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ABSTRACT

The uncertainty in Extended Reconstructed SST (ERSST) version 4 (v4) is reassessed based upon 1) re-

construction uncertainties and 2) an extended exploration of parametric uncertainties. The reconstruction un-

certainty (Ur) results from using a truncated (130) set of empirical orthogonal teleconnection functions (EOTs),

which yields an inevitable loss of information content, primarily at a local level. TheUr is assessed based upon 32

ensemble ERSST.v4 analyses with the spatially complete monthly Optimum Interpolation SST product. The

parametric uncertainty (Up) results from using different parameter values in quality control, bias adjustments,

and EOT definition etc. The Up is assessed using a 1000-member ensemble ERSST.v4 analysis with different

combinations of plausible settings of 24 identified internal parameter values. At the scale of an individual grid

box, the SST uncertainty varies between 0.38 and 0.78C and arises from bothUr andUp. On the global scale, the

SST uncertainty is substantially smaller (0.038–0.148C) and predominantly arises fromUp. The SST uncertainties

are greatest in periods and locales of data sparseness in the nineteenth century and relatively small after the

1950s. The global uncertainty estimates in ERSST.v4 are broadly consistent with independent estimates arising

from the Hadley Centre SST dataset version 3 (HadSST3) and Centennial Observation-Based Estimates of SST

version 2 (COBE-SST2). Theuncertainty in the internal parameter values in quality control and bias adjustments

can impact the SST trends in both the long-term (1901–2014) and ‘‘hiatus’’ (2000–14) periods.

1. Introduction

Sea surface temperature (SST) is an essential climate

variable (Bojinski et al. 2014) and plays an important

role in climate change monitoring and assessment

(Hartmann et al. 2014). Several SST products have been

created over the past several decades and used to

quantify the historical SST changes over the world’s

oceans. These products include the Extended Recon-

structed SST (ERSST) version 4 (ERSST.v4) (Huang

et al. 2015a; Liu et al. 2015) and its earlier versions

(Smith et al. 2008; Smith and Reynolds 2003, 2004), the

Centennial Observation-Based Estimates of SST ver-

sion 2 (COBE-SST2; Hirahara et al. 2014), the Hadley
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Centre SST dataset version 3 (HadSST3; Kennedy et al.

2011a,b), the Hadley Centre Sea Ice and SST dataset

(HadISST; Rayner et al. 2003), the Kaplan SST (Kaplan

et al. 1998), and the weekly Optimum Interpolation SST

(OISST) version 2 (v2) (Reynolds et al. 2002) and daily

OISST v2 (DOISST; Reynolds et al. 2007; Reynolds

2009). These SST products employ in situ observations

primarily from ships and increasingly from buoys in re-

cent decades. Some of them also include satellite-based

observations from infrared and/or microwave sensors on

polar-orbiting platforms for the period since about 1979.

Various intercomparisons have highlighted key dif-

ferences between these independently produced prod-

ucts, although their long-term linear trends are broadly

similar (Huang et al. 2015a; Liu et al. 2015; Hirahara

et al. 2014; Kennedy 2014; Kennedy et al. 2011b). SST

producers are often asked which product best represents

the ‘‘true’’ historical SST for use in a given application

(Huang et al. 2013, 2015b). This question cannot be

easily answered since all these products contain errors

owing to data and metadata limitations, which serve to

preclude definitive analyses (Shen et al. 2007, 1998). In

particular, SST analyses exhibit uncertainties caused by

incomplete and changing sampling in space and time as

well as by errors in the SST observations. Errors in SST

values may be caused by occasional human mistakes

such as misreading the instrument, as well as by shifts in

systematic biases resulting from differences and changes

in the types of instruments and measurement protocols.

Therefore, SST analyses are affected by the chosen data

quality control procedures, bias adjustments, gridding,

interpolation, and other analysis methodologies. To

understand the resultant datasets and the practical sig-

nificance of any differences, uncertainty estimates for

each product analysis are needed (Kennedy 2014).

The SST uncertainties are usually quantified on each

grid box, or for a regional average, or a global average

(e.g., Shen et al. 1998; Folland et al. 2001; Smith and

Reynolds 2004; Kennedy et al. 2011a; Morice et al. 2012;

Shen et al. 2014; Hirahara et al. 2014; Liu et al. 2015). The

uncertainty in globally averaged SST benefits from the

cancellation of random or quasi-random sources of

error by spatial averaging. Therefore, the uncertainty

in globally averaged SST is considerably smaller than

the uncertainty at most locations on the grid. For ex-

ample, the 1-sigma uncertainty owing to random errors

of a single ship SST observation is as high as 1.38C
(Reynolds et al. 2002; Kent and Challenor 2006), but the

globally averaged SST uncertainty owing to the random

errors is substantially less than 0.018C (see section 3c).

In this study, uncertainty assessments for both local

and globally or regionally averaged SSTs are based on

an ensemble analysis that substantially extends the

initial analysis undertaken by Liu et al. (2015) in two key

ways. First, Liu et al. (2015) restricted the parametric

uncertainty by considering only the subset of ERSST

system parameters modified in going from v3b to v4,

whereas the present analysis includes a far greater

number of internal parameter choices and their possible

values in deriving the expanded parametric uncertainty

estimate. Second, the reconstruction uncertainty is in-

cluded in the present study, whereas this uncertainty was

not included in Liu et al. (2015). This uncertainty arises

due to the local information content loss that inevitably

arises from using a finite number of empirical orthogo-

nal teleconnection (EOT) functions (van den Dool et al.

2000; Smith et al. 2008) to reconstruct the globally

complete fields. This source of uncertainty differs from

and is independent of those additional uncertainties

explored within the parametric ensemble.

The remainder of this paper is structured as follows.

The ERSST.v4 (Huang et al. 2015a) analysis system is

briefly described in section 2, and its internal parameters

and their selected values used to derive the parametric

uncertainty estimates are listed in the appendix. The

datasets and methodology used in our uncertainty esti-

mation is described in section 3. The uncertainties and

their impacts on SST trends are assessed in section 4.

Subsequently, comparisons with uncertainties in other

SST products are undertaken in section 5. Finally, a

summary, conclusions, and discussion are given in

section 6.

2. ERSST analysis system

Huang et al. (2015a) developed themonthly ERSST.v4

dataset from 1854 to 2014 based on the eigenfunction

expansion methods used in Smith et al. (1996), Smith

and Reynolds (2003), and Smith et al. (2008). Readers

requiring more in-depth methodological details are

encouraged to refer to these precursor papers. The

spatial resolution is 28 in longitude and latitude over

the global oceans, and the temporal resolution is monthly

from 1854 to 2014 in this study. In ERSST.v4, the

historical observations are decomposed into low- and

high-frequency SST anomalies (SSTAs) relative to

the 1971–2000 climatology. The low-frequency (LF)

SSTA is constructed as follows: 1) the grid boxes without

any historical SSTAs are filled with nearby available

SSTAs, and 2) a moving filter of 268 3 268 and then a

median filter of 15 yr are applied to the monthly 28 3 28
bin-averaged SSTAs. The filters are designed to filter

out variations of high frequencies in time and of small

scales in space under the assumption that these consti-

tute small-scale noise. The high-frequency (HF) SSTA,

defined as the difference between the original and LF
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SSTAs, is reconstructed by fitting SSTAs on the global

domain to the 130 leading EOTs. The EOTs are similar

to empirical orthogonal functions, except that the EOTs

are restricted in domain to a spatial scale of 5000 and

3000km in longitude and latitude, respectively. The HF

SSTA is then merged with the LF SSTA. SSTs are re-

trieved by adding the monthly climatology to the SSTA

fields. The merged SSTs are adjusted toward the freez-

ing point of 21.88C (Smith and Reynolds 2004) in

proximity to sea ice according to the observed ice con-

centrations from HadISST (1870–2010; Rayner et al.

2003) and the National Centers for Environmental

Prediction (NCEP; 2011–14; Grumbine 2014).

The historical ocean observations used for ERSST.v4

analyses arise from the in situ International Compre-

hensive Ocean–Atmosphere Dataset (ICOADS) Re-

lease 2.5 (R2.5; Woodruff et al. 2011) from 1854 to 2007,

and from the Global Telecommunication System (GTS)

receipts from NCEP after 2007.

The ICOADS and GTS observations exhibit both

random errors and systematic biases (Kennedy et al.

2011a,b). This is why filters and EOT decompositions

are used to reduce the effect of the random errors, and

bias adjustments are applied to remove the systematic

biases in the ERSST.v4 analysis. These processing steps

act to smooth out the field under the reasonable as-

sumption that much of the high-frequency/local struc-

ture leading to a marked ‘‘spottiness’’ in the basic data is

likely suspicious given the broad spatial and temporal

SST correlation structures in most of the global domain.

The use of filters and EOT decomposition, however, will

lead to an inevitable loss of information content even if

the input data are sound. Their use therefore introduces

other potential errors into the SST analysis even if all

other methodological aspects of the ERSST processing

suite are perfect. These smoothing effects are termed

herein the reconstruction uncertainty (see details in

section 3b). The SSTs estimated by ERSST.v4 may also

vary when different but plausible values of the pro-

cessing system’s internal parameters such as for data

quality control and bias adjustments are selected (Table 1;

also see the appendix). The SST variations associated

with the selection of the internal parameters are referred

to herein as the parametric uncertainty (see details in

section 3c). A total of 24 internal parameters are iden-

tified as a result of uncertainmethodological choices and

TABLE 1. ERSST.v4 parameters and their operational and alternative options. In parameter number 17, the even years are 1982, 1984, . . . ,

2012; the odd years are 1983, 1985, . . . , 2013.

Parameter Operational option Alternative options

1. First-guess Adjusted ERSST.v3b Adjusted-; Unadjusted-ERSST.v3b

2. SST STD for QC OISST v2 (1982–2011) COADS (1950–79); OISST v2

3. Min SST STD 1.08C 0.58C; 1.08C; 1.58C
4. Max SST STD 4.58C 3.58C; 4.58C; 5.58C
5. SST STD multiplier 4.5 3.5; 4.5; 5.5

6. SST observation random error 0.08C 1.38C for ships and 0.58C for buoys

7. Ship SST error 1.38C 1.28C; 1.38C; 1.48C
8. Buoy SST error 0.58C 0.48C; 0.58C; 0.68C
9. Ship-buoy SST adj 0.128C 0.088C; 0.128C; 0.168C
10. Buoy SST weighting 6.8 5.8; 6.8; 7.8

11. SSTA calculation in situ basis Grid box basis; in situ basis

12. NMAT for SST bias HadNMAT2 UKMO NMAT; HadNMAT2; regional

HadNMAT2

13. SST bias smoothing f 5 0.10 Annual; f 5 0.05; 0.10; 0.20; linear

14. Min number of months for annual average 2 1; 2; 3

15. Min rate of superobservation 0.03 0.02; 0.03; 0.04

16. Max number of observations 10 5; 10; 15

17. EOT training period and spatial scales 1982–2011 1982–2005; 1988–2011; 1982–2011; 1982–2011

nondamped in high latitudes; even years from

1982 to 2012; odd years from 1983 to 2013;

Lx 5 6000 km and Ly 5 4000 km; Lx 5 4000 km

and Ly 5 2000 km

Lx 5 5000 km and Ly 5 3000 km;

18. EOT weighting W 5 N/(N 1 j2) cos(u) W 5 cos(u); W 5 N/(N 1 j2) cos(u)
19. EOT critical value 0.10 0.05; 0.10; 0.20

20. Ice concentration factor 1.0 0.9; 1.0; 1.1

21. Min ice for SST adj 0.6 0.5; 0.6; 0.7

22. Max ice for SST adj 0.9 0.8; 0.9; 1.0

23. LF filter period 15 yr 11 yr; 15 yr; 19 yr

24. HF filter period 3 month 0; 3 month
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hence potentially contribute to the parametric uncer-

tainty. This is considerably more than that in Liu et al.

(2015) where only those nine parameters that were

modified in upgrading from ERSST.v3b to ERSST.v4

were considered.

3. Data and methods

a. The test data used to derive uncertainty estimates

The test SST datasets are selected from coupled

model simulations and observations. The model esti-

mates are independent and spatially complete analyses

of SSTs consistent with the model physics. The obser-

vationally based estimates are methodologically in-

dependent of ERSST.v4 and make use of satellite data,

which are not considered in ERSST.v4. The use of a

suite of possible test datasets is necessary for ascer-

taining whether the estimated uncertainties are sensitive

to the selection of test datasets. These selected datasets

(Table 2) are the following:

1) The SST data from the coupled simulation of Geo-

physical Fluid Dynamics Laboratory (GFDL) Earth

System Model version 2G (ESM2G; Dunne et al.

2012). The resolution of the SST data is 18 in

longitude, near 0.98 in latitude, and daily from 1861

to 2005.

2) The SST data from coupled simulation of the United

KingdomMet Office (UKMO) Hadley Centre Global

EnvironmentalModel version 2-AO (HadGEM2-AO;

Collins et al. 2008). The resolution of HadGEM2-AO

SST data is 18 in longitude, near 0.88 in latitude, and

monthly from 1860 to 2006.

3) The SST data from the HadISST analysis (Rayner

et al. 2003). The resolution of HadISST is 18 3 18 in
space and monthly from 1871 to 2013.

4) The monthly OISST (MOISST) data from 1982 to

2013. TheMOISST is derived fromweekly OISST v2

(Reynolds et al. 2002) data from NCEP. The weekly

data are first interpolated to daily data; and the daily

data are then averaged to monthly data. The spatial

resolution is 18 3 18.
5) The daily SST data from DOISST from 1982 to 2013

(Reynolds et al. 2007). The spatial resolution is

0.258 3 0.258.

b. Reconstruction uncertainty

Following Shen et al. (2004), the reconstruction un-

certainty Ur(x, y, t) for the grid box (x, y) and month t is

defined as

U2
r (x, y, t)5 [A

f
(x, y, t)2D(x, y, t)]2, (1)

where D(x, y, t) is a spatiotemporally complete test

dataset (e.g., a dataset from a climate model or a global

analysis), and Af(x, y, t) is the reconstructed data by

using the ERSST.v4 reconstruction method but with the

data from D(x,y,t). Since the ERSST.v4 reconstruction

system is a smoothing procedure and bothAf(x, y, t) and

D(x, y, t) are defined for every grid box, Ur(x, y, t) may

be considered to represent a smoothing error. This study

used those five test datasets listed in Table 2 as a mea-

sure of D(x, y, t).

The EOT decomposition acts to damp out small-scale

SST variations and will therefore result in an inevitable

loss of information if the ICOADS and GTS data were

complete and error free. The reconstruction uncertainty

arises within the ERSST analysis because a maximum

number (130) of SST EOT modes are used to re-

construct high-frequency component SSTs (Huang et al.

2015a; Smith et al. 2008; Smith and Reynolds 2004).

When the input data are sparse, the number of EOTs

used in reconstruction may be as low as 80 EOTs.

However, the SSTA component explained by 81st to

130th EOTs should have been captured within the

parametric uncertainty term, since the lower bound of

the acceptance criterion parameter therein is very low

(0.05).

The test datasets were regridded to 28 3 28 grids where
necessary and used to determine the Ur. We determine

TABLE 2. Test datasets used for ERSST.v4 reconstruction uncertainty assessment.

SST products Spatial resolution Temporal resolution Data ingest Analysis method External forcing

GFDL-ESM2G 18 3 0.98 Daily N/A Coupled model simulation Greenhouse gases, trace gases,

aerosols, ozone, land useGlobal 1861–2005

HadGEM2-AO 18 3 0.88 Monthly N/A Coupled model simulation Greenhouse gases, aerosols

Global 1860–2006

HadISST 18 3 18 Monthly In situ SST EOF-based reduced space

optimal interpolation

N/A

Global 1871–2013 Satellite SST

MOISST 18 3 18 Monthly In situ SST Optimum interpolation N/A

Global 1982–2013 Satellite SST

DOISST 0.258 3 0.258 Daily In situ SST Optimum interpolation N/A

Global 1982–2013 Satellite SST
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Ur by using MOISST (Table 2) as the ‘‘perfect’’ input

and combine with the parametric uncertainty to form

the total uncertainty of ERSST.v4 in section 3d.

MOISST is selected because 1) it is derived from both

in situ and satellite measurements and 2) the Ur using

MOISST is similar to those using model test datasets,

and higher than that using HadISST (see section 4a).

Alternatively, the Ur may be assessed as

U2
r (x, y, t)5 [As(x, y, t)2D(x, y, t)]2, where As repre-

sents the analysis using spatially noncomplete sub-

sampled ‘‘observations.’’ However, the Ur using the

alternative method may interact with the spatially non-

complete subsampling, and it cannot account for the

uncertainty of the SST reconstructed in those areas

without observations.

c. Parametric uncertainty

The parametric uncertainty Up is defined as the stan-

dard deviation of reconstructed SSTs due to using dif-

ferent values of parameters in the ERSST.v4:

U2
p(x, y, t)5

1

M
�
M

m51

[A
m
(x, y, t)2A(x, y, t)]2, (2)

A5
1

M
�
M

m51

A
m
(x, y, t), (3)

where Am(x, y, t) is a member of reconstruction based

upon themth group of parameters used in the ERSST.v4

(see Table 1 and the appendix for the 24 parameters and

their ranges), and A is the mean of the all the M re-

constructions corresponding to the M groups of param-

eters.We chooseM5 1000. These 1000 combinations are

randomly picked fromamong themuch larger population

of possible parameter combinations (.224 given that

several parameters have three or more options).

This is an advance in the completeness of consider-

ation of the term from that in Liu et al. (2015). The

major differences between present study and Liu et al.

(2015) are in the following four aspects: (a) the total

number of parameters considered has been increased

from nine to 24, (b) the ranges for those nine original

parameters have been increased, (c) all parameter

values are selected randomly with equal likelihood

without preference, and (d) the number of ensemble

members has been increased from 100 to 1000. The pa-

rameter options are predefined by perturbing each of 24

parameters by 10%–50% of their operational settings,

based on our understanding of these parameters and

what constitutes methodologically reasonable pertur-

bations to them. These changes are intended to more

fully explore this uncertainty component in ERSST.v4

than in Liu et al. (2015).

The parametric uncertainty in Eq. (2) is associated

with the choice of internal parameter settings in the

ERSST.v4 analysis system. The analyzed SST deviates

slightly when a different value is assigned to a specific

parameter (Huang et al. 2015a; Liu et al. 2015). For

example, an El Niño event in the tropical Pacific may be

better represented when more EOTs are accepted for

the analysis. Liu et al. (2015) further showed that most

parameters interacted in a nonlinear manner such that

the effects of changing two parameters independently

tended to differ from the effect of changing them con-

currently. This points to the need for the creation of

ensemble realizations as has also been done for the

HadSST3 product (Kennedy et al. 2011b).

The random errors of the input observations were not

considered in ERSST.v4 and its previous versions

(Smith et al. 2008; Smith and Reynolds 2003, 2004,

2005). To account for the uncertainty resultant from the

random error in the input data, the random error is

simulated using a Gaussian random number (GRN)

generator. The mean of the random error is set to 08C,
while the standard deviation (STD) of the random error

is set to 1.38 and 0.58C (Reynolds et al. 2002; Kent and

Challenor 2006) for a single ship and buoy observation

in the analyses of every ensemble member, respectively.

Additional testing analyses of the operational ERSST.v4

version with and without including the random error

showed that the globally averaged difference of local

SST is less than 0.28C before the 1900s and is less than

0.18C after the 1960s (not shown). The difference for the

global averaged SST is near zero in all times. It is in-

cluded here because 1) some users require local and not

global information and 2) this term may interact with

parameters varied within the parametric uncertainty

ensemble, and so the resulting ensemble may be un-

derdispersive if it is not included. It needs noting that the

correlation of random error among observations by the

same ship or buoy is not assessed in the current un-

certainty assessment in ERSST.v4 because the ship call

signs are incomplete.

d. Total uncertainty

The total uncertainty (Ut) is defined as the standard

combination of uncertainty terms Ur and Up under the

assumption of independence (which is trivially true

given their respective derivations in sections 3b and 3c):

U2
t 5U2

r 1U2
p . (4)

The definition of the total uncertainty in Eq. (4) is dif-

ferent from that of ERSST.v3b and other SST products

(Table 3). In ERSST.v3b, the total uncertainty consists

of sampling uncertainty and bias uncertainty (Smith and
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Reynolds 2003, 2004, 2005). The bias uncertainty has

now been included as part of the parametric uncertainty

as described in Table 1 and the appendix. The sampling

uncertainty is not explicitly included in Eq. (4) in the

present study because it is accounted for within the

parametric term. Further reasoning and justification for

this choice is given in section 6.

The uncertainties in Eqs. (1)–(4) are defined for the

monthly local SSTs on a grid box basis in space and

time (x, y, t). The uncertainties of any regionally av-

eraged SST (e.g., globally averaged SST) are defined

in the similar ways shown in Eqs. (1)–(3) except that

the analyses Af (x, y, t), Am(x, y, t), and the test data

D(x, y, t) are first averaged over the regional domain

of interest before assessing an uncertainty (Shen et al.

1998):

U2
r (t)5 [Ag

f (t)2Dg(t)]2 , (5)

U2
p(t)5

1

M
�
M

m51

[Ag
m(t)2Ag(t)]2 , (6)

Ag(t)5
1

M
�
M

m51

Ag
m(t) , (7)

where the superscript g represents the global average.

4. Results of quantified uncertainties

a. Reconstruction uncertainty

The reconstruction uncertainty (Ur) associated with

the ERSST.v4 analysis is assessed using SST data from

MOISST. A set of 32 ERSST.v4 uncertainty analyses is

created using 32 years (1982–2013) of MOISST data.

These data are likely more faithfully reflecting the true

seasonal cycle than model based estimates. Each of the

32 analyses uses 12 months (January–December) of

periodic SSTs for each of 32 years of MOISST (1982–

2013). The test data of each of 32 ensemble members are

ingested to the fully sampled ERSST.v4 analysis [Af in

Eqs. (1) and (5)].

Figure 1a shows the averaged (1871–2005)Ur for local

SSTs. The Ur is 0.18–0.28C in the tropical Indian Ocean,

tropical western Pacific, and tropical Atlantic; 0.28–
0.48C in the eastern tropical Pacific, northwestern North

Pacific, and North Atlantic; and 0.28–0.38C in the

Southern Ocean south of 308S, as well as in the Arctic

Ocean. The global mean Ur is near 0.278C (Fig. 2a;

dotted orange line). Despite a large Ur for local SSTs,

the Ur for globally averaged SST is less than 0.018C
(Fig. 2c, dotted orange line) due to the cancellation of

errors by global averaging. This cancellation would be

expected if the reconstruction procedure employed

were adequate—the information loss during the re-

construction should primarily be small-scale structure

and therefore its impact on the large-scale average is

expected to be small.

By construction, the Ur of using MOISST is constant

in time (seasonal cycle included in data but filtered out

in the figure). The reasons are that the periodic January–

December MOISST for each of 32 years is used as test

datasets for the ensemble analyses, and the test data are

taken as the fully sampled ‘‘observations’’ over the

entire analysis period. However, Ur varies in space as

indicated in Fig. 1a. The spatial variations of Ur

can further be quantified by the difference among its

10th percentile (0.038C; Fig. 2b, green dashed line),

50th percentile (0.208C; Fig. 2b; green solid line), and

90th percentile (0.578C; Fig. 2b, green dotted line) of

individual grid box values.

We selected the Ur using MOISST for estimating the

total uncertainty in ERSST.v4 because (a) the MOISST

TABLE 3. Uncertainty components in ERSST.v4, ERSST.v3b, HadSST3, and COBE-SST2.

SST products

Uncertainty components

explored and quantified Uncertainty quantification methods and references

ERSST.v4 Parametric Ensemble analyses using perturbed parameter settings for parametric,

fully sampled test data for reconstruction (described herein)Reconstruction

ERSST.v3b Sampling Difference between fully and subsampled analyses; difference between ship

SST bias adjustments in ERSST.v3b and Folland and Parker (1995)

Bias Smith and Reynolds (2005)

HadSST3 Measurement with correlation Ensemble analyses using perturbed parameters (for bias) and additional

spatial and temporal analyses

Measurement without correlation Kennedy et al. (2011a)

Sampling

Bias

Coverage

COBE-SST2 Sampling Difference between fully and subsampled analyses using observations from

data abundant period

Hirahara et al. (2014)
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data are based on both in situ and satellite observations

and may better reproduce the true seasonal cycle and

(b) comparisons show that the spatial and temporal

variations ofUr usingMOISST are similar to those using

three other test datasets from GFDL-ESM2G (Figs. 1b,

2a, and 2c), HadGEM2-AO (Figs. 1c, 2a, and 2c), and

HadISST (Figs. 1d, 2a, and 2c). The magnitude of Ur

using MOISST is similar to that using GFDL-ESM2G

and HadGEM2-AO, and approximately 0.18C larger

than that using HadISST. The low Ur using HadISST is

possibly because the HadISST is using EOF re-

constructions such that the reconstructed SSTs are ar-

tificially smooth. This suggests that the Ur is associated

with the spatial variability in the SST that cannot easily

be resolved under interpolation methods. For example,

when the variability of test data from GFDL-ESM2G is

reduced by applying a nine-point latitude/longitude

smoothing, the Ur reduces by approximately 0.18C over

the world oceans (not shown).

All test cases considered here showed a negligible

contribution to the uncertainty of globally averaged SST

(Fig. 1c). Thus there is high confidence that this termwill

make at most a very minor contribution to the global-

mean SST uncertainty budget for ERSST.v4. In theory,

the Ur of local SST over the global oceans can be re-

duced by better resolving small-scale variabilities of

SSTs if a larger number of EOTs is used. For example,

when the number of EOT modes increases from 130 to

260, the globally averaged Ur decreases slightly, from

0.278 to 0.238C (not shown). But as more EOTs are in-

cluded there is a risk that EOTs become increasingly

driven by residual random and systematic errors in the

underlying data and hence that false structures are im-

parted to the data. This is why Ur is an important aspect

of the comprehensive uncertainty budget for local SST

analyses. There is a limit to how accurately we can es-

timate the local SST variations using ERSST.v4 or ar-

guably any other method.

FIG. 1. Averaged (1871–2005) reconstruction uncertainty (1s) using test data from (a) ensemble MOISST,

(b) GFDL-ESM2G, (c) HadGEM2-AO, and (d) HadISST. The averaging period of 1871–2005 is based on

the common data period of GFDL-ESM2G, HadGEM2-AO, and HadISST. Contours are 0.18, 0.28, 0.48, 0.68,
and 0.88C.
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b. Parametric uncertainty

1) QUANTIFICATION

The parametric uncertainty (Up) is defined as the SST

STD of the 1000 members from their ensemble average

[Eqs. (2) and (3)]. The ensemble and time (1871–2005)

averaged Up (Fig. 3a) is less than 0.28C in the Arctic

Ocean, most of the tropical and North Atlantic, and the

Indian Ocean, and is 0.28–0.48C in most of the tropical

Pacific. The Up is higher (0.48–0.88C) in the North Pa-

cific, northwestern North Atlantic, Southern Ocean

between 308 and 608S, and equatorial and SouthAtlantic

near the coast of Africa. The Up in these regions is dom-

inated by a small number of parameters related princi-

pally to SST bias adjustment, SST quality control, the

selection of base-function EOTs, and their acceptance

criterion (Huang et al. 2015a; Liu et al. 2015). This

points to the effects of either sparse sampling or strong

year-to-year variability (particularly in regional boundary

currents) being dominant in determining regional Up

estimation.

The globally averaged Up for local SSTs (Fig. 3b; red

line) is 0.58–0.68C before 1880, peaks during the two

WorldWars, and decreases to approximately 0.28C after

the 1980s. ThemedianUp (green solid line) is lower than

the globally averaged Up, which is associated with the

fact that the grid box distribution is highly skewed with

higher grid boxUpmostly confined to the limited regions

with sparse observations or strong variability. To assess

the spatial variation of Up, the 90th percentile of Up is

plotted in Fig. 3b (green dotted line). The high values of

the 90th percentile indicate that the uncertainty in those

regions could be as large as 18C before the 1880s. In

contrast, the 10th percentile Up is less than 0.18C
(Fig. 3b; green dashed line), which appears mostly in the

Arctic, Ross Sea, andWeddell Sea (Fig. 3a). The lowUp

in the polar regions may in large part be associated with

the lower variability of the SST of water near the

freezing point of 21.88C. We note that there are few

active parameters within the ensemble directly or in-

directly associated with sea ice and hence the ensemble

may be underdispersive here. Ongoing work is consid-

ering fundamentally new approaches to the consider-

ation of SSTs in polar regions for future ERSST

versions, which may permit better quantification of un-

certainty in these regions in future. But at present these

are still under development.

Similar to the reconstruction uncertainty, many of the

uncertainties in the Up estimate cancel with regional

averaging and hence the globally averagedUp is smaller

(Fig. 3c; red line), being near 0.118C before 1880, with

peaks during the World Wars, and decreasing to less

than 0.038Cafter the 1950s. TheUp for globally averaged

SST is considerably less than the underlying long-term

trend of 0.678Ccentury21 [refer to section 4b(2)] and

suggests that the globally averaged SST reconstructed in

ERSST.v4 is not overly sensitive to the selection of in-

ternal parameter values.

The local Up assessed in this study (Fig. 3b; red solid

line) is approximately 2 times larger than that in the

work of Liu et al. (2015), who produced a 100-member

ensemble by varying the nine parameters that were

changed specifically in upgrading from ERSST.v3b to

ERSST.v4 (Fig. 3b; dotted black line). The Up in glob-

ally averaged SST is also approximately 2 times larger in

this study (Fig. 3c; red line) than in Liu et al. (2015;

Fig. 3c; dotted black line). The potential reasons for the

larger Up in the present study include the following:

1) The number of internal parameters was increased to

FIG. 2. (a) Globally averaged reconstruction uncertainties of

local SST using test data fromGFDL-ESM2G (black line), HadISST

(red line), HadGEM2-AO (blue line), and ensemble MOISST

(dotted orange line). Shaded lines represent uncertainties of en-

semble members of MOISST. (b) Ensemble and globally averaged

reconstruction uncertainty using test data from MOISST (dotted

orange line) in (a) and its 10th (dashed green line), 50th (solid green

line), and 90th (dotted green line) percentile. (c) Reconstruction

uncertainties of globally averaged SST. The uncertainties are scaled

in 1s. A 12-month running mean is applied in (a)–(c).
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24 from 9 in Liu et al. (2015), which enables the analysis

system to represent the potential uncertainty more

completely. 2) The likelihood to select parameter values

is equal in this study, while the likelihood is higher to

select ‘‘operational’’ parameter values in Liu et al.

(2015). 3) The ranges of some of those nine parameter

values of Liu et al. (2015) have been increased as further

inspection yielded arguments that other, broader,

choices for these parametersmay be valid. Finally, 4) the

ensemble size is increased to 1000 from 100 in Liu et al.

(2015), which might not be a dominant contributor to

the larger Up as indicated in the following subsection.

However, the larger ensemble size will, all else being

equal, represent the possible solution space more

completely.

2) IMPACTS OF ENSEMBLE NUMBERS ON

PARAMETRIC UNCERTAINTY AND LONG-TERM

SST TRENDS

As shown in Table 1, each of the 24 parameters has

more than two options. This implies that at least 224

(approximately 107) ensemble analyses are possible.

The logical question is how many randomly selected

ensemble members are sufficient to get a representative

FIG. 3. Parametric uncertainty (1s) of 1000 ensemble ERSST.v4 analyses. (a) Averaged

(1871–2005) uncertainty in contours of 0.18, 0.28, 0.48, 0.68, and 0.88C. (b) Globally averaged

parametric uncertainty (red line) and its 10th (dashed green line), 50th (solid green line), and

90th (dotted green line) percentiles. (c) Parametric uncertainty (red line) of globally averaged

SST. Parametric uncertainty of Liu et al. (2015) is overlapped in (b) and (c) (dotted black lines).

A 12-month running mean is applied in (b) and (c).

1 MAY 2016 HUANG ET AL . 3127



sample, recognizing that .224 solutions cannot practi-

cally be realized. Figure 4 shows, however, that both

global averaged Up of local SST (Fig. 4a) and Up of

globally averaged SST (Fig. 4b) are not very sensitive to

the ensemble number (EN) if it is reasonably large. The

Up is almost identical when EN is set to 100, 200, 500, or

1000. In particular, there is virtually no change apparent

in going from 500 to 1000 members. This suggests that

the Up estimate is quasi-saturated when EN of 1000 is

used in the uncertainty estimate and that further esti-

mates will not serve to greatly alter the findings. If in-

stead the distribution of 1000members was substantially

distinct from that for 500 members, this would imply

that a 1000-member ensemble was likely still insufficient

to sample fully the plausible Up and that we could re-

quire yet more ensemble members.

The Up may directly impact the long-term SST trend,

which is one of the most important climate change in-

dicators (Karl et al. 2015). Figure 5a shows the ensemble

averaged (EN 5 1000) SST trend (1901–2014) over the

global oceans. The trend is 0.88–1.08Ccentury21 in the

Southern Ocean between 308 and 608S, northern Indian

Ocean, eastern North Atlantic, and tropical Atlantic;

0.48–0.68Ccentury21 in most of the tropical and North

Pacific, northwestern North Atlantic; and less than

0.28Ccentury21 in the Arctic, North Atlantic south of

the Greenland, and along the Antarctic. These trends

are mostly significant at the 95% confidence level. The

reason for the high confidence level is that the STD of

the trends (Fig. 5b) is much smaller than the trend itself,

and the degrees of freedom are high (arguably near 1000

since the parameter options of the ensembles were

randomly drawn). The STD of SST trends is higher in

the northwestern North Pacific, northwestern North

Atlantic, and SouthernOcean south of 308S; and is lower
in the Indian Ocean, tropical Atlantic, and Pacific. The

spatial distribution of the STD is consistent with the

spatial distribution of the Up shown in Fig. 3a, which

represents the impacts of Up on the SST trends. Fur-

thermore, the SST trends are not very sensitive to the

selection of EN. The difference between the SST trends

when EN is set to 1000 and 100 is very small (Fig. 5c).

Likewise, the impact of EN on the trend of globally

averaged SST is small (Fig. 6a). The ensemble averaged

trends of globally averaged SSTs are approximately

0.678C century21, which is slightly lower than that in the

operational ERSST.v4 (0.698Ccentury21); and the range

of the SST trends is 0.418–0.788Ccentury21 regardless of

FIG. 4. (a) Globally averaged parametric uncertainty of local SST and (b) parametric un-

certainty of globally averaged SST when EN is 100 (red line), 200 (green line), 500 (dotted blue

line), and 1000 (dotted purple line).
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whetherEN is 100, 200, 500, or 1000. The histograms of the

SST trends are very similar when EN is larger than 500,

indicating that the Up in global-mean SST trends can be

well described using a 1000 ensemble analyses.

The uncertainty estimates herein and in other efforts

consider different sources of uncertainty in distinct

manners. Given that we do not know the true SSTs they

are all relative rather than absolute estimates. That is,

FIG. 5. (a) Ensemble (EN 5 1000) averaged SST trends (1901–2014), (b) STD relative to the ensemble average

in (a), and (c) the difference of averaged SST trends between EN 5 1000 and EN 5 100. Contour intervals

are 0.28C century21 in (a); contours are 0.058, 0.18, 0.28, 0.38, and 0.48C century21 in (b), and 60.018, 60.028, and
60.048C century21 in (c). The stippled area in (a) and (c) indicates that the trend or trend difference is significant at

95% confidence level.
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the estimates are conditional upon the assumptions un-

derlying the analysis and the assumptions regarding

sources of uncertainty and their appropriate quantifica-

tion. This makes their comparison nontrivial in that it is

far harder to compare the resulting estimated confidence

intervals than the best estimates in a fair and balanced

way (Hartmann et al. 2014, box 2.1). For example, the

range of SST trends in HadSST3 (Fig. 6a; dotted light-

blue line with cross) is narrower (0.628–0.768C century21)

than that in ERSST.v4 (0.418–0.788C century21), which is

in turn different from (and broader than) the conclusion

of the preceding study of Liu at al. (2015). The minimum

plausible SST trend is substantially higher in HadSST3

(0.628Ccentury21) than in ERSST.v4 (0.418Ccentury21).

The maximum plausible SST trend is slightly lower

in HadSST3 (0.768C century21) than in ERSST.v4

(0.788Ccentury21). Furthermore, the ensemble averaged

SST trend is slightly higher inHadSST3 (0.688Ccentury21)

than in ERSST.v4 (0.678C century21). These differences

contribute to the structural uncertainties (refer to section

5b) in SST analyses among different SST products.

3) PRINCIPAL CAUSES OF PARAMETRIC

UNCERTAINTY IN LONG-TERM SST TREND

As seen in Fig. 6a, the long-term (1901–2014) trends of

globally averaged SST range from 0.418 to 0.788Ccentury21

in ERSST.v4, which may primarily be associated

with particular selections of some subset of param-

eters that exert primary control on the outcome. To

determine the role of each parameter in the SST trend

dispersion, the 1000 ensemble members are first sepa-

rated into different subensembles according to the

chosen options of a particular target parameter from the

24 parameters varied. The number of the subensembles

per parameter is the same as the number of that pa-

rameter’s options (maximum of 8; Table 1). The

subensemble averaged trends are then calculated and

their deviations relative to the ensemble average

(0.678Ccentury21) are factorized by that particular pa-

rameter in Fig. 7a. The above factor analysis procedure

has been repeated for all 24 parameters to ascertain

which particular parameters are dominant in

determining the trend behavior.

Figure 7a shows that the dominant parameter in af-

fecting the trend dispersion is the third parameter: Min

SST STD (Table 1). WhenMin SST STD is set to be low

(0.58C), more extreme cold observations particularly in

the wintertime are excluded from the analysis system

during the quality control (QC) procedure. This is par-

ticularly true in the earlier period of the analysis before

the 1950s. Therefore the SST trend decreases by ap-

proximately 0.078Ccentury21. In contrast, when Min

SST STD is set to be higher (1.08–1.58C), the SST trend

increases by 0.028–0.048Ccentury21. Similarly, when

Max SST STD (the fourth parameter) is set to be low

(3.58C) or higher (5.58C), the SST trend decreases or

increases. These results indicate that the QC criteria

play a dominant role in the uncertainty of long-term SST

trends. The role of QC is also indicated by the first-guess

(the first parameter) selection, which provides the ex-

pected value around which the cutoff criteria is applied.

When the first guess uses the adjusted (unadjusted)

v3b SST field, the SST trend decreases (increases) by

0.038Ccentury21 respectively; note that for any param-

eter with only two possible options such as first-guess by

construction the effect will be equal and opposite for the

FIG. 6. (a) Histograms of trends (8C century21; 1901–2014) of

globally averaged SST. The histograms are evaluated using para-

metric uncertainty analyses of ENs of 100 (black line with open

circle), 200 (red line with open square), 500 (green line with open

triangle), and 1000 (blue line with open diamond). The en-

semble averaged trend is approximately 0.6768, 0.6708, 0.6688,
and 0.6668C century21 when EN is 100, 200, 500, and 1000, re-

spectively; and is approximately 0.6808C century21 in HadSST3

(light blue line with cross). (b) As in (a), but for trends of 1951–

2012. The ensemble averaged trend is approximately 0.9038, 0.9018,
0.9028, and 0.9028C century21 when EN is 100, 200, 500, and 1000,

respectively. (c) As in (a), but for trends of 2000–14. The ensem-

ble averaged trend is approximately 0.7158, 0.7178, 0.7238, and
0.7308C century21 when EN is 100, 200, 500, and 1000, respectively.
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two options. The QC procedures occur early within the

sequential processing algorithm so that they can interact

with a number of subsequent parameters. In particular

QC may impact the weights given to particular EOTs as

well as the degree of bias correction to be applied.

The dominant role of quality control may be relatively

easily understood in post hoc analysis. But it was far

from obvious a priori that QC choices would have any

demonstrable impact on long-term trends given that

these steps relate to inclusion or exclusion of a relatively

small subset of individual input observations. It appeared

more likely that steps associated with the calculation of

the bias adjustments would be dominant in determining

the trend dispersion of the parametric ensemble of solu-

tions. This points to the importance of holistically assess-

ing Up by varying all uncertain parameters within the

algorithm rather than a restricted subset thereof, because

the parameters that actually turn out to be important may

FIG. 7. (a) Factor analysis in the deviations of SST trend of globally averaged SST in (a) 1901–

2013, (b) 1951–2012, and (c) 2000–14. Unit in y axis is in 8C century21. The x axis represents

each of 24 parameters in Table 1. The symbols represent the ensemble options in second

column of Table 1. The ensemble options from 1st to 8th, respectively, are represented by black

circle, red square, green diamond, blue triangle, light-blue cross, magenta plus sign, yellow

open cycle with vertical bar, and orange closed triangle. The deviations are relative to the

ensemble averaged SST trend of 0.678C, 0.908C, and 0.738C century21 in (a)–(c), respectively.
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not equate to those highlighted as potentially important

based on intuition.

That said, Fig. 7a also shows that the 9th, 13th, and

17th parameters listed in Table 1 play a somewhat im-

portant but less dominant role in determining the SST

trend dispersion. When the adjustment between ship

and buoy observations (the 9th parameter) increases,

the SST anomalies increase in the modern period after

the 1980s, which serves to increase the long-term SST

trend.When the coefficients for the bias adjustment (the

13th parameter) are linearly fitted, the bias adjustment

becomes lower before the 1920s and higher between the

1920s and the 1940s [see Fig. 6a in Huang et al. (2015a)].

Therefore, the SST trend increases by approximately

0.028C century21. This is consistent with the conclusion

in Liu et al. (2015) for this parameter (the two other

parameters were not considered by Liu et al.). The SST

trend may also change when a particular set of EOTs

(the 17th parameter) is selected. The impacts from other

parameters are much smaller.

These results serve to highlight which steps are most

important in determining the outcome. They therefore

naturally highlight potential areas for further innovation

and refinement in developing ERSST further to yield

better estimates and/or better explore the range of

plausible SST histories.

4) UNCERTAINTY OF SST TREND IN THE

‘‘HIATUS’’ PERIODS

A recent study (Karl et al. 2015) indicated that the

trend of globally averaged SST in ERSST.v4 in the most

recent decades (0.998C century21; 2000–14) is as large as

in the longer period of 1951–2012 (0.888Ccentury21).

Figure 6b shows the histogram of the trend during

the longer period. The trend ranges from 0.78 to

1.08Ccentury21, which is higher than the long-term

trend shown in Fig. 6a, indicating stronger oceanic

warming since the middle of the twentieth century.

Factor analyses indicate that the major contributor to

this trend uncertainty is the ship-buoy adjustment (the

ninth parameter; Fig. 7b).

Relative to the 1951–2012 period, the range of possi-

ble SST trends (0.38–1.18Ccentury21) in the recent

‘‘hiatus’’ decade (2000–14; Fig. 6c) is nearly twice as

wide. This implies a larger uncertainty of the trend over

the hiatus period than in the 1951–2012 period that may

arise in part due to less cancellation of terms over a

shorter than a longer segment. The large uncertainty in

the recent decade is mostly associated with the selection

of the ship SST bias adjustment (the 12th parameter;

Fig. 7c) derived from the Nighttime Marine Air Tem-

perature (NMAT) dataset (Huang et al. 2015a), which

indicates the important role of surface air temperature

and its uncertainty in assessing the SST uncertainty

(Cowtan et al. 2015). The trend difference is as large as

0.38Ccentury21 when different ship SST bias adjust-

ments are applied, which also results in a second peak in

the histogram shown in Fig. 6c. The SST trend in the

recent decade (0.998Ccentury21) in operational ERSST.v4

locates at the high end of the histogram shown in Fig. 7c

due to the asymmetric selection of parameters in the 1000-

member ensemble. For example, the trend is high when

ship SST bias adjusted using the latest and regional

NMAT modes (option 1 of the 12th parameter).

The large uncertainty of the globally averaged SST

trend is not a unique feature in the recent 15-yr hiatus

period. For example (not shown in figure), the SST

trend between 1980 and 1994 ranges from 0.158 to

1.08Ccentury21, which is mostly associated with the se-

lection of ship SST bias adjustment (12th parameter in

Table 1). In the earlier period of 1930–44, the SST trend

ranges much wider from 0.28 to 4.58Ccentury21 due to

higher SST uncertainty (see Fig. 10), which is mostly

associated with the selection of QC parameter (Min SST

STD; third parameter in Table 1) and ship SST bias

adjustment (12th parameter in Table 1). These results

suggest that the uncertainty of SST trend depends on

1) the length of time period being considered and 2) the

particular observational characteristics of the SST re-

cord in the epoch of interest including both sampling

completeness and stability of observational techniques.

Specifically, for periods as short as 15 years, the un-

certainty of SST is driven by the selection of QC pa-

rameter values in the earlier period and by ship SST bias

adjustment in the modern period.

5. Total quantified uncertainty and
intercomparisons to independent estimates

a. Total quantified uncertainty in ERSST.v4

The averaged (1871–2005) Ut for local SSTs in

ERSST.v4 (Fig. 8a) is 0.48 to 0.88C in the northern North

Pacific, the northwestern North Atlantic, the Southern

Ocean between 308 and 608S, the eastern equatorial

Pacific, and the South Atlantic along the coasts of

southern Africa. The large Ut in these regions is asso-

ciated with both reconstruction uncertainty (0.28–0.48C;
Fig. 1a) and the parametric uncertainty (0.48–0.88C;
Fig. 3a). In the lower-latitude oceans between 308S and

308N, theUt is approximately 0.28–0.48C (Fig. 8a), which

is also attributed to both the reconstruction uncertainty

(0.28–0.48C; Fig. 1a) and the parametric uncertainty

(0.28–0.48C; Fig. 3a).
Figure 9 shows that when globally averaged across all

grid boxesUt in ERSST.v4 (solid black line) is as high as
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0.78C in the later 1860s, and gradually decreases to ap-

proximately 0.38C after the 1960s. TheUt value peaks in

the early 1890s and then subsequently during the two

World Wars. The Ut is mostly associated with the

parametric uncertainty before the 1900s and during the

two World Wars (red line in Fig. 3b), but it is mostly

associated with the reconstruction (dashed orange line

in Fig. 2b) uncertainty after the 1960s when observations

become more plentiful and the uncertainty related to

bucket corrections is no longer as important.

In comparison to the globally averaged Ut for local

SSTs (Fig. 9), theUt for global-mean SST in ERSST.v4 is

much smaller (solid black line; Fig. 10; note the magni-

tude difference in the y axis between Figs. 9 and 10). The

FIG. 8. Averaged (1871–2005) total uncertainty (1s) of (a) ERSST.v4, (b) HadSST3, and

(c) COBE-SST2. Contours are 0.18, 0.28, 0.48, 0.68, and 0.88C. The averaging period of

1871–2005 is to be consistent with the common period of the reconstruction uncertainty in

Figs. 1 and 3a.
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smallerUt is expected since many of the uncertainties in

individual grid boxes will tend to cancel when SSTs are

averaged over the global domain, and the averaged SST

becomes more reliable based on the larger number of

observations. Despite the large difference in magnitude,

the temporal variation of the Ut for globally averaged

SST is very consistent with that of the Ut for local SSTs

(e.g., both are relatively higher in the early 1860s and

during the two World Wars). However, the Ut for

globally averaged SST arises almost entirely from the

parametric uncertainty (red line in Fig. 3c), and the

contribution from the reconstruction uncertainty (dashed

orange line in Fig. 2c) is negligible (see earlier analysis of

Ur for further discussion on this point).

b. Intercomparisons to independently derived
uncertainty estimates

The intercomparison to independently derived esti-

mates of SST uncertainty may provide evidence as to

whether the quantified SST uncertainty can explain the

apparent disagreement between SST datasets. Com-

parisons, however, are complicated because all the

groups consider distinct subsets of the possible sources

of uncertainty. Even where the same sources are con-

sidered they are invariably quantified in distinct ways.

Different uncertainty models have been used for

quantifying SST uncertainties by different groups over

time. For example, Davis (1976) and Shen et al. (1998)

proposed to assess the uncertainties associated with

spatial SST modes. In HadSST3, uncertainties were

quantified based on uniqueness of SST call signs, sta-

tistics of observations within a specific grid box, and

their correlations with surrounding grid boxes (Kennedy

et al. 2011a); and the uncertainties include sampling

uncertainty with and without correlation, bias, and

coverage uncertainties (Table 3). In earlier versions of

ERSST, uncertainties were assessed based on statistics

of low- and high-frequency characteristics of SSTs from

both model simulation and SST analysis (Smith and

Reynolds 2003, 2004, 2005), and the uncertainties in-

clude sampling and bias uncertainty. In the initial

ERSST.v4 analysis a subset of the parametric uncer-

tainty considered herein was quantified (Liu et al. 2015).

Similar to the uncertainty assessment in previous ver-

sions of ERSST (Smith and Reynolds 2003), the uncer-

tainties in COBE-SST2 were evaluated by subsampling

modern observations to the sampling of data-sparse

periods (Hirahara et al. 2014); the uncertainties in-

clude sampling uncertainties using optimal interpolation

and multiple time scale analysis (MTA; Table 3).

Herein we compare solely the most recent products’

uncertainty estimates under the assumption that most

users will consider the newest version of the various

available products. The SST uncertainties in HadSST3

between 1850 and 2013 (Kennedy et al. 2011a; data are

available at http://www.metoffice.gov.uk/hadobs/hadsst3/

data/download.html) and in COBE-SST2 between 1850

and 1990 (Hirahara et al. 2014; data are available at

https://amaterasu.ees.hokudai.ac.jp/;ism/pub/cobe-sst2)

are compared to those in ERSST.v4. In comparison to

HadSST3 (Fig. 8b), the averaged (1871–2005) Ut in

ERSST.v4 (Fig. 8a) is 0.28–0.48C larger in the northern

North Pacific and northern North Atlantic, and 0.28–
0.48C smaller in the Southern Hemisphere oceans and in

the Arctic. In contrast, the averagedUt is approximately

0.28C smaller in ERSST.v4 than in COBE-SST2 in most

of the tropical–subtropical oceans, but approximately

0.28C larger in the Arctic. Despite these distinct regional

expressions of the quantified uncertainties, the globally

averaged Ut for local SSTs is very consistent among

ERSST.v4, HadSST3, and COBE-SST2 (Fig. 9).

The Ut of globally averaged SST, however, is 0.028–
0.068C higher in ERSST.v4 than in HadSST3 before the

FIG. 9. Globally averaged total uncertainties (1s) of ERSST.v4

(black line), ERSST.v4 1 sampling error (black dotted line),

HadSST3 (red line), and COBE-SST2 (green line). A 12-month

running mean is applied.

FIG. 10. Total uncertainties (1s) of globally averaged SST in

ERSST.v4 (black line), ERSST.v4 1 sampling error (black dotted

line), HadSST3 (red solid line), HadSST32Correlation (red dashed

line), and HadSST3 1 Correlation (red dotted line), overlapped

with the sampling uncertainty in COBE-SST2-OI (green solid line)

and COBE-SST2-MTA (green dotted line). A 12-month running

average is applied except for COBE-SST2-OI and COBE-SST2-

MTA, which are adapted from Hirahara et al. (2014).
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1940s (Fig. 10) and then becomes relatively consistent

with the remaining products after the 1940s. This raises

the question as to why these distinctions may occur.

First, the global-mean uncertainty in ERSST.v4 is criti-

cally dependent on the magnitude of parameter per-

turbations in the Up ensemble (section 4b). If these are

too broad then the resulting uncertainty estimates may

be too large, and this would be expected to be expressed

primarily in the data-sparse early period. Second, the

methodologies (Table 3) used to estimate the un-

certainties are substantively different among the prod-

ucts and are themselves uncertain. The Ut is estimated

using 32 ensemble members of reconstruction un-

certainty and 1000 ensemble members of parametric

uncertainty in ERSST.v4, whereas it is estimated using

100 ensemble members in HadSST3 (Kennedy et al.

2011b). The sampling uncertainty is estimated using 5

years of observations during the data abundant period of

2006–10 in COBE-SST2 (Hirahara et al. 2014). Further

complication arises because there exist a range of ap-

proaches for uncertainty estimation. For example, in

COBE-SST2 the sampling uncertainty using optimum

interpolation (COBE-SST2-OI) is nearly 0.028C larger

than using multiple time-scale analysis (COBE-SST2-

MTA; Fig. 10) before the 1890s and in the later 1910s

and early 1940s. Similarly, the Ut is 0.028–0.048C larger

with interbox correlation (HadSST3 1 Correlation) than

without interbox correlation (HadSST3 2 Correlation)

before the 1960s. The lack of knowledge of the true SST

evolution precludes a definitive assessment of the ade-

quacy of the three sets of uncertainty estimates, al-

though arguably none is likely to be absolutely holistic.

The Ut in ERSST.v4 is roughly consistent with the

‘‘structural’’ uncertainty (Kennedy 2014) that is defined

as the SST STD among different products. Figure 11

shows the Ut for annually and globally averaged SST in

FIG. 11. Total quantified uncertainty in annually and globally averaged SST in ERSST.v4

(black line) and structural uncertainty (red line) from six SST products. These six products are

ERSST.v4, ERSST.v3b, HadSST3, HadISST, Kaplan SST, and COBE-SST2.

FIG. 12. Global averaged SSTAs of ERSST.v4 ensemble average (black line), ERSST.v4 op-

erational (dashed red line), HadSST3 (green line), and COBE-SST2 (purple line). The shaded

region represents the 95% confidence interval due to total quantified uncertainty in ERSST.v4.
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ERSST.v4 and structural uncertainty defined as the spread

among ERSST.v4, ERSST.v3b, HadSST3, HadISST,

Kaplan SST, and COBE-SST2. The Ut in ERSST.v4 is

mostly consistent with the structural uncertainty ex-

cept before the 1880s, between the later 1910s and

1920s, and between the 1940s and 1960s. The averaged

(1870–2010) Ut in ERSST.v4 and the structural uncer-

tainty are approximately 0.0468 and 0.0458C, respec-
tively. The Ut and structural uncertainty increase

slightly after the 1990s, which may be associated with

(a) the number of buoyobservations increasing rapidly after

the 1980s (noting that some of the estimates considered

in the structural uncertainty term apply ship-buoy adjust-

ments whereas others do not) and (b) the coverage of

in situ (ship1 buoy) observations decreasing slightly after

that time.

As implied by the structural uncertainty, the SSTAs

are different among independently produced datasets.

Figure 12 shows that HadSST3 is near or beyond the

95% confidence interval of ERSST.v4 Ut quantified

herein before the 1910s, between the 1920s and 1930s,

and between the later 1940s and 1960s. However, the

COBE-SST2 is mostly within the 95% confidence in-

terval except for between the later 1940s and 1960s. As

demonstrated by Huang et al. (2015a), the SSTA dif-

ference between ERSST.v4 and HadSST3 is largely as-

sociated with the difference of their respective SST bias

adjustments. This suggests that the range of the bias

uncertainties within the ERSST.v4 parametric uncer-

tainty system cannot account for the bias adjustment

differences between ERSST.v4 and HadSST3. In other

words the ERSST.v4 parametric ensemble cannot ade-

quately emulate theHadSST3 bias adjustment approach

through perturbation of within-algorithm uncertain pa-

rameters. The range of the SST bias uncertainty in

ERSST.v4 is principally predetermined by two versions

of NMATs and the choices of adjustment smoothers,

although exhaustive efforts were made to identify all

other parameters that could possibly be varied. Overall,

parameters are perturbed by 10%–50% values used in

operational production, even by 100% for some key

parameters such as EOT critical values. Independent

approaches are clearly required to fully explore un-

certainties in climate data records.

6. Summary, discussion, and conclusions

a. Principal findings

The SST uncertainty in ERSST.v4 has been assessed

using a variety of test datasets and consideration of

uncertainty arising from an expanded selection of in-

trinsically uncertain internal parameter values’ settings.

Comparisons indicate that the reconstruction uncer-

tainty, which is the unavoidable information loss at local

scales during reconstruction, changes only slightly when

different reasonable spatially complete test data are

applied. The reconstruction uncertainty using the test

data from MOISST is very similar to that using the test

data from GFDL-ESM2G and HadGEM2-AO GCMs,

and 0.18C larger than that using the test data from

HadISST. The parametric uncertainty based upon the ex-

panded set of parameters varied is approximately 100%

larger than was estimated by Liu et al. (2015). The larger

parametric uncertainty results from a combination of (a)

broader ranges of some parameters considered in Liu

et al. (2015), (b) more internal parameters being varied,

and (c) the entirely random selection of parameter op-

tions. The reconstruction uncertainty estimated by ap-

plying the test data from MOISST and the parametric

uncertainty based on 1000 ensemble analyses is used to

estimate the total SST uncertainty of ERSST.v4, rec-

ognizing that this cannot be construed as an absolute

estimate given the statistically ill-posed nature of the

underlying problem.

The total uncertainty is closely associated with the

availability of historical SST observations. It is larger in the

high-latitude oceans and before the 1950s, because obser-

vations are sparse in these regions in the earlier period of

historical observations. It is also large when observations

are sparse due to the WorldWars I and II. In contrast, the

total uncertainty is small in the lower-latitude oceans and

in the modern period after the 1970s when sampling has

been good. However, the total uncertainty does somewhat

increase again in the most recent period owing to un-

certainties in the ship to buoy transition and due to slightly

reduced coverage of observations. The globally averaged

uncertainties are close to the median uncertainties,

whereas the 90th percentile uncertainties are almost 2

times the median uncertainties, reflecting skew in the

geographical distribution of uncertainties with a long tail

of high uncertainty in certain regions. There are several

areas with relatively large uncertainties, confinedwithin a

small region located in theArctic, northernNorth Pacific,

northwestern North Atlantic, and part of the South

Ocean south of 408S where observations are sparse.

At the grid box scale (28 3 28), the total uncertainty

(0.38–0.78C) of local SST is roughly equally associated

with both reconstruction and parametric uncertainties.

At the global scale, the total uncertainty (0.038–0.148C)
of globally averaged SST is much smaller than the

globally averaged total uncertainty of local SSTs. The

reasons for the smaller total uncertainty of globally av-

eraged SST are that many of the uncertainties of grid

box–scale measurements partially or completely cancel

when global averaging is performed. The total uncertainty
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of globally averaged SST arises mainly from the para-

metric uncertainty, while the contribution from the re-

construction uncertainty is very small.

Tests show that the parametric uncertainty, long-term

SST trend dispersion (0.418–0.788Ccentury21), and en-

semble averaged SST trend (0.678Ccentury21) and its

error at 95% confidence level (0.158Ccentury21) are not

very sensitive to the number of ensemble members

when the number is larger than 500. All positive

(.0.418Ccentury21) SST trends of the 1000 ensembles

suggest that the warming trend of the historical SST

observations represented by the ERSST.v4 analysis

system is very robust to the recognized and quantified

uncertainties. The estimates quantified herein would

need to be an underestimate of the true uncertainty by a

factor of at least 4 to call into question the conclusion

that globally SSTs have risen since the early twentieth

century. Such expanded uncertainties would also not be

able to preclude that SSTs have warmed at a far greater

rate than current estimates suggest. Additional tests

show that the dispersion of the long-term SST trend is

mostly associated with the parameters inQC procedures

and ship SST bias adjustment schemes. Possible im-

provements in undertaking these steps will hence natu-

rally be a focus of the ERSST algorithm’s future

development. The range of SST trend is larger in the

recent ‘‘hiatus’’ period than over 1951–2012, indicating a

larger uncertainty of the SST trend in the hiatus period.

We note that trends over short periods are inherently

more uncertain because the period is short, and both

random and shorter-term systematic effects will not

cancel as they would for longer-term trend periods. The

quantified total uncertainty for various periods of 15-yr

length is more uncertain than for multidecadal or cen-

tennial time scales. For different 15-yr segments, dif-

ferent factors are important reflecting the changes in

sampling and observing techniques. In general, periods

of stable coverage and technique exhibit lower uncertainty

of 15-yr time scale trends. The hiatus period suffers from

both a reduction in sampling and the effects of moving

from 90% ship measures to 90% buoy measures. Clearly

maintaining a consistent monitoring capability moving

forwards would be beneficial for climate assessment.

Finally, the uncertainty estimates from ERSST.v4

have been compared with those arising from HadSST3

and COBE-SST2. The comparisons indicate that the

magnitude and temporal variation of total uncertainty

for both local and globally averaged SSTs are broadly

consistent among ERSST.v4, HadSST3, and COBE-

SST2. However, differences are found in the spatial

distribution of quantified uncertainties. The uncertainty

is small (0.18–0.48C) in the Arctic in both ERSST.v4

and COBE-SST2, while it is larger (0.68–0.88C) in

HadSST3. The uncertainty is large (0.48–0.88C) in the

northern North Pacific and northwestern Atlantic in

both ERSST.v4 and COBE-SST2, while it is smaller

(0.48C) in HadSST3. The uncertainty is small (0.48–
0.68C) in the Southern Ocean in both ERSST.v4 and

COBE-SST2, while it is larger (0.68–0.88C) in HadSST3.

The reasons for aforementioned uncertainty differences

may result from (a) the selection of parameter values in

ERSST.v4, (b) the methodologies applied in the estima-

tion of SST uncertainties in HadSST3 and COBE-SST2,

and (c) the distinct treatments of random and sampling

errors, which will form a focus of our future development.

Further studies are needed to clarify what causes the dif-

ferences of the estimated uncertainties among different

SST products, which may help understand the underlying

physical and/or statistical reasons resulting in the differ-

ences in SST uncertainties so that the future estimation of

SST uncertainty could be improved.

b. Caveats

The random uncertainty term is considered to be

uncorrelated in the present study, while this will not be

true for a specific ship track as indicated in Kennedy

et al. (2011a). Improved ship-track data in future

ICOADS releases may permit a more nuanced ap-

proach to the consideration of this term that allows for

the inclusion of the correlated aspects in the ERSST

algorithmic framework. At this time owing to the gross

incompleteness of the track data this is not possible to

incorporate. The inclusion of a correlated random term

based upon tracks may logically yield regional false SST

biases at monthly scales in the input data, and hence

have an effect on the EOT selection, weighting, and

ordering in particular, and as a result serve to increase

the uncertainty in reconstructed small-scale to regional

SSTs at the monthly scale. The possible effect on global-

mean estimates and their trends is not entirely clear al-

though the impacts are likely to cancel in space and time

and be largest in data-sparse regions sampled by few

independent platforms.

The sampling uncertainty Us, which is due to in-

complete sampling over the grid, was treated very dif-

ferently in different products (Hirahara et al. 2014;

Kennedy et al. 2011a; Smith et al. 2008). Using DOISST

data (Table 2), the sampling uncertainty is tested by a

pair of analyses: one spatially complete (fully sampled)

and the other incomplete (subsampled) to match observed

sampling (Smith and Reynolds 2003, 2004, 2005; Hirahara

et al. 2014): U2
s (x, y, t)5 [Af (x, y, t)2As(x, y, t)]

2, where

Af and As represent fully sampled and subsampled an-

alyses, respectively. Our tests show, however, that the

Us may not be independent from Up owing to the large

number of sampling related parameters varied substantially
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in the 1000-member ensemble. Their correlation is 0.99

between the globally averaged uncertainties for local

SST (Fig. 13a), and 0.80 between the uncertainties for

globally averaged SST (Fig. 13b). The magnitude of

Up is approximately 35% and 110% larger than that of

Us for local and globally averaged SSTs, respectively. In

addition, the total uncertainty in ERSST.v4 (solid black

lines in Figs. 9 and 10) is comparable to or larger than

those in HadSST3 and COBE-SST2. If the sampling un-

certainty were included (dotted black lines in Figs. 9 and

10), the total uncertainty would be higher in comparison

with HadSST3 and COBE-SST2, particularly for the

globally averaged SST. This may reflect a true under-

estimation of the actual uncertainty in these preceding

products.

The impact of sampling on the parametric uncertainty

estimation was further assessed by additional experimen-

tal analyses. Using spatially complete model simulation as

‘‘observations’’ (zero uncertainty arising from sam-

pling by definition), the globally averaged parametric

uncertainty of local SST reduces to a near constant of

0.18C, while the parametric uncertainty of globally

averaged SST is near zero. The same conclusions are

reached when spatially complete DOISST analysis is

used as the virtual observations. Hence the vast ma-

jority of the variant behavior in Up arises from sam-

pling effects and their interactions with additional

methodological steps.

Given that the correlation between the sampling and

parametric uncertainties is high and the parametric un-

certainty is near zero when sampling is perfect, we argue

that, in the framework of our uncertainty estimation,

much or all of the Us term should be considered as

constituting a component of the parametric uncertainty.

Therefore, we do not officially include the sampling er-

ror in the estimation in the total uncertainty in Eq. (4),

FIG. 13. (a) Global averaged parametric (Up) and sampling (Us) uncertainties of local SST.

Their correlation coefficient is 0.99. (b) TheUp andUs of globally averaged SST. Their correlation

coefficient is 0.80. The Up is about 35% larger than Us in (a) and about 110% larger in (b).
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but the total uncertainty including the sampling un-

certainty is provided in Figs. 9, 10, and 13 for readers’

reference. In future work, tests with different algorithms

will be designed to further verify whether the sampling

uncertainty should be included in the parametric un-

certainty using fully sampled model output and/or other

analyzed SST dataset as ERSST continues to be

developed.

c. Concluding remarks

In conclusion, this paper has documented an ex-

panded uncertainty model used in ERSST.v4, quantified

and analyzed each source, and compared the resulting

estimate to those from two other state-of-the-art SST

datasets. Uncertainties are primarily controlled by the

density and coverage of observations such that total

uncertainty decreases over time with peaks at the time

of the two World Wars and then increases slightly again

since the late 1990s. The ERSST.v4 uncertainty esti-

mates are broadly comparable in the global mean to

other estimates. The uncertainty in centennial time scale

trends is 4 times smaller than the estimated SST trend.

Therefore the conclusion that the global ocean surface

has warmed since 1900 remains extremely robust to

recognized and quantified sources of uncertainty.
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APPENDIX

Options of ERSST.v4 Internal Parameters

Options 1–8 of 24 internal parameters in ERSST.v4

are provided and listed in Table 1. One of these options

is implemented in the operational ERSST.v4 pro-

duction, and the other alternative options are used for

the parametric uncertainty estimates. The details of

these parameter options are as follows (presented in the

order that they appear in the algorithm processing

chain):

1) First-guess (FG) used for quality control (QC): The

deviation of observations from the FG is assessed

to ensure the outlier observations are not included

in the analysis. The FG from previous ERSST v3b

is used in v4. Since the v3b SSTs are bias adjusted

while raw observations are not bias adjusted, the

unadjusted SST from v3b is used to assess the

contribution of FG to the uncertainty of SST

analysis.

2) Standard deviation (STD) used for quality control

(QC): Observed SSTs may be discarded within the

QC procedure in selecting raw observations, if

they deviate from the FG by more than 4.5 times

the SST STD. Two sets of SST STDs are used. One

was calculated from COADS observations from

1950 to 1979 and implemented in v3b; the other is

from monthly OISST from 1982–2011 and imple-

mented in v4. The STD is generally smaller in

OISST than in COADS, which suggests that fewer

SST observations may be used when STD from

OISST is applied (Huang et al. 2015a). The factor

of 4.5 is termed the STD multiplier and may also

vary as described in parameter 5.

3) Minimum (Min) SST STD: Tomaintain a goodQC

procedure, a minimum STD (1.08C) for parameter

2 is set in the ERSST.v4, and its alternative options

are 0.58 and 1.58C.
4) Maximum (Max) SST STD: In contrast to param-

eter 3, a maximum STD (4.58C) for parameter 2 is

set in the ERSST.v4, and its alternative options are

3.58 and 5.58C.
5) SST STDmultiplier: The multiplier to parameter 2

is set to 4.5 in ERSST.v4, and its alternative

options are 3.5 and 5.5. A larger value of minimum

and maximum STD and STD multiplier will en-

able the ERSST.v4 to include more extreme input

SST observations in subsequent processing steps.

6) Random error of observations: In the uncertainty

estimation the random error is added to a single

ship or buoy observation as described in section 3c.

The mean of the random error is set to 0, and

the STD of the random error is set to 1.38 and

0.58C for ship and buoy observations, respectively

(Reynolds et al. 2002; Kent and Challenor 2006).

7) and 8) Ship and buoy SST error STD: Random

error STDs of ship and buoy observations are

different, which are approximately 1.38 and 0.58C
(Reynolds et al. 2002), respectively. These empir-

ically derived STDs are somewhat uncertain when

they are taken into account in weighting EOTs

[refer to Eq. (3) in Huang et al. (2015a)]. There-

fore their values are perturbed by 60.18C accord-

ingly as their alternative options.

9) Ship-buoy SST adjustment: Studies (Reynolds et al.

2002, 2007; Kent et al. 2010; Huang et al. 2015a)

showed that observations from ships and buoys

exhibit a systematic difference. The averaged ship-

buoy difference is approximately 0.128Cwith an STD

of 0.048C. The ship-buoy SST adjustment is therefore

set to 0.128C in ERSST.v4, and its alternatives are set
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to 0.088 and 0.168C. This is broader than the ranges

explored by Liu et al. (2015) for this parameter.

10) Buoy SST weighting: An earlier study (Reynolds

and Smith 1994) indicated that the variance of buoy

observations is about 6.8 times smaller than that of

ship observations. Therefore buoy observations are

weighted by 6.8 when they are merged with ship

observations. The alternative weightings are set to

5.8 and 7.8. Parameter 10 may not be completely

independent from parameters 6–8, and therefore

the uncertainty from these parameters may slightly

be underestimated.

11) SSTA calculation: In ERSST.v3b, bin averaged

SSTs were calculated first on a regular 28 3 28 grid,
and then SSTAs were calculated as the differences

between SST and its climatology (1971–2000). In

ERSST.v4, SSTAs at in situ locations are calcu-

lated between SSTs and SST climatology at these

locations, and then SSTAs are bin-averaged to a

28 3 28 grid. The order of operations can have an

impact. These two options of SSTA methods are

used for the parametric uncertainty estimation.

12) NMAT for SST bias adjustment. In both ERSST

v3b and v4, NMAT values are used to calculate the

ship SST bias (Huang et al. 2015a). In v3b, an

earlier version of UKMO NMAT was used, while

HadNMAT2 is used in v4. In both v3b and v4, SST

biases are fitted to a global climatological model of

SSTNMATdifference. However, tests showed the

SST biasesmay change if they are fitted to regional

climatological models, say 908–308S, 308S–308N,

and 308–908N. Therefore, bias uncertainty is taken

into account by including options of using different

NMATs and their modes.

13) SST bias smoothing: To reduce the impacts of noise

at short time scales, a low-frequency filter (Lowess

filter of coefficient f 5 0.10; equivalent to 16-yr

low-pass filter; Cleveland 1981) is applied to the

fitting coefficient of ship SST bias in ERSST.v4

[see details in Huang et al. (2015a)]. Alternative

filters are considered in the parametric uncertainty

estimation when coefficient f is set to 0.05 and 0.20.

In pursuing a full bias uncertainty, additional

options of linear fitting and annually averaged

filtering are also included.

14) Minimum number of months for annual average: In

retrieving the LF anomaly, an annual average is

calculated first. The minimum number of months

with available monthly SST data is set to 2 months

to calculate an annual average in ERSST.v4. The

alternative numbers are set to 1 and 3 months.

15) Minimum ratio of superobservations: In retrieving

the LF anomaly, a 268 3 268 spatial running mean

filter is applied. In the regions without observations

where the value of superobservations is labeled as

missing, the missing value is replaced by the

averaged value within a 268 3 268 subdomain, if

the ratio of superobservations coverage within the

subdomain is greater than 0.03 (five valid super-

observations vs a maximum of 169 grids). In the

estimation of parametric uncertainty, the alterna-

tive ratios are set to 0.02 and 0.04. Superob-

servations are defined as the bin-averaged SST

observations over the 28 3 28 grid boxes.

16) Maximum observation number: In applying the

268 3 268 spatial filter in parameter 15, an averaged

superobservation is calculated byweighting each 28 3
28 grid box area and observation numbers within the

grid box. To protect from the averaged superobser-

vations being overwhelmed by a single densely ob-

served grid box, amaximumobservation of 10 is set in

ERSST.v4. Its impact on the parametric uncertainty is

considered by alternative numbers of 5 and 15.

17) EOT training period and domain restriction: In

ERSST v3b and v4, HF SSTAs are decomposed

with EOTs to filter out small-scale noise. The

EOTs were calculated using monthly OISST de-

rived fromweeklyOISST v2 from 1982 and 2005 in

v3b, but from 1982 to 2011 in v4. As shown by

Huang et al. (2015a), the selection of EOT training

periods leads to sensitivity in the SSTA recon-

struction, particularly in the tropical oceans.

Therefore, several groups of EOTs are derived:

(a) EOTs from three alternative training periods

(1982–2005; 1988–2011; 1982–2011), (b) EOTs

nondamped in the high latitudes south of 608S and

near 608N, (c) EOTs from even-year data (1982,

1984, . . . , 2012) and odd-year data (1983, 1984, . . . ,

2013), and (d) EOTs with damping scales of 5000,

4000, and 3000km in longitude, and 4000, 3000,

and 2000km in latitude to explore the effects of

domain truncation.

18) EOT weighting: In fitting the HF SSTAs, an EOT

mode was weighted by grid box area in ERSSTv3b.

Additional weighting of observation number and its

associated error is considered in ERSST.v4 (Huang

et al. 2015a). Therefore, these twoweighting options

are used in the parametric uncertainty estimation.

19) EOT critical value: Not all 130 EOT modes are

actually used to reconstructHF SSTAs.AnEOT is

selected if the EOT critical value (Huang et al.

2015a) is higher than a certain criterion. The EOT

critical value assesses whether that particular EOT

mode is supported or is potentially an artifact.

Huang et al. (2015a) showed that the critical value

is sensitive in determining the resulting SSTA
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reconstruction. The critical value was set to 0.2 in

v3b and is set to 0.1 in v4. Therefore, three

alternative options of 0.05, 0.1, and 0.2 are set for

the parametric uncertainty estimation.

20) Ice concentration factor: Ice concentration from

HadISST (1870–2010) is used in ERSST.v4, which

is approximately 10% higher than the previous

UKMO ice concentration in the Northern Hemi-

sphere. The difference between these two versions

of the ice concentration data may imply a measure

of uncertainty in observing the ice concentration.

Therefore, the ice concentration is alternated by

multiplying a factor of 0.9, 1.0, and 1.1.

21) and22)Min/max ice for SSTadjustment: InERSST.v4,

the combined SST from low- and high- frequency

components is adjusted in the ice-covered areawhen

the ice concentration falls between amin andmax of

0.6 and 0.9, respectively (Smith and Reynolds 2004).

Theseminimumandmaximumvalues are perturbed

by 60.1 as their alternative options.

23) LF filter period: In ERSST, SSTAs are decomposed

into LF and HF components. The LF component is

retrieved by applying a median 15-yr filter to

annually averaged SSTAs. The LF periods are

perturbed among 11, 15, and 19 years to include

the potential contribution to the SST uncertainty.

24) HF filter period: In ERSST, the HF component

SSTA is filtered using a 3-month running filter to

account for missing superobservations. An alter-

native option without the filter is added to quantify

its impact on the SST uncertainty.
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