
loops that control the expression of clock genes (CLOCK, BMAL, PER,
CRY, REV-ERB alpha and RORA) comprising the molecular circadian
clock (Dibner et al., 2010). The circadian expression of these genes is
regulated through E-boxes, REV-ERB alpha/ROR (retinoic acid-related
orphan receptor) response elements (RRE), and DBP/E4BP4 binding el-
ements (Albrecht, 2012). During the clock gene cycle, CLOCK and BMAL
dimerise and bind to the promoter region of period and cryptochrome
genes to induce their expression. Subsequently, PER and CRY form a re-
pressor complex and relocate to the nucleus where they inhibit the
genes induced by the CLOCK/BMAL protein complex, including their
own transcription and forming a negative feedback loop. The REV-
ERB/ROR component of the cycle provides another feedback arm unto
BMAL1 transcriptional activity (Albrecht, 2012). There is considerable
post-translational modification of clock gene protein products, which
alters protein stability and turn-over and fine-tunes the period of the
cycle (Meng et al., 2008). Output of the clock is generated by the global
regulation of transcriptional architecture by clock genes (Koike et al.,
2012) and a recent analysis revealed that 43% of protein coding genes
show circadian rhythms in their expression in at least one mammalian
tissue (Zhang et al., 2014).

Fromaneurobiological perspective, inmammals themaster circadian
pacemaker resides in the suprachiasmatic nuclei (SCN) of the anterior
hypothalamus and the SCN is primarily responsible for the generation
of circadian rhythms (Dibner et al., 2010). The SCN is entrained to the ex-
ternal 24-hour day by receiving light information from the retina via a
specialised neural tract, termed the retinohypothalamic tract (RHT;
Hughes et al., 2015), although the presence of extra SCN oscillators
have also been demonstrated (Guilding and Piggins, 2007; Dibner
et al., 2010). The role of the SCN as the master pacemaker is confirmed
by evidence that SCN lesions abolish most physiological, endocrine and
behavioural rhythms, and SCN transplants can restore rhythmicity in
previously arrhythmic, SCN-lesioned rodents (Guilding and Piggins,
2007). The SCN consists of two paired nuclei, each nucleus containing
~10,000 neurons, and it is situated bilaterally to the third ventricle and
immediately dorsal to the optic chiasm (Abrahamson and Moore,
2001). The positioning of the SCN is therefore optimal for receiving visual
input for entrainment to the light–dark cycle via the RHT. The non-visual
photoreceptive system through which light primarily acts on the SCN is
via the novel melanopsin system, in which a small proportion of retinal
ganglion cells express this photopigment and are intrinsically photosen-
sitive (Hughes et al., 2015). The axons of these ganglion cellsmake up the
RHT and transmit photic information to the SCN via a mono-synaptic
glutamatergic projection that also involves the neuropeptide PACAP
(Hughes et al., 2015). Circadian patterns in neuronal firing is a key fea-
ture of the SCN, and blockage of SCN neuronal activity results in behav-
ioural arhythmicity, with rhythmicity restored when SCN neuronal
activity is restored (Schwartz et al., 1987). The electrical firing rate ex-
hibits a rhythmwith a period of ~24 h in the SCN, with a higher frequen-
cy during the day and lower frequency during the night (McArthur et al.,
2000). The clock gene cycle is linked to the day/night variations in the
SCN neuronal firing, providing a link between the molecular clockworks
and the SCN's neurophysiological output (Belle et al., 2009; Jones et al.,
2015).

An important feature of the circadian systemare rhythmic output sig-
nals from the SCN, and other areas that are driven by the SCN, which are
responsible for entrainment of peripheral oscillators (Dibner et al.,
2010). The adrenal glucocorticoid stress hormone cortisol plays a key
role in the hypothalamic–pituitary–adrenal (HPA) axis, but is also an
important output of the master circadian pacemaker, and its secretion
is regulated by output pathways of the SCN involving arginine vasopres-
sin and corticotropin-releasing hormone (Keller et al., 2006). Cortisol
displays a circadian rhythm in its secretion consisting of an increase
just before waking up in the morning, a peak within an hour of waking
and then a decline over the rest of the 24-hour day, and environmental
light exposure directly after awakening increases the amplitude of the
morning peak (Van Someren and Riemersma-Van Der Lek, 2007). Corti-
sol is thought to be involved in the regulation of circadian rhythms in
particular the entrainment of the peripheral oscillators (Keller et al.,
2006; Van Someren and Riemersma-Van Der Lek, 2007).

Another important output of the circadian system is the pineal hor-
monemelatonin, which is synthesised in the pinealocytes from the pre-
cursor tryptophan. The secretion of melatonin exhibits a clear circadian
rhythm, with peak plasma levels usually between 02:00 and 03:00 am
and sympathetic input from the cervical ganglion under influence
from the SCN via GABAergic mechanisms is thought to regulate pineal
melatonin synthesis (Arendt, 2005a). Furthermore input from themas-
ter pacemaker is essential for the synchronisation of the circadian
rhythm of melatonin to the light–dark cycle and the persistence of the
rhythm (Arendt, 2005b). Melatonin also plays a role in mediating vari-
ous circadian activities throughout the body including the regulation of
reproductive capacity, hormone secretion, immune responsiveness,
daily rhythms of activity and entrainment of sleep/wake cycles. The cir-
cadian rhythm of melatonin synthesis is closely linked to the sleep
rhythm as demonstrated by the nocturnal onset of melatonin secretion,
whichusually occurs 2 h in advance of the individual's habitual bedtime,
and correlateswith evening sleepiness and the sleep promoting effect of
exogenous melatonin (Arendt, 2005b). Melatonin is believed to have a
strong entraining influence on the master circadian clock through its
ability to directly feed back to the SCN (Pevet and Challet, 2011). Indeed,
melatoninergic agonists can be used to entrain rhythms for the treat-
ment of non 24-hour sleep–wake disorder in blind subjects (Neubauer,
2015).

With regard to the role of the circadian system in regulating sleep/
wake behaviour, the classic two process model proposed by Borbély
(1982) suggests that there are intertwined homeostatic and circadian
inputs to determining sleep/wake states. The homeostatic process sig-
nals time spent awake, and the circadian process signals the rhythmic
drive towards wakefulness; at any given time the drive towards sleep
is dependent on both the homeostatic pressure and the circadian
phase. The interaction between the sleep homeostatic and circadian
systems appears to be intricate, with alterations in clock genes leading
to changes in sleep homeostatic processes (Franken, 2013; Freyburger
et al., 2015). Further, the SCN may have a role in determining sleep ar-
chitecture (Lee et al., 2009); conversely sleep deprivation alters the
phase of the circadian clock (Antle and Mistlberger, 2000) and alters
SCN neuronal activity (Deboer et al., 2007). These findings indicate the
very intimate relationship between the homeostatic and sleep process-
es. As such, circadian processes are implicated in sleep disorders aside
from those considered circadian rhythm sleep disorders. For example,
phase changes have been found to be associated with insomnia (Lack
et al., 2008). Therefore, circadian abnormalities observed in chronic con-
ditions may contribute to co-morbid sleep disturbances and disorders.
In this context, we will now explore the evidence for association of
ADHD with both sleep disturbance and circadian dysfunction.

1.3. ADHD and sleep

ADHD is a heterogeneous condition that is one of the most frequent
disorders in child and adolescent psychiatry, with a prevalence of ap-
proximately 7% (Thomas et al., 2015). Symptoms associated with
ADHD in children include attentional difficulties, motor hyperactivity,
impulsivity and sleep disturbance. ADHD continues from childhood in
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approximately 50% of patientswho go on to express an adult form of the
condition (Biederman and Faraone, 2005). Similar to the situation in
children, ADHD in adults manifests itself through behavioural and at-
tentional problems and ADHD is associated with lower educational
and work standards, delinquency and anti-social behaviour (Rösler
et al., 2004). There are various aetiological hypotheses propounded for
ADHD. Idiopathic frontal lobe dysfunction is strongly implicated in
the pathophysiology of ADHD, with other brain regions affected in
ADHD including the cerebellum, cingulate cortex and basal ganglia
(Schneider et al., 2006). Altered dopaminergic and other monoamin-
ergic neurotransmission is believed to play a significant role in ADHD
and this is the basis for the therapeutic use of psychostimulants in
the management of ADHD (Biederman and Faraone, 2005). Genetic
studies of ADHD have implicated various components of the dopaminer-
gic system as well as other candidate genes (synaptic vesicle proteins,
serotoninergic components, growth factors), and gene–environment in-
teractions are believed to be significant in the complex aetiology of
ADHD (Hawi et al., 2015).

One important issue in ADHD is the extent towhich associated sleep
problems contribute to the psychopathology of ADHD, and the nature of
the link between sleep mechanisms and the pathophysiology of ADHD.
Prevalence of insomnia in adult ADHD is estimated at 27% (Schredl et al.,
2007) and sleep disturbances may occur in up to 83% of adult patients
(Sobanski et al., 2008). ADHD is associated not only with non-
specifically disrupted sleep, but also with parasomnias, hypersomnias
and limb movement disorders (Walters et al., 2008). Mahajan et al.
(2010) have reported a significant correlation between hyperactive–
impulsive symptoms and sleep quality in non-medicated adults with
ADHD. People with delayed sleep phase disorder, a circadian rhythm
sleep disorder, show significantly more frequent ADHD symptoms
than control populations (Sivertsen et al., 2015). Further, a role for
sleep disturbance in the pathophysiology of ADHD is indicated by find-
ings that some of the core symptoms of ADHD (inattention, impulsive-
ness and restlessness) are by-products of sleep deprivation (Corkum
et al., 1998; Wulff et al., 2010), and sleep deprivation has been shown
to cause behavioural and cognitive problems (Babkoff et al., 1991).
The inattentive and hyperactive symptoms of ADHDhave been associat-
ed with children who suffer from obstructive sleep apnoea and habitual
snoring (Chervin, 2005; Chervin et al., 2005; Lim et al., 2008). Parental
and self reports of sleep in childhood ADHD have indicated a number
of sleep deficits including reduced sleep duration (Lim et al., 2008), an
increase in the degree of snoring (O'Brien et al., 2003a) and increased
likelihood of suffering from nightmares (Chiang et al., 2010). Sex differ-
ences in sleep reports has been indicated, with female ADHD patients
reporting more difficulties sleeping; however the authors speculate
that this finding could be due to parental expectations of girls finding
it easier to sleep than boys (Lim et al., 2008). Analysis of sleep quality
in ADHD-subtypes (inattentive, hyperactive–impulsive or combined)
has revealed that combined and hyperactive–impulsive subtypes were
reported to exhibit increased sleep duration in comparison to the inat-
tentive subtype and healthy controls, whereas daytime sleepiness and
napping, early insomnia, middle insomnia, sleep terrors and snoring
was increased in the combined and inattentive subtypes in comparison
to the hyperactive–impulsive subtype (Chiang et al., 2010). Further-
more, circadian rhythm disturbance, sleep-talking, nightmares and
nightmare disorders, and circadian rhythm sleep disorders were more
predominant in the combined subtype than the inattentive subtype of
childhood ADHD (Chiang et al., 2010). In a recent large population-
based study, ADHD symptoms in a non-clinical sample of adolescents
were found to be associated with a range of sleep disturbances (eg.
less sleep efficiency, later bedtime, longer sleep latency, longer waking
after sleep onset, higher subjective sleep need), and that therewas a lin-
ear relationship between all sleep variables and ADHD symptom scores
(Hysing et al., 2015).

Actigraphy and polysomnography have also been utilised as
methods of measuring the sleep/wake cycle and sleep and activity
parameters (Littner et al., 2003). Actigraphic analysis has shown day-
time activity of children with ADHD in a clinical setting to be greater
than controls (Dane et al., 2000). In conjunction with sleep diaries,
actigraphy has demonstrated increased variance in a number of sleep
measures in childhoodADHD, including sleep onset time, sleep duration
and true sleep time, thus indicating greater sleep instability in child-
hood ADHD (Gruber et al., 2000). In adult ADHD, actigraphy has
revealed greater daytime activity than in the control population,
although there are differing reports regarding increases in nocturnal
activity (Boonstra et al., 2007; Baird et al., 2012). Actigraphy has also
been used to describe decreases in sleep efficiency, lengthening of
sleep onset latency and shorter bouts of uninterrupted sleep in ADHD
in adults with or without comorbid sleep onset insomnia (Boonstra
et al., 2007, Van Veen et al., 2010). Polysomnographic studies have re-
vealed reduced sleep efficiency, and increased awakenings and percent-
age wakefulness after sleep onset and reduced sleep efficiency in ADHD
(Dagan et al., 1997, Sobanski et al., 2008; Picchietti et al., 1998, O'Brien
et al., 2003a). The percentage of rapid-eye movement (REM) sleep has
also been shown to be reduced in ADHD (O'Brien et al., 2003a,b;
Sobanski et al., 2008), and this could have implications for behavioural
functioning, since REM sleep is associated with learning and perfor-
mance, including attention, memory and language (Diekelmann and
Born, 2010).

1.4. Circadian dysfunction in ADHD

As the circadian clock is central to the regulation of the sleep–wake
cycle as previously described, studies have aimed to establish if circadi-
andeficits are evident in ADHD. One factor inwhich inter-individual dif-
ferences in circadian function can be examined is diurnal preference
and/or chronotype. Adult ADHD is associated with evening preference;
Baird et al. (2012) report later diurnal preference in adult ADHD, a find-
ing that is also reported by Voinescu et al. (2012) in participants with
likely-adult ADHD via the ARSR screening instrument. Rybak et al.
(2007) report that greater than 40% of adults with ADHD display eve-
ning preference, whereas only 18.5% exhibited morning preference.
These findings contrast to the age-matched general populationwherein
only 10.8% exhibit evening preference and 40.2% exhibit morning pref-
erence (Rybak et al., 2007). Greater eveningness correlates with inat-
tention and increased impulsivity; sleep deficiency may play a role in
these effects as eveningness is associated with shortened sleep (Rybak
et al., 2007). In the general population, eveningness is associated with
altered emotionality and ADHD-related traits such as apathetic, volatile
and disinhibited temperaments are associated with evening orientation
(Ottoni et al., 2012), as is sensation-seeking behaviour (Kang et al.,
2015). Circadian disturbance is further implicated in ADHD by findings
that seasonal affective disorder, a form of depression intimately linked
to circadian dysfunction (Lewy et al., 2006), is found to be significantly
comorbidwith ADHD (Levitan et al., 1999, Amons et al., 2006, Van Veen
et al., 2010; Bijlenga et al., 2013a).

As previously described, melatonin is a key output and regulator of
the circadian clock, and plays an important role in the modulation of
the sleep–wake cycle. A reduced amplitude of the melatonin rhythm
in adult ADHD has been shown (Baird et al., 2012), although it is
thought that this may be in part due to light suppression of melatonin
during periods of increased nocturnal activity, which in turn may fur-
ther exacerbate the sleep disruption present in these individuals. A per-
haps better validated perturbation to the melatonin rhythm
documented in ADHD is a delay in dim light melatonin onset (a key
marker of internal circadian phase), and also sleep and wake time (as
measured by actigraphy), which have been associated with both child-
hood and adult ADHD when comorbid with sleep onset insomnia,
whereas both child and adult ADHD patients, who did not suffer from
the sleep disorder, displayed normal dim light melatonin onset timing
(Van der Heijden et al., 2005, Van Veen et al., 2010). This delay in circa-
dian timing of the sleep/wake cycle observed in sleep onset insomnia is
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characteristic of delayed sleep phase syndrome (DSPS), and therefore it
has been proposed that sleep onset insomnia is a circadian rhythm dis-
order that is comorbid with ADHD (Van der Heijden et al., 2005, Van
Veen et al., 2010). Furthermore, subtype differences in the prevalence
of sleep onset insomnia have been indicated, with a decreased number
of the inattentive ADHD subtype of adults displaying symptoms of sleep
onset insomnia in comparison to the other subtypes (Van Veen et al.,
2010). Inattentive subtype patients, not suffering from sleep onset in-
somnia, exhibited longer sleep duration and more stable sleep/wake
rhythms in comparison to those with sleep onset insomnia (Van Veen
et al., 2010). This is in accordancewith previous reports that inattentive
subtypes of ADHD are sleepier during the day and sleep for longer dura-
tions at a time, and dysregulation of the melatonin rhythm may play a
role in mediating these associations (Gau et al., 2007, Van Veen et al.,
2010). Reports of delayed timing of sleep onset are not ubiquitous, as
Fargason et al. (2013a) report that subclinical sleep disturbances in
adults with ADHD are not associated with alterations in sleep-timing.
Therefore, the presence or absence of both insomnia and sleep timing
alterations may be used in the future to define sub-groups of adults
with ADHD. Agemay also be an important factor in assessing functional
circadian abnormalities in ADHD, as Nováková et al. (2011) report that
in children with ADHD there are not changes in the melatonin profile
compared to controls; however when split into age-groups, the data
reveals that older children with ADHD do display changes in the mela-
tonin profile, but that younger children do not.

It has been proposed that dysfunction of the behavioural inhibition
system could be responsible for some of the altered behaviours charac-
teristic of ADHD (Lackschewitz et al., 2008). It has also been postulated
that if a dysfunctional behaviour inhibition system is a causative factor
of ADHD, then an abnormal hypothalamic–pituitary–adrenal (HPA)
axis response to stress should be observed in ADHD (Hong et al.,
2003). Lower circulating cortisol levels in response to stress has been as-
sociated with many of the characteristics of childhood ADHD, including
maladaptive behaviour (Hastings et al., 2009) and poorer cognitive per-
formance (Hong et al., 2003), as well as being associated with a de-
creased degree of anxiousness in childhood ADHD (Hastings et al.,
2009). These findings have been replicated in a study of adult ADHD,
which found that lower cortisol levels in response to stress were associ-
ated with ADHD (Lackschewitz et al., 2008). Under-reactivity of the
HPA-axis in response to stress has been associated with the hyperac-
tive/impulsive subtype of ADHD (Virkkunen, 1985, Moss et al., 1995,
Hong et al., 2003, Blomqvist et al., 2007). However, the inattentive
ADHD subtype has also been shown to display blunted cortisol levels
and hence impaired HPA-axis functioning in response to stress
(Randazzo et al., 2008). Other studies have shown that low-cortisol
responsivity to psychosocial stress is associated with childhood
ADHD-combined type, but not for those with ADHD-inattentive type
(van West et al., 2009). Possible reasons for these discrepancies could
be the effects of treatment, comorbidity and study design. Sex differ-
ences in the stress response have been identified in childhood ADHD,
with elevated earlymorning cortisol levels in boys, and decreased levels
in girls (Sondeijker et al., 2007).

Circadian factorsmay be important in such processes as theHPA axis
is known to be under strong circadian control (Nicolaides et al., 2014).
Studies of the circadian rhythm of cortisol secretion in ADHD indicate
a significant phase-delay of the cortisol rhythm relative to wakening
time in adult ADHD (Baird et al., 2012), but no changes in the diurnal
profile of cortisol under post-stress conditions (Hirvikoski et al., 2009).
Abnormal cortisol rhythms have been associated with the hyperactive
component of childhood ADHD (Kaneko et al., 1993; Blomqvist et al.,
2007). The cortisol awakening response has also been studied in chil-
dren suffering from ADHD with comorbid disruptive behaviour disor-
der, and it has been shown that whilst childhood ADHD patients
exhibit a normal cortisol awakening response, those ADHD patients
with comorbid oppositional defiant disorder exhibit a dampened corti-
sol awakening response (Freitag et al., 2009).
Further functional studies of circadian rhythms in ADHD have also
provided evidence for circadian dysfunction associated with the disor-
der. Delays inmelatonin secretion and desynchrony betweenmelatonin
secretion and sleep onset have been described in adult ADHD, as well as
delayed activity and body temperature rhythms (Bijlenga et al., 2013b).
These findings highlight the importance of assessing multiple phase-
markers in ADHD in order to understand the significance and inter-
relationships between phase-alterations and desynchronisation of dif-
ferent pacemakers and circadian outputs. Gamble et al. (2013) provide
further evidence for delayed rhythmicity by demonstrating delayed
sleep onset timing assessed by actigraphy in adult ADHD. Adult ADHD
is associated with loss of rhythmicity in clock gene (PER2 and BMAL1)
expression in a peripheral oscillator, the oral mucosa (Baird et al.,
2012). Given that the nature of the oscillator in the oral mucosa is
very incompletely understood, such alterations may be a proxy for
more central clock dysfunction, or may be consequences of more local
events such as altered feeding patterns in ADHD. There have been re-
ports of remarkable circadian abnormalities associated with ADHD;
Fargason et al. (2013b) published a case-report of complete reversal of
the sleep/wake cycle in an adult man with ADHD, whilst Coogan et al.
(2015) present actigraphy from an adult with ADHDwho displays a bi-
modal sleep/wake cycle. However, notwithstanding these cases it is
worth noting that actigraphy shows significantly less fragmented
rhythms in ADHD than the highly disorganised rhythms, which are
reported in schizophrenia for example (Wulff et al., 2010).

Chronotherapeutic approaches that may address underlying phase-
delays or counter circadian desynchrony, have been trialled in ADHD
and been shown to have some promise to date. Rybak et al. (2006) re-
port that light therapy is associated with improvement in ADHD scores
in adults, and that associated phase advances were the most significant
predictor of clinical improvements. The chronobiotic antidepressant
agomelatine, which is a melatoninergic agonist, may have promise as
a second-line treatment for ADHD (Niederhofer, 2012). Melatonin
treatment in childhood ADHD patients suffering from insomnia has
been shown to improve a number of sleep measures including an in-
crease in themean total time asleep and sleep efficiency, and a decrease
in sleep latency, nocturnal restlessness and difficulty falling asleep (Van
der Heijden et al., 2005). Furthermore, sleep onset and dim light mela-
tonin onset was advanced to that of values found in healthy children
not suffering from insomnia, and this effectwasmore pronounced in in-
dividuals who exhibited more extreme delays in dim light melatonin
onset at baseline (Van der Heijden et al., 2005). However, whilst these
sleep deficits were improved, no improvement of behaviour, cognitive
function or quality of life was observed in these individuals, indicating
that longer treatment duration would be required. The use of blue
light-blocking sunglasses, whichfilter out lightwavelengths that impact
themost on the circadian system, to block the phase-delaying effects of
evening light has been shown to reduce sleep-disturbances in ADHDpa-
tients (Fargason et al., 2013c). The phase-advancing impact of morning
bright light has been postulated to contribute to the epidemiological ob-
servation that geographical areas with higher sunlight levels also have
lower levels of ADHD prevalence, and that this association is indepen-
dent of vitamin D levels (Arns et al., 2013). Indeed, such effects of
light have been postulated to explain the association between altitude
and regional variations in ADHD prevalence in children (Huber et al.,
2015) due to the relationship between altitude and solar intensity
(Arns et al., 2015).

1.5. Mechanisms linking the circadian system to ADHD

Given that ADHD is a highly heritable condition (Hawi et al., 2015),
there may be genetic links between the disorder and the circadian sys-
tem that provide mechanistic links to explain the occurrence of circadi-
an dysfunction in ADHD. Genome-wide association studies have
implicated circadian clock gene polymorphisms with ADHD: Lasky-Su
et al. (2008) identified PER1 as being associated with ADHD in
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childhood and adolescence, whilst Brookes et al. (2006) report a specu-
lative association of ADHDwith polymorphisms in PER2. The association
of the T-allele of the rs1801260 SNP in CLOCK with adult ADHD symp-
toms has been described by a number of groups (Kissling et al., 2008;
Xu et al., 2010; Jeong et al., 2014). This polymorphism has also been
shown to be associated with evening preference and delayed sleep
timing (Katzenberg et al., 1998, Mishima et al., 2005), although this is
not an undisputed finding (Pedrazzoli et al., 2007; Robillard et al.,
2002). Further, the functional consequence of the relevant single-
nucleotide polymorphism on CLOCK expression or function is not
known. However, given that the rs1801260 polymorphism is present
in the 3′ untranslated region of CLOCK it is possible that on a molecular
level this SNP could impact upon mRNA stability and translation and
polyadenylation signalling (Xu et al., 2010).Animal models of clock
gene knockouts demonstrate that some of these show ADHD-like phe-
notypes. Zebrafish per1b andmouse per1 knockouts display hyperactiv-
ity and impulsive-like and attention-deficit-like behaviours (Huang
et al., 2015). Further, the circadian system is known to be an important
regulator of the dopaminergic system,which in turn is of central impor-
tance in current aetiological understanding of ADHD (Parekh et al.,
2015). Indeed, altered clock function in dopaminergic neurons has
been linked to bipolar mania-like symptoms (Sidor et al., 2015). There-
fore there may be a fundamental link through which circadian dysfunc-
tion alters dopaminergic function and contributes to ADHD aetiology
and symptoms. This is an area thatwarrants considerable and careful fu-
ture attention.

Progress in delineating mechanistic links between molecular clocks
and ADHD aetiology will depend on the use of appropriate animal
models of ADHD. The use of such animalmodelsmust be driven by care-
ful assessment of the validity of such models. The spontaneous hyper-
tensive rat (SHR) is a well documented rodent model for ADHD that
appears to have reasonable face, construct and predictive validity
(Russell, 2007). A number of anomalies in the dopaminergic and norad-
renergic systems have been observed in SHRs, including reduced dopa-
mine transporter (DAT) expression in the prenatal SHR midbrain and
Fig. 1. Schematic illustrating the putative involvement of some aspects of the circadian tim
suprachiasmatic nuclei (SCN) influences circadian function of the dopaminergic (DA) system
(Mel). These factors can in turn feedback onto the SCN clock. ADHD may be associated wi
exposure to photic and non-photic zeitgebers, which in turn may lead to alterations of circad
Alterations of clock function may then be manifest in changes of sleep/wake behaviour, cha
domains of ADHD, namely inattention, impulsivity and hyperactivity.
elevated DAT expression in the adult SHR (Watanabe et al., 1997, Leo
et al., 2003, Russell, 2007). Interestingly SHRs also exhibit abnormal cir-
cadian rhythms. The expression of vip mRNA, encoding a key circadian
neuropeptide, has been shown to be elevated in the SHR brain (Peters
et al., 1994). Moreover, significant alterations in the circadian rhythm
of locomotor activity of SHR are present, including phase advances in
wheel running behaviour under light–dark cycles, as well as shortened
circadian period in free-running conditions in constant light or constant
darkness (Peters et al., 1994). Additionally, SHRs differ in their re-
sponses to phase advances and delays of the light–dark cycle, with
SHRs taking significantly longer to entrain to a phase delay, whilst
being significantly quicker to entrain to a phase advance compared to
controls (Peters et al., 1994). SHRs have also been found to differ from
the Wistar–Kyoto rat control model (WKY) in its light sensitivity
(Rosenwasser, 1993; Rosenwasser and Plante, 1993), and sleep alter-
ations in the SHRmodel in comparison toWKY have been observed, in-
cluding more frequent interruptions to sleep being found in SHRs (Kuo
et al., 2004). It seems likely that further important mechanistic insight
into linking ADHD-symptoms and circadian rhythms can be gleaned
through further carefully designed animal experiments, and that such
an approach may have a powerful effect on informing future clinical
work on this problem. For example, Kooij and Bijlenga (2014) have re-
cently postulated that the higher than expected prevalence of photo-
phobia in ADHD may reflect a deficit in non-visual photic-
transmission associated with the circadian system, and that such a
change could lead to the phase alterations observed in ADHD. This is a
hypothesis that could be usefully tested in animal models of both
ADHD and altered non-visual photoreceptor function.

Another important factor to consider is the extent to which stimu-
lant and non-stimulant medications used in the management of ADHD
may impact on circadian rhythms (Fig. 1). A number of studies in animal
models have shown that the psychostimulantmethylphenidate can im-
pact on behavioural diurnal and circadian rhythms (Algahim et al.,
2009; Antle et al., 2012), as well as impacting on SCN neurophysiology
(Antle et al., 2012) and diurnal patterns of clock gene expression in
ing system in ADHD. Within the central circadian network, the master oscillator of the
, the hypothalamic–pituitary–adrenal axis (HPA), and pineal production of melatonin

th core abnormalities in the function of any of these components, and/or with altered
ian phase. Further, ADHD medication may impact directly or indirectly on clock function.
nges in other behavioural, cognitive and physiological rhythms and changes in the core
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the SCN and other areas (Baird et al., 2013). Further, the non-stimulant
atomoxetine can alter circadian rhythms and clock gene expression also
(O′Keeffe et al., 2012; Baird et al., 2013). Methylphenidate use has been
shown to adversely affect some sleep parameters (such as sleep latency
and sleep duration), but to benefit other parameters such as sleep effi-
ciency (Boonstra et al., 2007; Coogan et al., 2015). Therefore in studies
of circadian rhythmicity in ADHD it is important to consider the implica-
tions of ADHD medication on the parameters examined. As such future
studies should include both medicated and non-medicated ADHD
cohorts, where possible.
1.6. Conclusion and agenda for future research

Similar to other neuropsychiatric and neurological disorders (Wulff
et al., 2010), circadian timekeeping appears to be altered in ADHD.
One interesting facet of such alterations in ADHD is the relatively strong
concordance between different studies indicating phase delays associat-
ed with ADHD (certainly in the adult form of the condition) as assessed
by endocrine, molecular, activity, sleep and psychometric parameters.
This appears to be in contrast with the situation in some other impor-
tant disorders, such as major depression, seasonal affective disorder or
bipolar disorderwherein there is amixture of reports of phase advances
or phase delays of rhythms (Landgraf et al., 2014), and in neurodegen-
erative conditions such as Alzheimer's disease in which the key circadi-
an characteristic appears to be dampened amplitude rather than
alterations in phase (Coogan et al., 2013). The significance of the ob-
served phase alterations and desynchronisation of rhythms observed
in ADHD is not fully understood, but thesemay provide novel therapeu-
tic targets.

There is some promising preliminary data that suggests that ap-
proaches targetting phase-misalignments may produce benefits in
terms of ADHD symptom relief (Rybak et al., 2006; Niederhofer,
2012). However, considerably more effort is needed in this area. There
is a clear need for larger scale trials of chronotherapy in ADHD pop-
ulations. Such therapy may take the form of environmental manip-
ulations, such a light therapy, behavioural approaches shown to
alter circadian phase such as total sleep deprivation (Bunney et al.,
2015), or pharmacotherapeutic approaches involving administra-
tion of chronobiotics such as melatonin or the tailoring of timing
of existing stimulant and non-stimulant treatments to achieve
better clinical outcomes. Understanding circadian rhythm changes
at the level of individual patients may be important in designing in-
terventions that have maximal efficacy, and so hand-in-hand with
chronotherapy there should be chronodiagnostic approaches to
understand the particular circadian rhythm abnormality to be
addressed in any given patient. Such an approach could lead to ex-
citing developments in the management of ADHD that could benefit
millions of patients.
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