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Summary

TheN-end rule relates the stability of a protein to the identity of its N-terminal residue and some

of its modifications. Since its discovery in the 1980s, the repertoire of N-terminal degradation

signals has expanded, leading to a diversity of N-end rule pathways. Although some of these

newly discovered N-end rule pathways remain largely unexplored in plants, recent discoveries

have highlighted roles of N-end rule-mediated protein degradation in plant defense against

pathogens and in cell proliferation during organ growth. Despite this progress, a bottleneck

remains the proteome-wide identification of N-end rule substrates due to the prerequisite for

endoproteolytic cleavage and technical limitations. Here, we discuss the recent diversification of

N-end rule pathways and their newly discovered functions in plant defenses, stressing the role of

proteases. We expect that novel proteomics techniques (N-terminomics) will be essential for

substrate identification. We review these methods, their limitations and future developments.

I. Introduction: conservation and diversity of N-end
rule pathways

The control of protein stability plays a key role in the regulation of
all cellular processes and, in eukaryotes, is largely controlled by the
ubiquitin–proteasome system (UPS). The N-end rule pathway, a
subset of the UPS, relates the in vivo half-life of a protein to the
nature of its N-terminal amino acid residue and some of its

post-translational modifications (PTMs). Removal of the initiator
Met residue by methionine aminopeptidases (MetAPs) or cleavage
of pre-proproteins (i.e. proteins that bear signal peptides and/or
that require cleavage for their activation or degradation) by
endoproteases exposes new N-terminal residues, potentially
directing the resulting protein fragments for degradation by the
N-end rule pathway (Fig. 1). In eukaryotes, the N-end rule
pathway comprises different branches thatmediate the degradation
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of proteins whose N-terminal residues are acetylated (Ac/N-end
rule) and non-acetylated, respectively (reviewed by Varshavsky,
2011; Gibbs et al., 2016). Together, these two branches of the N-
end rule pathway can recognize all existing N-terminal amino acid
residues and some of theirmodifications. This includes the initiator
Met residue that is typically found at the N-terminus of proteins
(Hwang et al., 2010; Kim et al., 2014).

Recent findings have led to an expansion of the acetylation-
independent branch, which now comprises the ‘classic’ Arg/N-end
rule (described in more detail below) and the newly found Pro/N-
end rule pathway (Chen et al., 2017). The latter was discovered in
yeast and targets for degradation proteins with Pro at first or second
position through the activity of Gid4, a subunit of the GID
ubiquitin ligase (Santt et al., 2008) that targets gluconeogenic
enzymes in yeast (Hammerle et al., 1998; Chen et al., 2017).While
it is not yet known whether the Pro/N-end rule is present in
multicellular eukaryotes, components of the Arg/ and Ac/N-end
rule pathways appear to be mostly conserved (reviewed by
Varshavsky, 2011; Tasaki et al., 2012; Lee et al., 2016). For
example, the hierarchical organization of the Arg/N-end rule

pathway is overall the same in eukaryotes (Fig. 2): N-terminal
primary destabilizing residues can be directly bound by E3 ligases
called N-recognins; secondary destabilizing residues require con-
jugation of Arg (a primary destabilizing residue) by the conserved
Arg-transferases (ATEs); and tertiary destabilizing residues are first
enzymatically or chemically transformed into secondary destabi-
lizing residues before arginylation by ATEs.

The evolutionary conservation of different N-end rule pathways
is further underlined by the recent suggestion that chloroplasts
(Rowland et al., 2015; Zhang et al., 2015) and mitochondria
(Vogtle et al., 2009; Calvo et al., 2017) might also have organelle-
specific N-end rule pathways that resemble that of prokaryotes.

II. Defensive functions of the N-end rule pathway in
plants

While the recent diversification of N-end rule pathways in
eukaryotes has expanded the repertoire of destabilizing residues
and modifications that serve as N-terminal degradation signals (or
N-degrons), in plants, functions of the Ac/ and Arg/N-end rule
pathways are just emerging. In particular, these pathways have been
involved in plant responses to a variety of developmental and
environmental signals (reviewed by Gibbs et al., 2014, 2016;
Lee et al., 2016). The most recent discoveries include their role in
the control of plant defense responses. First, the stability of the
Nod-like immune receptors (NLRs) SUPPRESSOR OF NPR1,
CONSTITUTIVE1 (SNC1) and RESISTANCETO Pseudomonas
syringae pv. maculicola1 (RPM1) is regulated through N-terminal
acetylation (Xu et al., 2015). It is tempting to speculate that the
Ac/N-end rule pathway might participate in NLR homeostasis, as
NatA-mediated acetylation of the first Met residue of SNC1
contributes to its degradation. Second, a new role for the Arg/N-end
rule pathway was uncovered in activating the production of defense-
related metabolites, such as glucosinolates and the phytohormone
jasmonic acid (de Marchi et al., 2016). It was additionally shown
that theArg/N-end rule pathwaypositively regulates defenses against
a wide range of bacterial and fungal pathogens with different
lifestyles and, more particularly, that the ATEs regulate the timing
and amplitude of the defense program against avirulent bacteria (de
Marchi et al., 2016). That study also led to the discovery of the first
physiological function of the PRT1 N-recognin, which appears to
act as a positive regulator of plant defenses (de Marchi et al., 2016).
Third, a recent report highlighted a link between the known
functions of the Arg/N-end rule pathway in the degradation of key
transcriptional regulators of the hypoxia response (the ERFVII
transcription factors;Gibbs et al., 2016) andArabidopsis infectionby
the protist Plasmodiophora brassicae, which triggers clubroot devel-
opment (Gravot et al., 2016).Their study suggests strongly thatArg/
N-end rule-driven hypoxia responses may be a general feature of
pathogen-induced gall development in plants.

III. Proteases and degradation by the N-end rule
pathway

Despite recent progress in our understanding of theAc/ andArg/N-
end rule pathways in plants, elucidation of the underlying
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Fig. 1 Role of proteases in the generation of N-end rule substrates.
Endoproteolytic cleavageof apre-proprotein results in theexposureof anew
N-terminal or ‘neo-N-terminal’ residue. This endoproteolytic event can
expose to the solvent a ‘latent’ or ‘dormant’ N-terminal degradation signal,
or N-degron, that was previously buried in the internal sequence of the
protease recognition site.Neo-N-terminal residuesmaybeeither ‘stabilizing’
or ‘destabilizing’ based on the Arg/ or Ac/ or Pro/N-end rule andmay hence
serve to target the protein fragment for degradation by the N-end rule
pathway. However, not all N-terminal destabilizing residues lead to a
functional N-degron (denoted by an asterisk) and degradation of the target
protein. Additional structural and sequence features, such as flexibility of the
N-terminal region, presence of Lys side chains as ubiquitin acceptor sites and
charge or hydrophobicity of residues close to the neo-N-terminal, are also
critical for an N-end rule target. Furthermore, the N-terminal methionine
residue of a protein may serve directly as a destabilizing residue, so that
endoproteolytic cleavage is not always a prerequisite.
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molecular mechanisms has remained largely elusive due to
technical difficulties for the proteome-wide identification of N-
end rule substrates and the complex mechanisms that lead to their
formation. Indeed, most Arg/N-end rule substrates identified in
yeast and animals are generated through protease cleavage (Figs 1,
2; Rao et al., 2001; Ditzel et al., 2003; Piatkov et al., 2012a,b;
Brower et al., 2013; reviewed by Tasaki et al., 2012), making it
difficult to predict N-end rule substrates without detailed know-
ledge of protease cleavage sites and substrates. Moreover, an
N-terminal destabilizing residue is not necessarily sufficient for
the generation of an N-degron. Indeed, the accessibility of the
N-terminal residue for N-recognin binding, the properties of the
residues neighboring the N-terminus and the proximity of a Lys
residue that may be ubiquitylated are also important (Tasaki et al.,
2012; Wadas et al., 2016; Mot et al., 2018). The complexity of an
N-degron probably explains why many proteins with a presumed
N-terminal destabilizing residue appear to be relatively abundant
and stable in plant cells (Li et al., 2017).

As highlighted by two recent proteomics studies, endoprote-
olytic events that can lead to N-end rule-mediated degradation
of protein fragments are prevalent in plant cells. The first study
(Zhang et al., 2015) used quantitative proteomics to identify N-
end rule substrates that were expected to accumulate in Arg/N-
end rule mutants compared to the wild type. The second study
(Venne et al., 2015) aimed at advancing techniques to charac-
terize and quantify neo-N-termini for dissecting proteolytic
events. Despite using different methods, the majority of N-
terminal fragments identified in these studies were the result of a
protease cleavage or of initiator Met excision, suggesting that
most intracellular proteins are endoproteolytically processed.
However, most of the newly exposed N-terminal residues were
not destabilizing based on the Arg/N-end rule, suggesting that:
(1) many proteolytic fragments are not substrates of the Arg/N-
end rule pathway; and (2) fragments starting with destabilizing
residues may not be detected, possibly because of their rapid
Arg/N-end rule-dependent degradation. Moreover, N-terminal
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One potential outcome of the exposure of neo-N-termini is their modification involving deamidation or Cys oxidation, arginylation, acetylation and finally
ubiquitylation, followed by degradation of the protein by the Arg/, Ac/ or Pro/N-end rule pathways. Protein fragments starting with primary destabilizing
residues can be recognized and bound by so-called N-recognins, which belong to the class of E3 ubiquitin ligases. In vivo studies with artificial N-end rule
reporter substrates in plants show that PRT6 in specific for positively charged or Type 1 residues (Garzon et al., 2007) and that PRT1 recognizes aromatic
hydrophobic or Type 2 residues (Potuschak et al., 1998). Furthermore, in vitro ubiquitylation assays of fluorescently labeled artificial N-end rule substrates
confirmed the specificity of PRT1 and its E3 ligase activity (Mot et al., 2018). Note that the degradation of proteinswith N-terminalMet, aswell as through the
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acetylation accounted for 55% of the N-terminal fragments
identified, with most of these appearing to be acetylated co-
translationally. These results hence also highlight the potential
relevance of the Ac/N-end rule pathway in plants (Zhang et al.,
2015).

How can N-end rule substrates be identified given the
prerequisite for protease cleavage? One possibility is to use
knowledge of protease substrates and cleavage sites. The latest
example of an N-end rule substrate identified using such
information is that of the organ-size regulator BIG BROTHER,
which is cleaved by the protease DA1 in Arabidopsis. The
resulting C-terminal fragment then appears to be targeted for
degradation by the N-recognin PRT1 (Dong et al., 2017). It is
also worth noting that the recently discovered defensive
functions of the Ac/ and Arg/N-end rule pathways are coherent
with a potential role of defense-related plant proteases (including
MetAPs) in generating N-end rule substrates. One example
highlighting the connection between proteases and the genera-
tion of N-end rule substrates during plant–pathogen interactions
is the cleavage of the central Arabidopsis defense regulator
RPM1-INTERACTING PROTEIN4 (RIN4) by the P. syringae
protease effector AvrRpt2, which leads to RIN4 fragments
with potential N-terminal destabilizing residues (Chisholm et al.,
2005; Eschen-Lippold et al., 2016). Although no in vivo
evidence has been provided to date, it has been suggested that
AvrRpt2-derived RIN4 fragments could be degraded by the Arg/
N-end rule pathway (Takemoto & Jones, 2005). Yet another
example is the list of potential N-end rule substrates generated
following cleavage by METACASPASE9 in Arabidopsis (Tsiat-
siani et al., 2013). However, similarly to RIN4, in vivo evidence
that any of these fragments are degraded by the N-end rule
pathways is still lacking.

Other putative N-end rule substrates may be predicted using the
primary sequence of proteins starting with Met-Cys, as MetAPs
may excise the initial Met residue, exposing the Cys at the N-
terminus of the protein. The resultingN-terminal Cys residue may
thenbe oxidized through either a chemical reactionor the activity of
Cys oxidases (Fig. 2). The latter, termed PLANT CYSTEINE
OXIDASEs (PCOs), have so far only been found in plants (Weits
et al., 2014) and generateN-terminalCys sulfinic acid (White et al.,
2016), which can act as an N-degron.

Finally, novel developments that further highlight the role of
proteases in the generation of N-end rule substrates in plants
include the potential existence of a chloroplast-specific N-end rule
(Nishimura & van Wijk, 2015). Indeed, recent studies show that
following cleavage of the chloroplast transit peptide, destabilizing
residues (of the prokaryotic N-end rule pathway) are under-
represented in nuclear-encoded chloroplast proteins (Rowland
et al., 2015; Zhang et al., 2015). Together with the recent discovery
of a chloroplast ortholog of the bacterial ClpS N-recognin
(Nishimura et al., 2013), these results suggest that stromal-
processing peptidases may play a role in the generation of
chloroplast N-end rule substrates (Rowland et al., 2015). Strik-
ingly, a mitochondrion-specific N-end rule with similarities to the
prokaryotic N-end rule could also exist (Vogtle et al., 2009; Calvo
et al., 2017).

IV. New proteomics approaches for the identification
of N-end rule substrates

Given the pre-eminent role of proteases in the generation of N-end
rule substrates, recent attempts at discovering new N-end rule
substrates in plants have relied on novel proteomics techniques,
termed N-terminomics, that were initially developed to character-
ize proteolytic events and identify newly exposed neo-N-terminal
residues and their PTMs (e.g. acetylation, oxidation, deamidation,
arginylation) (Fig. 3). These novel N-terminomics techniques
address some of the limitations of shotgun proteomics approaches,
which had been developed to compare global protein abundance
(e.g. in a wild-type vs a mutant plant), but could not provide
information on the identity of N-terminal residues and potential
N-end rule substrates (Majovsky et al., 2014).

N-terminomics approaches are based on targeted enrichment of
N-terminal peptides through chemical labeling of a-amine groups
of N-terminal residues, which makes them distinguishable from
internal amines derived from sample treatment by proteases
(Huesgen & Overall, 2012). This specific N-terminal labeling
reduces the complexity of the peptide mixtures and allows the
identification of the true N-termini of mature proteins. N-
terminomics approaches use various strategies to separate N-
terminal peptides from internal ones. COmbined FRActional
DIagonal Chromatography (COFRADIC; Gevaert et al., 2003)
and Charge-based FRActional DIagonal Chromatography
(ChaFRADIC; Venne et al., 2013) rely on different chromato-
graphic techniques to enrich for N-terminal peptides. Terminal
Amine Isotopic Labeling of Substrates (TAILS; Kleifeld et al.,
2010; Rowland et al., 2015; Zhang et al., 2015) allows the capture
of N-terminal peptides via chemical modification. Other tech-
niques include Stable-Isotope Protein N-terminal Acetylation
Quantification (SILProNAQ; Bienvenut et al., 2015) and Pro-
teomic Identification of protease Cleavage Sites (PICS; Schilling
et al., 2011). Importantly, these techniques can be coupled with
immunoprecipitation approaches, for example using antibodies
raised against artificial peptides harboring specific destabilizing N-
terminal residues, to further enrich samples for N-end rule
substrates (Hoernstein et al., 2016). As these techniques develop
further, we expect that they will greatly contribute to our
understanding of the molecular mechanisms underlying the
functions of the N-end rule pathway in plants.

V. Concluding remarks

How the regulation of protein stability contributes to develop-
mental processes and to plant responses to environmental cues
remains a key question. In recent years, the N-end rule pathway
has emerged as an important regulator of these processes. Despite
this progress, the number of known N-end rule substrates remains
small, largely due to the complex proteolytic mechanisms that lead
to their formation. Indeed, specific endogenous or exogenous
triggers, such as a stress or developmental cues, that lead to
endoproteolytic cleavage and exposure of N-terminal destabilizing
residues are often required to generate N-end rule substrates.
Hence, these substrates might only be generated in specific
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conditions, and probably accumulate in a transient and/or in a
cell type-specific manner. Other key limitations include the lack
of knowledge of protease cleavage sites and resulting neo-N-
termini in plants, as well as technical limitations of proteomics
approaches. For example, insufficient sensitivity of current
proteomics methods and protocols, together with the nature
and low abundance of the PTMs to be detected (i.e. acetylation,
oxidation, deamidation, arginylation) have hampered N-end rule
substrate discovery. Method optimization for the identification
of N-end rule substrates includes the use of various proteases as
alternatives to trypsin, which cleaves after Arg. Improving search
algorithms that allow us to identify all possible peptides,
including unusual ones with mass increments corresponding to
specific PTMs, is also essential. Potential loss of information can
also be counteracted by adapting search modes to identify more
accurately protein fragments that may result from unpredicted
cleavage by unknown proteases present in the proteome. We
expect that improved proteomics methods will allow the direct
identification of proteins with N-terminal destabilizing residues,
while also increasing the completeness and accuracy of databases
for protease cleavage sites, further facilitating the identification
of N-end rule substrates.

In summary, the N-end rule pathway represents a central and
emerging field of investigation to understand the role of protein
degradation in plants. Importantly, it also has a potential for
applications in agronomy. For example, it has been shown that
mutants of ATEs or PRT6 accumulated ERFVII transcription
factors that act as master regulators of the hypoxia response. This
accumulation correlated with increased tolerance to waterlogging
(Gibbs et al., 2011, 2016; Riber et al., 2015; Mendiondo et al.,
2016). Furthermore, easy manipulation of turnover rates of
recombinant target proteins by using temperature-inducible N-
degrons (Faden et al., 2016) indicates that the N-end rule pathway
may also be a valuable tool for biotechnological applications in the
future.
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