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The response of the pathogenic yeast Candida albicans to the silver(I) perchlorate salt 
(AgClO4) was assessed. By employing an anti-phospho-p38 MAPK antibody, dual 
phosphorylation of a high osmolarity protein (Hog1p) in C. albicans in the presence of 
AgClO4 was demonstrated. Phosphorylation of C. albicans Hog1p in response to hydro-
gen peroxide or AgClO4 resulted in the translocation of this mitogen-activated protein 
(MAP) kinase to the nucleus. Nuclear translocation of C. albicans activating protein-1 
(Cap1p) was demonstrated by Western blot analysis and detected using polyclonal anti-
Cap1p antibody. Upon AgClO4-induced translocation of Cap1p there was a concomitant 
activation of genes coding for glutathione reductase-1  and  Mn-superoxide dismutase 
but no increase in the expression of fl avin oxidoreductase or mitochondrial processing 
protease was recorded. In addition, exposure to AgClO4 increased the activity of super-
oxide dismutase, glutathione reductase and catalase. The activation of C. albicans oxi-
dative stress response genes and enzymes following exposure to AgClO4 is evidence of 
the generation of oxidative stress within this medically important yeast. 

Keywords antifungal, Candida albicans, oxidative stress in yeast, silver(I), Hog1p, 
Cap1p

in many healthcare products such as silver-coated catheters 

[10] wound dressings [5,11] and burn-treatment creams 

[12]. Wright et al. [9] provided evidence of the antifungal 

activity of a burn wound dressing coated with silver nitrate 

(AgNO3) against Saccharomyces cerevisiae, C. albicans, 
C. glabrata and C. tropicalis. Additionally, silver nanopar-

ticles have been incorporated into an antimicrobial gel for-

mulation for topical use which demonstrated potent 

activity against Aspergillus niger and C. albicans [13]. A 

silver-containing hydrofi ber dressing and a nano-crystal-

line silver-containing dressing tested against a Candida 
biofi lm model also exhibited promising antifungal activity 

[14]. While the antifungal activity of silver was fi rst 

reported in 1973 [15], recent work has provided evidence 

for the potent in vitro anti-C. albicans activity of silver-

containing compounds [7,8,16–18]. Initial studies into the 

mode of action of silver (I) revealed that the activity of this 

metal could be inhibited in various growth media [19] and 

that aqueous silver(I) ions interfere with electron transport 

[8] and alter the respiration of C. albicans cells [6]. It has 

been suggested that the interaction of silver(I) and  the 

mitochondrion [6–8] coupled with the generation of lipid 

Introduction

Infections caused by members of the genus Candida range 

from superfi cial to life threatening systemic and are the 

third most common group of pathogens in nosocomial 

blood stream infections in premature infants with the sec-

ond highest mortality rate [1,2]. Conventional antifungal 

therapy involves the use of amphotericin B deoxycholate, 

liposomal amphotericin B, fl uconazole, caspofungin, or a 

combination of fl uconazole and amphotericin B [3] but  

many Candida isolates demonstrate tolerance to at least 

one of these agents [4] thus prompting the search for novel 

antifungal agents. Silver(I) compounds demonstrate potent 

antimicrobial properties and may have some applications 

as antifungal agents [5–9]. 

The antimicrobial activity of silver (I) has been known 

for many centuries and the silver (I) ion is the active agent 
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peroxides [8] is evidence for the generation of free radicals 

while the ability of silver(I) atoms to act as potential Fen-

ton reagents may also contribute to the antifungal  activity 

of this metal. 

Candida albicans possesses a number of elaborate path-

ways to sense and detoxify cytotoxic free radicals, and 

numerous anti-oxidant mechanisms to reduce the effects of 

oxidative stress. Two such pathways are the high-osmolarity 

protein mitogen-activated protein kinase (Hog1p MAPK) 

pathway [20] and the C. albicans activating protein-1 

(Cap1p) pathway [21]. The Hog1p MAP kinase pathway is 

activated in C. albicans in response to free radicals [20], 

and the AP-1-like transcription factor Cap1p is involved in 

the response to oxidative stress [22–24]. Cap1p function has 

been shown to be regulated by a nuclear localization mech-

anism and oxidant regulated translocation of this transcrip-

tion factor is also required for tolerance to oxidants such as 

hydrogen peroxide and diamide detoxifi cation in C. albi-
cans [21]. Genes coding for glutathione reductase (GLR1), 

a putative NADH-dependent fl avin oxidoreductase (OYE32), 

a mitochondrial processing protease (MAS1) and the Mn-

superoxide dismutase (SOD2) are regulated by the Cap1p 

transcription factor in C. albicans [25] and are critical to the 

cell’s response to oxidative stress.

While the potent anti-C. albicans activity of silver(I) 

has been demonstrated [17,18], with the potential role of 

oxidative stress in mediating cell death suggested as a pos-

sible mode of action [26], our understanding of how C. 
albicans responds to this transition metal is poorly devel-

oped. The aim of the work presented here was to establish 

how C. albicans responded to silver(I) in order to give an 

insight into the mode of action of this medically important 

metal as it may have application in the treatment of fungal 

infections.

Materials and methods

Culture conditions

Candida albicans ATCC 10231 was maintained on yeast 

extract-peptone-dextrose (YEPD), i.e., agar (2% (w/v), 

bacteriological peptone (Sigma, Ireland), 2% (w/v) glucose 

(Sigma), 1% (w/v) yeast extract (Sigma) and 2% (w/v) agar 

(Sigma)). Candida albicans cells were cultured in RPMI 

medium (Sigma) supplemented with 2% (w/v) glucose at 

30°C and 200 rpm. 

Antifungal susceptibility testing

AgClO4 (Sigma) was dissolved in sterile H2O and antifun-

gal susceptibility testing was performed with C. albicans 

using RPMI medium (Sigma) supplemented with 2% (w/v) 

glucose as previously described [27]. Susceptibility testing 

was carried out in triplicate on three independent occasions 

and results are presented as the mean ± standard deviation. 

The MIC of 2.5 μg/ml represents the concentration of 

AgClO4 required to inhibit cell growth by 50%.  For all 

experiments, cells were exposed to the AgClO4 at concen-

trations corresponding to MIC value. 

Extraction of cytoplasmic and nuclear proteins 

Early exponential phase cells (2.5 × 106/ml) were exposed 

to AgClO4 for the periods indicated, harvested by centrifu-

gation at 3,000 g for 5 min and washed twice with sterile 

phosphate buffered saline (PBS) (5 ml). Cells were lysed 

using glass beads (5 g) in Lambert’s breaks buffer (LBB) 

(3 ml) (100 mM KCl (Sigma), 3 mM NaCl (Sigma), 4 mM 

MgCl2 (Sigma) and 10 mM PIPES (Sigma). The following 

protease inhibitors (30 μg) were used; leupeptin (Sigma), 

aprotonin (Sigma), tosyl-L-lysyl-chloromethane hydro-

chloride (Sigma) and pepstatin A (Sigma). The resulting 

supernatant was recovered, centrifuged (5,000 g for 5 min 

at 4°C) and the supernatant retained. For assessing Hog1p 

phosphorylation, cells were exposed to AgClO4 and lysed 

using glass beads in 100 mM Tris-HCl (pH 7.5), 1 mM 

EDTA, 5 mM dithiothreitol (DTT) (Sigma) containing 30 

μg of the above phosphatase inhibitors and the following 

phosphotase inhibitors: 10 mM sodium orthovandanate (pH 

10) (Sigma), 50 mM sodium fl uoride (Sigma), 50 mM 

ß-glycerol phosphate (Sigma) and 50 mM sodium pyro-

phosphate (Sigma). Protein concentrations were determined 

using the Bio-Rad Protein Assay (Bio-Rad, Ireland).

In order to verify the successful isolation of nuclear pro-

tein, C. albicans nuclear fractions were probed with anti-

proliferative cell nuclear antigen (PCNA) primary antibody 

(1:200) (Sigma) and HRP-conjugated horse anti-mouse sec-

ondary IgG (1:200) to ensure purity of the fractions. Pure 

nuclear fractions were probed using polyclonal anti-Cap1p 

(a kind gift from Prof. Scott Rowley, The Carver College of 

Medicine, University of Iowa, USA) while both whole cell 

protein and nuclear fractions were probed using anti-p38 

MAPK antibody and anti-phospho-p38 MAPK (Cell Signal-

ing Technology, Massachusetts, USA) as described [20]. 

RT-PCR analysis

mRNA was extracted using a Qiagen RNAeasy kit (Qiagen, 

UK) from early exponential phase cells (2.5 × 106/ml) 

exposed to AgClO4 (2.5 μg/ml) for selected times and  cDNA 

was generated using the Superscript III First-Strand Synthe-

sis System (Invitrogen, Ireland) with oligo (dT) primers. PCR 

amplifi cations of OYE32 (orf19.3131), GLR1 (orf19.4147), 

MAS1 (orf19.3026) and SOD2 (orf19.3340) genes were per-

formed using the primers and cycles as described [25] and 

analysis was performed during the log phase of amplifi cation. 
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The PCR cycle consisted of: 98°C for 2 min, 94°C for 1 min, 

55°C for 1 min, 72°C for 1 min 20 sec, and this cycle was 

repeated for 35 cycles. Visualization of amplifi ed products 

was performed using a Syngene Genefl ash (Mason Technol-

ogy, Ireland) and densitometric analysis was carried out using 

Genetools software (Scie-Plas, UK). 

Determination of enzymatic activity

Candida albicans cells were exposed to AgClO4 or to hydro-

gen peroxide (0.5 mM) for 30 min. Cells (1 g wet weight) 

were harvested, washed in PBS and resuspended in 4 ml of 

lysing buffer (4 ml Tris-HCl (100 mM, pH 7.5), 4 ml EDTA 

(1 mM, Sigma), 100 μl pepstatin A (1 mg/ml, added fresh), 

100 μl aprotinin (1 mg/ml, added fresh), 100 μl phenylmeth-

anesulphonylfl uoride (1 mM, added fresh), and 5 mM DTT 

(added fresh). To this, 4 g of acid washed glass beads (size: 

425–600 μm, Sigma) were added and the mixture was vor-

texed for 5 min on ice. Cellular debris, broken cell walls and 

remaining glass beads were removed by centrifugation (250 

g for 5 min at 4°C, Eppendorf centrifuge 5417R). The pellets 

were discarded and the supernatant was used. 

For analysis of superoxide dismutase activity, the SOD 

Assay Kit from Sigma was used in accordance with manu-

facturer’s instructions, using a concentration of 1 μg/μl of 

protein extract. The SOD activity was calculated by 

employing a tetrazolium salt, WST-1 that produces a water-

soluble formazan dye upon reduction with a superoxide 

anion. The absorbance at 450 nm was read using a micro-

plate reader (Synergy HT, BioTek Instruments, USA) and 

the following formula was employed to determine SOD 

activity:

SOD Activity =

[(Ablank1 – Ablank3) – (Asample – Ablank2)]  
× 100

[(Ablank1 – Ablank3)]

For analysis of the glutathione reductase activity of 

cells, the method described previously [28] was used. The 

assay employed the extinction coeffi cient (εmM) of 6.22 

mM /cm for NADPH. Briefl y, fresh protein extracts were 

prepared as above. The following were placed into a clean 

1 ml quartz cuvette; 500 μl of 2 mM oxidized glutathione 

(Sigma), 400 μl of assay buffer (1 mM EDTA, 100 mM 

potassium phosphate (Sigma), pH 7.5), 50 μl protein extract 

(1 μg/μl) and 50 μl of 2 mM NADPH (Sigma) A blank was 

prepared consisting of all the above except 450 μl assay 

buffer was used and no sample protein was added. The 

absorbances were read at 340 nm for 2 min at 20 sec inter-

vals (Cary 100 UV-Visible Spectrophotometer, Varian, 

Inc., USA). The GLR activity was calculated using the 

following equation:

GLR (units/ μl) =

(Rate of change of sample – Rate of change of blank)

6.22 mM/cm  ×  Concentration of protein (μg/μl)

For the determination of catalase activity, fresh protein 

extracts were prepared as stated. Protein extract (100 μl, 

7 mg/ml) was added to 1.8 ml of 17 mM H2O2 in a ster-

ile tube. The mixture was mixed well by pipetting and 

left at room temperature for 15 min. After this time, the 

suspension was centrifuged at 10,000 g (Eppendorf cen-

trifuge 5417R) for 1 min to stop the reaction. The super-

natant was removed and placed in a clean quartz cuvette. 

The absorbance at 240 nm was obtained on a Beckman 

DU640 spectrophotometer. A blank consisted of 17 mM 

H2O2. 

Statistical analysis of experimental data

All experiments were performed in triplicate on three 

independent occasions and the results are presented as the 

mean ± standard deviation. The degree of statistical sig-

nifi cance was determined using a student t-test assuming 

P < 0.05.

Results

The C. albicans MAP Kinase Hog1p is phosphorylated and 

undergoes nuclear translocation in response to hydrogen 

peroxide or AgClO4

Phosphorylation of the C. albicans MAP kinase Hog1p has 

been demonstrated to be indicative of the response of C. 
albicans to oxidative stress [20]. Using an anti-phospho-

p38 MAPK antibody directed specifi cally against the 

human equivalent of C. albicans Hog1p, namely p38, dual 

phosphorylation of the C. albicans Hog1p in the presence 

of 5 mM H2O2 or 2.5 μg/ml AgClO4 was demonstrated. 

Phosphorylation of C. albicans Hog1p was found to occur 

in response to 5 mM hydrogen peroxide for 0.5 h (Fig. 1). 

Exposure of cells to AgClO4 for 0.5 h, 1 h and 2 h failed 

to signifi cantly increase the levels of phosphorylated 

Hog1p. However, exposure of C. albicans cells to AgClO4 

for 3 h increased the levels of phosphorylated Hog1p (Fig. 1) 

while the total level of Hog1p in the cell did not increase. 

The nuclear translocation of phosphorylated C. albicans 

Hog1p was investigated by isolating nuclei from C. albi-
cans cells exposed to either 5 mM H2O2 or 2.5 μg/ml 

AgClO4 and probing PCNA positive fraction (Fig. 2a) with 

an anti-phospho-p38 MAPK antibody (Fig. 2b). Nuclear 

translocation of phosphorylated Hog1p upon exposure of 

cells to either hydrogen peroxide or AgClO4 increased 

when compared to the control (Fig. 2b).
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Exposure of C. albicans to hydrogen peroxide or AgClO4 

induces Cap1p nuclear translocation 

Cap1p function has been shown to be regulated by a 

nuclear localization mechanism and is required for tol-

erance to oxidants in C. albicans [21]. In order to inves-

tigate the nuclear translocation of Cap1p, PCNA positive 

nuclear fractions were probed with polyclonal anti-

Cap1p antibody (Fig. 3). For cells exposed to 5 mM 

H2O2 for 0.5 h, no increase in the concentration of 

Cap1p within the nuclear fraction was observed (Fig. 

3a). AgClO4 was found to induce the nuclear transloca-

tion of Cap1p after 3 h.

Exposure of C. albicans to AgClO4 increases the expression 

of the genes involved in cellular detoxifi cation

The expression of four of the genes (OYE32, GLR1, MAS1 
and SOD2) which Cap1p regulates was investigated fol-

lowing exposure of C. albicans to either 5 mM H2O2 or 

2.5 μg/ml AgClO4 for various periods of time (Fig. 4). No 

increase in the expression of the OYE32 gene was observed 

upon exposure of cells to AgClO4 over 5 h. No signifi cant 

increase in the expression of the GLR1 gene was observed 

over 3 h while a signifi cant increase (P < 0.05) in the 

expression of the GLR1 gene was observed at 5 h. While 

Fig. 1 Exposure of Candida albicans to 2.5 μg/ml AgClO4 for 3 h induces 

p38 phosphorylation. While exposure of cells to 5 mM H2O2 for 0.5 h or 

AgClO4 (2.5 μg/ml) for 3 h increased p38 phosphorylation, the amount 

of total Hog1p remains constant in all cells. Statistically signifi cant 

differences (at P < 0.05) relative to the control are indicated by (*).

Fig. 2 Induction of p38 nuclear translocation in Candida albicans cells 

exposed to AgClO4 (2.5 μg/ml) for 3 h. PCNA positive fractions were 

probed for the presence of p38. Exposure of cells to 5 mM H2O2 for 0.5 

h or 2.5 μg/ml AgClO4 for 3 h increased nuclear translocation of p38. 

Statistically signifi cant differences (at P < 0.05) relative to the control are 

indicated by (*).

Fig. 3 Exposure of Candida albicans to AgClO4 (2.5 μg/ml) for 3 h 

induces Cap1p nuclear translocation. PCNA positive nuclear fractions 

were probed with anti-Cap1p antibody. Statistically signifi cant differences 

(at P < 0.05) relative to the control are indicated by (*).

no signifi cant increase in the expression of the MAS1 gene 

was observed after 2 h, a signifi cant increase in the expres-

sion of this gene (P < 0.05) was observed after 3 and 5 h. 

Finally, a signifi cant increase in the expression of the SOD2 
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gene was observed upon exposure of cells to AgClO4 for 

5 h (Fig. 4).

Exposure of C. albicans cells to hydrogen peroxide or AgClO4 

increases the activity of detoxifying enzymes 

Previous work has demonstrated that exposure of C. albi-
cans to 5 mM hydrogen peroxide results in increased 

activity of oxidative stress-detoxifying enzymes [20,21]. 

In the work presented here, determination of the activity 

of superoxide dismutase (SOD), glutathione reductase 

(GLR) and catalase (CAT) was performed on C. albicans 

cells which had been exposed to either 5 mM hydrogen 

peroxide for 0.5 h or to AgClO4 at a concentration of 2.5 

μg/ml over 5 h. Total SOD activity increased 125 ± 10% 

relative to the control when cells were exposed to 5 mM 

hydrogen peroxide for 0.5 h (Fig. 5). Candida albicans 

cells exposed to AgClO4 demonstrated a signifi cant 

increase in SOD activity at all time increments greater 

than 1 h.

Total GLR activity was not signifi cantly increased 

when cells were exposed to 5 mM hydrogen peroxide for 

1 h (Fig. 5). Exposure of cells to AgClO4 increased the 

activity of glutathione reductase  at all times greater than 

1 h. 

Catalase activity was measured in cells exposed to AgClO4 

for different periods of time.  The results indicate a signifi cant 

increase (P < 0.05) in activity when cells were exposed to 

AgClO4 for 0.5–5 h (Fig. 6). Cells exposed to hydrogen

peroxide showed a small but statistically signifi cant increase 

in catalase activity over the time of the experiment.

Discussion

The antimicrobial properties of silver(I) have been exploited 

recently [5,10–12] and the potent antifungal activity of 

silver(I) metal is well established although the exact mode 

of action is still poorly defi ned [6–8,16–18,26]. Investiga-

tions into the mode of action of silver(I) complexes have 

revealed that this metal modifi es the ergosterol content of 

cells [6], induces apoptosis [7] and alters the mitochondrial 

cytochrome profi le of C. albicans [6]. The modifi cation of 

respiration and the increase in the presence of lipid perox-

ides in silver(I)-treated cells [8] suggests that the genera-

tion of oxidative stress could play a role in the antifungal 

activity of such silver(I) salts. In this work, the generation 

of oxidative stress within silver(I)-treated C. albicans cells 

was examined by investigating the activation of the Hog1p 

MAP kinase and Cap1p pathways. 

To investigate whether activation of the C. albicans 
MAP kinase pathway in response to exposure to AgClO4 

occurred, the phosphorylation of C. albicans Hog1p MAP 

kinase was examined. No signifi cant increase in Hog1p 

activation was detected following 2 h exposure to AgClO4, 

however, it was established that exposure of the yeast

to hydrogen peroxide or AgClO4 for 3 h induced Hog1p 

Fig. 4 Exposure of Candida albicans to AgClO4 for 0.5 h to 5 h induces 

expression of genes involved in oxidative stress response. Statistically 

signifi cant differences (at P < 0.05) relative to the control are indicated 

by (*).

Fig. 5 Exposure of Candida albicans to AgClO4 (2.5 μg/ml) over 5 h 

leads to elevated activity of the superoxide dismutase (SOD) and 

glutathione reductase (GLR) within C. albicans. Differences in the levels 

of enzyme activity (*) were deemed statistically signifi cant at P < 0.05.  
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phosphorylation thus providing evidence for the activation 

of the Hog1p MAP kinase. Once phosphorylated, Hog1p 

translocates to the nucleus [29], and it was demonstrated 

that exposure of cells to hydrogen peroxide or AgClO4 

induced translocation of the phosphorylated Hog1p to the 

nucleus thus providing further evidence for the generation 

of oxidative stress within C. albicans upon exposure to 

AgClO4. 

The C. albicans Cap1p intracellular signaling pathway is 

essential in the adaptation of the yeast to oxidative stress 

[22]. Recently, two dimensional SDS-PAGE analysis of a C. 
albicans CAP1 mutant revealed that Cap1p regulates the 

synthesis of 12 proteins that are responsible for the C. albi-
cans response to oxidative stress [30]. Cap1p function has 

also been shown to be regulated by a nuclear localization 

mechanism with oxidant regulated translocation of this tran-

scription factor required for normal tolerance to oxidants in 

C. albicans [21]. While exposure of cells to 5 mM H2O2 for 

0.5 h increased the levels of Cap1p within the nucleus, trans-

location of this transcription factor was observed to occur in 

response to AgClO4 after 3 h, thus providing evidence for 

the generation of oxidative stress within C. albicans cells 

upon exposure to the silver(I) salt. 

In addition to the Cap and Hog pathways within C. albi-
cans, several other yeasts possess stress responsive MAPK 

(SAPK) pathways that are induced by oxidative stress. 

Within Schizosaccharomyces pombe, the Spc1 SAPK cas-

cade is induced in response to oxidative stress with activa-

tion of this pathway resulting in phosphorylation of the 

Atf1 transcription factor and an increase in the expression 

of over 200 genes [31]. Within S. cerevisiae, the MAPK 

Hog1p shares >80% identity with the S. pombe Spc1 kinase 

with Pbs2 and Ssk2, SSk22 and Ste11 acting as the upstream 

MAPKK and MAPKKK respectively [32]. Furthermore, 

while the Activating Protein-1 (AP-1) transcription factor 

homologue in C. albicans is Cap1 [33], the homologue is 

Pap1 in S. pombe [34] with Yap1 acting as the homologue 

with S. cerevisiae [35].

Upon nuclear translocation, the transcription factor 

Cap1p increases the expression of a number of genes in 

order to combat the effects of oxidative stress [25]. The 

expression of four of the genes that Cap1p regulates was 

investigated using RT-PCR and the expression of three of 

these genes (GLR1, MAS1 and SOD2) was found to be 

altered in response to AgClO4 in a time dependent manner 

(Fig. 4). The three genes that demonstrated the most dra-

matic increase in expression were those coding for a glu-

tathione reductase (GLR1), MAS1 and a Mn-containing 

superoxide dismutase (SOD2) (Fig. 4). Interestingly, the 

GLR1 and MAS1 genes were the ones that exhibited the 

most dramatic increase in expression upon exposure of cells 

to AgClO4 for 5 h followed by the SOD2 gene. The activity 

of superoxide dismutase and glutathione reductase was 

increased in cells exposed to AgClO4 for 1 to 4 h. However, 

no signifi cant increase in the activity of these enzymes was 

detected after 0.5 h. Catalase activity was increased in cells 

exposed to AgClO4 for 0.5 to 5 h. The elevation in the 

activities of these enzymes provides additional evidence for 

the generation of oxidative stress in C. albicans cells fol-

lowing exposure to AgClO4. 

In addition to the anti-oxidant defences discussed above, 

yeasts have evolved further strategies employing numerous 

other enzymes and small antioxidant molecules to prevent 

cellular damage caused by reactive oxygen species. Such 

enzymes include glutathione peroxidases (GPXs), thiore-

doxins (TRXs) and glutaredoxins (GRXs) [36]. Within S. 
cerevisiae, three GPXs are known and include Gpx1, Gpx2 

and Gpx3 with the Gpx3 protein displaying the highest in 
vitro activity [37] with a single GPX gene (GPX1) been 

reported to exist in C. albicans [38]. TRXs and GRXs act 

as thiol oxidoreductases with C. albicans also containing 

two TRX genes (TRX1 and TRX2) and three characterized 

GRX proteins (Grx1, Grx2 and Grx3). Furthermore, S. cer-
evisiae also contains two methionine sulphoxide reductase 

enzymes (MSRA, MSRB) [39,40] which are involved in the 

reduction of oxidized methionine residues with small anti-

oxidant molecules such as glutathione (GSH) and ascorbate 

(Vitamin C) acting as ROS scavengers within yeast. 

Upon exposure of mammalian cells to silver nano-par-

ticles, decreased levels of reduced glutathione have been 

observed, however, no signifi cant change in the levels of 

GPX are observed [41]. While no known interaction 

between silver and thioredoxins is known to occur, expo-

sure of mammalian cells to silver fails to signifi cantly alter 

the levels of methionine sulphoxide within cells [42]. 

Additionally, a gold containing compound has recently 

been reported to interact with thioredoxin reductase [43]. 

The data presented here indicate that exposure of C. 
albicans to AgClO4 at a concentration corresponding to the 

MIC value results in the activation of Cap1p and Hog1p 

Fig. 6 Catalase activity of Candida albicans cells exposed to 0.5 mM 

H2O2 for 0.5 h or AgClO4 for 0.5–5 h. Differences in the levels of catalase 

activity were deemed statistically signifi cant at P < 0.05 (*).
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pathways – two responses previously demonstrated to be 

activated under conditions of oxidative stress [20,22,25]. 

Furthermore, the response to C. albicans upon exposure to 

AgClO4 is also similar to the oxidative stress response of C. 
albicans following exposure to caspofungin [44]. Exposure 

of C. albicans to caspofungin induced activation of the 

Cap1p and Hog1p pathways, an increase in the expression 

of the GLR1 and SOD2 genes and an elevation in the activ-

ity of the SOD and GLR enzymes. Exposure of S. cerevisiae 

to several antifungal drugs that inhibit ergosterol biosynthe-

sis was also found to increase the expression of genes 

involved in the oxidative stress response such as the SOD1, 

SOD2 and GLR1 genes [45]. Exposure of S. cerevisiae to the 

antifungal drug Saframycin A was found to elevate expres-

sion of several genes also involved in the oxidative stress 

response such as the SOD1, SOD2, TRX1 and TRX2 genes 

[46]. It has also been found that the polyol macrolide niphimy-

cin induces oxidative stress within S. cerevisiae [47].

While earlier work has demonstrated that AgClO4 

induces oxidative stress in mammalian cells [48] and in 

bacterial cells [49], this work presents the fi rst evidence for 

the generation of oxidative stress by this metal in yeast. 

The results presented here demonstrate that C. albicans 

cells respond to AgClO4 by activating an oxidative stress 

response and provide further insight into the mode of 

action of silver(I) [5,6,8,10,15]. While silver(I) is currently 

in use primarily as an antibacterial agent [5,10–12], these 

fi ndings may facilitate the increased use of this metal as an 

antifungal agent where its distinct mode of action [6–8,26] 

may be advantageous particularly in treating recalcitrant 

infections caused by fungi demonstrating tolerance to con-

ventional antifungal agents.
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