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MybA background

Aspergillus fumigatus is a ubiquitous saprophytic filamen-
tous fungus normally found in the soil in decaying vegetal 
materials (Dagenais and Keller 2009; Nierman et al. 2005; 
Sugui et al. 2014). Asexual sporulation is a major means of 
propagation and dispersal in natural habitats of the fungus. 
Conidia produced by this fungus can stay several months to 
a year dormant in the environment and capable of germinat-
ing into a mesh of hyphae upon landing on an appropriate 
substrate. Small size and abundant number of A. fumigatus 
conidia found in air help them to reach into deep alveo-
lar cavities of animals and humans (Bultman et al. 2017; 
Cramer 2016). Especially, this landing of conidia into alveo-
lar surfaces can lead to life threatening systemic diseases 
in individuals with a weakened immune system and seri-
ous allergic reactions such as Allergic broncho pulmonary 
aspergillosis in immunocompetent individuals (Heinekamp 
et al. 2015; Latge 2001). Germination of conidia in alveolar 
membrane is a key process in systemic aspergillosis and 
requires complex interaction of conidia with environment 
and alveolar macrophages (Amin et al. 2014). Long-term 
survival of the dormant conidia depends on accumulated 
osmolytes such as trehalose to cope with environmental as 
well as internal stressors such as reactive oxygen species 
(ROS) (Al-Bader et al. 2010; Eleutherio et al. 2015; Tham-
mahong et al. 2017).

MybA is the first myb type transcription factor identified 
and characterized from opportunistic human pathogen A. 
fumigatus (Valsecchi et al. 2017). Deletion of mybA gene in 
this fungus leads to several important phenotypes. (1) Major 
defects are seen in sporulation processes in the absence of 
MybA transcription factor. Conidiation capacity of mybA 
mutant is drastically reduced (40 times less than a wild type 
strain), which is even more severe at higher temperatures 
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(50 °C). (2) Furthermore, mybA mutant loses its conidial 
viability (measured as an ability of each spores to germi-
nate). This defect stem from the low levels of osmolyte 
(disaccharide trehalose, polyols mannitol and arabitol) accu-
mulation in conidia of mybA mutant. (3) Cell wall organiza-
tion of conidia is modified in mybA mutant due to the modi-
fication of the expression of many genes involved in cell 
wall metabolism leading to cell wall permeability defects in 
the conidia of the mutant. (4) Intracellular reactive oxygen 
species (ROS) levels soar in mybA mutant due to the fact that 
ROS scavenging enzymes such as catalases and superoxide 
dismutases are downregulated in mybA mutant. (5) mybA 
deletion strain shows reduced virulence in experimental 
aspergillosis murine model. In this mini review, we will dis-
cuss several overlapping functions and connections among 
MybA transcription factor, velvet family regulators VosA-
VelB, asexual regulator WetA and stress response regulator 
AtfA as well as its upstream kinases SakA-MpkC and PbsB.

Conidial viability program: MybA, AtfA, 
VosA‑VelB, WetA, PbsB‑MpkC‑SakA

In Aspergilli, asexual sporulation program is mainly gov-
erned by a cascade of three transcription factors BrlA, AbaA 
and WetA (Etxebeste et al. 2010; Oiartzabal-Arano et al. 
2016; Park and Yu 2016; Rohrig et al. 2013). BrlA is a key 
component for conidiophore development (Alkhayyat et al. 
2015; Mah and Yu 2006).  C2H2 type transcription factor 
BrlA is necessary for appropriate expression of abaA, wetA 
and velvet family genes vosA and velB (Tao and Yu 2011). 
BrlA activates AbaA transcription factor that is important for 
separation of clonal asexual spores from each other. AbaA 
finally controls expression of WetA transcription factor, 
which is required for the last step of conidiogenesis. Expres-
sion of wetA increases at late stage of conidiation. Lack of 
wetA results in defective cell wall and reduced trehalose lev-
els (Tao and Yu 2011). Several years ago, two velvet family 
proteins VosA-VelB were found to be responsible for treha-
lose accumulation, conidial viability and thermotolerance of 
conidia in Aspergillus nidulans (Ni and Yu 2007; Sarikaya 
Bayram et al. 2010). Both genes have AbaA response ele-
ment (ARE) in their promoters and abaA is important for 
their expression. Later, they were also found to be essential 
for conidial viability and stress response in A. fumigatus 
(Park et al. 2012). mybA also positively affects expression of 
WetA and VelB-VosA heterodimer (Valsecchi et al. 2017). 
Although MybA was shown to play an important role in the 
regulation of conidiation (Valsecchi et al. 2017), MybA is 
totally independent of BrlA and AbaA.

Not many regulators specifically controlling conidia 
viability and trehalose accumulation have been identi-
fied in A. fumigatus. Fission yeast stress transcription 

factor Atf1 homolog, AtfA and its upstream kinases PbsB, 
MpkC-SakA, conidial regulator WetA and the velvet fam-
ily proteins VelB-VosA are the regulatory proteins which 
are involved in conidial viability, trehalose biogenesis 
and response to oxidative stress (Hagiwara et al. 2014; 
Park et al. 2012; Sarikaya Bayram et al. 2010; Tao and 
Yu 2011). Interestingly, the role of MybA in conidiation 
and trehalose biogenesis overlaps with these regulators. 
AtfA and its upstream connecting kinases PbsB, MpkC-
SakA, which are central part of high osmolarity glycerol 
(HOG) pathway, are involved in trehalose accumulation, 
thermotolerance, oxidative stress response and conidial 
viability (Hagiwara et al. 2008, 2014; Lara-Rojas et al. 
2011). It is also interesting that two kinases MpkC and 
SakA have redundant functions for trehalose accumulation 
and conidial viability. Because only double deletion of 
them result in drastically reduced conidial viability as well 
as trehalose accumulation (Hagiwara et al. 2014). Surpris-
ingly, mpkC/sakA double mutant show a reduced virulence 
in a murine model of experimental aspergillosis, underlin-
ing that trehalose accumulation and virulence is highly 
coordinated processes (Bruder Nascimento et al. 2016). 
Furthermore, in A. nidulans SakA interact with AtfA and 
MpkC under oxidative stress conditions (Jaimes-Arroyo 
et al. 2015; Lara-Rojas et al. 2011). Although many stress 
response genes are downregulated in atfA mutant in A. 
fumigatus, trehalose biosynthetic genes are not downregu-
lated. Therefore, reduced trehalose levels were attributed 
to posttranslational modifications of trehalose synthesizing 
enyzmes (Hagiwara et al. 2014).

The velvet domain transcription factors were studied in 
many fungi (Bayram and Braus 2012; Calvo 2008), how-
ever, more mechanistic knowledge come from the model 
filamentous fungus A. nidulans which is closely related to 
A. fumigatus (Sarikaya-Bayram et al. 2015). There are four 
of them, founding member VeA, VelB-VosA heterodimer 
and VelC. VeA is required for sexual fruit body formation, 
asexual sporulation and secondary metabolite production 
in A. nidulans but it is not vital for conidial viability and 
trehalose biogenesis (Kim et al. 2002; Park et al. 2012; 
Sarikaya Bayram et al. 2010). VeA-VelB together with a 
methyltransferase LaeA constitutes a heterotrimeric velvet 
complex which controls fungal development and secondary 
metabolite production in A. nidulans (Bayram et al. 2008). 
VelB-VosA form a heterodimer in A. nidulans and both pro-
teins are required for viability of conidia both in A. nidulans 
and A. fumigatus. VelB-VosA heterodimer is mostly active 
during vegetative growth and required for expression of 
trehalose biosynthetic genes (tps), which support trehalose 
accumulation in conidia (Sarikaya Bayram et al. 2010). Fur-
thermore, in A. nidulans they bind to promoters of conidi-
ation genes as well as tpsA and treA genes responsible for 
trehalose biosynthesis (Ahmed et al. 2013).
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Fig. 1  Current picture of molecular control of spore viability regu-
lators in Aspergilli. The model was drawn based on the current lit-
erature from both A. nidulans and A. fumigatus. There are two lev-
els of control in spore viability network. (1) Upstream elements: 
yeast Pbs22 homolog PbsB MAP Kinase Kinase (MAPKK), and two 
downstream MAP kinases (MAPKs) of HOG pathway SakA and 
MpkC initiate the signal for trehalose accumulation. Possible sig-
nals may include various environmental stimuli (shown as colored 
arrows). MpkC and SakA interact with each other and SakA addi-
tionally interact with stress transcription factor AtfA, which possibly 
activate the AtfA itself. (2) Downstream regulators: BrlA and AbaA 

central pathway (not shown here) turn on expression of at least vosA-
velB and wetA transcription factors. MybA interacts with two nuclear 
importins and turn on expression of velB-vosA, wetA and atfA by pos-
sibly binding to the promoters of these genes. MybA might also bind 
to the promoters of further downstream conidiation and trehalose 
genes. There might be physical interactions among these regulators. 
These transcription factors either individually or cooperatively induce 
expression of genes involved in conidiation, trehalose biogenesis, cell 
wall, ROS scavenging which all together contribute to spore viabil-
ity, stress tolerance and virulence. Please see further discussion in the 
text
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Transcripts of velB-vosA heterodimer, wetA and atfA 
are all downregulated in the absence of mybA. Further 
evidence for this regulation comes from a reporter assay 
where lack of MybA causes a reduction in expressions 
of VelB-VosA heterodimers as well as WetA transcrip-
tion factor in this reporter assay in A. fumigatus. How-
ever, atfA promoter was overlooked in this study although 
its expression was downregulated at the same level with 
vosA-velB heterodimer in an RNA-seq study (Valsecchi 
et al. 2017). It is highly possible that there is a consen-
sus binding sequence in the promoters of these genes 
responsive to MybA (Fig. 1). There are two palindromic 
sequences (CAGTT and AACTG) in promoters of wetA, 
velB and vosA identified. atfA promoter has a degener-
ate palindromic sequence. It is likely that MybA binds 
to these consensus sequences or other currently unknown 
motifs to activate these genes. However, functionality of 
these consensus sequences and binding of MybA remain 
to be shown.

Besides similar/overlapping functions of these regu-
lators, there are also divergent control mechanisms for 
conidiation network. First of all, expression of mybA is 
not influenced by the lack of major asexual regulators 
BrlA and AbaA whereas velB and vosA are influenced by 
BrlA and AbaA. Furthermore, AbaA binds to the promoter 
of velB in vitro (Tao and Yu 2011). Normally, Aspergilli 
do not sporulate under liquid culture conditions and only 
able to form conidiophore on air surfaces. velB and vosA 
mutants both show a derepressed asexual development in 
liquid media whereas mybA mutant does not show any sign 
of conidiation in submerged medium. There has not been 
any report how atfA, mpkC, sakA and pbsB mutants behave 
in submerged liquid medium yet.

What is about the physical interactions between these 
regulators? It was shown in MybA-GFP and -HA pull-
downs that MybA does not physically interact with VosA-
VelB heterodimer, WetA, AtfA or any of MpkC-SakA 
kinase system. VosA-VelB heterodimer and SakA affinity 
purifications do not recruit MybA homolog in A. nidulans 
(Jaimes-Arroyo et al. 2015; Sarikaya Bayram et al. 2010). 
However, WetA, MpkC interaction partners remain to be 
shown both in A. nidulans and A. fumigatus. The lack of 
interaction does not completely exclude that they will 
not interact in other means or conditions, because MybA 
pull-downs were performed from 24-h grown vegetative 
hyphae. It is still likely that these proteins might interact 
with each other transiently, which could not be identified 
via pull-down and mass spectrometry or these interactions 
take place at a short time window during late vegetative or 
early asexual phase. Furthermore, their interactions might 
also require several stress conditions such as oxidative or 
osmotic stress.

What is next?

Conidial viability is an essential part of survival of A. fumig-
atus and other fungi. Moreover, conidia, which are resist-
ant to harsh environmental conditions, are the initiators of 
aspergillosis by germinating and passing through blood bar-
riers in lung tissues. Discovery of MybA showed once more 
that trehalose biogenesis influences conidial viability and 
virulence in A. fumigatus. MybA together with VelB-VosA 
heterodimer, WetA and AtfA-MpkC-SakA-PbsB system are 
four important players of osmolyte regulation and conid-
ial viability in A. fumigatus. It will be important to learn 
genome wide binding sites of MybA as well as VelB-VosA 
heterodimer, WetA and AtfA by doing a chromatin immu-
noprecipitation (ChIP) and high throughput sequencing. 
However, there is currently only one paper reporting ChIP 
results in A. fumigatus, which might not be an easy task to 
apply in this fungus (Chung et al. 2014). ChIP will reveal 
the binding motif of these regulators and their target genes 
in the genome. It will be also interesting to reveal whether 
these regulators bind to some promoters such as trehalose 
biosynthetic genes in a cooperative manner. It will be also 
interesting to know the upstream regulators (e.g., protein 
kinases or mitogen-activated kinases (MAPK)) of conidial 
viability and trehalose accumulation and their interaction 
with the downstream elements. HOG pathway (Fig. 1) is 
an important candidate for the upstream regulation because 
there is strong evidence that this pathway governs the stress 
responses together with trehalose biogenesis in yeast and 
Aspergilli (Ho and Gasch 2015). However, solid links should 
be established in near future between the MpkC-SakA and 
MybA.
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