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Abstract

This paper discusses a project on the completion of a database of socio-economic indicators

across the European Union for the years from 1990 onward at various spatial scales. Thus the

database consists of various time series with a spatial component. As a substantial amount of the

data was missing a method of imputation was required to complete the database. A Markov Chain

Monte Carlo approach was opted for. We describe the Markov Chain Monte Carlo method in

detail. Furthermore, we explain how we achieved spatial coherence between different time series

and their observed and estimated data points.
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Introduction

Article 174 of the Lisbon Treaty states ‘‘In order to promote its overall harmonious
development, the Union shall develop and pursue its actions leading to the strengthening
of its economic, social and territorial cohesion’’ (EU, 2008). To achieve this will entail the
reduction of disparities between levels of development of its regions; these regions include
rural areas, areas affected by industrial transition, and regions with natural or demographic
handicaps. The creation of suitable policies towards this goal, the evaluation of alternative
policies, their implementation and monitoring require a solid base of evidence.

Article 2 of the European Territorial Cooperation Regulation 1299/2013 calls for
interregional cooperation to reinforce the effectiveness of cohesion policy by promoting
‘‘analyses of development trends in relation to the aims of territorial cohesion, including
territorial aspects of economic and social cohesion, and harmonious development of the
European territory through studies, data collection and other measures’’ (EU, 2013).

Among the activities, and which shall be the focus of this paper, has been the creation of a
database under the ESPON (European Spatial Planning Observation Network) 2013
programme (ESPON, 2016) of socio-economic indicators across the 28 member states of
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the European Union for each year from 1990 onwards. Those indicators include figures on
population, birth and death rates, migration, GDP as well as employment and
unemployment rates. The database can then be used as a tool to support policy design in
relation to the aim of territorial cohesion and a harmonious development of the European
territory. It provides comparable information, evidence, analyses and scenarios on regional
dynamics and reveals territorial capital and potentials for the development of smaller and
larger regions contributing to European competitiveness, territorial cooperation and a
sustainable and balanced development.

Each of the 28 countries under consideration is subdivided into NUTS regions (NUTS,
for the French nomenclature d’unites territoriales statistique, that is, Nomenclature of
Territorial Units of Statistics) of up to three levels with increasing degrees of division.
These different levels are called NUTS1, NUTS2 and NUTS3, that is, first-level, second-
level and third-level regions, respectively, with NUTS0 usually denoting the entire country.
For instance, Ireland is divided into two NUTS1 regions, which in turn are divided into three
and five NUTS2 regions, respectively. Due to its relatively small size, there are no NUTS3
regions in Ireland. In comparison, Germany has 16 NUTS1, 39 NUTS2 and 429 NUTS3
regions.

The objective of the project was to produce a space-time series on an annual basis for each
NUTS region and for each of the indicators starting in the year 1990. A large amount of the
required datasets is readily available for a variety of spatial scales and can be obtained from
EUROSTAT or the relevant National Statistical Offices. It is desirable that they are not only
complete in their temporal domain, but also internally coherent in the spatial domain.
However inspection of the series revealed that some data were missing for parts of the
time periods and spatial scales of interest. There might be several reasons for this lack of
completeness such as population censuses only being carried out every five years in some
countries like Ireland or even every 10 years as is the case in the UK. Also while national and
regional population estimates may be provided by national agencies, data at lower levels
(NUTS2 and NUTS3) are less common.

Clearly this incompleteness of the data provides a challenge for an analyst who tries to
extract useful information from the data. In survey analysis, a common strategy is to analyse
only those cases with complete data for the variables of interest. This raises the question as
to whether the mechanism for creating the missing variables is a random process. If it is not,
then the possibility of introducing bias into the analysis becomes a problem. Furthermore, as
in our case most of the data are missing at NUTS3 level, analysis on a more local level
becomes increasingly difficult.

Hence it was the task of this research team to develop an internally coherent methodology
which achieves the twin goals of imputing the missing data and ensuring the internal spatial
coherence of the data. We opted for a Bayesian approach using a Markov Chain Monte
Carlo (MCMC) algorithm. Furthermore, we implemented the algorithm using JAGS (Just
Another Gibbs Sampler) software which can be interfaced to R. Finally, due to the nature of
the ESPON data, more work needed to be done in order to ensure that the observed and
imputed data satisfy spatial coherence, that means, in each year the sum of the observed
and/or predicted values of all regions at one NUTS level that are constituents (children) of
the same region X at the next higher NUTS level (parent) must equal the corresponding
value of that region X. In particular, an algorithm had to be developed to guarantee spatial
coherence within the data.

We start this paper by giving a brief general introduction to time series. Next we focus on
the character of the ESPON data and some of the issues that arose from its particular nature.
Clearly there are many possible imputation methods that could be applied to predict missing
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data in a given time series with unobserved data. We discuss some of the available
methods and why we did not choose to use them. Finally, we present the model and the
algorithm which we applied to impute missing data in our time series. Also we show how we
dealt with the issue of spatial coherence before we conclude the paper by presenting our
results.

Time series

A time series is a collection of observations or data points made sequentially in time
(Chatfield, 1989). Time series are frequently encountered in (i) economics (Beveridge
annual wheat price series), (ii) physical sciences (monthly average air temperature),
(iii) marketing (monthly product sales), (iv) demography (annual population estimates),
(v) process control (weights of manufactured product sampled hourly) and (vi)
communication (binary series are common). While many series are usually measured at
regular intervals (e.g.: year, month, week, day, hour, minute), there are series which occur
irregularly, for example, major railway disasters, which are known as point processes.

Time series analysis is concerned with (i) description of the main properties of the series,
(ii) explanation of the relationship between two series taken at the same time (monthly
atmospheric temperature readings, monthly measurements of the North Atlantic
Oscillation) and (iii) prediction of (usually) future values.

Time series description can take several forms, but are intended to reveal the underlying
structure of the series. This structure can include several components (Shumway and Stoffer,
2010); (i) Trend, that is, an increase or decrease in the value of the series over time,
(ii) Seasonality, that is, a regular pattern of high and low values related to calendar time,
(iii) Long term cycles, that is, periodicity not related to seasonality, (iv) Outliers, that is,
values which are unusually high or low in comparison with the rest of the data, (v) Abrupt
changes, that is, changes to the variation in the series or level and (vi) Variance, that is, the
extent of the spread of the data.

Often it may happen that some time series in a data set are incomplete. Naturally, this
complicates any further analysis of the data. In Enders (2010), it is noted that the analyst
should make the distinction between the missing data pattern and the missing data
mechanism. He proceeds to explain that the pattern relates to the configuration of
observed and unobserved data, whereas the mechanism permits a description of the
relationship between the two in terms of probability. Rubin (1976) proposed to classify
missing data mechanisms into three types: (1) missing at random (MAR), (2) missing
completely at random (MCAR) and (3) missing not at random (MNAR). Somewhat
misleadingly MAR does not describe that data is missing in a haphazard way, but instead
arises when the probability of missing data on some variable X is related to the values of
some other measured variable Y in the dataset but not on the values of X itself. As an
example, we could think of a survey in which variable Y asks for one’s age and one only has
to answer question X if one is past a certain age. The MCAR mechanism arises when the
probability of missing data on some variable X is unrelated to any other variable in the
dataset, including the variable X itself. In fact, this mechanism describes ‘‘purely haphazard
missingness’’ (Enders, 2010). Finally, MNAR arises when the probability of missing data on
a variable X is related to the values of the variable itself. Enders uses an example of cancer
patients in a trial becoming so ill that they are unable to continue participation in the trial.
The ESPON time series missing data are likely to arise from an MCAR process, as
missingness in the data, though often temporally correlated, is statistically independent of
other data in the dataset. So are for instance population values at NUTS3 level not missing
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because they were too small or too big to be collected (which would be a case of MNAR),
nor because data collected in previous years were too small or too big (which would be a case
of MAR), but instead a lack of resources or a lack of political will to collect the data at the
smallest level may have been the driving force for the omission.

The character of the ESPON data

As described in the introduction, the purpose of this ESPON project was to build up a
database with annual figures on socio-economic indicators such as population, birth and
death rates, employment and unemployment rates and GDP for all 28 EU member states for
each year from 1990 onwards. Hence we have a maximum of 25 observations per time series,
which must be considered as short. Furthermore each country is divided and further sub-
divided into at most three NUTS levels. Across the entire EU, we have 28 NUTS0 regions
(countries), 98 NUTS1 regions (major socio-economic regions), 273 NUTS2 regions (area
for application of region policy) and 1324 NUTS3 regions (smaller regions).

Through a hierarchical coding system, it is clear which NUTS1 region contains which
NUTS2 regions and which NUTS2 region contains which NUTS3 regions. In fact, every
country has its own letter code, for instance, The Netherlands have NL. There are four
NUTS1 regions in The Netherlands which are called NL1, NL2, NL3 and NL4, respectively.
Next the NUTS1 region NL3, for instance, contains four NUTS2 regions, which are labelled
NL31, NL32, NL33 and NL34, respectively. Those NUTS2 regions in turn contain different
numbers of NUTS3 regions. For instance, NL31 contains no NUTS3 region, while NL32
contains the seven NUTS3 regions NL321 to NL327.

For the purpose of running algorithms on the dataset, it is helpful to represent the NUTS
structure in a tree. Trees are used widely in computer science for organising and searching
for information. In ‘‘The Art of Computer Programming’’, Knuth (1973) defines a tree as a
finite set T of one or more nodes such that

(a) there is one specially designated node called the root of the tree; and
(b) the remaining nodes (excluding the root) are partitioned into m disjoint sets T1, . . . ,Tm

each of these sets in turn is a tree. The trees T1, . . . ,Tm are called the subtrees of the root.

This definition is recursive as a tree is defined in terms of trees. Put another way: a tree
consists of a root and one or more nodes, each of which is a tree. A root which has no nodes
is called a leaf node. There is an analogy with a family tree, a structure much used in
genealogy: the non-root nodes are the children and the root represents the parents. As
each node is itself a tree, we can also refer to the nodes as subtrees.

The NUTS hierarchy can be represented as a tree quite naturally in terms of this
definition. A node consists of the NUTS code, the NUTS level and a socio-economic
indicator such as the national population. The root would be the EU and its 28 nodes are
comprised by the 28 NUTS0 regions. Each of these 28 nodes is itself a tree. Each NUTS0
node has one or more NUTS1 nodes, and in turn each NUTS1 node has one or more
NUTS2 nodes and so on. See Figure 1 for a hypothetical example.

As far as possible, the data for the various indicators and NUTS regions were collected
from the EUROSTAT website or national statistical agencies. Data from EUROSTAT were
always given preference, however, sometimes national agencies would provide data for more
years than were available through EUROSTAT. For instance, in the case of the Finish
NUTS3 region FI193 population values are available from EUROSTAT for the years
2000–2012, but the national statistical agency provides values from 1991 onwards. In such
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a case, we compare national values and EUROSTAT values where they overlap and if they
agree then national values may be used with confidence.

Throughout this paper, we discuss our method and observation with respect to the
population indicator. Figure 2 shows how much data in the case of the population figures
are missing at each NUTS level. For instance, we see that all NUTS0 series are complete,
however gaps in the series become increasingly frequent as we move down the hierarchy.
Especially at the NUTS3 level, the situation has deteriorated to a degree that some series
miss at least half of their data.

Also the pattern of missing data causes problems as data might be missing at the
beginning of a time series, in the middle, at the end or some combination of these.

Figure 2. Number of instances of missing data for each NUTS level in the entire population database.

X

X1 X2 X3

X21 X22

X221 X222 X223

X23

X231 X232

X31

X311 X312

X32

X321 X322 X323

Figure 1. The NUTS tree for a hypothetical country labelled X.
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For instance, many East-European countries miss a substantial portion of their data in the
early part of the time period. This variety in the pattern of missing data requires a method
that allows us to predict all types of missing data in one consistent way.

Another key issue is that the ESPON data are characterised by both a temporal and a
spatial component. The temporal component is the trend of the data as years pass. This
trend may be upwards, downwards or either at different times throughout the period of
25 years and for each NUTS region the corresponding time series will hold that information.
On the other hand, we have a spatial component. This is due to the fact that usually a NUTS
region of a particular level (parent) consists of several NUTS regions of the next lower level
(children). Hence in each year the value of a parent must equal the sum of the respective
values of all its children, that is, all those regions that constitute the parent. This spatial
hierarchy of parent and child NUTS regions introduces an additional constraint on any
prediction we make. In particular, this spatial coherence is a vital part of a consistent
database.

In some instances, this spatial component allows us to solve some of the gaps in a series
directly by using the data of either the children to determine the missing values of the parent
or using the data of the parent and some children to determine the value of another child.
For instance, on some occasion a NUTS2 entry might be unobserved in the data but the
value for all NUTS3 regions that constitute the NUTS2 region are known. In this case, the
value of the NUTS2 region is the sum of the values for all the relevant NUTS3 regions. This
for instance occurred with the Croatian population figures in the year 2001, where the values
for all NUTS2 and NUTS3 regions are available in the comprised database but the values
for the three NUTS1 regions are missing. Clearly the value for each NUTS1 region can then
be recovered but adding up the values of all its children at the NUTS2 level. Similarly if the
value for a NUTS1 region and one of its two NUTS2 regions is known, the missing value for
the second NUTS2 region can be derived by subtracting the observed value of the first
NUTS2 region from the observed value of the NUTS1 region.

Once the whole observed data has been transferred into a coherent initial database, an
program was written to search for and fix such self-solving problems. Here the tree structure
of the NUTS hierarchy can be exploited. At each NUTS level, starting with NUTS0, we visit
each parent. The coding system defines a natural order on the regions of a particular NUTS
level which we can exploit. If for instance, the NUTS2 regions are X11, X12, X13, X21 and
X22, then we visit them in this very order. Now for each parent and all its children, we check
how many values are unobserved. If all but one values are present, the missing value can be
calculated from the observed values. Note that if the calculated value is that of a child, the
algorithm continues with the next parent in line. If however the calculated value is that of the
parent, then we need to move back up the hierarchy to the parent’s parent, if possible, and
continue the algorithm from there. This is necessary as the newly calculated parent is the
child in a previously checked part of the tree which now requires rechecking. The algorithm
ends once we have dealt with the last parent on the NUTS2 level.

Ultimately we are left with a large number of time series which (a) are incomplete in parts
and where the missing data cannot be derived logically from the observed data and (b) are
restricted by the issue of spatial coherence, which is imposed by the tree structure of the
NUTS hierarchy.

Possible methods of dealing with missing data

Traditional methods for dealing with missing data include deletion methods and imputation
methods. Both types are described in more detail in Enders (2010). The two most common
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deletion methods are listwise and pairwise deletion (Peugh and Enders, 2004). Listwise
deletion, or complete case analysis, removes any observation with one or more missing
values. A variant of this approach is pairwise deletion, or available-case analysis, which
removes variables on an analysis-by-analysis case. The problem with either method is that
it often introduces bias into the data set if the process that causes the data is not random.
Furthermore in the case of pairwise deletion it results in the correlations in a correlation
matrix potentially being based on different numbers of underlying observations (Little 1992;
Marsh, 1998).

Another issue with deletion methods is that they wastefully reduce the sample size and
thus mitigates the power of statistical methods. Especially in a case as ours, where the
ESPON dataset is relatively small, an analyst cannot afford to further lose data. Hence an
attempt at completing the missing data by the use of some imputation methods may be more
sensible. Such methods include Mean/Median substitution, regression imputation, (and
stochastic regression imputation which adds a random number from the distribution of
residuals), hot-deck imputation (scores are taken from similar complete observations) or
the method of last observation carried forward (LOCF).

Arithmetic mean imputation suggests the replacement of missing data by the arithmetic
mean of the series. This however has widely been found to introduce bias into the data set
(Brown, 1994; Enders and Bandalos, 2001; Gleason and Staelin, 1975). For instance, in our
case, it is clear that this method fails to deliver a good estimate for missing data at the
beginning of the series if the series has an overall rising trend. Also the missing data might be
in the middle of the series and due to a change in trend throughout the series the mean could
differ substantially from the closest observed data point on either side of the missing data.
Replacement by the mean or the median of only nearby observations raises the questions of
how many observed data points to use in the calculation and what if there are not enough.
Also should observations that are closer to a missing point be considered more relevant?
This is further complicated if data is missing in the middle of the series and there are nearby
observations on either side. If for instance the years 2000–2005 are missing in an otherwise
complete time series and we wish to impute the value for the year 2000, should the observed
value of 2006 be used and if yes with what weighting? Again, if data is missing at the
beginning of the series with a rising trend in the observed data, then replacing the missing
data by the mean of any number of nearby observations would create a picture, which
completely ignores the trend. Linear interpolation could be helpful in certain cases but
will for instance struggle with missing data in the middle of the series if trends change
from downwards to upwards or vice versa.

With the method of hot-deck imputation (Ford, 1983; Little and Rubin, 2002), the nearest
matching record, with complete data, to the record with missing data is identified, and the
missing data copied from the complete to the incomplete record. In our case, this method is
difficult to implement as most time series miss data during the 1990s. Furthermore this
approach completely disregards the fact that the time series hold data of a vast variety of
different regions across a very diverse Europe. In particular, there is no reason to assume
that a trend that occurred in some region in Ireland during the 1990s should therefore also
have occurred in some region of Bulgaria. Generally, as noted in (Enders, 2010), hot-deck
methods have been found to produce substantially biased estimates of correlation and
regression coefficients (Brown, 1994; Schafer and Graham, 2002).

In the case of LOCF, the data value in the last non-missing time period is copied into the
missing parts of the series. Like hot-deck imputation, this is an expedient method and it fails
to encapsulate the underlying missing data generating processes satisfactorily (Cook et al.,
2004; Liu and Gould, 2002; Molenberghs et al., 2004). In a variation of LOCF, one may
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exploit the NUTS spatial hierarchy. For instance if data is missing at a NUTS3 level, but
there is data for the containing NUTS2 region, then one might propagate the proportional
split of the NUTS3 values backwards from the last time period with complete data. If there
are missing observations in the middle of the series, the proportionate split can be estimated
by pro-rata from the known data beyond the immediate endpoints of missing time periods.
Again, these are expedient approaches and do not allow us to make full use of the evidence
provided by all the data in each series. Also despite some of these approaches possibly
working well in some instances of missing data we are likely to encounter in the ESPON
project, they fail to deal with all cases in one consistent way.

Therefore a model based approach is desirable and one might consider a regression
imputation. In an autoregressive model, the value of the series at time t depends on
p previous values:

Xt ¼ cþ
Xp
i¼1

’iXt�i þ �t

By contrast in a moving average model, the error at time t depends on q previous values:

Xt ¼ �þ �t þ
Xq
j¼1

�i�t�j

These can be combined to give an autoregressive moving average model:

Xt ¼ cþ �t þ
Xp
i¼1

’iXt�i þ �t þ
Xq
j¼1

�i�t�j

Such models were given extensive treatment in Box and Jenkins (1970). They are
conventionally fitted to a series which is stationary (that is, in which the trend has been
removed), a situation obtained by differencing. If the trend is linear, the series might need to
be differenced once (i.e. �t ¼ Xt � Xt�1); if the trend is accelerating, second differences might
be required. However, typically to obtain reliable estimates of the p autoregressive
parameters and the q moving average parameters requires series of perhaps many 10s of
observations.

Due to the shortness of at most 25 data points in an ESPON series we do not have this
luxury. In fact many time series that require estimating have less than 15 data points with
observed values. Hence there is insufficient data to provide reliable estimates for the
parameters of an autoregressive or moving average model. Also the varying pattern of the
missing data points in the series complicates things further, suggesting that these traditional
approaches of analysis are not suitable. For example, in a particular NUTS3 region, data
might be missing for intercensal years in the 1990s: 1990, and 1992 to 2000 inclusive, so that
the evidence we have is the single value in 1991 and the series from 2001 to 2012. However,
data may be present for the containing NUTS2 region for the entire time period. The
problem becomes one of identifying a technique which will allow us to make use of all
the available evidence in a coherent and consistent fashion.

If we can model the trend in the existing data and any autocorrelations in the residuals
after the trend is removed, then we have the basis for both estimating missing data
and providing an estimate for the uncertainty. As we have noted above, the series are too
short for traditional time series methods. Furthermore we do not know the statistical
properties of the series, except that they are unlikely to arise from an independent and
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identical distributed process. For these reasons, we choose a forecasting strategy based on
Bayesian methods.

A Bayesian approach

Markov Chain Monte Carlo

Assume we have given a data set D which can be modelled with some parameters � using the
probability PðDj�Þ, that is, the probability of D given �. The parameters � might for instance
come from a regression model (slope, intercept and error variance). Naturally we want to
find estimates for the parameters � that gave rise to D. That means we try to make a
probabilistic statement about � given the data D, or in other words, we want to
understand the probability Pð�jDÞ of � given D. The probability Pð�jDÞ is known as the
posterior distribution of the parameters �. According to Bayes’ theorem, the relationship
between PðDj�Þ and Pð�jDÞ is

Pð�jDÞ ¼ Pð�Þ �
PðDj�ÞR

� PðDj�Þ d�

Usually the denominator is not analytically soluble, but since it is a constant of
proportionality it follows that

Pð�jDÞ / Pð�Þ � PðDj�Þ

that is, the two sides are proportional. Hence we can use the right-hand side to construct a
Markov chain ð�ðtÞÞt�0 of draws of � that has the posterior distribution Pð�jDÞ as its
equilibrium distribution. That means after sufficiently many iterations the � in the
Markov chain are approximately from Pð�jDÞ. We can then take random draws of � in a
Monte Carlo Integration to extract interesting information about Pð�jDÞ. This approach is
called MCMC, and we employ it in an estimation exercise.

The distribution Pð�Þ represents the prior distribution, that is, our initial beliefs about the
values of �. If no such initial beliefs exist, then one may choose a non-informative prior and
thereby make any value equally likely.

The MCMC approach has the useful property that it can be used to estimate missing
values as well. The posterior distribution of the missing data can be considered in the same
way as other unknown quantities. If D� is the unobserved data, then the posterior predictive
distribution of the data is:

PðD�Þ / Pð�Þ � PðDj�Þ � PðD�jD, �Þ

where PðD�jD, �Þ is the conditional distribution of D� given the observed data D and the
parameters �. This gives a means of estimating the missing data, using the available data as
evidence.

MCMC applied to the ESPON data set

Experimentation with the existing population time series suggests that some relatively simple
models will yield reasonable predictions. We start with the quadratic Ordinary Least Squares
regression model

Yt ¼ a0 þ a1 � tþ a2 � t
2
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Here one uses the observed data to estimate the parameters a0, a1, a2 and then employs
those estimations to obtain predictions for the unobserved data in the time series. The
problem with this approach is that it assumes that the observations are independent
which clearly is not the case in the ESPON time series. Instead we use the quadratic model

Yt ¼ a0 þ a1 � tþ a2 � t
2 þ �t

where the autocorrelated error term is �0 � Nð0, �2Þ and, �t � Nð��t�1, �
2Þ, for t> 0. Also

j�j5 1. Alternatively we may look at a linear or an exponential model, that is, either

Yt ¼ a0 þ a1 � tþ �t

or

Yt ¼ a0e
a1t þ �t

respectively. All these models can handle missing values by providing forecasts, backcasts
and interpolation of missing data in the middle of the series. The parameters to be estimated
are a0, a1, a2, � and �.

For our prior distributions, we make the following assumptions about the nature of the
parameters. All of a0, a1 and a2 are drawn from a normal distribution, � from a beta
distribution and �2 from a gamma distribution. Furthermore all our prior distributions
are chosen as non-informative.

The series is modelled by sampling from a multivariate normal distribution, with a vector
� ¼ ð�tÞ of means resulting from the trend component Yt and a covariance matrix �. Note
that multivariate normal distribution has the density function

f ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffi

ð2�Þn
p

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð�Þ

p � exp �
1

2
ðx� �ÞT��1ðx� �Þ

� �

where n is the number of years covered by the time series. If there was no requirement to
interpolate missing values, the covariance matrix would be

� ¼ ð�2 � �i�jÞi, j¼1, ..., n

where �2 is the variance of the error and � the autoregression parameter. The linkage
between present and missing data is rather more complex.

For this purpose, let us divide the time series into a sub-series of missing data points and a
sub-series of present data points. Then we rearrange � according to this subdivision so that
� looks as follows:

� ¼

missing present

missing �11 �12

present �21 �22

0
B@

1
CA

Finally let �p ¼ ð�tÞt2Dob
be the vector resulting from the trend component Yt, where t

runs through the set Dob of all observed data points. Likewise let �m ¼ ð�tÞt2Dunob
be the

vector resulting from the trend component Yt, where t runs through the set Dunob of all
unobserved data points. Then the observed data has a multivariate normal distribution with
mean �p and covariance matrix �22.
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As the missing data can be treated like a missing parameter in our MCMC process, it
follows that the conditional distribution of the missing data given the present data depends
on the joint distribution and the distribution of the present data, that is, if X denotes the
random variable of the missing data and Y denotes the random variable of the present
data, then

fXðxjY ¼ yÞ ¼
fX,Yðx, yÞ

fYð yÞ

Eaton (1983) has shown that fXðxjY ¼ yÞ is the density function of a multivariate normal
distribution with mean �m þ�12�

�1
22 ð y� �pÞ and covariance matrix �11 ��12�

�1
22 �21.

Running the model

Recall that the parameter vectors in the Markov chain are approximately from the posterior
distribution only after a sufficient number of iterations. In practice, every MCMC process
starts with an initial burn-in phase. During the burn-in a certain number of iterations are
performed, however the results are ignored and do not appear in the posterior distribution.
This is to give the Markov chain ample time to get sufficiently close to its equilibrium
distribution. Generally it is not clear how many iterations are sufficient. The danger of
using too few burn-in iterations is that the posterior intervals are still too wide. Gelman
and Rubin (1992) propose a convergence diagnostic. Figures 3 and 4 indicate how the
uncertainty in the output decreases with an increasing number of iterations.

In the case of the population time series we started with an initial burn-in of 250,000
iterations. From then on every fifth iteration is sampled until 100,000 samples have been
collected. The method of not sampling after every iteration step is called ‘‘thinning’’ and it is
necessary as the result after an iteration step depends on the previous result. Thus by
‘‘thinning’’ the chain we get a little closer to obtaining independent identically distributed
draws. Overall the estimation is then based on those 100,000 samples. Hence the estimated
value is a distribution of possibilities.

Besides getting estimates for the parameters and the missing data we can also extract the
highest posterior density from the set of samples. This is defined as the shortest possible
interval enclosing ð1� �Þ% of the posterior mass. Hence by choosing � accordingly this
interval is equivalent to a 95% confidence interval for the estimates.

Ensuring spatial coherence

Recall that the ESPON data has a spatial component which comes from the NUTS
hierarchy. All NUTS1, NUTS2 and NUTS3 regions are children, that is, they are part of
a NUTS region of a higher level. Likewise NUTS0, NUTS1 and NUTS2 are parents, that is,
they divide into NUTS regions of a lower level. In order for the database to be consistent we
have to make sure that all observed and predicted values of the children add up to the value
of their parent.

In the following, we describe how we ensure spatial coherence and how this procedure is
consistent with our Bayesian framework. Note that observed values in the data set are real
values while our predictions are sampled from simulations. In order to justify an approach
that allows us to deal with both observed values and predicted values as if they belonged to
the same class, we regard the observed values as being simulations from the limiting case of a
normal distribution with an infinite precision, that is, a zero variance. Note that the precision
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	 controls the variability � of the simulated distribution due to the relationship 	 ¼ 1
�2
. Hence

if we increase the precision, the variance converges to zero and the simulated numbers are
closer and closer to the mean. In particular if 	 were to ‘‘reach’’ infinity, then every simulated
value would be the mean. Visualised, each value is a single spike, as it has a probability of 1
at its values and zero everywhere else (see Figure 5). In that sense all values, may they be
observed or predicted, belong to the same class of simulations and thus can be added,
subtracted, multiplied and divided. In particular this makes the operations described
below which we use to ensure spatial coherence consistent with our Bayesian approach.

Ensuring spatial coherence is a top-down cross-sectional operation. First, we ensure
spatial coherence between the NUTS0 region and all its NUTS1 region. That means for
the country (NUTS0 region) under consideration we constrain the values of the NUTS1
regions which it contains. Next we ensure spatial coherence between each NUTS1 region and
its containing NUTS2 regions, that is, for each NUTS1 region we constrain the values of the
NUTS2 regions which it contains. Finally, we proceed the same way with each NUTS2
region and all its constituent NUTS3 regions.

Recall that we consider the NUTS hierarchy as a tree. Hence the same algorithm can be
applied irrespective of the level we are at. Whether we ensure spatial coherence between the
NUTS0 region and its containing NUTS1 regions or between a NUTS2 region and its
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Figure 3. Normal distribution after a varying number N of iterations.
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containing NUTS3 regions the procedure remains the same and we describe it in the
following:

Let A be a NUTSX region with value vA. The value vA is either an observed value or has
been predicted using MCMC. In the latter case, the top-down component of our operation
will already have ensured spatial coherence between A and its siblings and their parent
region. Whatever the situation a finalised value vA exists. Also let B1, . . . ,Br be all the
containing NUTS(Xþ 1) regions with respective values vi, for i ¼ 1, . . . , r. Furthermore
we arrange the Bi such that B1, . . . ,Bt are the observed data points and Btþ1, . . . ,Br are
the values predicted by MCMC. Now we apply a pro-rata to the predicted values in order to
achieve spatial coherence, where, for each k ¼ tþ 1, . . . , r we let v�k ¼ s � vk, with

s :¼
vA �

Pt
i¼1 viPr

i¼tþ1 vi

That means the proportion of v�k in the total value vA minus the sum of all the observed
siblings is the same as the proportion of vk in the sum of all predicted values. Performing
this step for every parent in the NUTS tree beginning at the top produces a spatially
coherent tree.
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Figure 5. Increasing the precision 	 simulates numbers closer and closer to the mean.
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Software

Software for MCMC approaches has been, until recently, the province of the specialist. This
altered with the release of BUGS (Bayesian inference Using Gibbs Sampling) (Lunn et al.,
2009, 2012). BUGS has now been extended with a Windows interface (WinBUGS) and to
handle spatial data (GeoBUGS). However, data preparation and post-modelling evaluation
requires other software. The release of JAGS (Plummer, 2015) provides a further milestone.
It offers a very similar facility to BUGS, but it is open source and may also be used in
conjunction with the statistical programming language R via the rjags package. This offers R
users the capability of fitting models using MCMC, while giving the power and flexibility of
R, in order to prepare the data, and to provide extensive evaluation of the results in the R
environment. Using JAGS, it is possible to obtain posterior distribution for the parameters
and for the missing data. The R package has also been used to implement the data checking
procedures.

Results

An Austrian example

In this section, we show the steps of our methodology by working through the available data
of Austria. The indicator under consideration is the population figure. Austria has three
NUTS1 regions, 3, 2 and 4 NUTS2 regions, respectively, and a total of 34 NUTS3 regions.
From Figure 6, we see that population values are present for the entire time frame for all
NUTS0, NUTS1 and NUTS2 regions, but are missing for all NUTS3 regions from 1990 to
2001 inclusive.

Once the data has been collected from EUROSTAT and the National Statistics Office, the
entire process of data completion comprises three stages. First, we check for values that are
missing from the data but can be determined directly from other observed data points.
Secondly, we predict all missing values using an MCMC estimation. Finally, the data is
adjusted for spatial coherence.

In our case, the situation in which a parent is missing but all its children are known, or the
parent and all but one of its children are known does not occur. Therefore step one of our
process is not necessary or, if performed, will not improve the state of the data.

Figure 6 shows a heatmap of the population totals. The colder colours in the spectrum
represent lower populations and the warmer colours represent larger populations. In general,
the population for AT and its NUTS1 regions have grown over the 22 year time period from
1990 to 2011. However, the trajectory of some individual zones has been different: that for
AT21 had considerable growth to the mid 1990s, followed by a gradual decline over the rest
of the time period.

In the next stage, we run the MCMC algorithm to estimate all missing population values.
One needs to be aware that for all 34 NUTS3 regions a time frame of 12 years was missing.
This represents approximately 55% of the NUTS3 data. This means that at best, we have
45% of the NUTS3 data as evidence on which to base the retropolations, although we also
have 100% of the NUTS2 data to act as a constraint. The first heatmap in Figure 7 shows
the unadjusted NUTS3 estimates as derived from the MCMC algorithm.

In the last stage, we adjust the data for spatial coherence. For this an algorithm runs from
top to bottom through each parent region and adjusts all estimated values on a pro-rata
basis. As the children of all parents at the NUTS0 and NUTS1 level are observed no
adjustment is needed here. Finally for every parent at the NUTS2 level from 1990 to 2001
an adjustment takes place. The second heatmap in Figure 7 shows the spatially coherent
population figures.
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Let us now take a closer look at the NUTS2 region AT21 (Kärnten) and its three
NUTS3 children AT211 (Klagenfurt-Villach), AT212 (Oberkärnten) and AT213
(Unterkärnten). For each region, we use the available data for the years 2002–2011
inclusive to derive estimates from the MCMC algorithm for the missing years 1990–2001
inclusive. Finally, we use the available totals of AT21 for the years 1990–2001 inclusive
to enforce spatial coherence among the MCMC estimates of AT211, AT212 and AT213.
Figure 8 shows the available data, the unadjusted estimates and the spatially coherent
estimations. Finally note that even though the jump from 1990 to 1991 looks dramatic it
only represents a growth of 0.5%.

Figure 6. Austria – available population values: The diagram shows for which NUTS regions data are

present or missing. It is also a heatmap of population totals, where colder colours in the spectrum represent

lower populations and warmer colours represent larger populations.

Pforte et al. 879



Assessment of the methodology

Let us assess the performance of our methodology by estimating population figures which we
already know. As mentioned above the values for all three NUTS1 regions of Austria are
given for all the years 1990–2011. In the following, we assume the six years from 1990 to
1995 to be missing. We run the estimation process for those values based on the present
NUTS1 figures for the years 1996–2011 and enforce spatial coherence with respect to the
given NUTS0 figures for the years 1990–1995.

The first figures in Figures 9 to 11, respectively, show the imputation process for the three
NUTS1 regions AT1, AT2 and AT3, respectively. We see in all three cases that the estimated
trend diverges very quickly from the actual values during the years 1995 back to 1990. For
instance for both AT1 and AT3, the estimated value for 1990 is off by nearly 100,000 people.
The estimated trend for AT2 during the years 1990–1995 is downwards, while in reality the
trend is upwards during that period.

Next we exploited the knowledge which comes from the present NUTS0 values for the
years 1990–1995. We adjust the estimated values to ensure spatial coherence with respect to
the NUTS0 region, that means, for each year we ensure that the sum of the estimates for
AT1, AT2 and AT3 adds up to the present value for the entire country. Applying a pro-rata
we derive at the new, adjusted estimates as given by the second figures in Figures 9 to 11,
respectively. Note how after the process of ensuring spatial coherence, the estimated values
are much closer to the actual values. Also the actual trend in the data is captured more
realistically.

Scalability

The question of the practicability of the approach, given the nature of MCMC estimation
should be considered. The ESPON series are short run – in the case of the population data,
we have no more than 25 observations. In the worst case all 25 observations are missing,

Figure 7. Austria – unadjusted population estimates (left) and spatially coherent population estimates

(right).
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and no amount of MCMC will recreate the data. The time required depends on (a) the speed
of the processor, (b) the number of burn-in cycles and (c) the number of estimation cycles.
Counter-intuitively, the more data that is present, the longer the estimation process takes.
Figure 12 depicts the relationship between the proportion of missing data and the time
required to estimation the missing data in the series.

In the population series, about 28% of the data was missing. The MCMC estimation for
the entire dataset, that is, all missing NUTS0, NUTS1, NUTS2 and NUTS3 regions, took
about 60 hours on a quad core 3.16GHz Intel Xeon processor running Windows XP
Professional. This would equate to about 35 hours on a laptop running Windows 7
Professional on a 2.80GHz Intel Core i7-2640M processor. In comparison, the
adjustment to spatial coherence was completed in a total of 13 seconds.

Other series in the dataset

The process presented in this paper is equally applicable to any other indicator of interest in
the database, such as employment or GDP. In fact, the completed time series for one

Figure 8. Austria – estimates for AT211, AT212 and AT213 for the years 1990–2001 inclusive. The grey

dots represent the available data, the dotted line shows the estimated population from the MCMC algorithm

and the uninterrupted line shows the spatially coherent estimates.
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Figure 9. Imputed and spatially adjusted population figures for Austrian NUTS1 region AT1.
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Figure 10. Imputed and spatially adjusted population figures for Austrian NUTS1 region AT2.
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Figure 11. Imputed and spatially adjusted population figures for Austrian NUTS1 region AT3.
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indicator may be used in the completion of another. For instance, the prediction of the GDP
series might include population and unemployment as covariates, that is, we use the model

GDPt ¼ a0 þ a1tþ a2t
2 þ a3 � Popt þ a4 �Unempt þ �t

�0 � Nð0, �2Þ

�t � Nð��t�1, �
2Þ

Conclusions

The production of a coherent and reliable space-time socio-economic indicator was the goal
of the activity described in this paper, using a robust approach to imputing missing data in a
consistent way given the characteristics of the dataset. This has been achieved using a valid
statistical model which also satisfies the spatial constraints of the problem by ensuring that
the summed values of the nested regions equal the value of the corresponding parent region.

Our Bayesian approach to the problem does not just fill the holes in the time series but
also produces accompanying error bounds, thus giving an indication of the confidence level
in the imputation. This further strengthens the results. Furthermore our method is very
flexible as it is independent of the nature of the data and works irrespective of the chosen
model. The entire algorithm has been implemented using open source software, R and
JAGS, making it an accessible tool for other users as well as ensuring the reproducibility
of any results.

Figure 12. Scalability of MCMC estimation.
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This provides but one small element in the set of activities leading to the wider goals of
EU territorial cohesion. It also provides the basis for further work on other space-time socio-
economic components of the ESPON database, including births, deaths, employment and
gross domestic product. However, it should be noted that as a methodology it provides a
general approach to the imputation of missing data in space-time data series. As such it can
be employed for data imputation in short run time series, which also form part of a spatial
hierarchy. As such it acts as a suitable tool for the production of evidence to support policy
creation, evaluation, implementation and monitoring.
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