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Multivariate analysis of leaf shape patterns in Asian
species of the Uvaria group (Annonaceae)
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Multivariate analysis of leaf radian measurements was used to investigate variation in leaf shape among 34 Asian
species of the Uvaria group, a large palaeotropical group of climbing Annonaceae characterized by imbricate petals
and stellate hairs. Raw data were normalized by conversion into 15 ratio characters and using the log;, transfor-
mation. All species surveyed showed a unique leaf-shape ‘bauplan’. The ratio character with the greatest discrimi-
nating power in both the Principal Components Analysis and Discriminant Analysis (DA) results was a measure of
the shape of the leaf base. Ratio characters with the highest factor loadings for principal components 1 and 2 clearly
separated the sampled taxa when plotted against one another and provided support for the retention of several taxa
as distinct species or varieties. Classification of cases into taxa using DA yielded a correct classification rate of only
52% for the ratio-transformed data; however, division of taxa in the dataset into smaller subgroups defined by dis-
crete morphological characters significantly increased the accuracy of case identification to between 67 and 100% of
cases correctly classified, depending on the group. Case identification using DA on log;,-transformed data was higher
than for the ratio values in the entire dataset (61.7%) and the larger subgroups. However, the rate of correct case
assignment was lower in the smaller groups than for the ratio data. © 2003 The Linnean Society of London, Botan-
ical Journal of the Linnean Society, 2003, 143, 231-242.

ADDITIONAL KEYWORDS: classification — key — liana — Magnoliales — palaeotropical — systematics —
taxonomy — variation.

INTRODUCTION Ciofani & Miramontes, 2002). Statistical analysis of
this type of data has revealed that it can be a powerful
key for taxonomic differentiation among species, pop-
ulations and hybrids across a broad systematic and
taxonomic spectrum, e.g. Aceraceae (Jensen et al.,
2002), Araceae (Ray, 1992), Asteraceae (Hod4dlovd &
Marhold, 1998), Fagaceae (Jensen et al., 1993), Notho-
fagaceae (Premoli, 1996), and Rosaceae (Parnell &
Needham, 1998; Rumpunen & Bartish, 2002).
Although the analysis of landmark data has become
a popular choice for leaf morphology studies (see
Jensen et al., 2002, for a recent review), analysis of
leaf measurement data using multivariate techniques
such as Principal Components Analysis (PCA; Sneath
& Sokal, 1973) is also employed successfully for the
investigation of taxonomic relationships (e.g. Premoli,
1996; Hod4alova & Marhold, 1998; Parnell & Needham,
1998; Clausing, Meyer & Renner, 2000). Canonical
*Corresponding author. E-mail: conor.v.meade@may.ie Discriminant Analysis (DA) is another powerful mul-

Leaf morphology has always played an important role
in plant taxonomy, particularly for identifying taxa in
which variation in floral structures is uninformative
(e.g. Quercus spp.) or in which flowering specimens are
infrequent owing to, for example, a limited flowering
season (Stace, 1989). However, the relative paucity of
informative leaf characters in many taxa means that
often the most effective way to characterize taxonomic
variation is to sample extensively a set of landmarks
or other measures of leaf shape and so generate an
accurate numerical representation of the leaf types in
each sample (Dickinson, Parker & Strauss, 1987,
Stace, 1989; Marcus, 1990; Marcus, Bello & Garcia-
Valdecasas, 1993; McLellan & Endler, 1998; Jensen,
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tivariate method, which uses patterns of variation in
multidimensional space as a basis for defining and dis-
tinguishing among taxonomic groups, providing mea-
sures of group coherence and probability of group
membership for individual cases. Raw data are
unsuitable for these parametric analyses when it is
not normally distributed, and a transformation such
as Inx or log;ox is generally used to give the data a nor-
mal spread — although any transformation that nor-
malizes the data is in theory acceptable (Sokal &
Rohlf, 1981).

One such transformation is the conversion of raw
data into ratios. Some authors have argued that ratios
in themselves are not reliable summaries of variation
because they can compound recording error (Sokal &
Rohlf, 1981) and do not completely factor out size
(Bookstein et al., 1985). However, ratios can conve-
niently summarize data where, for example, the rela-
tionships between a set of characters and one other
character are of interest over and above the relation-
ship among all the characters simultaneously, such as
is the case when analysing shape patterns that might
be of use in taxonomic keys. Furthermore, when the
analysis is complete, ratio characters with a high cor-
relation for the major summary axes in PCA can be
used to plot cases in a scatter diagram, thereby sepa-
rating cases along axes that are not too abstract from
reality, as can be the case with summary axes and, to
an extent, logarithmic transformations.

There have been some investigations of leaf shape in
the Annonaceae aside from the general descriptions of
leaf morphology presented in taxonomic accounts.
Jovet-Ast (1942) and van Setten & Koek-Noorman
(1986) studied the general anatomy and venation pat-
terns of annonaceous leaf types, and although taxon
identification using leaf morphology is possible based
on the findings of this work, both studies were largely
descriptive and did not include any comparative or
statistical analysis of leaf shape. More recent system-
atic work by van Zuilen, Koek-Noorman & Maas
(1995) and Chatrou (1997) have included a more rig-
orous analysis of leaf morphology — the first covering a
phylogenetic investigation of 60 species of the neotro-
pical genus Duguetia, the latter focusing on four spe-
cies of Malmea in Central America. Although both of
these latter studies used clustering algorithms to dif-
ferentiate among samples, the categorical scoring
used for all characters in the Duguetia analysis was
unsuccessful and yielded a poorly resolved phylogeny
as a result (with a consistency index score of 0.112).
Chatrou’s (1997) study of Malmea included nine leaf
shape characters from a total sample of 53 morpholog-
ical characters, and these were recorded either as
binary scores (six characters), raw length measures
(two characters) or as a ratio (one character). Leaf
shape characters occupied a central position in the

reclassification of the taxonomic group that emerged
from the study: a new subspecies was identified
largely using leaf shape characters; and overall four of
the ten most important clustering characters were
related to leaf shape, with length-to-width ratio and
the shape of the leaf base being the two most
important.

The contrasting results of these two studies are ech-
oed in results presented by Meade et al. (2002), which
suggest that leaf characters display a high degree of
homoplasy and must be treated with care in any phy-
logenetic analysis (as is the case with a large propor-
tion of floral and fruit characters in the Annonaceae:
van Heusden, 1992; Kessler, 1993; Doyle & Le Tho-
mas, 1996). At the same time, however, Chatrou (1997)
demonstrates that the morphological variation
present in leaf characters is extremely useful for elu-
cidating taxonomic relationships, particularly among
closely related taxa.

This current work stems from a revision of the
Uvaria group in continental Asia (Meade, 2000).
Uvaria L. is the second largest palaeotropical genus in
the Annonaceae and includes approximately 150 spe-
cies (Kessler, 1993; Meade, 2000). All Uvaria species
are climbers and are typically found in lowland per-
humid tropical forest, although certain taxa are com-
mon in riverine and montane forest habitats also. The
climbing habit in Uvaria is facilitated by backward
orientated twining branchlets (Fig. 1A), and the genus
can be readily distinguished from most other Annon-
aceae by the combined presence of stellate hairs,
many-seeded apocarpous fruits and an imbricate peri-
anth. Several genera share these characters and
together these form the Uvaria group: Cyathostemma,
Rauwenhoffia, Ellipeiopsis, Ellipeia and Anomianthus
(all in continental Asia), Tetrapetalum (in Malesia),
and Balonga and Afroguatteria in Africa (van Heus-
den, 1992; van Setten & Koek-Noorman, 1992;
Kessler, 1993; Meade, 2000). Ellipeiopsis is unique in
the group in having an exclusively shrubby habit.

Presently there is a reliable array of discrete char-
acter differences that can be used to differentiate
between taxa in the Uvaria group; however, a common
problem (as with Annonaceae material in general) is
that a large number of duplicate sterile sheets are cre-
ated for each flowering or fruiting specimen, leading to
a situation in which many herbaria have sterile dupli-
cates received on exchange. In the absence of adequate
labelling or an updated collectors’ database, most of
these specimens cannot be identified with any degree
of certainty by the non-specialist, short of assigning
them to Uvaria if they have stellate ferruginous hairs.

It was evident from early phases of this revision
work that leaf shape variation was consistent enough
to allow taxonomic identification of many species
based on leaf shape alone: for example, Uvaria narum
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Figure 1. Selection of species illustrating the variation in
shape in the Uvaria group. A. Uvaria narum (Dunal) Bl
Flowering shoot with leaf habit showing acute base and
acuminate apex. B. Uvaria sp. 2. Lanceolate leaf habit with
narrowly cordate base and acute apex. C. Uvaria paucio-
vulata Hook. F. & Thoms. Ovate-acute leaf habit showing
broadly cordate base and shortly acute apex.

(Dunal) BIl. (Fig. 1A), Uvaria sp. 2 (Fig. 1B), and
Uvaria pauciovulata Hook. F. & Thoms (Fig. 1C).
However, much of this differentiation was based on
loose descriptive terms rather than any statistically
robust methodology, and the criteria used for identify-
ing differences becomes largely redundant among
closely related taxa. The goal of the work presented
here was to develop a method for taxon identification
using leaf shape, and three specific goals were set for
the analysis: (i) identification of the most variable leaf
shape characters; (ii) developing the most effective
method for identifying sterile specimens using leaf
shape data; and (iii) identification of leaf shape ‘bau-
plan’ for each taxon.

MATERIAL AND METHODS

SAMPLING AND DATA COLLECTION

Leaf shape measurements were made using an over-
lay protractor with 17 radians spanning 180° around a

Leaf base

Leaf apex

Figure 2. Leaf overlay protractor used to generate leaf
shape data. Sixteen radians are indicated, with one further
radian measurement (L) calculated by adding L, and L.
The leaf centroid (Z) is also indicated.

central point, a method used by Dickinson et al. (1987)
and Premoli (1996). The central point corresponds to
the leaf centroid at the intersection of the midrib with
the diagonal across the widest point of the leaf (Fig. 2).
The radians were designed to intersect the leaf margin
at a frequency correlated with the extent of curvature
at that point — therefore the leaf base and leaf apex are
intersected by radians at closer intervals than the
medial portion of the leaf margin. As the leaves of
Uvaria group taxa are symmetrical, measurements
were made on one half of the upper blade only.

A total of 349 sheets (one leaf per sheet) were mea-
sured for the analyses, representing five genera and
34 taxa in the Uvaria group, and an average of 10.15
cases per taxon (Table 1). For the lesser collected spe-
cies all available material was sampled, which in some
cases amounted to the type specimen only. For certain
other taxa in the sample a much higher than average
number of cases were studied, and this is an artefact
of additional sampling carried out for a related study
on morphological variation in floral and fruit structure
in these species. All sample measurements were taken
from flowering or fruiting sheets where taxon identi-
fication was unambiguous, and leaves were measured
from either flowering or non-flowering branches.

DATA ANALYSIS

Data-normalization for multivariate analysis was
achieved by conversion of measurements into ratios
(Table 2) and using the log;, transformation. For the
ratio transformations, the radians for the basal and
apical portions of the leaf were divided by the length of
the basal (L;) and apical (Ly) midrib radians, respec-
tively, thereby providing an estimate of leaf margin
curve at these points. Values greater than 1 indicate a
cordate/obcordate curve, whereas values less than 1
indicate a cuneate/acuminate curve. Overall leaf
length along the midrib (L) was divided by the basal
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Table 1. Number of samples measured per species

Table 2. Leaf character measurements and ratio transfor-
mations used in multivariate analysis. a—q and L, and L,

Taxon Sample size represent leaf radians

Anomianthus dulcis (Dunal) Sinclair 13 Ratio
Cyathostemma argenteum (Bl.) Sincl. 4 Abbreviation Measurement transformation
C. micranthum (Hook. f. & Thoms.) Sinclair 13

C. wrayii King 1 L Overall length of leaf  L/L,
Ellipeiopsis cherrevensis (Pierre ex Finet & 6 L, Length from base of

Gagnep.) R. E. Fr. midrib to widest

E. ferruginea (Buch.-Ham. ex Hook. f. & 5 point

Thoms.) R. E. Fr. L, Length from widest

Rauwenhoffia siamensis Craib 9 point to midrib

Uvaria boniana Finet & Gagnep. 7 apex

U. calamistrata Hance 6 M Width of leaf at LM

U. cordata (Dunal) Alston 21 widest point

U. curtisii King 13 a Length of radian a a/L4

U. dac Pierre ex. Finet & Gagnep. 16 b Length of radian b b/L,

U. flexuosa Jovet-Ast 1 c Length of radian ¢ c/L,

U. grandiflora Roxb. ex Hornem. 13 d Length of radian d d/Ly

U. hahnii Finet & Gagnep. 10 e Length of radian e e/L,

U. hamiltonii Hook. f. & Thoms. 13 f Length of radian f f/Ly

U. hirsuta Jack. 14 g Length of radian g g/L,

U. lamponga Scheff. 4 h Length of radian A h/L,

U. lobbiana Hook. f. & Thoms. 14 k Length of radian & k/Ly

U. lurida Hook. f. & Thoms. 25 n Length of radian n n/L,

U. maclurei Diels 5 o Length of radian o o/L,

U. macropoda Hook. f. & Thoms. 16 D Length of radian p p/L,

U. microcarpa Champ. ex. Benth 18 q Length of radian ¢ q/L,

U. narum (Dunal) Bl. 19

U. pauciovulata Hook. f. & Thoms. 12

U. pierrei Finet. & Gagnep. 11

U. rufa Bl 18 ANALYSIS OF LEAF-SHAPE PATTERNS IN THE ENTIRE
U. semi-carpifolia Hook. f. & Thoms. 10 DATASET

Uvaria sp. 1 1 Sampling and analysis of the entire dataset was
Uvaria sp. 2 5 approached in two ways for PCA. In the first approach,
U. sphenocarpa Hook. f. & Thoms. 4 all cases in the complete dataset were entered with no
U. timoriensis Bl. 3 a priori grouping, meaning that each taxon had
U to”ki”?’wis Finet & Gagnep. 3 between one and 25 entries, depending on sampling
U. zeylanica L. 16 frequency. This was designed to investigate patterns
Total ) 349 based on the total variation present in all cases in the
Mea? sample size 10.3 dataset. In the second approach mean ratio values
Median sample size 10.5

midrib radian (L;) to provide an estimate of the overall
ovate/obovate leaf shape. L was also divided by the
leaf width (M) to determine the relative breadth of the
overall leaf shape.

PCA and DA were used to summarize the patterns
evident in the dataset using SPSS 8.0 (SPSS Inc.,
1997). For PCA, cases with missing values were
excluded casewise, and components with a Kaiser—
Guttman score of 1 were regarded as significant. For
DA, prior probabilities for group membership were
computed from group sizes and characters were added
simultaneously.

were calculated a priori for each taxon so that only 34
values (i.e. for 34 taxa) were used. This was designed
to analyse differences between taxa based on the leaf
shape bauplan for each taxon.

For DA, all samples were entered for each taxon
with a priori grouping so that each had between one
and 25 entries, depending on sampling frequency, and
this facilitated construction of a multivariate model
for each taxon during the analysis.

ANALYSIS OF SUBGROUPS DEFINED BY DISCRETE
MORPHOLOGICAL CHARACTERS
Two methods were tried to increase the rate of suc-

cessful taxon classification using DA on the entire
dataset. The first involved removing the smaller sam-
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Table 3. Taxonomic sub-groups united by possession of discrete morphological characters

Margins
Group Semi-glabrous Hairs mixed Cuneate base Glabrous Veins > 20 hirsute Scabrid
Taxa U. argentea U. curtisii U. boniana U. boniana U. cordata U. curtisit  U. rufa
U. cordata U. dac U. calamistrata  U. lurida U. hamiltonii U. hirsuta  U. timoriensis
U. calamistrata U. grandiflora  U. flexuosa U. maclurei U. lamponga U sp. 2 U. sp. 2
U. flexuosa U. hamiltonii U. lurida U. macropoda  U. semecarpifolia
U. lamponga U. hirsuta U. macropoda U. tonkinensis
U. lobbiana U. sphenocarpa  U. micrantha
U. micrantha U. sp. 2 U. narum
U. microcarpa A. dulcis U. zeylanica

E. cherrevensis
E. ferruginea

U. narum

U. pierrei

U. semecarpifolia
U. wrayii

U. zeylanica

U sp. 1

E. pauciovulata
R. siamensis

Taxa are grouped according to discrete leaf characteristics. Semi-glabrous: upper blade typically glabrous with some hairs over
midrib; Hairs mixed: upper blade typically having simple and stellate hairs; Cuneate base: leaf base typically cuneate; Glabrous:
no hairs present on upper blade or midrib; Veins > 20, some leaves with more than 20 primary veins; Margins hirsute: leaves with
prominent stellate hairs on margin; Scabrid: hairs on upper blade scabrid to the touch. See text for discussion.

ples, including the unique samples, from the group so
as to increase the average sample size for each taxon
in the analysis; however, this reduced the success
rates for case classification. The second method
involved assigning taxa into subgroups based on dis-
crete leaf morphology characters and performing DA
on these smaller groups. This latter technique proved
much more effective and was selected as the optimal
method for subdividing the sample.

In total seven groups of taxa were identified from
the entire sample group using the following discrete
characters (Table 3): upper leaf blade semi-glabrous
(hairs persistent on midrib, deciduous elsewhere) —
‘semi-glabrous’; upper blade containing a mix of sim-
ple and stellate hairs — ‘hairs mixed’; leaf base cuneate
— ‘cuneate base’; upper surface entirely glabrous —
‘glabrous’; leaf veins greater than 20 in number —
‘veins > 20’; leaf margin hirsute — ‘margins hirsute’;
and hairs on upper surface scabrid to touch — ‘scabrid’.

RESULTS
MULTIVARIATE ANALYSIS OF LEAF SHAPE VARIABILITY

Ratio-transformed data

Table 4 describes the results for PCA using sampling
approach 1 (all cases in the dataset entered with no a
priori grouping) and sampling approach 2 (mean
taxon ratio values derived from a priori single-taxon
groups), as well as the DA results (all cases in the
dataset entered with a priori grouping).

Inboth the PCA analyses and the DA analysis of ratio
values, leaf character ¢/L, emerges as highly correlated
with the major summary axis. As a result, taxa with cor-
date leafbases tend to score highly on Component 1 and
Function 1 reflecting a ¢/L; score close to 1.0, whereas
those with cuneate or narrowly retuse bases and c¢/L;
scores much less than 1.0 tend to have low scores.

To illustrate the patterns identified in the multi-
variate analyses, two figures are included that plot
taxon scores for the ratio measurements most strongly
correlated with the PCA summary axes. The first, Fig-
ure 3, shows a scatter plot generated using mean
taxon scores for ¢/L; and L/L,, the characters most
closely associated with principal components 1 and 2,
respectively, in Table 3. As ¢/L; is a summary of leaf
base shape, Figure 4 has been included showing a
scatter plot generated using mean taxon scores for p/
L,, a measure of leaf apex shape, and L/L;. Both of
these graphs also contain mean leaf outlines for spe-
cies with extreme values on the character axes.

Logy-transformed data

Component and Factor scores for PCA and DA of the
logio-transformed data are given in Table 4. PCA
yielded only one significant component for both the
total and the mean taxon value datasets. e and g
emerge as the characters most strongly associated
with the principal component in the analysis of the
entire dataset, whereas e and o are most strongly cor-
related with component 1 in the analysis of mean
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236 C. MEADE and J. PARNELL

Table 4. Multivariate analysis of variation in leaf shape in the Uvaria group — component/factor scores from Principal
Components Analysis and Discriminant Analysis of total leaf radian dataset. See text for discussion

% cases
correctly

Sample Cases assigned (DA)

Component
(PCA)* % of
Factor (DA) Eigenvalue Variance characters Correlation

Correlated

Principal Components Analysis
Total dataset 349  Ratio values

logy values

Mean taxon values 34 Ratio values

logy values

Discriminant Analysis

Total dataset 349 Ratio values 52.0

logy, values 61.7

8.83 55.18  e/L,, d/L, 091
¢/Ly 0.90
3.45 2157  LIL 0.84
p/Ly -0.67
15.64 92.01 e 0.98
L, 0.97
10.09 6725 /L, 0.96
d/L, 0.94
2.77 1844  L/L, 0.85
p/L, -0.58
16.05 94.44 e 0.99
0 0.98
3.20 3560  c¢/L,b/L;  0.62
k/Ly, n/L,  0.59
1.78 19.90  g/L, 0.47
AL, 0.38
3.39 3890 M 0.78
h 0.74
1.60 1830 L, 0.32
kM 0.28

*Significant components based on Kaiser—Gutman criteria.

taxon values. M and L, are most strongly correlated
with Discriminant Functions 1 and 2, respectively, in
the analysis of the entire dataset.

ANALYSIS OF TAXONOMIC SUBGROUPS

Ratio-transformed data

The highest classification rates using DA for the ratio-
transformed data were achieved for the smaller
groups, with the scabrid group (three taxa, 23 cases)
and the veins > 20 group (four taxa, 49 cases), both
facilitating a 100% correct classification rate for cases
in the analysis (Table 5, Fig. 5). The largest group,
semi-glabrous (16 taxa, 161 cases), had a success rate
of 77%, significantly higher than the score for the
entire dataset (52%, Table 3). The lowest success rate,
67.9%, was generated for the cuneate base group.

Log y-transformed data

Table 5 includes a comparison of the classification
rates for the log,o- and ratio-transformed data. Higher
levels of correct classification are seen in the DA anal-
ysis of log;, values for the two larger groups: semi-gla-

brous yielded 83.9% of cases correctly classified and
hairs mixed yielded 72.6% (vs. 77 and 70.8%, respec-
tively, for the ratio-transformed data). The lowest clas-
sification rate is seen for the glabrous group, with only
55.9% of cases correctly assigned.

LEAF SHAPE BAUPLAN FOR EACH TAXON

Appendix 1 shows mean leaf shape outlines (bauplan)
for each taxon included in the analysis. The radian
scores for each bauplan are calculated as the mean
untransformed distance values for that radian in each
taxon sample. Taxa are arranged according to their
assigned leaf type subgroups.

DISCUSSION

LEAF-SHAPE PATTERNS IN THE UVARIA GROUP
In both the PCA and the DA analysis of ratio leaf char-
acters for the total dataset, character ¢/L, emerges as
highly correlated with the major summary axis
(Table 4). The first six leaf ratios (a—f/L;, including
¢/L,) were designed to summarize the shape of the leaf
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1. A. dulcis 13. U. flexuosa 25. U. pauciovulata
2. C. argenteum 14. U. grandiflora 26. U. pierrei
3. C. micranthum 15. U. hahnit 27. U. rufa )
4. C. wrayi 16. U. hamiltonii 28. U. semecarpifolia
5. E. cherrevensis 17. U. hirsuta 29.U.spl
6. E. ferruginea 18. U. lamponga 30. U. sp2
7. R. siamensis 19. U. lobbiana 31. U. sphenocarpa
8. U. boniana 20. U. lurida 32. U. timoriensis
9. U. calamistrata 21. U. maclurei 33. U. tonkinensis
10. U. cordata 22. U. macropoda 34. U. zeylanica
11. U. curtisii 23. U. microcarpa
12. U. dac 24. U. narum

Figure 3. Taxon scores for the characters most closely
associated with components 1 (¢/L,) and 2 (L/L,) in Princi-
pal Components Analysis of mean leaf ratio values. L/L,
represents the position of the widest point of the leaf along
the midrib, distinguishing ovate leaves (towards the top of
the plot) from obovate leaves (towards the bottom). ¢/L,
represents the extent to which the leaf base is cuneate (to
the left), retuse (centre), or cordate (to the right). Leaf
outlines represent the mean shape (independent of size) for
the adjacent taxon in bold type. Identification numbers for
taxa are shown below.

base in each sample, and these results indicate that
¢/L4, and to a lesser extent b/L,, d/L,, and e/L,, contain
the greatest variation of values and carry the greatest
discriminating power of these leaf-base values.

PCA of the complete and mean value datasets iden-
tify L/L, as the character most strongly correlated
with function 2 (Table 4), whereas DA identifies g/L.
The inference here is that whereas g/L; accounts for a
significant amount of variation uncorrelated with ¢/L,
it also has a significant discriminating power. L/L,, by
contrast, accounts for a larger proportion of the vari-
ation uncorrelated with ¢/L;, but much of that varia-
tion occurs within individual taxa and so it has a
weaker discriminating power.

Plotting ¢/L, and L/L, values provides a clear sepa-
ration of taxa according to leaf base and ovate/obo-
vate shape, respectively (Fig. 3). However, leaf apex
scores such as p/L,, which have a lower correlation
score with the principal summary axes, also separate
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1. A. dulcis 13. U. flexuosa 25. U. pauciovulata
2. C. argenteum 14. U. irandiﬂora 26. U. pierrei
3. C. micranthum 15. U. hahnii 27. U. rufa
4. C. wrayi 16. U. hamiltonii 28. U. semecarpifolia
5. E. cherrevensis 17. U. hirsuta 29. U.spl
6. E. ferruginea 18. U. lamponga 30. U. sp2
7. R. siamensis 19. U. lobbiana 31. U. sphenocarpa
8. U. boniana 20. U. lurida 32. U. timoriensis
9. U. calamistrata 21. U. maclurei 33. U. tonkinensis
10. U. cordata 22. U. macropoda 34. U. zeylanica
11. U. curtisii 23. U. microcarpa
12. U. dac 24. U. narum

Figure 4. Taxon scores for characters L/L, and p/L,. L/L,
represents the position of the widest point of the leaf along
the midrib, distinguishing ovate leaves (towards the top of
the plot) from obovate leaves (towards the bottom). p/L,
represents the extent to which the leaf apex is acuminate
(to the left), acute (centre), or obtuse (to the right). Leaf
outlines represent the mean shape (independent of size) for
the adjacent taxon in bold type. Identification numbers for
taxa are shown below.

taxa when plotted against L/L, (Fig. 4). In summary,
sampling of the entire dataset provides a useful guide
to character variation within the sample taxon group,
but it is less valuable as a means for discriminating
between taxa.

ANALYSIS OF TAXONOMIC SUBGROUPS

The division of taxa into seven subgroups greatly
increased the accuracy of DA classification against
that seen for analysis of the entire dataset (Tables 4,
5) for both ratio and log,o-transformed data. This trend
might be expected given the higher character to case
ratio present in smaller groups. However, a significant
additional factor is the taxonomic composition of the
groups. For example, the margins hirsute group con-
tains three taxa and 33 cases and scores 84.8 and
93.9% correct classification for log,, and ratio values,
respectively, whereas the veins > 20 group, with four
taxa and 49 cases, scores 100% for both data types.
Equally, the largest group, semi-glabrous (16 taxa, 161
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Table 5. Multivariate analysis of variation in leaf shape in the Uvaria group — Discriminant Analysis of taxonomic

subgroups

% cases correctly

classified
No Ratio (log1o % of Correlated
Taxonomic group of taxa Cases values values) Factor Eigenvalue variance characters Correlation
Semi-glabrous 16 161 77.0 (83.9) 1 5.69 45.10 a/Ly 0.64
2 3.20 25.30 g/L, —-0.63
Hairs mixed 11 113 70.8 (72.6) 1 3.55 51.90 h/L, 0.70
2 0.88 12.80 a/L, 0.63
Cuneate base 8 106 67.9 (62.3) 1 1.58 40.00 g/L1 0.48
2 1.11 28.10 o/L, 0.30
Glabrous 5 60 81.7 (55.9) 1 1.40 56.00 p/L, 0.33
2 0.73 29.00 h/L, 0.49
Veins > 20 4 49 100.0 (100) 1 7.24 52.30 e/L, -0.45
2 4.48 32.40 a/L, 0.44
Margins hirsute 3 33 93.9 (84.8) 1 3.75 74.20 b/L, 0.37
2 1.31 25.80 alL, 0.50
Scabrid 3 23 100.0 (91.3) 1 8.83 83.90 b/L, 0.21
2 1.70 16.10 b/L, 0.39
A. Scabrid group B. Veins > 20 group
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Figure 5. Discriminant analysis of taxonomic subgroups. Scatter plots with cases using Discriminant Function 1 and 2

scores. A. Scabrid. B. Veins > 20 group.

cases, 83.9 and 77% correct classification, respectively,
for log,, and ratio data), scores higher than the second
largest group, hairs mixed (11 taxa, 113 cases, 72.6

and 70.8% correct classification).

Although taxon-specific clustering of cases on the
DA scatterplots increases with higher correct classifi-
cation rates, it is only when the correct classification
level approaches 100% that unambiguous classifica-
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tion of all cases becomes possible (Fig. 5). Below this
level only a subset of taxa within each group are
clearly defined when plotted together — limiting the
extent to which new sample cases could be unambig-
uously assigned to one taxon or another.

Appendix 1 presents the leaf bauplan outlines for
each taxon according to the taxonomic subgroup they
are assigned to. Some of the groups include taxa with
very different leaf shapes, e.g. veins > 20 and scabrid,
and the DA classification scores obviously benefit from
these clear differences. In other groups such as the
cuneate base group the differences between taxa are
less clear, and this similarity reflects the generally
closer phylogenetic and morphological relationship
among the taxa in this group (Meade, 2000). For exam-
ple, Uvaria narum, U. lurida and U. macropoda show
enough morphological intergradation to suggest that
hybridization may take place along contact zones
between the species in India and Sri Lanka, and they
may even represent localized elements within a single
species unit.

Other analyses of the Annonaceae indicate that
morphological characters quickly become homoplasic
(i.e. phylogenetically discordant) if sampled over too
large a range of taxa (Doyle & Le Thomas, 1994, 1996;
van Zuilen et al., 1995). However, the present study
has shown that this pattern can be exploited for tax-
onomic purposes where several taxa from different
phylogenetic lineages are placed into a single taxo-
nomic group based on a superficially similar character
— such as vein number, hair density or texture. This
groups together taxa that in other respects are quite
dissimilar. As such, it has proven convenient in this
investigation to define part of the leaf-shape key on
the basis of characters that are similar by convergence
rather than by common ancestry, thereby grouping
together taxa that have quite different leaf shapes
(e.g. Fig. 5B, Appendix 1 — veins > 20).

Whereas the overall probability of confidently class-
ifying a specimen is largely dependent on whether it
belongs to one of the smaller groups, or whether it has
an unusual shape overall, using the combined approach
of the subgroup key and the bauplan images maximizes
the use of available leaf shape information and provides
a new key for leaf types in the Uvaria group.

CLASSIFICATION SUCCESS OF RATIO
TRANSFORMATIONS VS. LOG;y TRANSFORMATIONS

As mentioned in the Introduction, the argument for
using ratio transformations in this analysis is rooted
in the desire to create taxonomically meaningful dis-
tinctions among taxa that can be easily visualized in a
two-dimensional plot. Clearly it is also important that
these transformations do not obscure the variation
present in the untransformed data. In order to assess

the effect of ratio transformations in relation to a stan-
dard transformation method, DA was carried out on
the log,, values of all radian measurements for the
taxa in the main dataset and in each subgroup
(Tables 3, 4). As shown in Table 5, the trend in suc-
cessful case identification using DA was quite similar
in both transformed datasets, with successful case
assignment increasing with smaller group sizes. The
log;, data generated the highest rate of correct classi-
fication in the larger groups, and the gap between the
two transformation methods increases with larger
group size. However, in the smaller groups the situa-
tion is reversed, with the ratio data facilitating higher
rates of correct classification. One possible explana-
tion for this trend lies in the normalizing effect of the
two transformations.

In general, the log,, transformation produced a
more normalized distribution of data in all characters
than did the ratio conversions (data not shown), and
this resulted in a more even spread in the data, par-
ticularly in the larger datasets. Conversely, in the
ratio-transformed data, in which taxa show a higher
number of outliers, cases are less prone to being mis-
classified into adjacent groups when the dataset (and
number of alternative groups) is much reduced in size.

An additional factor may be that the ratio transfor-
mations emphasize the differences among taxa in a
very particular way. Where taxa show differences in
terms of leaf base and leaf apex shape but not in the
medial radians of the leaf (such as in the glabrous
group, Appendix 1), analysis of the ratio-transformed
data will emphasize this difference because of the
relationship among all the radians and either L, or L,
(Table 1, Fig.2). However, where taxa show differ-
ences in the medial portions of the leaf they will be
better separated in analysis of the log,-transformed
data because this variation is not obscured by any cor-
relation between the radian measurements and L, or
L, (e.g. the hairs mixed group).

TAXONOMIC FINDINGS

These results provide new data for resolving taxo-
nomic relationships within the Uvaria group, particu-
larly between taxa that have proven difficult to
separate using phylogenetic techniques. The leaf
types of Ellipeiopsis ferruginea and E. cherrevensis
(Pierre ex Finet & Gagnep.) R. E. Fries are clearly
separated in the plots produced in the analysis
(Figs 3, 4). Taxonomic analysis of floral and fruit
structures by Meade (2000) suggested that these may
be the same taxon; however, the results presented
here establish that the leaf type of E. cherrevensis is
distinctive. Combined with the separate distributions
of the two taxa, there seems sufficient support for the
retention of E. cherrevensis as a variety of
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E. ferruginea. A second significant result is the differ-
ence between the leaves of Uvaria cordata and
U. microcarpa Champ. ex Benth. (Figs 3, 4). Whereas
these two taxa can be easily distinguished from one
another based on fruit morphology, the flowers of both
species are quite similar and difficult to distinguish.
The differences in leaf shape identified here, com-
bined with the discrete difference in vein number
(U. cordata is assigned to the veins > 20 group) should
provide a more secure basis for distinction between
the two species.

Another useful distinction is between U. hamiltonii
Hook. f. & Thoms. and a new undescribed species
from Indochina, Uvaria sp. 2. These taxa are clearly
separated on the basis of fruit structure, although the
leaves of the two initially appear quite similar. How-
ever, they are clearly separated from one another in
Figures 3 and 4, and also differ through a discrete
difference in vein number (U. hamiltonii is assigned
to the veins > 20 group). Another useful finding is the
difference between U. rufa Bl. and U. timoriensis BI.
Meade (2000) highlighted that differentiating
between the type material of these two species is diff-
icult, particularly given the many similarities in flo-
ral structure; however, the results presented here
clearly separate the two on the basis of leaf shape
and support their retention as separate species
(Fig. 5A).

ECOLOGICAL CORRELATIONS

Although variation in leaf shape has proven useful for
discriminating between taxa in the Uvaria group, eco-
logical patterns from the same data are much less
clear. Smaller leaf size and modification of the leaf
cuticle and indument are correlated with adaptation
for reduction of water stress in plants (Givnish, 1979;
Sandquist & Ehleringer, 1997), and all of these strat-
egies are utilized by Uvaria group taxa. In general,
large leaves or (semi-) glabrous leaves (such as those
seen in U. semecarpifolia and U. lurida, respectively)
are most common in wet-habitat taxa, whereas
densely hairy or, to a lesser extent, small leaves (such
as those seen in Ellipeiopsis ferruginea and
U. zeylanica, respectively) are common in taxa that
tend to occupy more open, dry-soil habitats. Ecologi-
cally adaptable taxa such as U. cordata show large
variation in leaf size and indument, with specimens
from drier areas having smaller, more densely hairy
leaves, whereas those from well-watered sites have
much larger leaves with more sparse hairs.

However, aside from indument and leaf size, the
patterns in leaf shape identified in this study show lit-
tle correlation with the habitat preferences of partic-
ular taxa. Most taxa with cuneate glabrous leaves are
restricted to well-watered soils, but U. zeylanica is

typically found in drier sites such as sand dunes. Taxa
with cordate hairy leaves are also common in wet for-
est habitats, although many do better in drier habi-
tats, e.g. Ellipeiopsis ferruginea, E. cherrevensis,
Anomianthis dulcis and Uvaria rufa.

Although ecological factors have probably played a
role in the evolution of different leaf types in the
Uvaria group, the nature of this relationship is
unclear from the data presented in this study.

CONCLUSION

Although most taxa could be clearly separated using
multivariate analysis of data generated using the leaf
radians technique, certain taxa were shown to have
very similar leaf shape types. As a result, discrimi-
nant analysis of all the taxa together yielded a rela-
tively low rate of correct -classification, with
unambiguous assignment of cases to taxa within
these clusters of similar leaf shape types proving
quite difficult. As shown in Table 3, only 52% of cases
were assigned to their correct taxon when the entire
ratio-transformed dataset was analysed simulta-
neously. However, the division of taxa into subgroups
defined by discrete leaf morphology characters
greatly improved the rate of correct classifications
using DA, with some groups showing a correct classi-
fication rate of 100%. However, the overall benefit of
using ratios for the purposes of visualizing taxonomic
differences is to an extent offset by the sampling bias
of the ratios themselves — variation in the medial por-
tion of the leaf outline was much better analysed
using the log;,-transformed data, for example. Never-
theless, the selected ratio values facilitated a high
level of discrimination between taxa that differed in
terms of leaf base and leaf apex shape, and this dis-
crimination improved where taxonomic groups were
composed of phylogenetically distant taxa. Combined
with the use of leaf shape bauplan, this method
proved effective at identifying sterile specimens, and
we are confident that this combined method is the
most accurate yet described for identifying sterile
Annonaceae specimens.

Shape recognition is more or less an intuitive pro-
cedure for the botanist, so whereas many typical leaf
shapes can be distinguished from one another, it is
often unclear what is the basis for this differentiation.
By identifying the radians with greatest discrimina-
tory power (in the Uvaria group, at least), these
results focus the attention of the botanist on a few spe-
cific leaf-shape characters. With additional work, in
particular the creation of larger databases and the uti-
lization of digital imaging technology, leaf-shape anal-
ysis may become an invaluable aid for identifying the
many sterile Annonaceae specimens that exist in
herbaria.
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APPENDIX 1

Mean leaf shape outlines for 34 Uvaria group taxa. A. Semi-glabrous group. B. Hairs mixed group. C. Cuneate base group.
D. Glabrous group. E. Veins > 20 group. F. Margins hirsute group. G. Scabrid group
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