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ABSTRACT
Geographically weighted regression (GWR) is an important local
technique to model spatially varying relationships. A single dis-
tance metric (Euclidean or non-Euclidean) is generally used to
calibrate a standard GWR model. However, variations in spatial
relationships within a GWR model might also vary in intensity with
respect to location and direction. This assertion has led to exten-
sions of the standard GWR model to mixed (or semiparametric)
GWR and to flexible bandwidth GWR models. In this article, we
present a strongly related extension in fitting a GWR model with
parameter-specific distance metrics (PSDM GWR). As with mixed
and flexible bandwidth GWR models, a back-fitting algorithm is
used for the calibration of the PSDM GWR model. The value of this
new GWR model is demonstrated using a London house price data
set as a case study. The results indicate that the PSDM GWR model
can clearly improve the model calibration in terms of both good-
ness of fit and prediction accuracy, in contrast to the model fits
when only one metric is singly used. Moreover, the PSDM GWR
model provides added value in understanding how a regression
model’s relationships may vary at different spatial scales, accord-
ing to the bandwidths and distance metrics selected. PSDM GWR
deals with spatial heterogeneities in data relationships in a general
way, although questions remain on its model diagnostics, distance
metric specification, and computational efficiency, providing
options for further research.
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1. Introduction

On consideration of Waldo Tober’s first law of geography (Tobler 1970), Goodchild
(2004) suggested a candidate second law of geography in the principle of spatial
heterogeneity or nonstationarity. In this respect, there has been much interest in
localized regression methods for spatial data analysis that produce spatially varying
regression outputs instead of a ‘one-size-fits-all’ result of the usual global regression
(Fotheringham and Brunsdon 1999). Notable localized regression techniques include the
expansion method (Casetti 1972), the weighted spatial adaptive filtering model (Gorr
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and Olligschlaeger 1994), the geographically weighted regression (GWR) model
(Brunsdon et al. 1996) and more recently, the Bayesian space-varying coefficient (SVC)
model (Assunção 2003, Gelfand et al. 2003). Only the latter two still have merit, where
the simplicity of GWR provides a valuable alternative to the sophisticated SVC model,
whose inherent computational complexity tends to severely limit its widespread appli-
cation. GWR has been recognized as an important and popular technique for modeling
spatial heterogeneous processes across a wide range of domains (Fotheringham et al.
2015). Griffith (2008) provides a valuable critique of GWR with respect to its relationship
to autoregressive and spatial filtering models.

The remit of a GWR model is to explore spatially varying relationships between the
dependent and independent variables via a series of localized linear regression fits. Here
at each local regression calibration point, a ‘bump of influence’ is produced where
nearer observations have more influence in estimating the local set of regression
parameters than do observations farther away (Fotheringham et al. 2002). This is
achieved via some distance-decay kernel weighting scheme. Notably, research has
tried to adapt or extend this weighting scheme in order to refine the GWR calibration
and improve the associated output, specifically in terms of bandwidth and distance
metric choices. In this respect, Farber and Páez (2007) propose two modified cross-
validation (CV) approaches for optimal bandwidth selection that reduce the influence of
outlying CV values. Brunsdon et al. (1999) introduce mixed GWR, that treats some
dependent to independent data relationships as global (or fixed), while the rest as
local (i.e. the usual case, but as in basic GWR, each at the same spatial scale). Yang
(2014) extends mixed GWR to GWR with flexible bandwidths (FB GWR) that enables each
data relationship to operate at its own (and commonly different) spatial scale via
specifying its own relationship-specific bandwidth. Further refinements in the weighting
scheme have been necessary in the GWR models of Huang et al. (2010) and
Fotheringham et al. (2015) where the temporal dimension is incorporated; and of
Harris et al. (2013), where hierarchical data structures are represented. Lu et al. (2011,
2014a) use non-Euclidean distance metrics in GWR, and found its fit could be improved
by using a proper distance metric (i.e. network distance (ND) and travel time (TT)),
instead of the usual Euclidean distance (ED). Further refinements in distance metric
selection can be found in Lu et al. (2016), where a Minkowski approach is used to
approximate the underlying ‘optimum’ metric. Páez (2004) provides an anisotropic
version of GWR, allowing dependent/independent variable local relationships to vary
in intensity with direction.

All such studies endorse a key principle in GWR in that its chosen distance-weighting
scheme is crucial to its performance, and thus research to refine or improve this
distance-weighting scheme is worthy. In this respect, we propose that the relationship
between any specific dependent/independent variable pair adheres to its own specific
spatial process and as such, should have its own, distinctive weighting computation. We
do this by presenting a GWR model with parameter-specific distance metrics (PSDM
GWR), extending the preliminary simulation work of this model from Lu et al. (2015),
where a PSDM GWR model provided more accurate predictions and more accurate
coefficient estimates, than those from a standard GWR calibration. The PSDM GWR
model can be considered as an amalgamation of the non-ED metric GWR models of
Lu et al. (2011), 2014a) with the FB GWR model of Yang (2014).

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 983



This article is organized as follows. Firstly, we introduce the methodology of PSDM
GWR. Secondly, we present a London house price case study using PSDM GWR with ED
and TT metrics. Thirdly, we investigate ways to improve the computational efficiency of
the PSDM GWR back-fitting algorithm. Finally, we summarize and discuss future refine-
ments to the methodology.

2. Methodology

2.1. Geographically weighted regression

GWR makes location-wise estimates to model spatially varying relationships. Generally, a
basic form of GWR model can be expressed as:

yi ¼ βi0 þ
Xm
k¼1

βikxik þ εi; (1)

where yi and xik k ¼ 1; � � � ;mð Þ are the observations of dependent variable and indepen-
dent variable, respectively, at location i, βik k ¼ 0; 1; � � � ;mð Þ is the set of regression
parameters estimated at location i; and εi is the random error term.

A standard GWR model is calibrated by a weighted least squares approach at each
regression point, of which the matrix expression is:

β̂i ¼ XTWiX
� ��1

XTWiy; (2)

where X is the matrix of the independent variables with m + 1 columns and a column
of 1 s for the intercept (if there is one); y is the vector of the dependent variable; and Wi

is a diagonal matrix denoting the geographical weightings for each observation data
(sub)set at regression location i. Notably, Wi is calculated with a distance-decay kernel
function, which is nonincreasing, real, and bounded from 0 to 1 (Cho et al. 2010). There
are many kernel functions to choose from, for example, Gaussian, exponential, bi-square,
tri-cube, and box-car (see Gollini et al. 2015). Here, the Gaussian kernel function is used
and can be expressed as,

Gaussian : wij ¼ exp � 1
2
ðdij
b
Þ
2� �
; (3)

where wij is the weight attributed to observation j; dij is the distance between observa-
tion j and regression point i; and b is the bandwidth, a key parameter to control the
magnitude of distance-decay. The bandwidth can be either a fixed distance (i.e. a fixed
distance bandwidth) or a fixed number of nearest neighbors (i.e. an adaptive distance
bandwidth). It can be optimally found by minimizing the CV score (Cleveland 1979,
Bowman 1984), or the Akaike information criterion (AIC) (Akaike 1973). AIC approaches
are preferred as they account for model parsimony, that is, a trade-off between predic-
tion accuracy and complexity. In particular, a corrected version of the AIC (AICc) (Hurvich
et al. 1998) is used in this study, whose calculation is:

AICc ¼ 2n lnðσ̂Þ þ n lnð2πÞ þ n
nþ trðSÞ

n� 2� trðSÞ
� �

; (4)
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where n is the number of observations; σ̂ denotes the estimated standard deviation of
the error term; and trðSÞ denotes the trace of the hat matrix S. The hat matrix is the
projection matrix from the observed y to the fitted values by (Hoaglin and Welsch 1978).
In a GWR calibration, each row of S can be expressed as:

ri ¼ Xi X
TW ui; við ÞX� ��1

XTW ui; við Þ; (5)

where Xi is its ith row of the matrix of independent variables X.

2.2. GWR with parameter-specific distance metrics

In the standard GWR technique, the ED metric is uniformly used when determining the
geographically weighting for dependent/independent variable relationships. Even with
non-ED metrics (Lu et al. 2014a, 2016), the proximities between the observations and
each regression calibration location are similarly calculated in the same way, no matter
how many different independent variable types are included in the regression model.
Meanwhile, the key to control the spatial scale or magnitude of nonstationarities is the
bandwidth: small bandwidths tend to reveal spatial pattern at a detailed microscopic
scale, while large bandwidths are inclined to present spatial variations at a broad
macroscopic scale (Fotheringham et al. 2002). However, it is likely that the scale or the
intensity of the spatial relationships may differ among each dependent/independent
variable relationship, and as such, each should have diverse responses to the weighting
computation, even within the same regression model (Lu et al. 2015). The first GWR
model to consider this was proposed by Brunsdon et al. (1999) with mixed GWR; a model
that allows each regression relationship to be treated either as local or as global. This
mixed or semiparametric GWR model has subsequently been refined by Mei et al. (2004,
2016) and by Nakaya et al. (2005). In the mixed GWR model, the bandwidth for all local
relationships is taken to be the same, while the ‘bandwidth’ for all global relationships is
also the same. The natural extension of the mixed GWR model is to allow each relation-
ship to have its own specific bandwidth, that is, the flexible bandwidths of the FB GWR
model proposed by Yang (2014) (see also, Yang et al., (2011, 2012)). The PSDM GWR of
this study is similar in spirit to the FB GWR model, whereas FB GWR only used ED
metrics, the new PSDM GWR model allows each relationship to have its own specifically
‘optimized’ distance metric for each regression relationship (i.e. each independent
variable and the intercept).

Both mixed GWR and FB GWR employ back-fitting algorithms (Hastie and Tibshirani
1986), so it is natural to adopt a similar algorithm here. In particular, we extend the
algorithm presented in the preliminary work on the PSDM GWR model (Lu et al. 2015), to
now adopt varying bandwidths with correspondence to parameter-specific distance
metrics. Suppose we have calculated distance matrices, DM0;DM1; � � � ;DMm, and corre-
sponding bandwidths bw0; bw1; � � � ; bwm, specifically for each independent variable in
the model (Equation (1)). The PSDM GWR model can be calibrated via a back-fitting
procedure in the following steps:

(1) Make an initial guess of the coefficients bβ 0ð Þ ¼ bβ 0ð Þ
0 ; bβ 0ð Þ

1 ; � � � ; bβ 0ð Þ
m

� 	
, calculate all

the estimated terms by 0ð Þ
0 ¼ bβ 0ð Þ

0 � X0; � � � ;by 0ð Þ
m ¼ bβ 0ð Þ

m � Xm, where Xi is the (i + 1)th
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column of X i ¼ 0; 1; � � � ;mð Þ, where the symbol � means the element-wise multi-

plication of the two vectors, and the residual sum of squares, RSS 0ð Þ;
(2) Provide the maximum number of iterations N and the threshold value τ as

criterions to terminate the back-fitting iterations;
(3) To start the back-fitting iterations, initialize the iteration-count number k = 1;
(4) For each independent variable xl l ¼ 0; 1; � � � ;mð Þ, do the following operations:

(a) Calculate �
kð Þ
l ¼ y�Pm

j�l
Latestyhat by k�1ð Þ

j ;by kð Þ
j

� 	
, where Latestyhat is a condi-

tional function:

Latestyhat by k�1ð Þ
j ;by kð Þ

j

� 	
¼ by kð Þ

j ; if by kð Þ
j existsby k�1ð Þ

j ; otherwise
:

(
(6)

(b) Do the weighted regression between �
kð Þ
l and Xl (see Equation (2)) and get a

new set of coefficients bβ kð Þ
l , where the weighting matrix is computed with the

corresponding distance matrix DMl and bandwidth bwl;

(c) Update the estimated term by kð Þ
l ¼ bβ kð Þ

l � Xl ;

(5) Calculate the predicted value by kð Þ with the newly estimated coefficientsbβ kð Þ ¼ bβ kð Þ
0 ; bβ kð Þ

1 ; � � � ; bβ kð Þ
m

� 	
, and then update the residual sum of squares

(RSS), RSS kð Þ

(6) Calculate the changing value of RSS (CVR), as,

CVR kð Þ ¼ RSS kð Þ � RSS k�1ð Þ (7)

or a differential version,

CVR kð Þ ¼ RSS kð Þ � RSS k�1ð Þ

RSS k�1ð Þ : (8)

(7) Update the iteration-count number k = k + 1;

(8) If CVR kð Þ is larger than τ or the number of iterations k exceeds N , then terminate;
otherwise, go to step 4.

In the algorithm above, we assume that all the bandwidths have been provided. However,
they are usually unknown for a PSDM GWR model in practice. For the FB GWR model,
Yang (2014) suggests two strategies to select parameter-specific bandwidths: (I) make
brute-force searches from a broad collection of possible bandwidth values and choose the
best performing set of bandwidths; (II) optimize the bandwidth for each independent
variable within the back-fitting iterations, that is, select an optimum bwl in step (4b) of the
above algorithm. The former strategy is extremely computationally intensive, and its
accuracy will rely on the candidate bandwidth values provided. Therefore, the latter
strategy is adopted for selecting the multiple bandwidths here.

The back-fitting algorithm can still be computationally demanding however, even if
the bandwidths are provided or known. The computational costs largely depend on the
speed of convergence, that is, the eventual number of iterations. This depends on the
following elements: (i) the initial guess of bβ 0ð Þ; (ii) bandwidths given or not given (if not
given, the bandwidth in each iteration should be selected via a CV or AICc approach); (iii)

986 B. LU ET AL.



the choice of CVR, and generally the differential version is recommended; (iv) the
threshold value τ; and (v) the maximum number of iterations N . Note that τ together
with N construct the criterion to terminate the back-fitting iterations; τ could be a fairly
small value to determine whether the back-fitting process has converged, and is vital for
the fitting accuracy; while N is a sufficiently large integer to avoid running endlessly, and
it is likely that the back-fitting procedure fails to converge if terminated by the iteration-
count number k reaching N . Computational efficiency of the back-fitting algorithm will
be further discussed in context of the results from the following case study.

3. Case study with London house price data

In the short and preliminary study of Lu et al. (2015), a simulation experiment was
conducted on a 25*25 square grid, where one regression parameter was set as stationary
(β1 ¼ 2), while the other was set as nonstationary (β2 ¼ log uþ vð Þ, where u; vð Þ are the
coordinates), and there was no intercept term specified. Accordingly, the former regres-
sion parameter was estimated using a zero (constant) distance metric (i.e. distance
between any pair of locations is zero), while the latter regression parameter was
estimated using the usual ED metric. The results from this very basic simulation experi-
ment demonstrated the potential of PSDM GWR in providing more accurate parameter
estimates and more accurate predictions than that found with standard GWR model.
Moreover, the simulation study actually calibrated PSDM GWR as a special case of mixed
GWR. In fact, PSDM GWR is a general form of many models: (a) the global regression, (b)
basic GWR, (c) mixed GWR, and (d) FB GWR; where PSDM GWR allows the added
flexibility of distance metric choice for each regression relationship. We now empirically
demonstrate the potential of the PSDM GWR model using real data.

3.1. Data and model

As our case study data, we use the same London house price data set described in Lu
et al. (2014a). It consists of 2108 properties sold during the 2001 calendar year, as
visualized in Figure 1. For these data, the house sale price PURCHASE (the dependent
variable) is combined with a series of hedonic characteristics (the independent vari-
ables), including those measuring: structural characteristics, construction time, prop-
erty type, and local household income conditions. Following a forward selection
procedure described on Lu et al. (2014a), we retain only the following three inde-
pendent variables: FLOORSZ (the floor size of the property in square meters), BATH2 (a
dummy variable indicating if the property has two or more bathrooms), and PROF
(the percentage of the workforce in professional occupations in the census enumera-
tion district in which the property is located). Thus, the corresponding GWR model
can be expressed as:

PURCHASEi ¼ β0i þ β1iFLOORSZi þ β2iBATH2i þ β3iPROFi; (9)

where the subscript i means a local regression calibration location (or regression point).
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3.2. GWR calibrations with ED, TT, and PS distance metrics

Lu et al. (2014a) calibrated the GWR model for Equation (9) with ED and TT metrics,
respectively, where the TT metric outperformed that with the ED metric. In that study, a
single distance metric together with a single bandwidth was used uniformly for estimating
all the GWR parameters. However, the four sets of parameters (i.e. β0, β1, β2 and β3) may
themselves individually vary across different spatial scales and whose closeness in space
may not be represented in the usual ‘as the crow flies’ distances. Here PROF represents
spatial variation agreeing with simple proximities at the census enumeration district level
and thus the usual ED metric is considered suitable. The determinants FLOORSZ and
BATH2, however, are the structural attributes of a property, of which the spatial nonsta-
tionarities might be more reflected by the accessibilities between each regression calibra-
tion location and the observation locations. Thus, it is very possible (and following the
results of Lu et al. 2014a), the TT metric is suitable in both cases. Therefore, in our PSDM
GWR model fit, the TT metric is used to estimate FLOORSZ and BATH2 (i.e. β1 and β2), and
the ED metric is used to estimate the Intercept1 and PROF (i.e. β0 and β3).

3.2.1. Summary of the GWR calibrations with ED, TT, and PS distance metrics
In order to be able to coherently compare the results of this study with those of Lu et al.
(2014a), fixed bandwidths and Gaussian kernel function are again adopted for the

Figure 1. House price data and road network data in London.
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following three GWR calibrations: (i) GWR with ED metric (i.e. the standard GWR calibra-
tion), (ii) GWR with the TT metric, and (iii) PSDM GWR using the ED metric for estimating
β0 and β3, and the TT metric for estimating β1 and β2, respectively. The model calibra-
tion information (distance metrics and bandwidths) and outputs (AICc, R-squared, and
RSS) are given in Table 1.

Observe that a single bandwidth is used uniformly for both ED GWR and TT GWR
calibrations, but that a distinct bandwidth is specified for each parameter estimate in the
PSDM GWR calibration. Thus, the number of distance metrics used directly relates to the
number of bandwidths needed. Specifically, the bandwidth in every back-fitting iteration
is always optimized via the AIC approach, and the bandwidths for the PSDM GWR
calibration in Table 1 are the ones used in the final iterations for all the independent
variables. As shown in Lu et al. (2014a), there is only a moderate difference between the
bandwidths of ED GWR (1914 meters) and TT GWR (175 s, which can be approximately
recognized as a distance bandwidth at 2346 meters if we take the average speed is
30 miles/h) calibrations; noting that straight line distances will always be smaller than
real-world travelling distances. However, they are very different from the bandwidths
found in the PSDM GWR calibration.

In the PSDM GWR model, bandwidths under the ED metric for β0 and β3 are very
similar and are relatively large (at 51,137 and 51,175 meters, respectively); bandwidths
under the TT metric for β1 and β2 are considerably different and relatively small (i.e. 100
and 58 s, respectively). Intuitively, these bandwidths are reasonable. PROF is sampled at
the census enumeration district level and its spatial behavior is expected to be of an ED
nature with a bandwidth to suit. Bandwidths for FLOORSZ and BATH2 reflect houses that
are geographically close together (in an ED sense) excluding those that have a signifi-
cant barrier between them, such as houses directly opposite each other but on different
sides of the river Thames. The use of the TT metric picks up on these subtle spatial
effects for these particular hedonic variables.

Note also, there are four AICc values for the PSDM GWR calibration, which seems
unconventional when compared with the ED GWR and TT GWR calibrations. The PSDM
GWR model is fitted via the aforementioned back-fitting procedure, where a hat matrix
can only be calculated from regressing one independent variable successively. Figure 2
presents the AICc values calculated from all the iterations. It is notable that the AICc for
each independent variable converges, but to different values. The smallest AICc indi-
cates the best level of goodness-of-fit (GoF) this PSDM GWR model could accomplish,
while the largest one shows the bottom line for its performance. Hence, it is reasonable
to evaluate the PSDM GWR model performance via the smallest of the four AICc values
at 36,471.86, that is, a strong reduction of 822.1 compared with TT GWR and a strong

Table 1. GWR model calibration information and outputs using ED, TT, and PSDM metrics.
GWR (ED) GWR (TT) GWR (PSDM)

All All β0 β1 β2 β3
Distance metric ED TT ED TT TT ED
Bandwidth 1914(m) 175(s) 51,137(m) 100(s) 58(s) 51,175(m)
AICc 37,382.97 37,293.96 36,471.88 37,056.98 36,626.56 36,471.86
R-squared 0.864 0.885 0.901
RSS 1.002638e + 12 849078765203 7.316638e + 11

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 989



reduction of 911.11 compared with ED GWR. Such differences in AICc suggest great
potential in the PSMD GWR model, at least in terms of GoF, over the two alternatives.

Furthermore, the R-squared from the PSDM GWR calibration improves by 1.6% in
comparison with the TT GWR calibration, and by 3.7% compared with the ED GWR
calibration. These reductions indicate better predictive performance from PSDM GWR
over the TT and ED GWR calibrations. Note however, that it is unwise to compare the
three GWR models by their R-squared only, since values are directly affected by the
bandwidths, which are not comparable when different distance metrics are used (see Lu
et al. 2014a for further discussions). Similar cautions should be taken with the RSS values.

3.2.2. Residual comparisons for ED GWR, TT GWR, and PSDM GWR models
In Figure 3(a), we plot the residual densities from the ED GWR, TT GWR, and PSDM GWR
fits, where their shapes indicate normality, as would be expected. The red line in
Figure 3(a) corresponds to the residual density for the PSDM GWR model, and shows
the highest density of values around 0 together with the lowest density of values in tails
(high positive and negative residuals). In this respect, the PSDM GWR model can be
taken as most accurate predictor of the three study models.

To investigate model prediction accuracy spatially, we produce three discrepancy
maps of the absolute value of a GWR predicted PURCHASE price minus the actual price,
minus the same calculation from an alternative GWR calibration. The residual maps are
smoothed using inverse distance weighting. Positive values in Figure 3(b–d) indicate
better predictions from the latter calibration (i.e. TT GWR in Figure 3(b) and PSDM GWR
in Figure 3(c–d)), while negative values imply better predictions from the former
calibration (i.e. ED GWR in Figure 3(b–c) and TT GWR in Figure 3(d)). Figure 3(b) clearly
shows that TT GWR predicts better than ED GWR in most regions, especially along the
west and middle parts of the River Thames. From Figure 3(c–d), the PSDM GWR model
appears to perform both the best and the worst locally, with no discernable spatial
pattern evident. The relative improvement in prediction accuracy of PSDM GWR appears
strongest in the northern and western parts of London when compared with ED GWR.
However, TT GWR outperforms PSDM GWR along the River Thames, which highlights the

Figure 2. AICc values calculated from all the iterations in the PSDM GWR calibration.
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effectiveness of the TT metric when an obvious barrier is present. Although PSDM GWR
is known to be the most accurate predictor overall or in a global sense (from Table 1),
locally it outperforms ED GWR at 62% of the 1601 regression locations; and outperforms
TT GWR at 56.8% of the locations. However, the improvements are difficult to fully
appreciate in any detail. This requires more involved investigations of the TT metric,
overlaid onto the London road network (see also Lu et al. 2014a), together with the
discrepancy maps shown.

3.2.3. Parameter comparisons for ED GWR, TT GWR, and PSDM GWR models
In Figure 4, we compare the four sets of parameters from the three calibrations via 12 pair-
wise scatterplots. From the first column of Figure 4, it is clear that the ED GWR and TT GWR
models produce relatively similar and thus highly correlated parameter estimates (with
correlation coefficients around 0.95). The PSDM GWR model however, produces very
different parameter estimates to the other two models, as presented in the second and
third columns of Figure 4. This behavior is entirely expected, as different distance metrics,
and furthermore, different bandwidths are used for its calibration (as presented in Table 1).
Estimates of the Intercept and PROF are fairly stable within the study area, ranging only
from −18,094.47 to −17,994.24, from 1080.33 to 1082.59, respectively. This is not surprizing
since the corresponding bandwidths (at 51,137 and 51,175 meters) are tending toward a

Figure 3. Residual comparisons for the ED GWR, TT GWR, and PSDM GWR models. The legend titles
mean the absolute residuals from the first GWR model minus the absolute residuals from the second
GWR model.
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global estimation of these two parameters. This is logical for PROF, as it is a large scale
economical index. Estimates of FLOORSZ and BATH2 for the PSDM GWR model are posi-
tively correlated with the corresponding estimates from the ED GWR and TT GWR models,
which indicate homogeneous patterns for these two independent variables.

Overall, the PSDM GWR model gives very different parameter estimates from the GWR
models with only one distance metric, used uniformly. Differences are fundamentally

Figure 4. Parameter comparisons for the ED GWR, TT GWR, and PSDM GWR calibrations. The
scatterplot label ‘FLOORSZ(ED)’ means the estimated parameters for the FLOORSZ variable from
the ED GWR model. The rest of the scatterplot labels can be interpreted accordingly.
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caused by the distinctive weighting schemes that result from using both ED and TT
metrics and employing flexible bandwidths, all within the same GWR model. Parameter
estimates from PSDM GWR should display distinctive spatial scales of variation, for each
parameter surface in turn. Results also suggest that a particular non-ED metric mixed
GWR model would be a pragmatic choice for this data, that is, let the Intercept and PROF
be fixed globally, but let FLOORSZ and BATH2 vary locally (with their weights via the TT
metric). In this respect, the PSDM GWR model provides a useful model selection tool for
finding a simpler GWR fit.

4. Heuristics to reduce computational cost

The simulation study results of Lu et al. (2015) and this paper’s empirical results
demonstrate that a PSDM GWR model can provide a worthy improvement over alter-
native GWR models. However, the back-fitting algorithm for calibrating a PSDM GWR
model is highly computer intensive. As stated in Section 2.2, there are five factors that
might affect these costs: (i) choice of CVR; (ii) the threshold value τ; (iii) the maximum

number of iterations N ; (iv) initial guess of bβ 0ð Þ; and (v) bandwidths specified or to be
specified. The former three factors immediately determine the convergence speed, but it
is quite straightforward to reset them accordingly. Addressing the latter two factors,

however, is not so straightforward, and in this section we look at initial guesses of bβ 0ð Þ

and bandwidth selection to determine useful heuristics for reducing computational
costs. In other words, we propose strategies for initializing the parameters and optimiz-
ing bandwidth selection in order to reduce computational burden.

In the case study, bandwidths used for the PSDM GWR model are always optimized
via the AICc approach within every iteration step. Figure 5 shows all of the bandwidths
used in the back-fitting process. Observe that the bandwidth values converge fast and
won’t change any more, even if all of them will be re-optimized in the next iteration
step. This entails that we don’t have to select the bandwidth in every iteration step, and
instead we could stop optimizing when it converges. We can introduce another thresh-
old value δ to define whether the bandwidth for a specific parameter has converged or
not, and its value for this parameter will be kept the same in the following iterations,
when its change from the last one is less than δ. Note here that the bandwidth selection
for different parameters may stop at quite diverse steps, depending on the properties of
the spatial process.

On the other hand, the converging speed is crucial for the executing efficiency of the
back-fitting algorithm. Ideally, the objective is that the CVR value should decrease
underτ within the minimum number of iterations. It is largely controlled by the choice

of CVR and τ up to the accuracy requirements. Moreover, the initial values of bβ 0ð Þ are
also crucial. With the studied PSDM GWR model above, we tried three different strate-

gies to initialize the parameters bβ 0ð Þ for the back-fitting procedure, of which the details
are as follows:

● Strategy 1: Use the parameters from a standard GWR model, that is, ED GWR
calibration.
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● Strategy 2: Use the parameters from a separate back-fitting process with a τ value
defined loosely (say 10−2, while 10−6 for the PSDM GWR calibration) and band-
widths provided casually for each independent variable (say the average value from
the corresponding metric matrix).

● Strategy 3: Similarly, use the parameters from a separate back-fitting process with τ

as 10−2, but use the parameter-specific bandwidths from optimizing GWR models
between the dependent variable (i.e. PURCHASE) and each independent variable
(i.e. Intercept, FLOORSZ, BATH2, and PROF, respectively) with the corresponding
distance metric (i.e. ED, TT, TT and ED metrics, respectively).

The PSDM GWR model was calibrated following strategies 1, 2, and 3 for initializing bβ 0ð Þ,
and the CVR values within the three back-fitting processes are presented in Figure 6.
Observe that strategy 3 provides the fastest convergence, while strategy 1 appears the
worst choice. However, strategy 3 actually provides the heaviest computational cost for
initialization, while strategy 1 is the most straightforward. On balance (from a limited

number of experiments), we recommend strategy 3 to initialize bβ 0ð Þ, and we made it the
default strategy in the PSDM GWR calibration routine.

5. Discussion and concluding remarks

In this article, we proposed a new GWR model with parameter-specific distance metrics
(PSDM GWR), which also allows parameter-specific bandwidths to be specified, as in the
flexible bandwidth (FB GWR) model of Yang (2014). Thus, FB GWR is a special case of
PSDM GWR, when only EDs are specified. Similarly, the global regression, basic GWR,

Figure 5. Bandwidths for all the iterations in the back-fitting algorithm2.
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mixed GWR, and GWR with only one distance metric are also specific cases of
PSDM GWR.

Via a case study with London house price data, results indicated that a PSDM GWR
model can clearly improve GWR model performance in terms of GoF and prediction
accuracy over a GWR model specified with EDs (the basic model) and a GWR model
specified with TT metrics. Here three independent (hedonic) variables were specified to
predict house price (PURCHASE), where large bandwidths under the ED metric of the
PSDM GWR model were used to estimate the Intercept and PROF (percentage of profes-
sionals in the properties census enumeration district) parameters, while small band-
widths under the TT metric of the PSDM GWR model were used to estimate BATH2
(indicator of more than two bathrooms) and FLOORSZ (house floor area) parameters.

Results from the case study suggest that PSDM GWR can not only detect variations in
regression relationships across different spatial scales, as in FB GWR and mixed GWR, but
also help determine the appropriate distance metric for such spatial scales. For this
study, the distance metrics for PSDM GWR were user-specified in view of empirical
knowledge. However in many instances, a natural distance metric for a given indepen-
dent variable may not be forthcoming, and choosing metrics may be difficult when the
number of independent variables is large. In such cases, a brute-force search with a
range of candidate metrics could be tried. This solution however, could be extremely
computation intensive, and its effectiveness would still depend on the variety of metric
candidates chosen. Only two candidates were specified (Euclidean and TT) in this study,
but metrics such as network and Minkowski distance could also have been considered.
This difficult model specification issue is open for review and forms an essential part of
our future work for the PSDM GWR approach. Although as a guide to its current
implementation, the default metric should always be Euclidean, which can be replaced
by an alternative when there is good empirical knowledge to do so.

Figure 6. CVR values from three PSDM GWR calibrations with different initialization strategies.
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As with mixed GWR and FB GWR, a back-fitting algorithm is needed for PSDM GWR
calibration, and leads to a heavy computational cost. Heuristics for bandwidth selection
and strategies on initializing the parameters were presented in order to improve the
back-fitting algorithm’s efficiency. Notably, three strategies for parameter initialization
were tested, but from a quite limited number of experiments. In this respect, more
strategies or more rigorous evaluations on their performances will be studied in the
future. Future studies will also expand the model comparison to include all models that
require the back-fitting algorithm: PSDM GWR (with only EDs – i.e. FB GWR) versus PSDM
GWR (with only non-EDs but of the same type) versus PSDM GWR (with a mixture of
distance metrics – as specified in this study).

Further work could also: (i) select distance metrics for the PSDM GWR approach via
the use of Minkowski distance metrics (Lu et al. 2016); (ii) investigate in more detail, the
distance metric for the intercept term of the PSDM GWR model; (iii) refine the computa-
tional efficiency for the PSDM GWR approach, via more heuristics and/or high perfor-
mance computing techniques. Further work could also look at the application of PSDM
and related GWR models to environmental data measured on river and stream networks
where flow direction is also important (see the literature review given in Lu et al. 2014a).
All routines and functions used in this paper will be integrated into the GWmodel R
package (Lu et al. 2014b, Gollini et al. 2015), which provides a framework for handling
spatially varying structures, via a wide range of geographically weighted models.
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Notes

1. There is no obvious choice of metric to estimate the Intercept, and as such we use the default
ED metric.

2. As the bandwidth values converge fast and won’t change anymore, only values from the first
50 iterations are drawn in this figure.
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