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Abstract: In this study, two DNA-targeting agents, cisplatin and chlorambucil, were combined in a
Pt(IV) prodrug, 1, which was thoroughly characterized by means of spectroscopic and spectrometric
techniques. Tested towards a panel of various human tumor cell lines, this compound showed
superior in vitro antitumor potential than the reference drug cisplatin. In addition, an antitumor
potential of 1 was found, which is comparable to that of oxaliplatin in 3D spheroid models of colon
cancer cells. Mechanistic studies performed in colon cancer cells confirmed that the conjugation of
chlorambucil to Pt(IV) cisplatin-based scaffold tunes the lipophilicity of the prodrug, consequently
improving the ability of the compound to accumulate into cancer cells and to target DNA, ultimately
leading to apoptotic cancer cell death.
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1. Introduction

After 40 years since its Food and Drug Administration (FDA) approval as an antitumor agent,
cisplatin (CDDP) still today represents one of the most successful drugs worldwide employed for
the systemic treatment of solid tumors (Scheme 1) [1–3]. Despite its efficacy and success, severe
side effects and resistance limit CDDP application in clinic. One of the most promising strategies to
overcome the toxicity associated with cisplatin treatment is the use of platinum-based drugs in the
oxidation state +4 (Pt(IV)) [4–8]. Pt(IV) are d6-octahedral complexes with improved stability compared
to the Pt(II) counterparts. This kinetic inertness confers upon them a limited ability to interact with
biomolecules, thereby reducing the incidence of undesired toxic side effects and ultimately allowing
for oral administration.

Upon cellular internalization, the Pt(IV) species are reduced to the bioactive Pt(II) analogues
with the concomitant release of the axial ligands. Therefore, octahedral Pt(IV) complexes offer the
opportunity to design multi-acting Pt prodrugs, when the axial ligands are endowed with their own
pharmacological activity. Several examples of multi-action Pt(IV) complexes have been reported in
literature to date, and the majority of these multi-targeted Pt(IV) derivatives hold axial ligands that
target proteins, peptides, and hormones [9–17]. On the contrary, only a few Pt(IV) prodrugs containing
different types of DNA-damaging drugs as axial ligands have been explored so far.

In this light, we judged it to be of interest to synthetize a Pt(IV) complex based on cisplatin and the
alkylating DNA agent chlorambucil. Chlorambucil is a DNA alkylating agent belonging to the nitrogen
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mustard class of anticancer agents; it can form covalent adducts with the nucleobases of the DNA,
alkylating the nucleobases adenine and guanine at the nitrogens N3 and N7 [18,19]. As in the case of
cisplatin, DNA cross-linking induced by chlorambucil prevents DNA replication and transcription,
leading to cell death (Scheme 1) [20–22].

Two recent examples of chlorambucil conjugated with Pt-based drugs have been reported by
Dhar and Gou [23,24]. The potent in vitro antitumor activity described for some Pt(IV) complexes
combined with chlorambucil suggests that the conjugation of two drugs targeting DNA may be an
effective strategy to overcome cisplatin resistance.

Recent publications by our group and others have demonstrated that non-symmetrical Pt(IV)
prodrugs (functionalized in only one axial position) are endowed with a better biological activity than
their symmetrical counterparts [25–28]. These behaviors can be explained by considering that the
reduction rate plays a prominent role in the biological activity of Pt(IV) drugs. In fact, activation by
reduction when both the axial positions are substituted is slower than that of asymmetrical Pt(IV)
prodrugs. The presence of an OH group can improve the reduction rate because it can act as a bridging
ligand between the metal complex and the reducing agent, allowing for a fast and efficient transfer of
electrons to the metal center [29].

On this basis, in this paper we report the synthesis, characterization, and biological investigations
concerning a non-symmetrical Pt(IV) prodrug (1) based on CDDP, where the two axial ligands are
occupied by a chlorambucil molecule and by an OH group, respectively (Scheme 1).
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2. Results and Discussion

2.1. Synthesis and Characterization

The complex presented in this work is a non-symmetrical dual-action Pt(IV) derivative of cisplatin
with chlorambucil as a bioactive axial ligand. Pt(IV) complexes are commonly synthetized through the
reaction of oxoplatin (Scheme 2) and an activated (anhydride or acyl chloride) carboxylic acid. To avoid
bis-substitution, a weaker activator such as NHS ester (N-hydroxo succinimide) is more convenient.
1 was synthetized as described in Scheme 2, by mixing oxoplatin and the chlorambucil-NHS ester
(1:0.9 ratio) in dimethylsulfoxide (DMSO).
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Scheme 2. Synthetic pathway for 1.

The final complex was characterized using 1H, 13C, 195Pt NMR, ESI mass spectrometry and
elemental analyses (See Figures S1–S6 in the Supplementary Materials). The NH3 peak in the 1H
NMR at 5.93 ppm and the 195Pt peak at 994 ppm are in the typical region for mono-substituted
Pt(IV) complexes.

The stability of 1 was evaluated using an HPLC analysis of a solution of the complex in
DMSO/PBS (phosphate buffer saline,1/10) at 37 ◦C. The chromatogram obtained confirms the purity
of the product and its stability for 48 h (Figure 1).
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2.2. Reduction Studies

Once they have entered cells, Pt(IV) prodrugs are activated through reduction mediated by
intracellular reducing agents, such as ascorbic acid and reduced glutathione (GSH), the content of
which is much higher in cytoplasm than in extracellular compartments [4].

HPLC is a useful tool to study the reduction of Pt(IV) complexes in the presence of an excess
of reducing molecules. The rate of reduction was studied by incubating 1 with a ten-fold excess of
ascorbic acid. Our results showed that the reaction between the starting Pt(IV) compound and an excess
of ascorbic acid leads to the formation of cisplatin with the release of the axial ligand chlorambucil.
From a kinetic point of view, 1 is completely reduced after 2 h, as shown in Figure 2.
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2.3. Cytotoxicity Studies

The dual-action Pt(IV) derivative 1 was screened for antiproliferative activity against a panel
of human cancer cell lines using the colorimetric MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl
tetrazolium bromide) assay. Cell lines representative of colon (HCT-15 and LoVo), pancreatic (BxPC3
and PSN1), ovarian (2008 and C13*), thyroid (BCPAP), and cervical (A431) cancers were treated for
72 h with increasing amounts of 1, chlorambucil or CDDP, and IC50 values were calculated from
dose-survival curves (see Table 1).

Table 1. Cytotoxicity against human cancer cell lines.

Compound
IC50 (µM) ± SD

PSN1 2008 C13* LoVo A431 BxPC3 HCT-15 BCPAP

1 0.42 ± 0.1 0.31 ± 0.1 0.28 ± 0.1 0.98 ± 0.1 0.41 ± 0.1 1.74 ± 0.5 0.39 ± 0.1 0.51 ± 0.2

Chlorambucil >100 34.58 ± 16.5 >100 >100 74.48 ± 8.2 >100 44.52 ± 9.5 >100

CDDP 18.11 ± 3.2 2.18 ± 0.9 22.11 ± 3.2 9.15 ± 2.1 2.21 ± 0.4 7.22 ± 2.2 15.28 ± 2.6 7.31 ± 1.2

CDDP: cisplatin, SD = standard deviation. Cells (3–5× 104·mL−1) were treated for 72 h with different concentrations
of tested compounds. Cytotoxicity was assessed using the MTT test. IC50 values were calculated using a
four-parameter logistic model (p < 0.05).

The reference drugs chlorambucil and CDDP showed a weaker activity compared to the
dual-action Pt(IV) prodrug, with IC50 concentrations on average one and two orders of magnitude
higher than those detected with 1, respectively. The Pt(IV) prodrug 1 elicited IC50 values in the low
micromolar range (range 0.28–1.74 µM) against all tested cell lines. In particular, 1 was extremely
effective against cancer cells scarcely sensitive to CDDP, such as K-ras mutated highly aggressive PSN1
pancreatic cancer cells and p53 mutated HCT-15 colon cancer cells.

In addition, 1 proved to be equally effective against cisplatin-sensitive (2008) and -resistant (C13*)
cancer cells, thus attesting to its ability to overcome cisplatin resistance. Overall, these cytotoxicity
results demonstrate, for 1, a significant increase in potency and a broader spectrum of activity
compared to that of the reference Pt(II) parental compound CDDP. Notably, 1 showed on average an
in vitro antitumor potential up to ten times higher than those of previously reported chlorambucil-Pt
derivatives [23,24].

The in vitro antitumor activity of the Pt(IV) dual-action derivative was also assayed on a 3D cell
culture. Cells growing in 3D culture systems form spheroids, which are characterized by cells in various
stages. In particular, cells in the outer layers of the spheroid are viable and highly proliferating whereas
cells in the core, which receive less oxygen and nutrients, are in a quiescent or hypoxic state [30].
This cellular heterogeneity resembles that of in vivo tumors, making 3D cell spheroid cultures more
predictive than conventional 2D monolayer cultures for the screening of putative anticancer drugs.
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The growth inhibitory effect was evaluated by means of acid phosphatase (APH) test. Table 2
reports the IC50 values obtained on 3D cell spheroids of human HCT-15 colon cancer cells after 72 h
of treatment with the Pt(IV) complex 1 as well as CDDP and oxalilplatin (OXP); the latter are used
as references.

In colon cancer spheroid cell cultures, (1) was found to be significantly more active than CDDP
and only slightly less efficient than OXP, a first-line drug in the management of colorectal cancer [31].

Table 2. Cytotoxicity towards human HCT-15 cancer cell spheroids.

IC50 (µM) ± SD

1 CDDP OXP

HCT-15 40.4 ± 5.1 71.1 ± 3.9 33.2 ± 4.6

Spheroids (3 × 103 cells/well) were treated for 72 h with tested compounds and the growth inhibitory activity was
assessed using APH assay. IC50 values were calculated from the dose-survival curves using the four-parameter
logistic model (p < 0.05). SD = standard deviation.

2.4. Cellular Uptake and DNA Platination

It has been demonstrated in many reports that the presence of lipophilic ligands in the axial
positions can substantially increase the lipophilicity of the whole Pt(IV) cisplatin analogues, thus
improving cellular internalization [32–34]. This is because drug cellular uptake usually increases
with drug lipophilicity, since passive diffusion through cell membrane is facilitated. Therefore,
we investigated the cellular uptake as well as the DNA binding of 1 in human colon HCT-15 cancer
cells. Cells were treated for 24 h with 1 or CDDP at different concentrations (0.25, 0.5 and 1 µM) and the
total cellular and DNA-bound platinum contents were quantified using GF–AAS analysis (Figure 3).
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Figure 3. Cellular uptake (A) and DNA platination (B). (A) HCT-15 cells were incubated for 24 h with 
increasing concentrations of 1 or CDDP. The error bars indicate SD. (B) Platination levels of nuclear 
DNA extracts. HCT-15 cells were treated for 24 h with increasing concentrations of 1 or CDDP. DNA 
was extracted, quantified, and the amount of Pt bound to DNA was estimated using GF–AAS. Error 
bars indicate SD. 

The cellular internalization of 1 was dose-dependent and significantly higher than that of 
CDDP. In particular, at all tested concentrations, colon cancer cells treated with 1 showed a Pt 
content roughly ten times higher than that of CDDP-treated cells. 

Similarly, concerning the DNA-platination levels, cells treated with 1 showed a higher content 
of Pt bound to DNA compared to those treated with CDDP. Surprisingly, the degree of Pt bound to 
DNA did not increase by increasing the compound concentrations, thus suggesting that the 

Figure 3. Cellular uptake (A) and DNA platination (B). (A) HCT-15 cells were incubated for 24 h with
increasing concentrations of 1 or CDDP. The error bars indicate SD. (B) Platination levels of nuclear
DNA extracts. HCT-15 cells were treated for 24 h with increasing concentrations of 1 or CDDP. DNA
was extracted, quantified, and the amount of Pt bound to DNA was estimated using GF–AAS. Error
bars indicate SD.

The cellular internalization of 1 was dose-dependent and significantly higher than that of CDDP.
In particular, at all tested concentrations, colon cancer cells treated with 1 showed a Pt content roughly
ten times higher than that of CDDP-treated cells.

Similarly, concerning the DNA-platination levels, cells treated with 1 showed a higher content
of Pt bound to DNA compared to those treated with CDDP. Surprisingly, the degree of Pt bound to
DNA did not increase by increasing the compound concentrations, thus suggesting that the platination
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ability of 1 is not dose-dependent. This result highlights that the higher toxicity of 1 compared to
CDDP could be ascribable to the combined effect of platinum-scaffold and chlorambucil on DNA
rather than a result of an increase in the DNA platination ability of 1, thus suggesting that chlorambucil
plays a major role in the cytotoxicity of 1.

Overall, these results clearly suggest that the conjugation of chlorambucil to Pt(IV) cisplatin-based
scaffold has an impact on the lipophilic character of the prodrug 1, as previously observed for analogue
mono-substituted Pt(IV) species [16], thus inducing a substantial increase in cellular uptake and
improving the DNA-targeting ability.

2.5. DNA Fragmentation and Apoptosis Induction

DNA fragmentation is a fundamental step in the apoptosis process, which follows the
activation of endogenous endonucleases, in turn determining the cleavage of chromatin DNA into
internucleosomal fragments.

Following the treatment of HCT-15 cells with 1 for 24 or 48 h, a substantial increase in cells
undergoing nuclear DNA fragmentation and apoptosome formation was detected (Figure 4A). Notably,
following 48 h of treatment with 1, a roughly 60-fold increase in nucleosome formation was detected
in treated cells with respect to controls.
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Figure 4. DNA fragmentation and apoptosis induction. (A) Nuclear DNA fragmentation. HCT-15 cells
were treated for 24 or 48 h with IC50 of 1 or CDDP. Quantitative estimation of DNA fragmentation
was obtained with an ELISA test. Error bars indicate SD. ** p < 0.01. (B) HCT-15 cells were treated
with IC50 of 1 or CDDP for 48 h and stained with the fluorescent dye Hoechst 33258. (a) control cells;
(b) CDDP-treated cells; (c) 1-treated cells.

Apoptotic cell death induction was also detected through Hoechst 33342 staining. As depicted
in Figure 4B, HCT-15 cells treated with 1 displayed pyknotic nuclei, chromatin condensation,
and fragmentation characteristics, which are typical features of apoptosis induction.

3. Materials and Methods

Chlorambucil was purchased from TCI Europe and used as supplied. K2PtCl4, NHS
(Hydroxysuccinimide), DCC (N,N′-Dicyclohexylcarbodiimide) and K2CO3 were purchased from
Sigma-Aldrich. Cisplatin and Oxoplatin were synthesized as previously described [35,36].
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All the other chemicals and solvents are of analytical or spectroscopic grade, and were obtained
from commercial sources and used without additional purification. Deuterated solvents were obtained
from Apollo Scientific.

The elemental analysis studies (carbon, hydrogen, and nitrogen) were performed by means of a
PerkinElmer 2400 series II analyzer.

ESI Mass Spectra were recorded with a Waters LCT Premier XE Spectrometer.
NMR: 1H and 13C spectra were obtained in a solution of CDCl3 or DMSO-d6 and 195Pt NMR

spectrum was obtained in a dimethylformamide (DMF) solution (Insert of D2O) at 300 K, in 5-mm
sample tubes, with a premium shielded Agilent Varian 500 MHz (operating at 500.13, 125.75, and
107.49 MHz, respectively). The 1H chemical shift was referenced to the residual impurity of the solvent.
The external reference was Na2PtCl4 in D2O (adjusted to δ = −1628 ppm from Na2PtCl6) for 195Pt.

HPLC studies: The stability and reduction 1 with ascorbic acid were followed using high-
performance liquid chromatography (HPLC) with a Phenomenex Luna C18 (5 µM, 100 Å, 250 mm ×
4.60 mm i.d.) column at room temperature at a flow rate of 1.0 mL/min with 254 nm UV detection.
Mobile phase containing 80:20 acetonitrile (0.1% trifluoroacetic acid): water (0.1% trifluoroacetic acid):
1 was dissolved in DMF (0.5 ml) and diluted to a final concentration of 0.5 mM using acetonitrile and
water solution (1/1) with 5 mM ascorbic acid and 2 mM 4-(2-hydroxyethyl)piperazine-1-ethanesulfonic
acid (HEPES) buffer (pH 7). The process was followed at 37 ◦C until complete reduction. The HPLC
chromatogram from the reduction reaction was compared with the chromatogram of pure samples of
the tranilast.

3.1. Synthesis

Chlorambucil-NHS ester. Chlorambucil (0.25 g, 0.82 mmol) and NHS hydroxysuccinimide
(0.095 g, 0.82 mmol) were dissolved in 25 mL of dry CH3CN and DCC, dissolved in dry CH3CN
(10 mL, 122 mM), was added dropwise. A white solid immediately precipitated and the reaction
mixture was stirred at RT overnight. The white solid obtained was filtered off and the yellow solution
was dried under vacuum to give a yellow solid that was re-dissolved in 20 mL of dichloromethane and
kept at 4oC overnight. Another small portion of white solid was formed and removed using filtration.
The yellow solution was washed with 20 mL of 4% NaHCO3, dried over Na2SO4 and dried under
vacuum, obtaining the product as a white solid (0.311 g, 94 %). Anal. Calcd. for C18H22Cl2N2O4: C
53.88, H 5.53, N: 6.98, found C 53.48, H 5.89, N 6.66. 1H NMR (500 MHz, CDCl3): δ = 7.01 (d, 2H), 6.56
(d, 2H), 3.62 (t, 4H), 3.55 (t, 4H), 2.77 (s, 4H), 2.57 (t, 2H), 2.52 (t, 2H), 1.95 (m, 2H). 13C NMR (125 MHz,
CDCl3): δ 168, 167, 143, 128(2), 111, 52, 39, 32, 29, 25, and 24 ppm.

(1). Oxoplatin (0.1 g, 0.3 mmol) and chlorambucil-NHS ester (0.11 g, 0.27 mmol) were suspended
in 5 mL of dry DMSO and the mixture was stirred at 60◦C for 15 h. The yellow residue (oxoplatin
in excess) was filtered off and the yellow solution was lyophilized overnight, obtaining a sticky
yellow solid. The solid was dissolved in 4 mL of DMF and precipitated through the addition of Et2O.
The solid was washed 3 times with 5 mL of dichloromethane and 2 times with 5 mL of Et2O and
dried under vacuum overnight, giving 1 as a yellow solid (0.063 g, 0.10 mmol, 43%). Anal. Calcd.
for C14H25Cl4N3O3Pt: C 27.11, H 4.06, N: 6.77, found C 27.64, H 3.85, N 6.36. 1H NMR (500 MHz,
DMSO-d6): δ = 6.99 (d, 2H), 6.61 (d, 2H), 5.93 (m, 6H), 3.66 (m, 8H), 2.48 (t, 2H), 2.11 (t, 2H), 1.61 (t, 2H)
ppm; 13C NMR (DMSO-d6, 125.75 MHz) δ 175, 145, 130, 129, 112, 53, 42, 35, 34, and 27 ppm; 195Pt NMR
(107.49 MHz, DMF insert D2O): δ = 994 ppm. ESI-MS (-) peak at 619.02 m/z corresponding to (M-H)−.

3.2. Biological Methods

The platinum(IV) complex and the reference drug chlorambucil were dissolved in DMSO to
stock solutions of 1 mg/mL just before the experiment, and the calculated drug amounts were added
to the cell growth medium (final solvent concentration of 0.5%, which had no evident effect on cell
killing). Cisplatin (CDDP) was dissolved in a 0.9% NaCl solution just before the experiments. CDDP,
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chlorambucil, and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) were obtained
from Sigma Chemical Co., St.Louis, MI, USA.

Cell cultures: Human pancreatic (PSN-1 and BxPC3) and colon (HCT-15 and LoVo) carcinoma
cells were obtained from American Type Culture Collection (ATCC, Rockville, MD, USA). The human
thyroid carcinoma cell line (BCPAP) was provided by the Leibniz-Institut DSMZ—Deutsche Sammlung
von Mikroorganismen und Zellkulturen GmbH (Braunschweig, Germany). The cisplatin-sensitive
human ovarian cancer cell line (2008) and its cisplatin-resistant variant (C13*) were kindly provided by
Prof. G. Marverti (Dept. of Department of Biomedical, Metabolic and Neural Sciences, University of
Modena and Reggio Emilia, Italy). Human cervical (A431) carcinoma cells were kindly provided by
Prof. F. Zunino (Istituto Nazionale per lo Studio e la Cura dei Tumori, Milan, Italy). Cell lines were
maintained in the logarithmic phase at 37◦C in a 5% carbon dioxide atmosphere using the following
culture media containing 10% fetal calf serum (Euroclone, Milan, Italy), antibiotics (50 units·mL−1

penicillin and 50 µg·mL−1 streptomycin), and 2 mM l-glutamine: i) RPMI-1640 medium (Euroclone)
for HCT-15, BCPAP, PSN-1, BxPC3, A431, 2008 and C13 cells; and ii) HAM’s F-12 for LoVo cells.

Spheroid culturing: Spheroids were obtained by seeding 2.5 × 103 HCT-15 cells/well in a phenol
red-free medium, containing 10% FCS and 20% methyl cellulose in round-bottom non-tissue culture
treated 96 well-plates (Greiner Bio-one, Kremsmünster, Austria).

MTT assay: The cytotoxicity effect against human cancer cell lines was evaluated using MTT
(tetrazolium salt reduction) assay. Briefly, 3–8× 103 cells/well, dependent on the growth characteristics
of the cell line, were seeded in flat-bottom tissue culture treated 96 well microplates in a growth medium
(100 µL), and then incubated at 37◦C in a 5% carbon dioxide atmosphere. After 24 h, the medium was
replaced with a fresh one containing the tested compounds at the appropriate concentration. Following
72 h of treatment, each well was treated with 10 µL of a 5 mg·mL−1 MTT saline solution, and after an
additional 5 h, 100 µL of a sodium dodecylsulfate (SDS) solution in HCl 0.01 M was added. After an
overnight incubation, the cell growth inhibition was detected by measuring the absorbance of each
well at 570 nm, using the Bio-Rad 680 microplate reader (Bio-Rad, Hercules, CA, USA). The mean
absorbance for each drug dose was expressed as a percentage of the control untreated well absorbance
and plotted vs the drug concentration. IC50 values represent the drug concentrations that reduced the
mean absorbance at 570 nm to 50% of those in the untreated control wells.

Acid phosphatase (APH) assay: An APH modified assay was used for determining cell viability
in 3D spheroid systems. Briefly, the pre-seeded spheroids were treated with a fresh medium containing
the compound to be studied at the appropriate concentration. After 72 h, each well was treated with
100 µL of the assay buffer (0.1 M sodium acetate, 0.1% Triton-X-100, supplemented with ImmunoPure
p-nitrophenyl phosphate; Sigma Chemical Co., St.Louis, MI, USA) and, following an additional 3 h of
incubation, 10 µL of 1 M NaOH solution was added. Cell growth inhibition was detected by measuring
the absorbance of each well at 405 nm, using a Bio-Rad 680 microplate reader. The mean absorbance
for each drug dose was expressed as a percentage of the control untreated well absorbance (T/C) and
plotted vs drug concentration. IC50 values, the drug concentrations that reduce the mean absorbance
at 405 nm 50% of those in the untreated control wells, were calculated using a four-parameter logistic
(4-PL) model. The evaluation was based on means from at least four independent experiments.

Cellular uptake: HCT-15 cells (2.5× 106) were seeded in 75 cm2 flasks in a growth medium (20 mL).
After 24h incubation, the medium was replaced and the cells were treated with tested compounds
for 24 h. The cells were then washed twice with cold PBS, harvested, and counted. Samples were
subjected to three freezing/thawing cycles at -80 ◦C, and then vigorously vortexed. The samples were
added with highly pure nitric acid (Pt: ≤0.01 µg·kg−1, TraceSELECT® Ultra, Sigma Chemical Co.) and
mineralized by using a speed wave MWS-3 Berghof instrument (Eningen, Germany). Each mineralized
sample was analyzed by using a Varian AA Duo graphite furnace atomic absorption spectrometer
(Varian, Palo Alto, CA; USA) to detect the platinum content at 324.7 nm. Calibration curves were
performed by using standard solutions (Sigma Chemical Co., St.Louis, MI, USA).
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DNA platination studies: HCT-15 cells (about 6 × 106) were treated with tested complexes for
24 h. DNA was extracted and purified using a commercial spin column quantification kit (Qiagen
DNeasy Blood and Tissue Kit, Venlo, The Netherlands). Highly purified samples (A260/A230 > 1.8 and
A260/A280 > 2.0) were dried and re-dissolved in 200 µL of Milli-Q water (18.2 MΩ) at 65 ◦C in a
shaking thermo-mixer, and subsequently mineralized and analyzed for total platinum content using
GF–AAS, as described above.

Nuclear DNA fragmentation: HCT-15 cells (104/well) were treated in a 96 well plate at 37 ◦C for
24 and 48 h with IC50 doses of tested compounds. Afterwards, the plate was centrifuged for 10 min,
the supernatant removed, and the pellet treated according to the manufacturer’ instructions for the
ELISAplus cell death detection kit (Roche, Basel, Switzerland). The extent of nuclear fragmentation was
measured in a plate reader following absorbance at 405 minus 492 nm using a fluorescence microplate
reader (Fluoroskan Ascent FL, Labsystem, Finland).

Hoechst 33258 staining: HCT-15 cells were seeded into 8-well tissue-culture slides (BD Falcon,
Bedford, MA, USA) at 5× 104 cells/well (0.8 cm2). After 24 h, the cells were washed twice with PBS and,
following 48 h of treatment with IC50 doses of the tested compound, cells were stained for 5 min with
10 µg/mL of Hoechst 33258 (2′-(4-hydroxyphenyl)-5-(4-methyl-1-piperazinyl)-2,5′-bi-1H-benzimidazole
trihydrochloride hydrate, Sigma-Aldrich, St.Louis, MI, USA) in PBS before being examined using
fluorescence microscopy (Olympus, Tokyo, Japan).

Statistical analysis: All values are the means ± SD of no less than three measurements, starting
from three different cell cultures. Multiple comparisons were made using ANOVA followed by the
Tukey–Kramer multiple comparison test (** p < 0.01) using GraphPad Prism 5.03 for Windows software
(GraphPad Software, La Jolla, CA, USA).

4. Conclusions

In this study, a Pt(IV) prodrug 1 combining chlorambucil and cisplatin was prepared and
thoroughly characterized by means of spectroscopic and spectrometric techniques. Tested on a panel
of several human cancer cell lines and compared to that of the precursors CDDP and chlorambucil,
compound 1 proved to be much more cytotoxic than the reference compounds, being significantly
effective also against human cancer cells endowed with scarce sensitivity or resistant to CDDP. The
antitumor potential of Pt(IV) derivative 1 was also confirmed in 3D colon tumor cells, and in this
spheroid cancer cell model 1 was shown to be comparable with that of OXP.

Uptake studies in colon cancer cells confirmed that the conjugation of chlorambucil to Pt(IV)
cisplatin-based scaffold tunes the lipophilicity of the prodrug, consequently improving the ability of the
compound to cross cell membrane and to accumulate into cancer cells. In addition, DNA-platination
and apoptosis induction studies confirmed that 1 does exert its antitumor activity by covalently binding
to DNA, leading to the activation of apoptotic cancer cell death. However, the DNA-targeting ability
of 1 was significantly higher than that showed by the reference Pt(II) drug, CDDP. Overall, our results
clearly point out the potential of combining two DNA-recognizing molecules in the same chemical
entity for the development of target-specific anticancer agents.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/12/
3775/s1.
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