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Glossary

Destabilizing residue: an N-terminal residue that triggers degradation of a

protein by the N-end rule pathway, but only when additional determinants are

also present (see definition of N-degron).

N-degron: motif found in N-end rule substrates that is recognized by

N-recognins. In eukaryotes, an N-degron is composed of an N-terminal

destabilizing residue, as well as a neighboring Lys residue that serves as an

attachment site for multi-Ub chains. The exposure of the N-degron also

depends on the presence of a flexible region in the vicinity of the determinants.

N-end rule pathway: a protein degradation pathway that relates the in vivo

stability of a protein to the nature of its N-terminal residue.

N-recognin: E3 Ub ligase of the N-end rule pathway that recognizes N-degrons

and targets substrate proteins for degradation.

Primary destabilizing residue: an N-terminal residue that can be directly

recognized by an N-recognin. Primary destabilizing residues fall into two

categories: basic (type 1) and bulky hydrophobic (or type 2).

Secondary destabilizing residue: proteins with such N-terminal residues are

first modified by aminoacyl-transferases, which conjugate a primary destabi-

lizing residue to the N-terminus of the substrate protein. Alternatively, in yeast,

a secondary destabilizing residue can be acetylated, which results in its

recognition by the Doa10 Ub ligase.

Stabilizing residue: an N-terminal residue that prevents degradation of the

protein by the N-end rule pathway. However, a protein starting with a

stabilizing residue might still have a short half-life, if other degrons are present.

Tertiary destabilizing residue: N-terminal residues have to be first enzymati-

cally or chemically modified before the substrate proteins can be arginylated

and then recognized by N-recognins.

Ub fusion technique: a technique that allows the expression of proteins

starting with a specific N-terminal residue (‘X’). To this end, a fusion of an

N-terminal Ub molecule, followed by a varying residue X and a reporter protein
The N-end rule pathway is a protein degradation path-
way that relates the stability of a protein to the nature of
its N-terminal amino acid residue. This pathway is part
of the ubiquitin–proteasome system in eukaryotes and
has been shown to be involved in a multitude of cellular
and developmental processes in animals and fungi.
However, in plants, its structure and functions have long
been enigmatic. In this review, we discuss recent
advances in the identification of the enzymatic com-
ponents that mediate protein degradation through the
N-end rule pathway in plants. We further describe the
known functions of this pathway in the control of plant
growth and development and outline open questions
that will likely be the focus of future research.

Discovery and structure of the N-end rule pathway
The half-life of cellular proteins varies greatly, ranging
from a few seconds to several days [1,2]. In eukaryotes,
protein stability is largely controlled by the ubiquitin–

proteasome system (UPS), which catalyzes the conjugation
of the 8-kDa protein ubiquitin (Ub) to Lys residues of
substrate proteins, marking them for proteolysis by the
26S proteasome [3]. Regulated proteolysis by the UPS
underlies almost every important cellular and organismal
function in eukaryotes. In plants, Ub-dependent processes
playmajor and diverse roles, for example, in regulating the
signaling by phytohormones such as auxin, gibberellins
and jasmonic acid (reviewed in [4]).

The conjugation of Ub to substrate proteins requires the
activity of three types of enzymes: E1 Ub-activating
enzymes, E2 Ub-conjugating enzymes, and E3 Ub ligases
[5,6]. E3 Ub ligases recognize and bind specific degradation
signals in substrate proteins and thus confer specificity to
the UPS. The first degradation signal, or degron, was dis-
covered in the 1980s in the laboratory of Alexander Var-
shavsky [7–9]. Andreas Bachmair et al. [7,8] expressed
fusion proteins in the yeast Saccharomyces cerevisiae that
comprised anN-terminal Ub followed by a junctional amino
acid residue (‘X’), which varied in the different fusion
proteins, and the reporter protein b-galactosidase (b-Gal)
at the C-terminus (Figure 1). They observed that the
N-terminal Ub moiety was cleaved off the fusion protein
after the last residue of Ub (a process later shown to be
catalyzed by deubiquitylating enzymes [10]). This deubiqui-
tylation yielded a b-Gal reporter protein with the junctional
residue X at its N-terminus. Bachmair et al. further noted
that, whereas someN-terminal residues (termed stabilizing
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residues; see Glossary) caused accumulation of b-Gal, other
so-called destabilizing residues resulted in low reporter
levels. The differences in b-Gal accumulation were found
to correlate with different half-lives of the reporter proteins
[7]. These findings implied the existence of a protein degra-
dation pathway that relates the in vivo stability of a protein
to the nature of its N-terminal residue. This pathway was
aptly named ‘N-end rule pathway’.

A detailed characterization of the N-end rule pathway
was initially carried out in fungi and animals [7,8,11,12],
which revealed that it is part of the UPS and that it has a
hierarchical organization (Figure 2; detailed below).
Furthermore, it was demonstrated that the degron respon-
sible for targeting a protein for degradation by the N-end
rule pathway (termed N-degron) not only comprises a
destabilizing N-terminal residue, but also requires a Lys
residue for Ub conjugation in spatial proximity to the
N-terminus, as well as a flexible region in the vicinity of
these two determinants [8,13,14].

In contrast to fungi and animals, the characterization of
the N-end rule pathway in plants has only recently come of
(e.g. Ub–X–bGal) is expressed in the cell. Deubiquitylating enzymes remove

the N-terminal Ub moiety co-translationally, resulting in a reporter protein with

a specific N-terminal residue.
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Figure 1. The Ub fusion technique and N-end rule substrates. N-terminal residues

are indicated by single-letter abbreviations. (a) Artificial N-end rule substrates are

generated through the Ub fusion technique. Expression of a Ub-X-reporter fusion

results in its co-translational cleavage by deubiquitylating enzymes (DUBs) and the

release of a X-reporter protein bearing a specific residue X at its N-terminus. At

steady-state levels, quantitative measurements of the amounts of the reporter

protein are representative of reporter protein stability [8,83]. (b) N-end rule

substrates formed after MetAP cleavage. Depending on the nature of the second

residue Z, the protein can be targeted for degradation by the N-end rule pathway

through two different mechanisms: either oxidation and arginylation, or

acetylation. (c) Generation of N-end rule substrates by proteolytic cleavage.

Specific protein signals can be recognized and cleaved by a protease. This results

in the release of a fragment with a new N-terminal residue. In cases where such

cleavage exposes an N-degron, this fragment is targeted for degradation by the N-

end rule pathway.
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age. In this review, we first summarize the current knowl-
edge about the structure of the plant N-end rule pathway
and its enzymatic components. We then discuss the known
functions of this pathway in the control of plant develop-
ment and outline key questions that are currently unan-
swered and that will likely be the focus of research in
coming years.

The identification of the complete sets of stabilizing and
destabilizing residues in plants [15–19], as well as of some
of its enzymatic components [17,19–21], showed that the
organization of the plant N-end rule pathway is largely
identical to that of animals. In plants, as well as in most
448
organisms examined, different types of destabilizing N-
terminal residues have been identified (Figure 2) [12,19]. If
made N-terminal, primary destabilizing residues are
recognized and bound by E3 Ub ligases of the N-end rule
pathway [12,22–24], termed N-recognins. Primary desta-
bilizing residues can be further subdivided into two groups:
type 1 or basic residues (Arg, Lys and His), and type 2 or
bulky hydrophobic residues (Phe, Trp, Tyr, Leu and Ile).

In contrast to N-end rule substrates with primary desta-
bilizing residues, proteins with secondary destabilizing
residues have to be first enzymatically altered before they
are targeted for degradation (Figure 2). Substrates bearing
N-terminal Asp, Glu or oxidized Cys are modified by an
arginyl-tRNA-protein transferase (R-transferase), which
conjugates Arg to their N-terminus. Because Arg is a
primary destabilizing residue, this modification results
in the recognition of the proteins by an N-recognin
[11,25–27].

Finally, proteins starting with tertiary destabilizing
residues are modified before they are arginylated by R-
transferases and recognized by N-recognins (Figure 2). N-
terminal Asn is deamidated into the secondary destabiliz-
ing residue Asp by an enzyme termed N-terminalAsn ami-
dase (noted NtN-amidase) [28], whereas Gln is deamidated
into Glu by the Gln-specific NtQ-amidase [19,29]. In
animals and probably also in plants, N-terminal Cys
requires oxidation through a chemical reaction involving
nitric oxide and oxygen before it can be modified by R-
transferases [19,30,31].

An alternative route for the generation of N-end rule
substrates, which might also exist in animals and plants,
has recently been uncovered in yeast. It was found that
proteins starting with Met, Ala, Val, Ser, Thr and Cys can
be acetylated in vivo, which leads to their recognition by
the Ub ligase Doa10 and degradation by the 26S protea-
some [32]. This work has provided exciting new insights
into the generation of substrates of the N-end rule path-
way, almost 25 years after its initial discovery.

Evolutionary conservation of the N-end rule pathway
The N-end rule pathway is present in prokaryotes [33–35]
and eukaryotes. Despite the absence of a UPS in bacteria,
the N-end rule pathways of prokaryotes and eukaryotes
show striking similarities. For example, prokaryotic and
eukaryotic N-recognins share substrate recognition
domains, suggesting a common evolutionary origin
[36,37]. Similarities among the N-end rule pathways of
prokaryotes and eukaryotes also extend to aminoacyl-
transferases responsible for the modification of the second-
ary destabilizing residues Asp and Glu (Figure 2) [38].

Among eukaryotes, the hierarchical organization of the
N-end rule pathway is largely conserved and differences
are mainly found at the level of its enzymatic components.
For example, contrary to yeast, whose genome encodes
a single bifunctional Nt-amidase that deamidates both
N-terminal Asn and Gln [39], the genomes of plants
and animals [28,29] code for two distinct Nt-amidases
specific for either N-terminal Asn or Gln [19] (see above).
Notably, the plant and animal NtN- and NtQ-amidases
are not related in sequence to each other or to the yeast
NtN,Q-amidase [28,29].



Figure 2. The N-end rule pathway in bacteria, fungi, mammals and plants. Ovals represent a protein substrate. N-terminal residues are indicated by single-letter

abbreviations. C* denotes oxidized N-terminal Cys. (a) In bacteria, proteins with N-terminal primary destabilizing residues are bound by the N-recognin ClpS, which results

in their degradation by the ClpAP protease [34]. Proteins starting with secondary destabilizing residues can be modified by two different aminoacyl-tRNA-protein

transferases termed AAT and BPT [38]. (b) In the yeast S. cerevisiae, tertiary destabilizing residues are deamidated by a single NtN,Q-amidase (NTA1), whereas the R-

transferase ATE1 recognizes proteins with the secondary destabilizing residues Asp and Glu and conjugates Arg to their N-termini. The yeast genome encodes a single N-

recognin, UBR1, which binds to type 1 (basic) and type 2 (bulky hydrophobic) residues. Certain N-terminal acetylated residues also act as a degradation signal after

recognition of the substrate protein by the Doa10 Ub ligase [32]. (c) The N-end rule pathway in mammals is similar to that of yeast, but does exhibit some differences. For

example, two distinct Nt-amidases (NTAN1 and NTAQ1) are involved in the deamidation of N-terminal Asn and Gln, respectively [29,62]. In mammals, Cys is an additional

tertiary destabilizing residue that requires oxidation through a chemical reaction involving nitric oxide (NO) and oxygen (O2), prior to its recognition by the R-transferase

ATE1 [30,31]. Contrary to yeast, the genomes of mammals encode several N-recognins (UBR1, UBR2, UBR4 and UBR5) [24]. (d) The hierarchical organization of the N-end

rule pathway in plants is similar to that found in mammals [19]. However, only two N-recognins, PRT1 and PRT6 [17,41], have been identified to date.
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Additional differences between the N-end rule path-
ways of fungi, animals and plants are found at the level
of the N-recognins. Whereas the yeast S. cerevisiae has a
single N-recognin (UBR1) [22], at least four different
N-recognins (UBR1, UBR2, UBR4 and UBR5) are encoded
by mammalian genomes [24]. All yeast and mammalian
N-recognins identified so far contain aUBR domain, a zinc-
finger-like motif of �70 residues [24] that is sufficient for
the binding of basic destabilizing residues [24,36,40]. Like
animals, the genomes of plants encode several N-recog-
nins, two of which have been identified in the model plant
Arabidopsis thaliana and named PROTEOLYSIS1 (PRT1)
and PROTEOLYSIS6 (PRT6) [17,18,20,41]. Notably, one of
these N-recognins, PRT1, has no sequence similarity to
mammalian or fungal N-recognins and does not contain a
UBR domain [19,20] even though it recognizes similar sets
of destabilizing residues. The uniqueness of PRT1 suggests
that some N-recognins might have evolved after the plant
and animal lineages diverged.

In summary, the N-end rule pathway has been shown to
be an ancient pathway that likely pre-dates the advent of
the UPS in eukaryotes [12,38,40]. Furthermore, its hier-
archical organization and some of its enzymatic com-
ponents have been conserved throughout evolution.

Plant N-recognins: a continuing story?
PRT1, the first N-recognin identified in plants, was isolated
by Bachmair and colleagues [20,41] in an elegant genetic
screen that was based on the mutagenesis of transgenic
plants expressing an N-end rule reporter (Figure 1) that
containedanN-terminalUb, the junctional residuePhe,and
dihydrofolate reductase (DHFR) at the C-terminus. These
plants were grown in the presence of the drugmethotrexate
at a concentration that efficiently inhibited endogenous
DHFR, resulting in plant death. However, mutation of
the N-recognin PRT1 led to the accumulation of the trans-
genic Phe-DHFR protein, resulting in resistance to metho-
trexate [41]. PRT1 was later shown to bind substrates
bearing aromatic hydrophobic residues (Phe, Trp and
Tyr) at their N-terminus, but not proteins starting with
aliphatic hydrophobic residues such as Leu and Ile [18].

PRT6, the second known plant N-recognin, was ident-
ified based on its sequence similarity to yeast UBR1 [17].
Although PRT6 contains a UBR domain, it does not have
the so-called N-domain, which in UBR1 is required for the
recognition of substrates with hydrophobic destabilizing
residues [17,36]. In agreement with its domain architec-
ture, PRT6was found to bind to N-end rule substrates with
the basic N-terminal residue Arg, but not to proteins
starting with the hydrophobic residues Leu and Phe [17].

Despite the progress made in the characterization of
plant N-recognins, the known specificities of PRT1 and
PRT6 do not account for all primary destabilizing residues
identified in plants. For example, Leu and Ile were shown
to exert a destabilizing effect on N-end rule reporter
proteins [19], but substrates with these N-terminal resi-
dues are not recognized by either of the two known
plant N-recognins. This strongly suggests that additional
N-recognins remain to be discovered.

In addition to PRT6, several Arabidopsis proteins show
sequence similarities to known N-recognins. For instance,
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BLASTP searches using the 570-kDa N-recognin UBR4
frommouse as a query, retrieves a protein of similar size in
Arabidopsis, which is known as TIR3 (TRANSPORT
INHIBITOR RESPONSE3), DOC1 (DARK OVEREX-
PRESSION OF CAB1) or BIG (referring to its large size).
Mutant alleles of BIG were isolated in multiple indepen-
dent genetic screens [42–46], suggesting that BIGmight be
involved in the regulation or crosstalk of various signal
transduction pathways [43]. The sequence similarities
between BIG and UBR4 suggest that BIG could function
as an N-recognin and bind N-end rule substrates with both
basic and bulky hydrophobic primary destabilizing resi-
dues. However, given the enormous size of BIG, it is
possible that this protein has numerous functional
domains, some of which could be independent of its
putative role as an N-recognin.

Another candidate for a novel plant N-recognin is Ara-
bidopsis ClpT [47,48]. This protein bears sequence sim-
ilarities to the bacterial N-recognin ClpS [34,35,37,47] and
is predicted to localize to the chloroplast [47]. The presence
of ClpT [47] and a Clp-like protease in chloroplasts [49]
raises the exciting possibility that this organelle might
contain a Ub-independent (i.e. prokaryotic) N-end rule
pathway.

Finally, it is possible that the genomes of plants encode
N-recognins that have, like PRT1, no sequence similarities
to other known N-recognins. For the discovery of such
plant-specific N-recognins, sophisticated genetic screens
[41] or affinity purification assays using artificial N-end
rule substrates [24] might be required.

Functions of the N-end rule pathway in plants
The N-end rule pathway has been shown to play essential
roles in a multitude of cellular and developmental pro-
cesses in fungi and animals. These include heme sensing
[50], peptide import [51–53], chromosome segregation [54],
DNA repair [55] and apoptosis [56,57], as well as the
regulation of meiosis, neurogenesis, cardiovascular devel-
opment and pancreatic functions [12,58–64].

Functions of the N-end rule pathway in plants have
begun to emerge only recently, but are now rapidly amas-
sing (Figure 3). Initial evidence for the involvement of the
N-end rule pathway in controlling plant growth and de-
velopment stemmed from a genetic screen for mutants
with abnormal leaf senescence. Satoko Yoshida et al. iso-
lated the delayed leaf senescence 1 mutant in Arabidopsis,
which is affected in the R-transferase AtATE1 [21]. They
further showed that the Arabidopsis genome encodes a
second, closely related R-transferase, AtATE2. It was later
demonstrated that the two Arabidopsis R-transferases
have almost identical expression patterns [65] and act in
a functionally redundant manner [65,66].

An additional function of the plant N-end rule pathway
was uncovered by Tara J. Holman et al. [66] who identified
a mutant allele of the N-recognin PRT6 in a genetic screen
aimed at identifying genes that control seed ripening and
germination. The decreased germination potential
observed in prt6 mutants was found to correlate with a
hypersensitive response to exogenously added abscisic acid
(ABA), a known inhibitor of germination [67]. This result
suggested that PRT6 might be involved in the removal of



Figure 3. Functions of the N-end rule pathway in Arabidopsis. The N-end rule pathway is involved in the regulation of multiple developmental processes throughout the life

cycle of the plant, from seed maturation and germination to senescence. Phenotypic abnormalities observed in mutant plants affected in components of the N-end rule

pathway (as indicated) are described. (a) prt6 and ate1 ate2 mutants [66]. (b) and (c) prt6 and ate1 ate2 mutants [65]. (d) dls1 and ate1 ate2 mutants [21,65].
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ABA sensitivity prior to germination. Genetic interaction
analyses with components of the ABA signaling pathway
further implied that PRT6 functions upstream of the ABA
response regulator ABA INSENSITIVE 3 (ABI3) in the
control of germination [66]. Notably, plants mutant for
both Arabidopsis R-transferases (i.e. ate1 ate2) exhibit a
similar phenotype to that of prt6 mutants, strongly
suggesting that the N-end rule substrates responsible
for the germination defects are first arginylated by R-
transferases before they are processed by PRT6 [66].

In addition to controlling leaf senescence and seed
germination, the N-end rule pathway is involved in reg-
ulating shoot and leaf development. ate1 ate2 double-
mutant plants, as well as prt6 single mutants, exhibit a
wide range of phenotypic abnormalities, including serrated
and lobed leaves, loss of apical dominance, and stem and
internode elongation defects [65]. A detailed characteriz-
ation of the leaf morphology defects of ate1 ate2 plants
revealed that the key regulator of leaf development BRE-
VIPEDICELLUS (BP) [68] is mis-expressed in ate1 ate2
plants [65]. BP expression is normally excluded from Ara-
bidopsis leaves through activities of the ASYMMETRIC
LEAVES 1 (AS1) transcription factor complex [69] and of
the phytohormone auxin [70]. The results of genetic
analyses suggest that the N-end rule pathway acts redun-
dantly with AS1, but independently of auxin in controlling
leaf development [65].

All functions of the plant N-end rule pathway described
above are mediated by its arginylation branch, which
targets only a subset of all possible substrates for degra-
dation (Figure 2). It is thus likely that additional functions
of the N-end rule pathway that do not depend on arginyla-
tion remain to be discovered and that its roles in plants will
ultimately turn out to be as diverse as in animals and
fungi.

N-end rule substrates: searching for needles in a
haystack
Although the N-end rule pathway has been examined in
different model organisms and was found to regulate
multiple cellular and developmental processes
[12,60,71,72], our understanding of the molecular mech-
anisms underlying its functions is currently limited,
mainly because only a few of its substrates have been
discovered. In the following paragraph, we will outline
how N-end rule substrates are generated and why their
systematic identification poses a formidable challenge.

Although most studies of the N-end rule pathway were
carried out using artificial N-end rule substrates generated
through the Ub fusion technique [73] (Figure 1), endogen-
ous proteins are typically synthesized with an N-terminal
Met (a stabilizing residue), which should preclude degra-
dation by the N-end rule pathway. However, the N-term-
inal Met can be removed from proteins by methionine
aminopeptidases (MetAPs). This cleavage occurs only if
the second residue (which would then be exposed) has a
relatively small side chain [74–76]. Although most of the
residues that enable MetAPs to cleave off Met are stabiliz-
ing (e.g. Gly and Ala), the removal of Met in front of Cys
results in a protein with a destabilizing N-terminal residue
(Figure 1). Examples for the generation of N-end rule
substrates through this mechanism are themouse proteins
RGS4 (Regulator of G-protein Signaling 4), RGS5 and
RGS16, whose newly exposed N-terminal Cys residue is
oxidized prior to arginylation and degradation [30,31].
There are more than 200 Arabidopsis proteins with an
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amino acid sequence that begins with Met–Cys. However,
because a destabilizing residue is only one requirement for
a functional N-degron (see above), N-end rule substrates
cannot be identified based on the presence of a Met–Cys
pair at theN-terminus alone. In yeast, another exception to
the formation of N-end rule substrates is proteins whose
N-terminal residue is acetylated (Figure 1). These include
proteins whose N-terminal Met can be acetylated or
proteins cleaved by MetAPs [32]. Several substrates tar-
geted for degradation through this recently uncovered
branch of the N-end rule pathway have been identified,
including themating type transcription factorMATa2 [32].

Other known N-end rule pathway substrates, such as
the cohesin subunit SCC1 (Sister Chromatid Cohesion
protein 1) in yeast [54], are generated after cleavage by
a specific protease, resulting in the release of protein
fragments bearing destabilizing N-terminal residues
(Figure 1). It is assumed that many substrates of the N-
end rule pathway are generated after such proteolytic
cleavage [54,56,57]. Unfortunately, the requirement for
such processing precludes the systematic identification
of N-end rule substrates using, for example, bioinformatics
approaches.

In plants, no bona fide N-end rule substrates have been
identified to date. One promising candidate is the Arabi-
dopsis RPM1 INTERACTING PROTEIN 4 (RIN4) protein,
which is involved in the response topathogensand is cleaved
by the bacterial protease AvrRpt2 upon infection by Pseu-
domonas syringae [77–80]. Cleavage of RIN4 by AvrRpt2
occurs at two sites, releasing short-lived protein fragments
with the destabilizing residuesAsnandAsp, respectively, in
N-terminal position [81]. Based on the expression of trun-
cated versions of RIN4, which were fused to green fluor-
escent protein, it has been proposed that the RIN4 protein
fragments might be degraded through the N-end rule path-
way [82]. However, further experiments are required to test
this conjecture and to confirm an involvement of the plant
N-end rule pathway in pathogen response.

Conclusion
Despite the rapid progress made in recent years in char-
acterizing the plant N-end rule pathway and in identifying
its physiological functions, many open questions remain.
Key aims for the years to come will be identification of the
complete set of plant N-recognins and the discovery of the
first bona fide N-end rule substrates in plants. This infor-
mation should not only extend our knowledge of the func-
tions of the plant N-end rule pathway, but would also
provide insights into the underlying molecular mechan-
isms.
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