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Abstract Moulds growing on the surface of dry-ripened foods
contribute to their sensory qualities, but some of them are able to
produce mycotoxins that pose a hazard to consumers. Small
cysteine-rich antifungal proteins (AFPs) from moulds are highly
stable to pH and proteolysis and exhibit a broad inhibition spec-
trum against filamentous fungi, providing new chances to control
hazardous moulds in fermented foods. The analytical tools for
characterizing the cellular targets and affected pathways are
reviewed. Strategies currently employed to study these mecha-
nisms of action include ‘omics’ approaches that have come to the
forefront in recent years, developing in tandem with genome
sequencing of relevant organisms. These techniques contribute
to a better understanding of the response of moulds against
AFPs, allowing the design of complementary strategies to max-
imize or overcome the limitations of using AFPs on foods. AFPs
alter chitin biosynthesis, and some fungi react inducing cell wall
integrity (CWI) pathway. However, moulds able to increase chi-
tin content at the cell wall by increasing proteins in either CWI or
calmodulin-calcineurin signalling pathways will resist AFPs.
Similarly, AFPs increase the intracellular levels of reactive oxy-
gen species (ROS), and moulds increasing G-protein complexβ
subunit CpcB and/or enzymes to efficiently produce glutathione
may evade apoptosis. Unknown aspects that need to be ad-
dressed include the interaction with mycotoxin production by
less sensitive toxigenic moulds. However, significant steps have

been taken to encourage the use of AFPs in intermediate-
moisture foods, particularly for mould-ripened cheese and meat
products.
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Introduction

Ripened foods are spread across the world and represent an
important sector in the economy. Fermented foods require the
contribution of flavour-producing microorganisms, typically
lactic acid bacteria (LAB) and Gram-positive, catalase-
positive cocci and yeasts. Filamentous fungi can also contrib-
ute to flavour due to their proteolytic and lipolytic activities,
particularly in foods of intermediate water activity, such as
dry-ripened cheese (Banjara et al. 2015), sausages (Bruna
et al. 2003) and hams (Martín et al. 2006).

On the other hand, filamentous fungi can also be responsi-
ble for spoilage and health issues in dry-ripened foods. Some
moulds have been linked to food allergy after intake of aged
mould-coated foods, causing respiratory and digestive disor-
ders in sensitive consumers (Bobolea et al. 2009; González-
de-Olano et al. 2012). Although moulds are not commonly
associated with foodborne infections, pneumonitis caused by
Aspergillus fumigatus is often an occupational disease in grain
or sausage handlers (Swan and Crook 1998; Marvisi et al.
2012). However, the most concerning hazard related to mould
presence in foods is mycotoxin production, due to their toxi-
genic, immunosuppressive, mutagenic and carcinogenic ef-
fects (Bezerra da Rocha et al. 2014). Therefore, the control
of unwanted moulds in foods is considered a key issue. For
this purpose, some efficient physical or chemical treatments,
such as modified atmosphere packaging, refrigeration or
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chemical fungicides, are available. However, these treatments
are not adequate for mould-ripened foods, since fungal devel-
opment is essential for their desired sensory characteristics.
Moreover, chemical compounds can leave residues, which is
against the consumer’s demand of residue-free foods.
Consequently, biocontrol using natural products could be an
alternative to fight against undesirable moulds. Natural anti-
fungal proteins represent an interesting option for biopreser-
vation in foods (Geisen 2000; Delgado et al. 2015a).

Living organisms may defend themselves against fungi by
producing antifungal compounds, including proteins.
Antifungal proteins (AFPs) are produced by organisms ranging
from prokaryotes to plants, insects and mammals (Selitrennikoff
2001). AFPs have been studied as a potential source of new
agents to combat opportunistic fungal infections in immunocom-
promised hosts, as well as fungal plant pathogens. The most
extensively studied AFPs are plant defensins (van der
Weerden and Anderson 2013), which cause membrane per-
meabilization in various filamentous fungi (Yan et al. 2015;
Zhu et al. 2015) by specifically interacting with host mem-
brane compounds (Vriens et al. 2014).

Moulds can also produce several types of antifungal pep-
tides and proteins, including some cyclic peptides, such as
echinocandins (Emri et al. 2013) or aureobasidin A (Liu
et al. 2007), enzymes such as glucose oxidase (Leiter et al.
2004) or chitosanases (Rodríguez-Martín et al. 2010b) and
defensin-like proteins (Galgóczy et al. 2013). The latter is a
group of small, basic and cysteine-rich AFPs that have been
the subject of recent research (Table 1).

AFPs produced by non-toxigenic moulds normally present
on foods can be a valuable means to improve food safety in
intermediate-moisture foods, particularly in uncontrolled
mould-ripened meats and dairy products.

The present review focuses on AFPs produced by moulds
as well as on the analytical tools for characterizing the effects
of AFPs to gain insight into their mechanism of action and to
analyze their potential application to dry-ripened foods.

Main characteristics of AFPs

The main distinguishing features of AFPs and their effect on
sensitive moulds have been extensively reviewed elsewhere
(Theis and Stahl 2004; Marx 2004; Marx et al. 2008; Hegedüs
and Marx 2013). AFP (Campos-Olivas et al. 1995), PAF
(Batta et al. 2009) and BP (Seibold et al. 2011) fold into a
compact β-barrel stabilized by disulphide bridges, and it has
been assumed that AcAFP, Anafp, NAF and PgAFP also have
a similar tertiary structure (Marx 2004; Skouri-Gargouri et al.
2009; Rodríguez-Martín et al. 2010a). This structure confers
high stability against adverse biochemical and biophysical
conditions, such as low pH, high temperature and some sur-
factants (Lacadena et al. 1995; Marx 2004; Skouri-Gargouri
and Gargouri 2008; Batta et al. 2009; Hajji et al. 2010; Chen
et al. 2013;Wen et al. 2014; Delgado et al. 2015a). In addition,
AFPs withstand the attack of proteases in vitro (Lacadena
et al. 1995; Batta et al. 2009; Delgado et al. 2015a). This raises
the possibility of applying AFPs directly onto dry-ripened

Table 1 Antifungal proteins
produced by moulds Antifungal

protein
Producer mould pI MW

(Da)
Reference

AcAFP Aspergillus clavatus 9.3 5773 Skouri-Gargouri and Gargouri
(2008)

AcAMP Aspergillus clavatus 9.06 6000 Hajji et al. (2010)

AFP Aspergillus giganteus 9.3 5800 Nakaya et al. (1990)

AfpB Penicillium digitatum – – Garrigues et al. (2015)

AFPNN5353 Aspergillus giganteus 9.3 – Binder et al. (2011)

Anafp Aspergillus niger 7.14 6583 Gun Lee et al. (1999)

BP Penicillium
brevicompactum

7.2 6584 Seibold et al. (2011)

FPAP Fusarium polyphilaidicum 9.1 6357 Galgóczy et al. (2013)

MAFP1 Monascus pilosus 8.3 6500 Tu et al. (2016)

NAF Penicillium nalgiovense 8.93 6300 Geisen (2000)

NFAP Neosartorya fischeri 8.93 6625 Kovács et al. (2011)

PAF Penicillium chrysogenum 8.93 6250 Marx et al. (1995)

Pc-Arctin Penicillium chrysogenum – 7000 Chen et al. (2013)

PcPAF Penicillium citrinum – 10,000 Wen et al. (2014)

PgAFP Penicillium chrysogenum 9.22 6494 Rodríguez-Martín et al. (2010a)
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foods to control hazardous moulds, even in foods requiring
intensive proteolytic degradation during ripening. These char-
acteristics are seen as an advantage for the use of AFPs in low-
acid ripened foods, due to the highly proteolytic microbial
population naturally present (Rodríguez et al. 1998; Sousa
et al. 2001; Hughes et al. 2002).

According to phylogenetic analysis, AFPs have been clas-
sified into three groups, with AFP, PAF, AcAFP, NFAP and
FPAP in class A; PgAFP and Anafp in class B; and Pc-Arctin
and BP in class C (Garrigues et al. 2015).

Spectrum of activity

AFPs from moulds show a broad inhibition spectrum against
filamentous fungi and some zygomycetes, but not against pro-
karyotes or mammalian cells (Marx 2004; Palicz et al. 2013).
Some of the most hazardous moulds, including ochratoxigenic
Aspergillus carbonarius, Aspergillus ochraceus, Penicillium
nordicum and Penicillium verrucosum; aflatoxigenic
Aspergillus flavus and Aspergillus parasiticus; patulin-
producers Penicillium expansum and Penicillium griseofulvum;
and the pathogenic and allergenic A. fumigatus, are among the
species sensitive to AFPs (Kaiserer et al. 2003; Galgóczy et al.
2008; Delgado et al. 2015a). Only AcAMP exhibited inhibitory
activity against bacteria (Hajji et al. 2010) and Anafp and BP
against yeasts (Gun Lee et al. 1999; Seibold et al. 2011). The
generalized lack of activity against bacteria and yeast can be
regarded as an advantage for the potential use of AFPs in dry-
ripened foods, given the positive role of thesemicroorganisms on
the sensory characteristics of dry-ripened foods.

Analytical tools for characterizing the effects of AFPs

Deciphering the mechanisms of action and the cellular targets
of AFPs continues to be an important objective. Enhanced
understanding of the target informs on the activity spectrum
of the AFPs and the relative susceptibilities of various

organisms. Information can be generated on possible modes
of resistance, in addition to guiding the design of combination
therapies directed at different targets. Furthermore, potential
secondary effects can be elucidated, such as undesirable by-
products of treatment (e.g. increased mycotoxin production).
Some of the strategies currently employed to study these
mechanisms of action include genomics, fluorescence assays,
transcriptomics, proteomics and metabolite analysis (Table 2).
Many of these ‘omics’ approaches have come to the forefront
in recent years, developing in tandem with genome sequenc-
ing of relevant organisms.

Use of targeted gene deletions or non-functional gene muta-
tions has been employed to verify pathways affected by antifun-
gal agents in sensitive species. Disruption of genes involved in
signalling pathways revealed the involvement ofG-protein signal
transduction in the antifungal activity of PAF from Penicillium
chrysogenum and NFAP from Neosartorya fischeri (Leiter et al.
2005; Virágh et al. 2015). Further similarities were found among
the targets of AFPs, with direct involvement of the GTPase
RhoA ruled out in the case of PAF, NFAP and AFPNN5353 from
Aspergillus giganteus (Binder et al. 2010b; Binder et al. 2011;
Virágh et al. 2015). Genes responsible for conferring resistance to
AFPs can also be identified using screens of deletion strains from
resistant species. Ouedraogo et al. (2011) revealed a number of
genes (chs1, wsc1, vps34 and tor1) in the AFP-resistant yeast
Saccharomyces cerevisiae that give rise to intermediate sensitiv-
ity upon deletion. This screen of 100mutants allowed the authors
to ascertain the mechanisms affected in sensitive organisms and
directed additional analyses to validate these observations.
Recent developments allowing more efficient genetic manipula-
tion of filamentous fungi will enable further large-scale screening
using gene disruption libraries (Colot et al. 2006; Park et al. 2011;
Liu et al. 2015; Nødvig et al. 2015).

Genome-wide surveys of the pathways affected by antifun-
gal agents have also been achieved through the use of tran-
scriptome analyses. Microarray analysis of the effect of soy-
bean toxin, an AFP, on Candida albicans revealed the altered
expression of 61 and 51 genes after 16 and 18 h of exposure,
respectively (Morais et al. 2013). The observed changes in

Table 2 Potential of selected
technologies for advancing the
characterization of AFPs

Selected
technologies

Application to antifungal protein characterization

Gene-disruption
strategies

▪ Targeted gene deletion for confirmation of proteins/pathways targeted by AFPs

▪ Deletion libraries to screen for genes associated with sensitivity or resistance to AFPs

Transcriptome
analyses

▪ Microarrays and RNA-seq utilized to identify the mechanism of action of AFPs and
identification of potential secondary effects of treatment

Proteomics ▪ Gel-based methods (e.g. 2D-PAGE) for the characterization of pathways affected by
treatment with AFPs; some limitations associated with constraints in proteome
coverage

▪ MS-based methods: enable large-scale survey of the proteome for identification of
direct targets of AFPs, identification of potential synergistic drug targets,
characterizing mechanisms of resistance and sensitivity to AFPs
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gene expression led the authors to propose a preliminary mod-
el for the mechanism of action of this AFP, whereby nutrient
uptake is likely blocked and filamentous growth is suppressed
(Morais et al. 2013). The effect of an antimicrobial compound
resveratrol on A. flavus was also investigated, using a highly
sensitive transcriptomic technique, RNA-seq (Wang et al.
2015). Differential expression of 453 genes was detected in
response to resveratrol treatment, including genes involved in
mycelial and conidial development, and also secondary
metabolite-associated genes. Expression of aflatoxin biosyn-
thetic genes, aflA and aflB, was significantly reduced, corre-
sponding with significantly decreased levels of aflatoxin de-
tected following resveratrol treatment (Wang et al. 2015).
Here, transcriptomics not only informed on the possible mo-
lecular mechanisms of the antifungal treatment, but also in-
formed on the secondary effects (e.g. altered mycotoxin pro-
duction) that could prove relevant in application of these
agents in food microbiology. Employing time-course experi-
ments has the potential to greatly expand these surveys,
informing on the dynamics of the molecular response to anti-
fungal treatments (Lopez-Moya et al. 2016).

Proteomic analyses have provided fundamental informa-
tion on the systems altered in response to antifungal treat-
ments. Until more recently, the majority of these studies in-
volved gel-based comparative proteomics using SDS-PAGE
alone or in combination with isoelectric separation (2D-
PAGE). 2D-PAGE has been used to evaluate the responses
of sensitive fungi to established antifungal therapies, includ-
ing azoles, polyenes and echinocandins (Gautam et al. 2008;
Hoehamer et al. 2010). This technique has also been used to
characterize the mechanisms of action of novel antifungal
agents (Gautam et al. 2011; Singh et al. 2012; Silva et al.
2013). Gel-based proteomic methods do present some limita-
tions, including difficulties resolving proteins with extremes
of pI or mass, hydrophobic proteins and constraints in the
dynamic range visible (Owens et al. 2014). These gel-based
techniques can be used in combination with an additional
analysis strategy to gain a more comprehensive overview of
the systems affected by the antifungal agent. Combining sub-
cellular fractionation with comparative proteomics extends
the limits of detection (Komatsu et al. 2011; Cagas et al.
2011; Moloney et al. 2016), while including genomics or al-
ternative proteomic analyses (e.g. gel-free methods) serves to
increase sensitivity and validate results (Gautam et al. 2008;
Cagas et al. 2011; Gautam et al. 2011; Ene et al. 2012;
Delgado et al. 2015b, 2016).

Advances in mass spectrometry (MS)-based proteomic
methods have enabled in-depth analysis of the protein levels
altered in response to an antifungal challenge. Label-free
methods have been utilized to profile the AFPs response with-
in both resistant and sensitive fungi, enabling the identifica-
tion of resistance mechanisms as well as susceptible targets
(Delgado et al. 2015b; Prado et al. 2015; Delgado et al. 2016).

MS has the potential not only just to decipher these modes of
action, but also to distinguish between sensitive and resistant
strains of a clinically relevant organism using MS-based anti-
fungal susceptibility testing (msAFST) (Vella et al. 2013). In
addition to the capacity for proteomics to provide insight into
the pathways affected by antifungals, it can also inform on
promising targets for antifungal activity. Evaluation of prote-
omic changes in response to a time-course with the antifungal
drug fluconazole revealed potential synergistic drug targets in
Cryptococcus gattii following compilation of protein interac-
tion networks (Chong et al. 2012). An MS-based comparative
proteomic strategy involving the use of labels has been used to
elucidate the mechanism of action of the human AFP histatin
5 (Komatsu et al. 2011). Employing subcellular fractionation
to purify mitochondria and two distinct labelling approaches,
the authors determined that histatin 5 exerts its activity by
decreasing mitochondrial ATP synthesis leading to loss of
cellular energy (Komatsu et al. 2011).

Direct identification of antifungal targets is also possible
using pull-down strategies combined with MS for identifica-
tion of protein binding partners. Proteins interacting with the
histatin 5 protein described above were detected following co-
immunoprecipitation (Co-IP) and a pull-down scheme (Moffa
et al. 2015). Among these proteins, one was detected that
interfered with histatin 5 activity once complexed, thus iden-
tifying potential antagonists of antifungal activity (Moffa et al.
2015). Ghosh et al. (2015) identified potential interactors of
the plant AFP mASAL using a different technique involving
ligand blots probed with the protein of interest. Collectively,
these methods highlight the array of tools that can be utilized
to give a system-wide perspective on the molecular targets and
biological pathways affected by antifungal agents. These
global approaches can facilitate the subsequent focusing of
complementary techniques, such as biochemical assays,
targeted gene disruption or metabolite analysis.

Mode of action

Themode of action of these cationic AFPs has been described as
multifactorial, but it is hypothesized to involve a direct interaction
with anionic phospholipids in the fungal membrane (Lacadena
et al. 1995). Thus far, two different mechanisms of action have
been elucidated. Some class A AFPs, typically AFP, AFPNN5353
and AcAFP, bind chitin and are localized to the outer layer of
sensitive fungi (Theis et al. 2003, 2005). Then, they alter the cell
wall by inhibiting chitin synthesis and permeabilize the cell
membrane (Liu et al. 2002; Moreno et al. 2006; Hagen et al.
2007; Skouri-Gargouri et al. 2009). This leads to the disintegra-
tion of intracellular structures and cell death (Theis et al. 2005),
without relevant morphological changes in sensitive moulds
(Theis et al. 2003). Sensitive fungi react to AFP, though
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unsuccessfully, inducing cell wall integrity (CWI) pathway to
counteract the AFP (Hagen et al. 2007).

Alternatively, class A PAF interacts with specific compo-
nents of the plasma membrane, being actively internalized
(Oberparleiter et al. 2003). This protein induces severe chang-
es in cell morphology (Kaiserer et al. 2003) that are related to
modulation of specific ion channels rather than to chitin or
DNA binding (Batta et al. 2009). Class B PgAFP also binds
to the outer layer of treated hyphae but, similarly to AFP, leads
to no morphological change (Delgado et al. 2015b).
Furthermore, class A, B and C AFPs, including PAF, NFAP
and PgAFP, lead to reduced chitin biosynthesis at the cell wall
and increased levels of intracellular reactive oxygen species
(ROS) that trigger programmed cell death (PCD) and apopto-
sis (Leiter et al. 2005; Galgóczy et al. 2013; Delgado et al.
2015b) (Fig. 1). The onset of apoptotic cell death programs
can also be initiated by glutathione/glutathione disulphide re-
dox imbalance (Hegedus et al. 2011). The increased relative
abundance of glutathione synthetase and Cys-Gly
metallodipeptidase Dug1 in a PgAFP-treated sensitive mould
(Delgado et al. 2015b) reveals an unsuccessful reaction to
counteract the higher ROS levels, given that these two en-
zymes would lead to glutathione overproduction. The reduced
chitin content associated to this mechanism of action has been
related to the fact that PAF fails to activate Pkc/Mpk signalling
cascade to induce CWI pathway (Binder et al. 2010b), where-
as PgAFP even represses CWI pathway (Delgado et al.
2015b). Therefore, the mechanism of action of AFPs includes
alteration or inability to trigger basic defence mechanisms
such as CWI pathway, which is aggravated by cell damage
due to ROS (Fig. 1). PAF-initiated apoptotic cell death signals
may be transmitted by heterotrimeric G protein signalling via
cAMP/protein kinase A pathway (Leiter et al. 2005; Binder
et al. 2010a; Virágh et al. 2015), where both FadA and GanB
G protein α-subunits may be involved (Hegedus et al. 2011),
as well as G protein complex β subunit CpcB (Delgado et al.
2015b).

PAF also perturbs Ca2+ homeostasis, increasing the resting
level of cytosolic-free Ca2+, and the disruption of Ca2+ signal-
ling may also lead to PCD (Binder et al. 2010a). Interestingly,
high external concentrations of Ca2+ or other cations have
been shown to reduce the inhibitory effect of AFPs, as will
be discussed later.

As it has been shown for PgAFP (Delgado et al. 2015b),
some AFPs lead to an increased abundance of proteins in-
volved in energy-hungry ribogenesis and translation process-
es, whereas key enzymes involved in energy metabolism de-
crease. These changes could explain the fungistatic effect due
to depletion of the cell energy reserves. In addition, the mor-
phological changes caused by AFPs in sensitive fungi
(Kaiserer et al. 2003) could be related to the lower abundance
of proteins involved in hyphae structure, such as septins and
actin (Delgado et al. 2015b).

Mechanisms of resistance

Different defensive strategies in response to treatment with
AFPs have been described for AFPs-producing moulds, natu-
rally resistant fungi or sensitive moulds grown at high CaCl2
concentrations. For some antimicrobial peptides, the resis-
tance has been related to a constitutive lack of electrostatic
affinity or receptors for these proteins in cell outer layer
(Yeaman and Yount 2003). PgAFP, AFPNN5353 and PAF do
not bind to the cell surface of their respective insensitive pro-
ducer strain (Oberparleiter et al. 2003; Binder et al. 2011;
Delgado et al. 2015b).

In naturally resistant fungi, interactions with AFPs have
been reported. In the non-sensitive P. chrysogenum, AFP is
internalized and used as a nutritional source, but it binds nei-
ther to any specific organelle, nor to the outer layer (Theis
et al. 2005). Alternatively, resistant fungi respond against cel-
lular stress caused by AFPs with adaptive mechanisms aimed
tomaintain the integrity of the cell wall. Echinocandins induce
compensatory increases in chitin synthesis, which confers re-
sistance in Candida spp. (Cota et al. 2008; Lee et al. 2012). In
the yeast S. cerevisiae, the chitin fortification in the presence
of AFP is largely dependent on transcriptional stimulation via
the calcium/calcineurin/Crz1p pathway (Ouedraogo et al.
2011). Stress signals caused by echinocandins can also be
transmitted in S. cerevisiae from the cell surface integrity sen-
sor Wsc1 to the protein kinase C (PKC) cell integrity signal-
ling pathway, which is controlled by Rho1 protein (Reinoso-
Martín et al. 2003; Levin 2005). Rho1 binds and activates Pkc,
which through Mpk signalling, activates genes involved in
cell wall synthesis, resulting in an elevated chitin content
(Munro et al. 2007; Delgado et al. 2016).

The successful response of PgAFP-treated Penicillium
polonicum is attributed to an efficient CWI pathway activation
by Rho1 that promotes increased chitin deposition and, as a
consequence, lower cell permeability (Delgado et al. 2016)
(Fig. 1). Conversely, sensitive A. flavus treated with PgAFP
showed lower relative amount of Rho1 and chitin deposition
(Delgado et al. 2015b). Therefore, chitin deposition mediated
by Rho1 seems to play a key role in the sensitivity or resis-
tance of moulds to PgAFP. In addition, P. polonicum resis-
tance to PgAFP was weakened by a combined treatment with
chitinase, and this combination has been proposed as a means
to increase the efficiency of AFPs (Delgado et al. 2016).

On the other hand, the presence of high levels of extracel-
lular cations in the environment provokes a decrease of the
antifungal activity of AFPs (Theis et al. 2003; Kaiserer et al.
2003; Martín-Urdiroz et al. 2009; Binder et al. 2010a;
Galgóczy et al. 2013). The saturation of the cellular target with
cations could potentially be the cause of this reduction in
antifungal activity. Given that AFPs have a positive net
charge, cations could compete for the putative binding sites
at the fungal cell surface (Marx 2004; Martín-Urdiroz et al.
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2009), making the target site no longer accessible for the AFP
(Theis et al. 2003). On the other hand, extracellular calcium
may enter fungal cells increasing intracellular Ca2+ concentra-
tion and leading to the activation of calcineurin (Thewes
2014). Calcineurin signalling pathway induces transcription
of chitin synthases in filamentous fungi and also controls chi-
tin synthases themselves (Fortwendel et al. 2010). In fact, the
fortification of the cell wall following the Ca2+-mediated in-
duction of chitin synthase chsD expression seems to protect
Aspergillus niger from AFP (Binder et al. 2011; Ouedraogo
et al. 2011). PgAFP-treated A. flavus cultured in a CaCl2-
enriched culture medium showed no decrease in chitin depo-
sition but increased abundance of calcineurin Ca2+-binding
regulatory subunit CnaB, G-protein complex β subunit
CpcB and γ-glutamyl transpeptidase (γGT) (unpublished da-
ta) (Fig. 1). The compensatory increase of chitin synthesis
through calmodulin-calcineurin signalling pathway has been

also related to resistance of A. fumigatus and Candida spp. to
echinocandins (Juvvadi et al. 2015; Perlin 2015).

The high calcium levels present in some dry-ripened foods
could prevent a successful antifungal effect of AFPs, particularly
in cheeses. Given that both LAB (Mandal et al. 2013) and yeasts
(Andrade et al. 2014; Núñez et al. 2015) commonly found in
ripened foods have shown antifungal capability against toxigenic
moulds, the combined action of theAFPswith protective cultures
is an alternative that deserves to be investigated.

Impact of AFPs on mycotoxin production

AFPs have fungistatic effect on sensitive moulds (Theis et al.
2005; Skouri-Gargouri et al. 2009). Retarded growth of treat-
ed moulds may result in lower mycotoxin production, as it has
been shown for PgAFP on A. flavus at 24-h incubation
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Fig. 1 Role of key proteins in the mechanism of action of AFPs on
moulds. Cell wall integrity (CWI) pathway activation: Wsc1 activates
Rho1 (Philip and Levin 2001) that plays a key role in the mould
response to AFPs (Delgado et al. 2015b; Delgado et al. 2016).
Extracellular signals are transmitted via Pkc/Mpk (Binder et al. 2010b),
increasing chitin content in the cell wall through Crz1 (Ouedraogo et al.
2011). Calcium effect: A high cytosolic calcium concentration activates
calcineurin (Thewes 2014). Calcineurin induces post-translational
changes through activation of Crz1 (Fortwendel et al. 2010), increasing
chitin content in the cell wall. Role of G-protein: G-protein transmits
apoptotic cell death signals through cAMP/PKA (Leiter et al. 2005) and
modulates glutathione pathway (Hegedus et al. 2011), together with GT.
cAMP/PKA pathway and glutathione modulate the intracellular ROS
levels. High ROS levels may increase mycotoxin production (Jayashree
and Subramanyan 2000) and loss of membrane integrity that leads to

apoptosis and necrosis phenomena (Leiter et al. 2005; Delgado et al.
2015b). GT gamma glutamyl transpeptidase, Pkc/Mpk protein kinase
C/mitogen-activated protein kinase, CWI cell wall integrity, cAMP/PKA
cyclic adenosine monophosphate/protein kinase A, Rho1 small GTP
binding protein, Crz1 calcineurin-responsive zinc finger 1, CnaB
calcineurin Ca2+-binding regulatory subunit CnaB, Wsc1 wall stress

component sensor, ROS reactive oxygen species. Higher

quantity, lower quantity, unaltered quantity. Variation in

a sensitive mould treated with an AFP (Delgado et al. 2015b).

Variation in a wild-resistant mould treated with an AFP (Delgado et al.

2016). Variation in a sensitive mould grown in a calcium-enriched

medium and treated with an AFP (unpublished data)

6996 Appl Microbiol Biotechnol (2016) 100:6991–7000



(Delgado et al. 2015b). However, the effect of long-term treat-
ments with AFPs on mycotoxin production is not known.
ROS are among the main factors that activate mycotoxin pro-
duction (Reverberi et al. 2012; Schmidt-Heydt et al. 2014). In
fact, oxidative stress is considered a prerequisite for aflatoxin
production in toxigenic moulds (Jayashree and Subramanyan
2000). Therefore, mycotoxin production in dry-ripened foods
treated with AFPs poses a potential health hazard and deserves
to be studied. On the other hand, mycotoxin production can be
effectively reduced by antioxidants, such as butylated
hydroxyanisole (BHA) (Reverberi et al. 2006), butylated hy-
droxytoluene (BHT) (Fanelli and Fabbri 1989), β-glucans
from Lentinula edodes (Reverberi et al. 2005) or caffeic acid
(Kim et al. 2008). Therefore, antioxidants could be used to
minimize mycotoxin production, but their impact on the anti-
fungal effect of AFPs is subject to further investigation.

The use of AFPs may raise additional concerns about pub-
lic health due to allergic reactions in atopic patients and con-
sumers. On one hand, fungi can cause sensitization and devel-
op asthma, with Aspergillus and Penicillium spp. among the
major sources of indoor mould allergies. In fact, allergenic
proteins from AFPs-producing species include seven demon-
strated allergens from A. niger (Asp n 14, 18, 25, 30,
glucoamylase, hemicellulose and pectinase), three from
N. fischeri (Neo fi 6, transaldolase and Cu/Zn superoxide dis-
mutase), two from Penicillium brevicompactum (Pen b 13 and
26), six from P. chrysogenum (Pen ch 13, 18, 20, 31, 33 and
35), ten from Penicillium citrinum (Pen c 1, 2, 3, 13, 18, 19,
22, 24, 30 and 32) and one from Penicillium nalgiovense (Pen
na 13) (Allergome 2016). On the other hand, the molecular
weight of all characterized allergenic proteins range from 11 to
105 kDa, being much larger than AFPs, and the route of ex-
posure described for these allergens is inhalation, with none
identified as food allergens so far.

In conclusion, the stability and inhibitory capability of
AFPs on toxigenic moulds make these proteins a valuable
strategy to prevent mould development and mycotoxin con-
tamination on foods. AFPs-producing moulds, such as
P. chrysogenum, have a long record of industrial use and the
toxicological information on AFPs is quite encouraging
(Szappanos et al. 2005; Palicz et al. 2013). To fully understand
the mechanism of action and resistance to AFPs, MS-based
proteomic analyses are providing insight into the pathways
affected and can inform on new promising targets for antifun-
gal activity. There is still work to be done to find adequate
combined treatments for calcium-rich products, but significant
steps have been taken to encourage the use of AFPs in dry-
ripened foods.
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