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Abstract: Hyperspectral and multispectral imagery have been demonstrated to have a considerable
potential for near real-time monitoring and mapping of grass quality indicators. The objective of this
study was to evaluate the efficiency of remote sensing techniques for quantification of aboveground
grass biomass (BM) and crude protein (CP) in a temperate European climate such as Ireland. The
experiment was conducted on 64 plots and 53 paddocks with varying quantities of nitrogen applied.
Hyperspectral imagery (HSI) and multispectral imagery (MSI) were analyzed to develop the prediction
models. The MSI data used in this study were captured using an unmanned aircraft vehicle (UAV)
and the satellite Sentinel-2, while the HSI data were obtained using a handheld hyperspectral camera.
The prediction models were developed using partial least squares regression (PLSR) and stepwise
multi-linear regression (MLR). Eventually, the spatial distribution of grass biomass over plots and
paddocks was mapped to assess the within-field variability of grass quality metrics. An excellent
accuracy was achieved for the prediction of BM and CP using HSI (RPD > 2.5 and R2 > 0.8), and a good
accuracy was obtained via MSI-UAV (2 < RPD < 2.5 and R2 > 0.7) for the grass quality indicators.
The accuracy of the models calculated using MSI-Sentinel-2 was reasonable for BM prediction and
insufficient for CP estimation. The red-edge range of the wavelengths showed the maximum impact
on the predictability of grass BM, and the NIR range had the greatest influence on the estimation
of grass CP. Both the PLSR and MLR techniques were found to be sufficiently robust for spectral
modelling of aboveground BM and CP. The PLSR yielded a slightly better model than MLR. This
study suggested that remote sensing techniques can be used as a rapid and reliable approach for near
real-time quantitative assessment of fresh grass quality under a temperate European climate.

Keywords: hyperspectral; multispectral; fertilization; grass biomass; crude protein

1. Introduction

Grasslands are the dominant land-cover type in Ireland and are the most productive agricultural
lands in the world [1–3]. Grassland management operations play an important role in the sustainability
of forage productivity [4,5]. The quality of grass consumed by livestock is an important parameter for
beef and dairy productivity. Grass quality can usually be measured and assessed by indicators such as
grass biomass [6], height [7], density, and crude protein [8]. Aboveground grass biomass, which is
usually measured as kilograms grass dry matter (DM) produced per hectare (kg DM ha−1) and crude
protein (g kg−1 DM), are considered important indicators for assessing fresh grass quality (GQ) and
the efficiency of fertilization management systems during the growing season [9].
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High spatiotemporal variability is an important issue in monitoring and managing GQ [10].
The differences in soil, topography, weather conditions, species composition, and management
practices are the main reasons for GQ variation during the growing season [11,12]. To account for
these variations, a large quantity of seasonal data is usually required for evaluating and mapping GQ
indicators. Well-established methodologies for assessing GQ indicators include wet chemistry and
laboratory-based methods, which are laborious, time-consuming, and expensive [13]. On the other hand,
point spectroscopic techniques have been reported in the literature as rapid tools for monitoring GQ
(e.g., [11,13,14]), but these techniques remain relatively expensive and require considerable expertise [15].
Accordingly, developing a non-destructive, rapid, and reliable approach for spatiotemporal modelling
of fresh grass quantity and quality would make a substantial contribution to sustainable grassland
management practices.

Over the past three decades, imagery and remote sensing techniques have been reported to be an
effective alternative to the conventional field and laboratory analyses [16,17]. The assessment of GQ
can be carried out at different scales from global and regional to farm and individual paddocks [1].
Depending on the selected spatial scales, airborne optical sensors with specific spectral characteristics
can be used for reliable prediction of grass growth parameters. Although higher-level satellite images
are useful for evaluating large areas, their spatial resolution is often too coarse for more precise
estimation of GQ attributes owing to the smaller spatial size of grassland paddocks [18]. For a farm
scale assessment of GQ during a typical growing season, high spatiotemporal resolution is essential to
detect within-field variations [19]. Cloud cover and atmospheric noise can hamper and significantly
impact the wider usefulness of satellite imagery, particularly in a temperate maritime climate such
as Ireland. Atmospheric corrections and the use of unmanned aircraft vehicle (UAV) imagery have
been suggested as routine approaches to cope with these issues [20]. Visible (VIS) and near infrared
(NIR) spectra have been demonstrated to have a significant correlation with certain plant growth
attributes [21]. The vegetation spectral signatures of photosynthetic pigments in the VIS range and the
absorbance spectra of water, nitrogen concentration, and protein in the NIR range can be associated
with the spectral predictability of plant vitality indicators [22]. In addition to the specific spectral
bands, several spectral indices have been suggested as practical indices for quantification of plant
biophysical attributes such as the normalized difference vegetation index (NDVI), normalized difference
red-edge (NDRE), and chlorophyll index (CI) [2,23]. Spectral indices can reduce the background noise
and enhance the accuracy of prediction models [23,24]. A broad range of spectral bands acquired
using different remote sensing systems, particularly hyperspectral images, can help to identify the
useful wavelength ranges for predicting GQ indicators and to improve the accuracy of spectral
models substantially.

The combination of multispectral and hyperspectral remote sensing imagery with in situ analysis
and local knowledge provides a valuable framework for evaluating the impact of management
operations on grass characteristics and to monitor the variation of biomass (BM) and crude protein
(CP) over a period of time [25,26]. The application of hyperspectral data can significantly improve the
accuracy of prediction models related to plant studies [27]. A larger number of narrow wavelength
bandwidths, covering a wider spectral range, recorded by hyperspectral sensors provide a better
opportunity for estimating grass parameters [28]. Recent developments in airborne and space-borne
remote sensing along with improvements in the image quality in terms of spatial, spectral, temporal,
and radiometric resolution have enabled more accurate prediction of plant attributes associated with
forage quality [26,29]. Despite the improved potential of remote sensing imagery for evaluating GQ,
the efficiency of these techniques for an accurate prediction of aboveground grass BM and CP as
important indicators of GQ remains unclear, and few studies have been reported on “grass-based
food security” [26]. A comprehensive study on the efficiency of multispectral and hyperspectral data
captured using different remote sensing techniques (satellite, UAV, and fixed ground-based platform
imagery) is of particular interest in helping identify optimal wavelengths, robust modelling approaches,
and significant spectral indices for predicting and mapping fresh GQ indicators.
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Multivariate analyses have been reported as practical statistical approaches for spectral modelling
of plant biomass [30,31]. The partial least squares regression (PLSR) and stepwise multiple linear
regression (MLR) models are the most common regression techniques which have been reported as
practical approaches for spectral analyses [32,33]. The capability of these two techniques for predicting
fresh GQ indicators in the temperate maritime climate in Ireland was assessed in this study. The main
aim was to evaluate the efficiency of hyperspectral and multispectral (UAV and satellite) remote sensing
techniques for predicting and mapping grass BM and CP under conventional grassland management
in a temperate maritime climate. This aim was supported by two objectives: (a) to identify optimal
wavelengths and spectral indices for estimating grass BM and CP and (b) to determine the most
appropriate regression approach (stepwise MLR or PLSR) for developing prediction models. To the
best of our knowledge, the ability of different imaging sensor system configuration (UAV-based MSI,
satellite-based MSI, and fixed ground-based HSI) for capturing and mapping GQ in a temperate
maritime grassland environment, such as Ireland, has not been adequately researched.

2. Materials and Methods

2.1. Experimental Design

The study was conducted in Ireland during 2017 and 2018 (Figure 1, Moorepark TEAGASC
research center in Fermoy, Cork) where grassland plots and paddocks were chosen as a representative
sample of a typical Irish grassland management system. The soil in the study area is typically classified
as Grey–Brown Podzolic with a sandy loam texture. This region has an average precipitation of
1016.5 mm and mean monthly temperature values ranging from 5 ◦C to 20 ◦C. Field trials commenced
in early 2017 when 64 controlled plots (5 m × 1.25 m; Figure 2) along with 53 paddocks were selected
to measure grass BM and CP (Figure 1). The plots and paddocks were managed using different levels
of nitrogen applied resulting in variable grass growth and quality (Table 1). A mixture of clover
(Trifolium repens L.) and perennial ryegrass (Lolium perenne) (typically with a rate of 30% clover) was
identified as the dominant vegetation cover in the studied sites. Three imagery systems were employed
to assess the efficiency of remote sensing techniques for monitoring and mapping GQ indicators.
These imaging systems included a multi-spectral Sequoia sensor, a Bay Spec hyperspectral camera,
and Sentinel-2 images, where these systems produced three spectral datasets (presented in Table 2).
These spectral datasets consisted of multispectral imagery (MSI) captured using a UAV, hyperspectral
imagery (HSI), and Sentinel-2 multispectral imagery (MSI-Sentinel-2).

Table 1. The amount of nitrogen applied to the studied plots and paddocks annually.

Plots Paddocks

Plot ID N (kg/ha)
2017 2018

Paddock ID N (kg/ha) Paddock ID N (kg/ha)

1 (A, B, C, D) 0 2 (A, B, C, D, E, F) 225 37 (A) 150
2 (A, B, C, D) 244 3 (B, C) 250 37 (B) 100
3 (A, B, C, D) 0 4 (A, B, C) 250 37 (C) 250
4 (A, B, C, D) 244 9 (A, B, C, D) 225 38 (A) 250
5 (A, B, C, D) 480 10 (A, B, C, D, E, F) 225 38 (B) 100
6 (A, B, C, D) 480 11 (A, B, C, D, E, F) 250 38 (C) 150
7 (A, B, C, D) 119 12 (A, B) 225
8 (A, B, C, D) 119 20 (A, B, C) 265
9 (A, B, C, D) 0 21 (A, B, C) 265

10 (A, B, C, D) 480 42 (A, B, C) 265
11 (A, B, C, D) 480 43 (A, B, C) 265
12 (A, B, C, D) 244 44 (A, B, C) 250
13 (A, B, C, D) 119 45 (A, B, C) 250
14 (A, B, C, D) 244
15 (A, B, C, D) 119
16 (A, B, C, D) 0
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Table 2. Characteristics of spectral datasets.

Spectral
Datasets

Operation
Location Sensor Bands Resolution Wavelength Range

HIS 1 16 plots BaySpec 124 0.5 cm 450 to 950 nm

MSI 2-UAV 3 64 plots Sequoia 4 2.86 and 11.29 cm
B1 (550 nm), B2 (660 nm), B3 (735 nm),

B4 (790 nm)6 paddocks

MSI-Sentinel-2
47 paddocks

Sentinel-2 10 10 and 20 m

B2 (490 nm), B3 (560 nm), B4 (665 nm),
B5 (705 nm), B6 (740 nm), B7 (783 nm),

B8 (842 nm), B8a (865 nm),
B11 (1610 nm), B12 (2190 nm)

6 paddocks

1 HSI: hyperspectral imagery; 2 MSI: multispectral imagery; 3 UAV: unmanned aircraft vehicles.

 

Figure 1. Location of studied paddocks. The red boundary shows the paddocks studied in 2017 and 
the blue boundary illustrates the paddocks studied in 2018. 

Figure 2. Location of studied plots. The red boundary shows the plots used for the hyperspectral 
imagery (HSI) test and the black boundary shows the plots used for the multispectral imagery (MSI) 
test. 
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Figure 2. Location of studied plots. The red boundary shows the plots used for the hyperspectral
imagery (HSI) test and the black boundary shows the plots used for the multispectral imagery (MSI) test.
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2.2. Spectral Datasets

2.2.1. MSI-UAV Dataset

The UAV study was carried out on plots in 2017 (Figure 2) and data acquisition continued for the
growing season in 2018 on large-scale grazed paddocks (Figure 1, blue boundaries). The Sequoia sensor,
which has four multispectral bands (Table 2), was deployed on a rotary UAV to acquire multispectral
images on six dates; in 2017 (15 May, 12 June, 26 June, 24 July, 21 August, and 18 September) over
64 plots (1(A) to 16(D); Figure 2); and two dates in 2018 (20 April and 11 July) from six paddocks (37(A)
to 38(C); Figure 1). The UAV was operated manually due to the presence of nearby obstructions and
four flight lines were flown at a typical ground speed of 2 m/s over plots, resulting in 75% overlap
and imagery captured every 2 s. The UAV images over 64 studied plots (1(A) to 16(D), Figure 2) were
captured from 30 m above ground level and 120 m above ground level over the paddocks (37(A) to
38(C); Figure 1, blue boundary).

2.2.2. HSI Dataset

This dataset was captured on six dates in 2017 (15 May, 12 June, 26 June, 24 July, 21 August,
and 18 September) using a hyperspectral sensor (OCI-F-Imager), produced by BaySpec Inc., USA,
with 124 bands. The OCI imager is a “push-broom” sensor which records the images with a spectral
resolution of 4.03 nm between 450 to 950 nm wavelength range (Table 2). The hyperspectral camera
was attached to a hand-held mount, and the images were acquired one meter above the ground with
forty-five frames per second by an operator at walking pace. BaySpec’s SpecGrabber software (BaySpec,
Inc., USA) was used to control hyperspectral imager and to acquire HSI data. A white surface of Teflon
with 8 cm diameter was utilized to acquire the white reference image, and the dark reference image
was captured by covering the camera lens. These images were used to calibrate the intensity of the
raw image. Due to the 0.3 meter swath width (18◦ FOV) and the difficulty of image alignment for the
BaySpec imager, data were recorded over 16 plots (1(D) to 16(D), Figure 2, red boundary).

2.2.3. MSI-Sentinel-2 Dataset

The Sentinel-2 imagery (Level 2A products), which was either cloud-free or containing less than
30 percent cloud cover, were retrieved and downloaded in 2017 and 2018. Suitable Sentinel-2 data,
that had zero cloud cover, over the Moorepark test site, was selected for spectral modelling over
the following dates: 12 March 2017, 11 May 2017, 20 June 2017, 18 August 2017, and 7 November
2017, 21 April 2018, and 16 May 2018. Forty-seven paddocks in 2017 (Figure 1, red boundary)
and six paddocks in 2018 (Figure 1, blue boundary) were tested and assessed in order to develop
MSI-Sentinel-2 models.

2.3. Grass Sampling and Measurements

Grass sample cuttings were harvested from 64 plots (Figure 2) using an Etesia mechanical mower
(Etesia UK Ltd. Warwick, UK), where 4 cm of grass was cut from each plot. The samples were
weighed and analyzed for DM in Moorepark’s Grassland Laboratory, as described by McEvoy et al. [34].
One hundred grams of each grass subsample was weighed and oven dried at 60 ◦C for 48 h. The CP
was determined by a LECO FP-528 (Leco Corporation, St. Joseph, MI, USA) according to the method
990-03 published by the Association of Analytical Chemists [35]. The grass sample cuts collected over
plots were divided into two groups: one group of samples (G1, n = 84) for HSI modelling and the other
group (G2, n = 109) for MSI-UAV modelling. Grass samples were collected just after capturing HSI
and MSI-UAV images on each date detailed above.

Grass sampling over paddocks (Figure 1) was carried out at controlled reference points in each
paddock. The paddocks were sub-divided into 22.25 m × 50 m test areas using Open Source QGIS
2.18.16 software, prior to sampling, which utilized a random point generation tool. Reference points
(18/ha) were located in the field using a Trimble Catalyst GPS receiver (Trimble Inc., Sunnyvale, CA,
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USA) with a positional accuracy of ±30 cm. Grass cuts were taken and assessed in the laboratory for
measuring BM and CP similar to the process detailed above. The samples collected over paddocks
could also be categorized into three groups: (i) samples (G3, n = 17) collected from paddocks (37A,
37B, 37C and 38A, 38B, 38C) on 20 April 2018 and 11 July 2018, for MSI-UAV models over a larger
scale; (ii) samples (G4, n = 61) collected in 2017 over 47 paddocks (Figure 1, red boundaries); and (iii)
sampling (G5, n = 115) conducted in 2018 over 6 paddocks (Figure 1, blue boundaries). The G4 and G5
were used for MSI-Sentinel-2 modelling.

Overall, five sets of grass samples (G1, G2, G3, G4, and G5) were used to develop the prediction
models of grass BM and CP using three imagery systems (HSI, MSI-UAV, and MSI-Sentinel-2).

2.4. Image Processing

Prior to spectral modelling, geomatic and radiometric corrections were performed on spectral
datasets. Band 1, band 9, and band 10 of Sentinel-2 were not included in the MSI-Sentinel-2 models
because of their relatively coarse spatial resolution (60 m) for this research. MSI-Sentinel-2 images
are available at 10 and 20 m resolution. The 20 m dataset was resampled to 10 m using the “special
resampling” procedure using the ENVI software [36,37] in order to handle the spatial resolution
disparity and enable both datasets to be combined. Twenty-one spectral indices which had been
reported as typical vegetation indices for assessing vegetation quality parameters in the published
literature were selected for spectral prediction of measured grass BM and CP (Table 3). Calculated
indices included; NDVI, NDRE, MTVI (Modified Triangular Vegetation Index), MCAR (Modified
Chlorophyll Absorption Ratio Index), MNLI (Modified Non-Linear Index), GNDVI (Green Normalized
Difference Vegetation Index), SAVI (Soil Adjusted Vegetation Index), LCI (Leaf Chlorophyll Index),
MTCI (MERIS Terrestrial Chlorophyll Index), NRI (Nitrogen Reflectance Index), PSRI (Plant Senescence
Reflectance Index), CI-Red-edge (Red-Edge Chlorophyll Index), CI-Green (Green Chlorophyll Index),
NLI (Non-Linear Index), and seven ratio vegetation indices (Table 3, SR1 to SR7).

Table 3. Vegetation indices used for developing spectral models.

Spectral Index Equation References

NDVI 1 (NIR − Red)/(NIR + RED) [2]
GNDVI 2 NIR − Green)/(NIR + Green) [2]
NDRE 3 (NIR − Rededge)/(NIR + Rededge) [23]

SAVI 4 (1+L)×(NIR−Red)
(NIR+Red)+L [38]

MTVI 5 1.2[1.2(NIR − Green) − 2.5(Red − Green)] [39]
MCAR 6 ((Rededge − Red) − 0.2) × (Rededge − Green) × (Rededge/Red) [40]

LCI 7 (NIR − Rededge)/(NIR − Red) [2]
MTCI 8 (NIR − Rededge)/(Rededge − Red) [41]
NRI 9 (Green − Red)/(Green + Red) [42]

CI-Rededge 10 (NIR/Rededge) − 1 [23,43]
CI-Green 11 (NIR/Green) − 1 [23,43]

PSRI 12 Red − Green)/NIR [44]

NLI 13 (NIR2
−Red)

NIR2+Red
[45]

MNLI 14 (NIR2
−Red)×(1+L)

NIR2+Red+L
[46]

SR 15 1 NIR/Red [47]
SR2 NIR/Rededge [47]
SR3 Red/Green [48]
SR4 Green/Red [49]
SR5 NIR/Green [40]
SR6 Red/NIR [50]
SR7 Rededge/NIR [51]

1 NDVI: Normalized Difference Vegetation Index; 2 GNDVI: Green Normalized Difference Vegetation Index; 3 NDRE:
Normalized Difference Rededge; 4 SAVI: Soil Adjusted Vegetation Index; 5 MTVI: Modified Triangular Vegetation
Index; 6 MCAR: Modified Chlorophyll Absorption Ratio Index; 7 LCI: Leaf Chlorophyll Index; 8 MTCI: MERIS
Terrestrial Chlorophyll Index; 9 NRI: Nitrogen Reflectance Index; 10 CI-Rededge: Red-edge Chlorophyll Index;
11 CI-Green: Green Chlorophyll Index; 12 PSRI: Plant Senescence Reflectance Index; 13 NLI: Non-Linear Index;
14 MNLI: Modified Non-Linear Index; 15 SR: Spectral Ratio.
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2.5. Developing Spectral Models Using HSI

Eighty-four grass samples (G1) were used to develop HSI models. The optimal wavelengths for
modelling grass biomass were identified using Martens’ uncertainty test [52]. Variable selection is
a conventional approach to improve the prediction accuracy of calibration models developed using
spectral datasets. There are various methods that can be used for selecting the relevant spectral
variables, such as Martens’ uncertainty test [52], variable importance in the projection [53], genetic
algorithm [54], and backward interval PLS [55]. Each method has advantages and disadvantages. For
instance, in the case of genetic algorithms, there is a high risk of overfitting and a valid initial model
is required for backward interval PLS and variable importance in the projection [55]. The efficacy of
variable selection methods varies with the dataset and, therefore, one specific method cannot always
be considered superior to other methods [56]. Martens’ uncertainty test is a widely used technique
for selecting spectral bands [56,57]. It is based on the “Jack-knife” resampling, which is usually
used for significance testing of spectral models, and its result is easy to interpret graphically [52].
The dataset was partitioned into calibration and validation sets using a random sampling approach.
Fifty-six spectral samples were used for calibration and twenty-eight samples for subsequent validation
assessment. The MLR and PLSR were employed to develop spectral prediction models. The PLSR
and MLR are popular regression techniques for developing spectral prediction in agricultural land
use [29,58]. They are relatively easy to understand and implement compared to machine learning
techniques and are practical chemometric analyses for spectral estimation of plant attributes [32,33].
The PLSR models were developed using a cross-validated approach, with 10 latent factors, on the
calibration sets. Latent factors are linear integrations of variables calculated through the partial
least squares procedure [57], which are used as independent components for estimating dependent
indicators (BM and CP). The MLR modelling was carried out using a forward and backward stepwise
approach, as already explained in detail by Martínez Gila et al. [59]. The models were independently
validated using the validation dataset. A sequence of processing, including model fitting and statistical
assessment of model accuracy, was further undertaken.

2.6. Developing Spectral Models Using MSI (UAV and Sentinel-2)

The MSI-UAV prediction models were developed using a total number of 128 samples collected
during 2017 and 2018 from plots and paddocks (G2 and G3). The MSI-Sentinel-2 models were produced
using 176 grass samples on selected paddocks in 2017 and 2018 (G4 and G5). An outlier detection
approach was performed to enhance the accuracy of the prediction models. Accordingly, Hotelling’s
T-squared distribution versus squared prediction error was employed. Hotelling’s T-squared test is
a commonly used approach to detected outliers [60]. Specifically, five percent Hotelling’s T-squared
statistic [61] was used to identify outlier data and, therefore, 2 samples identified as outlier samples
were excluded from the MSI-UAV dataset. The remaining samples in each dataset (MSI-UAV and
MSI-Sentinel-2) were partitioned into calibration (70%) and validation sets (30%) using the random
sampling approach. For MSI-UAV models, 89 samples were used for calibration and 37 samples for
the validation models. For the MSI-Sentinel-2 models, 123 samples were used for calibration and
53 samples for the validation models. The mean difference and homogeneity of variance between
calibration and validation sets were also examined. The PLSR and MLR techniques were employed to
calculate MSI models. The PLSR modelling was performed based on the cross-validation approach
using the calibration sets, with 10 latent factors. Significant bands and spectral indices for PLSR models
were identified using Martens’ uncertainty test [52]. The important bands and spectral indices for the
MLR models were selected through stepwise and correlation analyses.

2.7. Evaluation of Spectral Models

Finally, six spectral models for predicting grass biomass (BM-1 to BM-6) and six models for
estimating crude protein (CPM-1 to CPM-6) were calculated using PLSR and MLR and based on HSI,
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MSI-UAV, and MSI-Sentinel-2 (Figure 3). Root mean square error of prediction (RMSEP), the coefficient
of determination (R2), and the ratio of predicted deviation (RPD) were used to evaluate the PLSR and
MLR models. The RPD was computed using Equation (1).

RPD = Sd/SEP (1)

where Sd is the standard deviation of the reference data and SEP is the standard deviation of the
prediction residuals.

 
Figure 3. The biomass models (BM) and crude protein models (CPM) calculated using partial least 
squares regression (PLSR) and stepwise multi-linear regression (MLR). HSI: hyperspectral imagery; 
MSI: multispectral imagery; Sat: Satellite; UAV: unmanned aircraft vehicle. 
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The normality of measured biomass was examined using the analysis of histograms and the 
Kolmogorov–Smirnov test. The homogeneity of variance between calibration and validation datasets 
was tested using Levene’s test. All pre-processing and statistical analyses for PLSR were performed 
using Unscambler software (version X10.4.1; CAMO software, Woodbridge, NJ, USA). The MLR was 
done with SPSS v. 21 (SPSS Inc.). The paired t-test, the Pitman–Morgan test, and other analyses were 
carried out with R software (R x64 3.5.1) and SPSS software. Spectral prediction maps and spatial 
distribution of GQ indicators over the studied plots and paddocks were calculated using GIS software 
(QGIS 2.18.10 and ArcGIS 10.5.1).  
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summarized in Table 2, and the statistical parameters of BM and CP measured using grass samples 
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resolution of 2.9 cm on trial plots and 11.3 cm on paddocks, with the specific wavelength ranges of 
green, red, red-edge, and NIR (Table 2). The MSI-Sentinel-2 had a lower spatial resolution (10 or 20 
m) and a higher spectral resolution (10 bands used in this study) than MSI-UAV. Five groups of grass 
samples (Table 4, G1 to G5) were taken from plots and paddocks on different dates during 2017 and 
2018 to obtain various ranges of CP and BM. The HSI models were calculated using G1; MSI-UAV 
models were developed using G2 and G3; and MSI-Sentinel-2 models were calculated employing G4 
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Figure 3. The biomass models (BM) and crude protein models (CPM) calculated using partial least
squares regression (PLSR) and stepwise multi-linear regression (MLR). HSI: hyperspectral imagery;
MSI: multispectral imagery; Sat: Satellite; UAV: unmanned aircraft vehicle.

In addition, the paired t-test [57] and the Pitman–Morgan test [62,63] were conducted between
actual GQ indicators (measured DM and CP) and spectral predicted variables (predicted DM and CP)
for validation datasets to assess the inter-variability of predicted values. These two tests were used as
a complement to the more commonly used statistical tests, and to determine objectively whether the
distribution variances and means of spectral predicted values were significantly different from the
actual values of grass BM and CP [64].

2.8. Statistical Analysis and Mapping Indicators

The normality of measured biomass was examined using the analysis of histograms and the
Kolmogorov–Smirnov test. The homogeneity of variance between calibration and validation datasets
was tested using Levene’s test. All pre-processing and statistical analyses for PLSR were performed
using Unscambler software (version X10.4.1; CAMO software, Woodbridge, NJ, USA). The MLR was
done with SPSS v. 21 (SPSS Inc.). The paired t-test, the Pitman–Morgan test, and other analyses were
carried out with R software (R x64 3.5.1) and SPSS software. Spectral prediction maps and spatial
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distribution of GQ indicators over the studied plots and paddocks were calculated using GIS software
(QGIS 2.18.10 and ArcGIS 10.5.1).

3. Results

The characteristics of the three spectral datasets (i.e., HSI, MSI-UAV, and MSI-Sentinel 2) are
summarized in Table 2, and the statistical parameters of BM and CP measured using grass samples
are presented in Table 4. The HSI dataset had the maximum spectral (124 bands, 450 to 950 nm) and
spatial resolution (5 mm). Four spectral bands were captured for the MSI-UAV dataset with a spatial
resolution of 2.9 cm on trial plots and 11.3 cm on paddocks, with the specific wavelength ranges of
green, red, red-edge, and NIR (Table 2). The MSI-Sentinel-2 had a lower spatial resolution (10 or 20 m)
and a higher spectral resolution (10 bands used in this study) than MSI-UAV. Five groups of grass
samples (Table 4, G1 to G5) were taken from plots and paddocks on different dates during 2017 and
2018 to obtain various ranges of CP and BM. The HSI models were calculated using G1; MSI-UAV
models were developed using G2 and G3; and MSI-Sentinel-2 models were calculated employing
G4 and G5 (Table 4). Overall, the ranges of measured GQ indicators for all five groups of samples
were as follows: grass BM of 304–8338 kg DM ha−1 and grass CP of 126–209 g kg−1 DM. Due to the
wet and cloudy conditions and absence of enough light, UAV images captured on 15 May 2017 and
26 June 2017 were excluded from MSI-UAV modelling to maintain the homogeneity of radiation. The
weather condition information for Moorepark Research Centre indicated a very low global radiation
(approximately 650 J/cm sq) for these two dates compared to other dates (approximately 2000 J/cm sq).
Prior to the development of spectral models, datasets were separated into calibration and validation
sets for independent validation of spectral models. According to the Levene’s test results, there was no
significant difference between variance values of BM and CP between calibration and validation sets.
The mean comparison result was also confirmed by the similarity of DM and CP mean values between
validation and calibration. Accordingly, the sample distribution was appropriately represented by
the validation set for all datasets. Formulas of 20 spectral indices used for developing prediction
models are presented in Table 3. These spectral indices are commonly reported indices for assessing
herbage quality in published literature. According to studies published by Askari et al. [5] and
Viscarra-Rossel [65], spectral prediction models can be classified into excellent (RPD ≥ 2.5 and R2

≥

0.8), good (2 ≤ RPD < 2.5 and R2
≥ 0.7), moderate (1.5 ≤ RPD < 2 and R2

≥ 0.6) and poor accuracy
(RPD < 1.5 and R2 < 0.6).

Table 4. The information of ground-based datasets used for developing spectral models.

Grass
Data

Collected
Year Location Number Modelling

Type
Total

Number
Grass Quality

Indicator
Mean

Kg ha−1 Std

G1 2017 16 plots 84
HSI

Modelling 84
Dry matter 1331.7 508.1

Crude protein 164.3 25.4

G2 2017 64 plots 109 MSI-UAV
Modelling 126

Dry matter 1235.2 444.6
G3 2018 6 paddocks 17 Crude protein 190.1 32.2

G4 2017 47 paddocks 61 MSI-Sat
Modelling 176

Dry matter 1880.2 1262.9
G5 2018 6 paddocks 115 Crude protein 208.8 21.4

* G, grass dataset, Std, standard deviation.

3.1. Predicting GQ Indicators Using PLSR

Eight, four, and five latent variables were identified as the proper number of factors for predicting
grass BM using HSI, MSI-UAV, and MSI-Sentinel-2 datasets, respectively (Table 5). Similarly, five, five,
and eight latent factors were identified for PLSR modelling of grass CP using HSI, MSI-UAV, and
MSI-Sentinel-2 datasets, respectively (Table 6). The diagrams of prediction residual sum of squares
versus the number of latent variables are displayed in Figure S1 (Supplementary Materials). These
diagrams were used to determine the appropriate number of latent variables for producing PLSR
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models [5,66]. Important wavelengths for BM and CP predictions based on the Martens’ uncertainty
test are presented in Figure 4. The significant regression coefficients of wavelengths (Figure 4, p-value
< 0.001) are highlighted in blue. Wavelengths of 728 nm, 546 nm, and 472 nm had the maximum
coefficients and had a greater impact on BM prediction. For the CP prediction, wavelengths of 940 nm
> 948 nm > 688 nm > 752 nm had the maximum impact on the PLSR model. The highest coefficient
for CP prediction was within the NIR range, while the red-edge range had the highest coefficient for
BM perdition. Figure 5 demonstrates the regression coefficients of bands and spectral indices used
for BM prediction using MSI-UAV and MSI-Sentinel 2. Of the 25 bands and indices, MCAR, MTVI,
MNLI, band 4, CI-green, and SR5 had a high impact on BM prediction for MSI-UAV. Of the 35 Sentinel
bands and indices, band 11, band 12, band 3, band 2, band 6, and band 5 had a greater influence on BM
prediction for MSI-Sentinel-2. The significant regression coefficients of bands and spectral indices for
predicting CP using MSI-UAV and MSI- Sentinel-2 were presented in Figure 6. The SR3 and NRI had
the largest regression coefficients of the PLSR model for MSI-UAV. In addition, the highest regression
coefficients for the PLSR model of MSI-Sentinel-2 belonged to band 11 and band 3.

Table 5. The results of the PLSR models for predicting biomass.

Dataset Latent Variables RPD Model R2 RMSEP

BM-1 8 3.21
Calibration 0.92 155
Validation 0.88 160

BM-2 4 2.14
Calibration 0.83 182
Validation 0.78 215

BM-3 5 2.04
Calibration 0.83 484
Validation 0.82 600

BM-1 developed using HSI, BM-2 developed using MSI-UAV, and BM-3 developed using MSI-Sentinel-2.

Table 6. The results of the PLSR models for predicting crude protein.

Dataset Latent Variables RPD Model R2 RMSEP

CPM-1 5 2.51
Calibration 0.88 8.5
Validation 0.82 10.0

CPM-2 5 2.37
Calibration 0.82 12.6
Validation 0.77 13.6

CPM-3 8 1.60
Calibration 0.76 10.4
Validation 0.62 13.3

CPM-1 developed using HSI, CPM-2 developed using MSI-UAV, and CPM-3 developed using MSI-Sentinel-2.
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Figure 4. Important wavelengths identified using the HSI dataset for predicting biomass (BM-1) and 
crude protein (CPM-1). Blue bars indicate significant wavelength with p < 0.05. 
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Figure 4. Important wavelengths identified using the HSI dataset for predicting biomass (BM-1) and
crude protein (CPM-1). Blue bars indicate significant wavelength with p < 0.05.
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Figure 5. Important bands and spectral indices identified using the MSI-UAV dataset (BM-2) and MSI- 
Sentinel-2 dataset (BM-3) for predicting biomass. Blue bars indicate significant bands and indices with 
p < 0.05. 
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Figure 5. Important bands and spectral indices identified using the MSI-UAV dataset (BM-2) and MSI-
Sentinel-2 dataset (BM-3) for predicting biomass. Blue bars indicate significant bands and indices with
p < 0.05.
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Figure 6. Important bands and spectral indices identified using the MSI-UAV dataset (CMP-2) and
MSI-Sentinel-2 dataset (CMP-3) for predicting CP. Blue bars indicate significant bands and indices with
p < 0.05.

The results of the PLSR models (summarized in Tables 5 and 6) indicated that HSI had a better
prediction for grass BM and CP than MSI (both UAV and Sentinel-2). An overall excellent accuracy
was obtained for the HSI models (RPD > 2.5 and R2 = 0.82, validation model) and good accuracy for
MSI-UAV models (RPD > 2 and R2

≥ 0.77). While grass BM was predicted with a good accuracy using
MSI-Sentinel-2, a moderate accuracy was obtained for CP prediction using Sentinel-2 images. The
higher accuracy of the HSI models was noted consistently by R2, RMSEP, and RPD. The R2 of the
HSI model for BM prediction was 13% higher than that of the MSI-UAV model (Table 5, validation
set) and 7% higher than that of the MSI-Sentinel-2 model (Table 5, validation set). The RMSEP of
the HSI model for predicting BM was also 17.4% lower than that of MSI-UAV model and 3.75 fold
lower compared to the MSI-Sentinel-2 model. Specifically, 55% and 50% increases for RPD were also
observed for the HSI model compared to the MSI-UAV and MSI-Sentinel-2, respectively, for prediction
of BM. Although a slightly lower R2 (Table 5, 5% decrease) was noted for MSI-UAV compared to
MSI-Sentinel-2, a 2.79 fold reduction in the RMSEP of the MSI-UAV model and a five percent increase
for the RPD of MSI-UAV model compared to the MSI-Sentinel-2 indicated the higher accuracy of the
PLSR model developed using an UAV than Sentinel-2 imagery for predicting grass BM. The better
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efficiency of the PLSR model for estimating CP using HSI data was also noted by 6.5% and 32%
increases in R2, and 1.2% and 58% rises in RPD compared to MSI-UAV and MSI-Sentinel-2, respectively.

3.2. Predicting GQ Indicators Using MLR

The statistical parameters (RPD, R2, and RMSEP) used for assessing the accuracy of MLR models
are presented in Tables 7 and 8. Wavelengths of 473 nm, 481 nm, 675 nm, 687 nm, 909 nm, 913 nm,
927 nm, and 945 nm were identified as the important wavelengths and SR2 as the significant index
through stepwise MLR approach for predicting BM using HSI. Wavelengths of 452 nm, 464 nm, 470 nm,
476 nm, 489 nm, MCAR, PSRI, SR1, and SR7 were also used for predicting CP using HSI. An excellent
prediction was obtained for both BM and CP using HSI data (RPD > 2.5 and R2 > 0.80). The red-edge
band (band 3) and a ratio of NIR and green bands (SR5) were found as important spectral data for BM
prediction using stepwise MLR of the MSI-UAV. Band 2, band 8, band 11, band 12, GNDVI, and BRI
were also identified as significant for BM prediction using MSI-Sentinel-2. To predict the CP through
stepwise MLR, band 2, MCAR, and SR3 were identified as important via MSI-UAV, where band 6, band
11, band 8a, GNDVI, and LCI were determined as significant bands and indices via MSI-Sentinel-2.
The stepwise MLR models of the selected spectral bands and indices suggested a moderate prediction
of BM using both MSI datasets (Table 7, RPD ≥ 1.92, R2

≥ 0.76). While the CP was estimated with good
accuracy using MSI-UAV, the accuracy of the models for CP prediction was poor using MSI-Sentinel-2
(Table 8, R2 < 0.6, RPD = 1.39).

Table 7. The results of stepwise MLR models for predicting biomass.

Dataset Important Band and Indices RPD Model R2 RMSEP

BM-4
SR2, B473nm, B481nm, B913nm, B909nm,

B675nm, B687nm, B945nm, B927nm
3.02

Calibration 0.88 177
Validation 0.86 179

BM-5 Band 3 and SR5 1.94
Calibration 0.82 189
Validation 0.76 226

BM-6
Band 2, Band 8, Band 11, Band 12,

GNDVI, and BRI 1.92
Calibration 0.79 561
Validation 0.81 661

BM-4 developed using HSI, BM-5 developed using MSI-UAV, BM-6 developed using MSI-Sentinel-2.

Table 8. The results of stepwise MLR models for predicting crude protein.

Dataset Important Band and Indices RPD Model R2 RMSEP

CPM-4
B452nm, B464nm, B470nm, B476nm, B489nm,

MCAR, PSRI, SR1, SR7 2.49
Calibration 0.86 9.6
Validation 0.80 10.1

CPM-5 Band2, MCAR, and SR3 2.21
Calibration 0.82 14.7
Validation 0.78 14.6

CPM-6 Band6, Band11, Band8a, GNDVI, and
LCI

1.39
Calibration 0.65 15.2
Validation 0.58 16.6

CPM-4 developed using HSI, CPM-5 developed using MSI-UAV, CPM-6 developed using MSI-Sentinel-2.

3.3. Evaluating Spectral Models

The comparison of measured and estimated values of BM and CP with a 1:1 line (Figures S2 and
S3, Supplementary Materials) indicated an underestimation for high values and overestimation for
low values of BM and CP for all prediction models. The paired t-test between measured and estimated
BM and CP indicated no significant difference for all spectral datasets (Tables 9 and 10). The variance
comparison based on the Pitman–Morgan test revealed that the variance of estimated BM using HSI
was not significantly different from that of measured BM for both PLSR and MLR models (Table 9).
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The variance of predicted BM using MSI (UAV and Sentinel-2) was statistically different from the
measured values for both PLSR and MLR models. Regarding the prediction models of CP, the variance
of measured and estimated values was not significantly different for PLSR and MLR models generated
using HSI and MSI-UAV (Table 10). The variance of estimated CP calculated using MSI-Sentinel-2 was
different (p-value < 0.05) from that of measured CP for both PLSR and MLR models.

Table 9. Paired mean and variance comparison of actual and predicted grass biomass.

Model Spectral Data
Paired Differences Pitman–Morgan

t p-value rDS p-value

PLSR
BM-1 −1.289 0.208 0.195 0.3193
BM-2 0.171 0.865 0.466 0.0036
BM-3 1.611 0.113 0.513 0.0001

MLR
BM-4 0.49 0.628 0.144 0.4647
BM-5 0.111 0.912 0.514 0.0011
BM-6 1.555 0.126 0.468 0.0004

BM-1 and BM-4 developed using HSI, BM-2 and BM-5 developed using MSI-UAV, BM-3 and BM-6 developed using
MSI-Sentinel-2. rDS: Responded driven sampling.

Table 10. Paired mean and variance comparison of actual and predicted crude protein.

Model Spectral Data
Paired Differences Pitman–Morgan

t p-value rDS p-value

PLSR
CPM-1 −0.05 0.958 0.010 0.605
CPM-2 −0.94 0.354 −0.142 1.597
CPM-3 −0.24 0.808 0.352 0.010

MLR
CPM-4 0.794 0.434 0.300 0.121
CMP-5 −1.091 0.283 −0.170 1.687
CPM-6 −0.152 0.880 0.309 0.024

CPM-1 and CPM-4 developed using HSI, CPM-2 and CPM-5 developed using MSI-UAV, CPM-3 and CPM-6
developed using MSI-Sentinel-2. rDS: Responded driven sampling.

The BM-1 and BM-4 (Figure 3) generated based on HSI had an excellent accuracy (Table 5, RPD
> 2.5 and R2 > 0.8) which was also confirmed by paired mean and variance comparisons (Table 9).
The models developed using both MSI-UAV and MSI-Sentinel-2 using PLSR (Figure 3, BM-1 and BM-2)
were also reliable for predicting BM with good accuracy (2 < RPD < 2.5 and R2 > 0.7). The MLR models
developed using MSI-UAV and MSI-Sentinel-2 had moderate accuracy for BM prediction (Figure 3,
BM-5 and BM-6). The best prediction accuracy was obtained for BM-1, followed by BM-4 > BM-2 >

BM-3 (Figure 3). Considering the CP models, excellent accuracy was obtained for CPM-1 and CPM-2
(Figure 3) calculated using HSI (Table 6, RPD > 2.5 and R2 > 0.8), and good accuracy was noted for
CPM-2 and CPM-5 developed using MSI-UAV. Poor and moderate accuracy was also acquired using
MSI-Sentinel-2 for predicting CP (Tables 6 and 8).

The swath width of the hyperspectral imager was 0.3 m and the alignment of the images captured
by the BaySpec imager was complicated over all 64 plots. Thus, in this research, the HSI data were
recorded only over 16 plots (1D to 16D, Figure 2, red boundary). Since the hyperspectral images
were only captured over 16 plots at each date, they did not have complete coverage over the plots.
Therefore, BM-2 and BM-3, which also had good accuracy, were used to map BM using UAV (Figure S4,
Supplementary Materials) and Sentinel-2 images (Figure S5, Supplementary Materials), respectively.
The MSI-Sentinel 2 could not predict grass CP appropriately. Thus, the CP was mapped only using the
MSI-UAV over 64 plots (Figure S6, Supplementary Materials)
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4. Discussion

Different levels of grass BM and CP were studied by applying different levels of nitrogen
fertilization in the study area (Table 1). The measured BM and CP (Table 4) were within the range
usually reported for Irish grassland [34,67–69]. For accurate grass BM and CP modelling, the MSI-UAV
datasets and the HSI data were transformed to surface reflectance images. The Sentinel-2 images
were downloaded as “Level 2A Products” and were atmospherically corrected. In agreement with
Edirisinghe et al. [70], the current study confirmed that surface reflectance correction was a mandatory
pre-processing step for modelling GQ indicators, especially for satellite data captured over Ireland.
The concurrence of available and cloud-free satellite data with field sampling is a major issue in the
development of spectral models for pasture assessment using satellite data (MSI-Sentinel-2 in this
study). A reliable satellite model can be computed when field sampling is carried out on the day of the
satellite overpass. For an accurate prediction of grass indicators, the time gap between field sampling
and the satellite overpass must be less than one week [70].

4.1. PLSR Prediction of GQ Indicators

Identifying the significant wavelengths using HSI emphasized the importance of red-edge > green
> red > NIR region for predicting BM (Figure 4, BM-1), and the importance of NIR > red > red-edge >

green for estimating CP (Figure 4, CPM-1). The identified wavelengths have been reported as important
for spectral prediction of vegetation indicators [9,71]. Consistent with our finding, Clifton et al. [72]
indicated the importance of the NIR and red range of the spectrum for accurate prediction of GQ
indicators. A strong relationship between visible and NIR spectra and forage protein content was
reported using hyperspectral remote sensing [6,73]. Higher nitrogen uptake by grass, which leads to
increased chlorophyll content and grass growth, reduces the reflectance of visible spectra particularly
in the red and green range of the spectrum [74]. The increased reflectance of NIR and red-edge spectra
is also associated with the improvement of CP content and grass BM [37]. The importance of these
wavelength ranges was also confirmed by identifying the most effective spectral indices for PLSR
prediction of BM and CP using MSI-UAV. The MCAR and MTVI had the largest regression coefficient
for spectral modelling of BM (Figure 5, BM2). The MCAR index is a combination of red-edge, green,
and red bands, and the index of MTVI is an integration of green, red, and NIR bands of the Sequoia
sensor (Figure 3). The greatest regression coefficients for PLSR prediction of CP were noted for NRI and
SR3 (Figure 6, CPM-2). These indices were an integration of NIR, red, and green bands. Spectral indices,
which are a combination of two or more bands, are usually more effective than a single spectral band
for estimating plant biochemical parameters [75]. The ability of spectral indices to reduce the effect of
background noise and enhance the robustness of biomass prediction models has been documented in
the literature [23,24].

Band 11, centered at 1610 nm, and band 3, centered at 560 nm, had the maximum impact on the
predictability of BM using Sentinel-2 images. Clevers and Gitelson [23] reported the importance of
red-edge bands of Sentinel-2 (bands 5 and 6) for evaluating grass attributes. Although a reasonable
level of accuracy was not obtained for predicting CP using MSI-Sentinel-2, band 11 and band 3 did have
the maximum impact on spectral modelling of CP (Figure 6, CPM-3). Lugassi et al. [37] found band 3,
band 4, band 8a, and band 12 as the most useful bands of Sentinel 2 for estimating protein content.
The PLSR technique could reliably be used for spectral prediction of BM with an excellent accuracy
using HSI and a good accuracy using UAV and Sentinel images. This technique is also successful for
predicting grass CP, resulting in excellent accuracy using HSI data and a reasonable level of accuracy
using UAV data. The PLSR was unable to model CP using Sentinel-2 images.

4.2. MLR Prediction of Grass CP and BM

While the MLR technique could predict grass BM and CP using HSI with a high degree of accuracy,
it was not able to predict GQ indicators accurately using both MSI-UAV and MSI-Sentinel-2 (Tables 7
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and 8). The moderate and poor accuracies were noted using the MSI datasets. The most important
spectra identified based on the HSI using stepwise MLR were the bands centered at 945 nm, 927 nm,
913 nm, 909 nm, 687 nm, 675 nm, 481 nm, and 473 nm for BM estimation and the bands centered
at 489 nm, 476 nm, 470 nm, 464 nm, and 452 nm for CP prediction. Starks et al. [76] reported the
importance of spectral bands centered at 915 nm, 865 nm, 765 nm, 755 nm, 725 nm, 605 nm, and
485 nm for predicting grass CP and fiber content. Wavelengths of 700 nm, 725 nm, 760 nm, and
775 nm were also reported as significant for predicting CP by Kawamura et al. [77]. A higher nitrogen
content applied to the soil leads to a greater nitrogen concentration in plant tissues and rapid growth,
which enhances grass BM and CP [78]. The NIR and red-edge wavelengths have been reported as
sensitive spectral ranges to detect changes in plant growth [9]. Band 11 and band 12 of Sentinel-2
images (Short wave infrared bands) were also found important for MLR prediction of BM and CP
(Tables 7 and 8). Gong et al. [32] found that short-wave infrared (1300–2500 nm) regions could be more
efficient than visible regions to predict forage CP and nitrogen concentration. The absorbance spectra
at 2060 nm, 2130 nm, 2180 nm, and 2240 nm are associated with N–H and C–H bonds of protein [79,80].
An accurate estimation of forage attributes was also reported using the SWIR region of the spectrum
by Pullanagari et al. [81] and Lugassi et al. [37]. Due to the low accuracy of models developed using
MSI-Sentinel-2 and the spectral range of HSI images (Table 2, 450–950 nm), the efficiency of SWIR for
predicting CP could not be evaluated in this study. The MLR technique could also be reliably used for
evaluating GQ indicators using the HSI dataset, but it was not efficient enough to predict BM and CP
using the MSI datasets (Sequoia and Sentinel-2 images).

4.3. Comparing the Predictability of Spectral Models

The use of different modelling approaches could result in different accuracies regardless of the
type of spectral data [82]. The PLSR has been widely used for spectral prediction tasks [83,84]. The
MLR has also been employed by several studies as a robust technique for spectral estimation of grass
attributes (e.g., [85,86]). Therefore, these two techniques were deployed to estimate grass BM and CP.
While some researchers reported the superiority of non-linear and intelligent approaches to linear
techniques (e.g., [28,82]), PLSR and MLR showed a good efficiency for assessing GQ in this study.
These techniques are relatively easy to understand and simpler than more automated machine learning
approaches. Igne et al. [87] indicated that spectral models were sensitive to the complexity of the
modelling approach. They concluded that the PLSR and locally weighted regression were simpler
models to implement and compute compared to support vector machine regression for quantitative
spectral analysis. Good efficiency of PLSR and MLR for modelling BM and CP indicated that a linear
relationship might exist between grass spectral data and GQ parameters. These simple techniques also
have the potential to be used for modelling other GQ indicators under grassland management systems
in Ireland. Overall, 12 spectral models were developed, six models for BM prediction (Figure 3, BM-1
to BM-6) and six models for CP estimation (CPM-1 to CPM-6). The accuracy of MLR models was
lower (Tables 7 and 8) than PLSR models (Tables 5 and 6). The PLSR technique could offer a better
estimation of BM and CP, especially when it was performed on higher-resolution spectral data (HSI
model). The prediction efficiency of PLSR using greater spectral resolution was also confirmed by
Askari et al. [57]. The higher spectral and spatial resolution of HSI than that of the MSI-UAV and
MSI-Sentinel-2 could be the reason for more accurate prediction of HSI [88]. The proximity to ground
surface for the HSI compared to the MSI-UAV and MSI-Sentinel-2 could result in higher quality data
and could be another reason for the greater accuracy of the HSI model. While the HSI method showed
a better performance and efficiency, the high cost (typically €40,000 to €100,000) is the main issue
regarding the use of the new generation hyperspectral cameras [89]. The high cost of the HSI was also
mentioned by Mansour et al. [90] as an important limitation for local scale assessment of rangeland
biomass in Africa. Real-time evaluation of grassland management systems in Ireland needs a low-cost,
rapid, and accurate technique for a timely assessment of GQ [91]. An accurate prediction of grass BM
can still be acquired using freely available MSI-Sentinel-2 data (Table 5) and cheaper multispectral
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sensors such as the Sequoia (MSI-UAV). The CP quality metric can also be predicted with a reasonable
level of accuracy using multispectral imagery conducted by a UAV.

4.4. The Efficiency of Remote Sensing for Assessing GQ

The accuracy of the models (Tables 5–8) and the paired analyses (Tables 9 and 10) resulting
from this study demonstrated that the spectral prediction and spatial monitoring of grass BM and
CP in Ireland are possible using remote sensing techniques. These techniques can be used for direct
assessment of GQ as an alternative to routine approaches. Laboratory-based methods for assessing
GQ are time-consuming, costly, and labor-intensive for collecting and analyzing samples. On the
other hand, using field spectroscopy techniques, which usually provide point spectral data, are more
complicated and time consuming than using UAV and satellite imagery systems especially over a large
scale [15]. Remote sensing imagery can provide rapid tools for monitoring the impact of management
systems on GQ under temperate European grassland. The BM and CP maps (Figures S4 and S6;
Supplementary Materials) indicated a descending trend from June to September in 2017, which was in
agreement with laboratory measurements and the grass growth curve of Moorepark Research Centre in
2017 presented by the Agriculture and Food Development Authority in Ireland [92]. Furthermore, the
impact of the drought period during 2018 in Ireland was also detectable by comparing the UAV images
captured on 21 April 2018 and 11 July 2018 (Figures S4 and S6; Supplementary Materials). These results
revealed that a near real-time information for on-the-go management of grassland in Ireland can be
provided using the models developed in the current study. The spectral prediction of grass BM and
CP using remote sensing techniques has very real potential for monitoring the sustainability of grass
production sectors. Multi-temporal remote sensing images can be used for monitoring the changes in
grass BM and CP during critical time periods and for assessing the effects of longer-term management
operations on the quality of forage. The current study did not address the effects of different plant
species and their within-field variabilities on the accuracy of models. Variable grass species could be
explored in future studies.

5. Conclusions

With regard to the research objectives, the results indicated that:

(a) The HSI technique yielded better prediction of grass BM and CP than MSI techniques. In this
regard, excellent accuracy was obtained using HSI and good accuracy was acquired using both
MSI-UAV and MSI-Sentinel-2 for predicting BM and using MSI-UAV for predicting CP.

(b) Based on the HSI dataset, the red-edge range was identified as the most effective wavelength
range for predicting grass BM, while the NIR range had the greatest influence on the spectral
predictability of grass CP. A combination of red-edge, red and green bands (MCAR) was identified
as the most useful index for estimating BM using MSI-UAV, and a ration of red and green
bands (SR3) had the maximum impact on the prediction of CP using Sequoia images. Band 11
centred at 1610 nm was found to be the most important band for modelling GQ indicators using
Sentinel-2 images.

(c) Both the PLSR and MLR techniques yielded accurate models for prediction of BM and CP. The
PLSR yielded better model outputs, though the results from both techniques were sufficiently
robust to be used.

Surface reflectance transformation was found to be a mandatory atmospheric pre-processing
correction step for predicting grass attributes. While the high cost is the main limitation of hyperspectral
sensors, accurate quantification of grass indicators can be obtained using cheaper multispectral Sequoia
sensors and freely available multispectral Sentinel-2 data. Both the HSI and MSI can be utilized
as a rapid, reliable, and reproducible technique for near real-time quantitative assessment of GQ
under intensive grassland management systems in the temperate European climate zone. Finally,
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within-filed variability of GQ can be accurately mapped and monitored using UAV and satellite remote
sensing techniques.
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predicted CP versus actual CP. Figure S4: Biomass maps predicted using MSI-UAV images (BM-2) captured on 12
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April 2018 (D) and 16 May 2018 (E) from paddocks. Figure S6: Crude protein (g/Kg DM) maps predicted using
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