Synthesis, characterisation and antimicrobial activity of copper(II) and manganese(II) complexes of coumarin-6,7-dioxyacetic acid (cdoaH\textsubscript{2}) and 4-methylcoumarin-6,7-dioxyacetic acid (4-MecdoaH\textsubscript{2}): X-ray crystal structures of [Cu(cdoa)(phen)] \cdot 8.8\text{H}_2\text{O} and [Cu(4-Mecdoa)(phen)] \cdot 13\text{H}_2\text{O} (phen = 1,10-phenanthroline)

Bernadette S. Creavena,b,*, Denise A. Egana,b, Dariusz Karcza,b, Kevin Kavanagha,c, Malachy McCanna,d, Mary Mahone, Andy Noblea,b, Bhumika Thatia,b, Maureen Walsha,b

a Centre for Pharmaceutical Research and Development, Institute of Technology Tallaght, Dublin, Dublin 24, Ireland
b Department of Science, Institute of Technology Tallaght, Dublin, Dublin 24, Ireland
c Department of Biology, National University of Ireland, Maynooth, Co. Kildare, Ireland
d Department of Chemistry, National University of Ireland, Maynooth, Co. Kildare, Ireland
e X-ray Crystallographic Suite, Department of Chemistry, University of Bath Claverton Down, Bath BA2 7AY, UK

Received 29 December 2006; received in revised form 16 April 2007; accepted 16 April 2007
Available online 4 May 2007

Abstract

Two novel coumarin-based ligands, coumarin-6,7-dioxyacetic acid (1) (cdoaH\textsubscript{2}) and 4-methylcoumarin-6,7-dioxyacetic acid (2) (4-MecdoaH\textsubscript{2}), were reacted with copper(II) and manganese(II) salts to give [Cu(cdoa)(H\textsubscript{2}O\textsubscript{2})] \cdot 1.5\text{H}_2\text{O} (3), [Cu(4-Mecdoa)(H\textsubscript{2}O\textsubscript{2})] (4), [Mn(cdoa)(H\textsubscript{2}O\textsubscript{2})\textsubscript{2}] (5) and [Mn(4-Mecdoa)(H\textsubscript{2}O\textsubscript{2})\cdot 0.5\text{H}_2\text{O} (6). The metal complexes, 3–6, were characterised by elemental analysis, IR and UV–Vis spectroscopy, and magnetic susceptibility measurements and were assigned a polymeric structure. 1 and 2 react with Cu(II) in the presence of excess 1,10-phenanthroline (phen) giving [Cu(cdoa)(phen)] \cdot 8.8\text{H}_2\text{O} (7) and [Cu(4-Mecdoa)(phen)] \cdot 13\text{H}_2\text{O} (8), respectively. The X-ray crystal structures of 7 and 8 confirmed trigonal bipyramidal geometries, with the metals bonded to the four nitrogen atoms of the two chelating phen molecules and to a single carboxylate oxygen of the dicarboxylate ligand. The complexes were screened for their antimicrobial activity against a number of microbial species, including methicillin-resistant \textit{Staphylococcus aureus} (MRSA), \textit{Escherichia coli} and \textit{Candida albicans}. The metal-free ligands 1 and 2 were active against all of the microbes. Complexes 3–6 demonstrated no significant activity whilst the phen adducts 7 and 8 were active against MRSA (MIC\textsubscript{80} = 12.1 \text{\mu}M), \textit{E. coli} (MIC\textsubscript{80} = 14.9 \text{\mu}M) and \textit{Patonea agglumerans} (MIC\textsubscript{80} = 12.6 \text{\mu}M). Complex 7 also demonstrated anti-\textit{Candida} activity (MIC\textsubscript{80} = 22 \text{\mu}M) comparable to that of the commercially available antifungal agent ketoconazole (MIC\textsubscript{80} = 25 \text{\mu}M).

© 2007 Elsevier Inc. All rights reserved.

Keywords: Coumarin-6,7-dioxyacetic acid; 1,10-Phenanthroline; Copper(II); Manganese(II); X-ray structure; Antimicrobial

1. Introduction

The phenomenon of drug-resistance in microbial strains emerged within a few years of penicillin being put on the market when scientists began noticing the emergence of a penicillin-resistant strain of \textit{Staphylococcus aureus}, a common bacterium which causes a variety of suppurrative (pus-forming) infections and toxinoses in humans. From
that first case of resistant \textit{Staphylococcus}, the problem of antimicrobial resistance has snowballed into a serious public health concern with economic, social and political implications. Of particular concern has been the emergence of methicillin-resistant \textit{S. aureus} (MRSA) and recent reports indicate that community-associated MRSA now has reached epidemic proportions in many areas and has become a worldwide problem [1–7].

Drug-resistance to antifungal agents is also of increasing concern. \textit{Candida albicans} is the major fungal pathogen in humans and is carried by over 50% of the population. Although in healthy individuals the pathogen may cause relatively minor health problems, such as oral thrush, the interactions of a fungus with its host can be disturbed by hormonal or immunological imbalances in the host to the point of provoking serious superficial infections and life-threatening systemic infections [8–10]. The increasing prevalence of fungal infections, especially hospital-acquired infections and infections in immunocompromised patients, has heightened the need for new anti-fungal treatments [11–14]. Drug-resistant fungal isolates have been reported for all known cases of antifungal drugs [15–17]. Thus, there is an urgent need to develop new and more effective anti-fungal therapies.

In an earlier study by our group it was found that the metal-based drugs \([\text{Cu(phen)}_2(\text{mal})]\cdot 2\text{H}_2\text{O}, [\text{Mn(phen)}_2(\text{mal})] \cdot 2\text{H}_2\text{O}\) and \([\text{Ag}_2(\text{phen})_2(\text{mal})] \cdot 2\text{H}_2\text{O}\) (phen = 1,10-phenanthroline, malH$_2$ = malonic acid) demonstrated a different mode of action compared to the commonly used commercial polyene and azole antifungal drugs [18]. It was established that both metal-free phen and the metal–phen complexes affect mitochondrial function, by retarding the synthesis of cytochromes \(b\) and \(c\) and uncoupling cellular respiration. Treatment of fungal cells with the Cu(II) and Ag(I) complexes resulted in a reduced amount of ergosterol in the cell membrane and a subsequent increase in its permeability. Cells exposed to metal-free phen and the Cu(II) and Mn(II) complexes (but not the Ag(I) complex) demonstrated an elevation in oxygen uptake.

Lately, a number of metal complexes of coumarins have been synthesised and their biological activity determined. Triorganotin(IV) derivatives of 7-hydroxycoumarin have shown good antimicrobial activity against \textit{S. aureus} and \textit{Bacillus subtilis}, \textit{C. albicans} and \textit{Microsporum gypseum}, and this activity was slightly enhanced upon adduct formation with phen [19]. Kostova et al. have shown the cytotoxic potential of coumarins complexed to cerium, lanthanum, zirconium and neodymium ions [20–24]. Whilst our initial work concentrated on the anticancer activity of a series of substituted coumarins [25–31], more recently we have investigated the antimicrobial activity of a number of coumarin-based Ag(I) and Cu(II) complexes [32,33], with the activity of a number of complexes against \textit{C. albicans} being comparable to that of commercially used drugs such as ketoconazole. We have also reported an Ag(I) coumarin complex which showed significant activity against the clinically important bacterial strain MRSA (MIC$_{50}$ = 0.63 \(\mu\)M) [33].

In the present work, we have prepared coumarin-derived dioxyacetic acid ligands and isolated their Cu(II) and Mn(II) complexes as well as the phen adducts of the Cu(II) complexes. The metal-free ligands, their metal complexes and the simple salts, Mn(ClO$_4$)$_2$\cdot 6H$_2$O and Cu(ClO$_4$)$_2$\cdot 6H$_2$O were tested against clinical isolates of both Gram-positive and Gram-negative bacteria and also against a clinical isolate of \textit{C. albicans}. The modes of action of selected compounds, showing anti-\textit{Candida} activity, were also investigated.

2. Experimental

2.1. Materials/Instrumentation

Reagent grade chemicals and solvents were purchased from Sigma–Aldrich Co. (Dorset, UK) and were used without further purification. Infrared spectra of solids (in a KBr matrix) were recorded in the region 4000–400 cm$^{-1}$ on a Nicolet Impact 410 Fourier-Transform Infrared Spectrophotometer. Melting points were recorded on a Stuart Scientific SMP-1 apparatus (up to 300 °C). A JEOL JNM-LA300 FT NMR spectrometer was used to record 1H (300 MHz, –5 to 15 ppm from TMS) and 13C (79 MHz, –33 to 233 ppm from TMS) NMR spectra of the ligands as solutions in d_6-DMSO. Atomic absorption spectroscopy measurements were recorded on a Perkin–Elmer 460 AAS instrument (emission wavelength 324.8 nm). Microanalytical data were provided by the Microanalytical Laboratory, National University of Ireland, Belfield, Dublin 4. Solid state magnetic susceptibility measurements were carried out at room temperature using a Johnson Matthey Magnetic Susceptibility Balance with [HgCo(SCN)$_4$] being used as a reference standard. UV–Vis spectra were recorded using a Cary IE Varian UV–Vis spectrophotometer. Sterol concentrations were determined using a gas chromatographic system (Hewlett–Packard 5890, Series 11) with a flame ionisation detector and a Chrompack capillary column (Chrompack International BV, Middleburg, The Netherlands) operated isothermally at 300 °C. Injector and detector temperatures were 320 °C and the carrier gas was N$_2$.

2.2. Ligand synthesis

Assignments of 1H NMR spectra of ligands are based on the numbering scheme shown in Fig. 1.

2.2.1. \textit{Coumarin-6,7-dioxyacetic acid (2-(2-oxo-2H-chromen-6-yl oxy-7-carboxymethyloxy)acetic acid)}

\((\text{cdoaH}_2)/(1)\)

A suspension of 6,7-dihydroxycoumarin (2.00 g, 11.2 mmol) and potassium carbonate (3.41 g, 24.7 mmol) in acetone (100 mls) was refluxed for 0.5 h. Upon cooling, methyl bromoacetate (4.29 g, 2.7 ml, 28.1 mmol) was added over a 5 min period and the resulting solution was refluxed for a further 4 days. After cooling, the mixture
was filtered and the filtrate was then evaporated to leave an off-white, crude solid. This solid was recrystallised from methanol to give the white solid dimethyl coumarin-6,7-dioxyacetate. The purity of the product was confirmed by TLC and 1H NMR analysis (Yield 2.2 g, 56%).

A mixture of dimethyl coumarin-6,7-dioxyacetate (2.50 g, 7.75 mmol) in distilled water (50 ml) and concentrated hydrochloric acid (37%, 5 ml) was refluxed for 5 h. On cooling, the white solid cdoaH$_2$ (1) precipitated. The solid was filtered off, washed with cold ethanol and water and then dried for 4 days in vacuo at 50 °C. Yield: 2.2 g (96%); m.p. 218–220 °C; Anal. C, 53.07; H, 3.34%. 1H NMR (6-DMSO, ppm): 18.3 (CH$_3$), 65.1, 65.8 (CH$_2$–O), 101.4 (H$_2$–OCO), 144.1 (Ar C–H$_8$), 111.7 (Ar C–H$_5$), 113.2 (C–H vinyl), 144.2 (C–H vinyl), 150.9 (Q, C–H fused–O), 160.2 (Q, C–H fused–O), 169.5, 169.9 (Q; C=O(lactone)). IR (cm$^{-1}$): symmetric (OCO) 1746, M-O 820. Soluble in: DMSO, alcohols, hot water.

2.3. Syntheses of Cu(II) and Mn(II) complexes

2.3.1. [Cu(cdoa)(H_2O)$_2$] · 1.5H$_2$O (3)

cdoaH$_2$ (1) (0.200 g, 0.68 mmol) was dissolved in an ethanol:water mixture (4:1, 50 ml) with heating and stirring. Dicopper(II) tetraacetate dihydrate (0.135 g, 0.340 mmol) was added with stirring and the resulting solution was then refluxed with stirring for 2 h. A pale blue precipitate formed during reflux. The mixture was filtered whilst hot and the blue solid was washed with water and hot ethanol and then air-dried. Yield: 0.24 g (86%); Anal. Calc. for C$_{13}$H$_{10}$CuO$_8$: C, 53.07; H, 3.42; Cu, 14.95%. IR (cm$^{-1}$): νOH 3052, νC=O(lactone) 1685, νasym(OOC) 1395, νsym(OOC) 1327, νsym(COC) 1048, νM–O 819. μeff: 1.98 B.M.; Soluble in: DMSO. UV–Vis (DMSO): λ_{291} nm $\varepsilon = 9770$ M$^{-1}$ cm$^{-1}$; λ_{340} nm $\varepsilon = 12,800$ M$^{-1}$ cm$^{-1}$; λ_{241} nm $\varepsilon = 24.6$ M$^{-1}$ cm$^{-1}$; UV–Vis (Nujol): $\lambda = 747$ nm.

2.3.2. [Cu(4-Mecdoa)(H_2O)$_2$] (4)

This blue complex was synthesised by the same method as that employed for (3), using 4-MecdoaH$_2$. Yield: 0.21 g (79%); Anal. Calc. for C$_{14}$H$_{14}$CuO$_6$: C, 41.44; H, 3.48; Cu, 15.60. Found: C, 41.26; H, 3.31; Cu, 15.45%. IR (cm$^{-1}$): νOH 3309, νC=O(lactone) 1752, νasym(OOC) 1605, νsym(OOC) 1397, νsym(COC) 1279, νsym(OOC) 1049, νM–O 844, 819. μeff: 1.93 B.M.; Soluble in: DMSO. UV–Vis (DMSO): λ_{285} nm $\varepsilon = 13,100$ M$^{-1}$ cm$^{-1}$; λ_{336} nm $\varepsilon = 17,200$ M$^{-1}$ cm$^{-1}$; λ_{296} nm $\varepsilon = 26.7$ M$^{-1}$ cm$^{-1}$; UV–Vis (Nujol): $\lambda = 787$ nm.

2.3.3. [Mn(cdoa)(H_2O)$_2$] (5)

This white compound was synthesised by the same method as that employed for (3) using MnCl$_2$ · 4H$_2$O. Yield: 0.110 g (25%); Anal. Calc. for C$_{13}$H$_{12}$MnO$_{10.5}$; C, 40.74; H, 3.15. Found: C, 40.26; H, 3.01%. IR (cm$^{-1}$): νOH 3421, νC=O(lactone) 1746, νasym(OOC) 1616, νsym(OOC) 1395, νsym(COC) 1280, νsym(OOC) 1037, νM–O 832. μeff: 5.88 B.M.; Soluble in: DMSO. UV–Vis (DMSO): λ_{273} nm $\varepsilon = 4575$ M$^{-1}$ cm$^{-1}$; λ_{303} nm $\varepsilon = 4943$ M$^{-1}$ cm$^{-1}$.

2.3.4. [Mn(4-Mecdoa)(H_2O)$_2$] · 0.5H$_2$O (6)

This white compound was synthesised by the same method as that employed for (5), using 4-MecdoaH$_2$. Yield: 0.150 g (64%); Anal. Calc. for C$_{14}$H$_{12}$MnO$_{10.5}$: C, 43.32; H, 3.38. Found: C, 43.27; H, 3.28%. IR (cm$^{-1}$): 3401, νC=O(lactone) 1727, νasym(OOC) 1601, νsym(OOC) 1392, νsym(COC) 1275, νsym(OOC) 1048 cm$^{-1}$; νM–O 820. μeff: 5.93 B.M.; Soluble in: DMSO. UV–Vis (DMSO): λ_{279} nm $\varepsilon = 3677$ M$^{-1}$ cm$^{-1}$; λ_{380} nm $\varepsilon = 2687$ M$^{-1}$ cm$^{-1}$.

Fig. 1. Numbering scheme used for 1H NMR assignment of ligands used in this study.
2.3.5. \([\text{Cu(cdoa)(phen)}_2] \cdot 6\text{H}_2\text{O}\) (7)

A solution of cdoaH2 (0.200 g, 0.680 mmol), dicopper(II) tetraacetate dihydrate (0.135 g, 0.340 mmol) and phen (0.247 g, 1.37 mmol) in an ethanol:water mixture (4:1, 50 ml) was refluxed for 3 h and upon cooling a green precipitate formed. The solid was isolated by filtration, washed with water and ethanol and dried in a vacuum oven at 50 °C for 2 days. Yield: 0.311 g (52%); Anal. Calc. for C37H36CuN4O14, C, 53.92; H, 4.40; N, 6.80. Found: C, 53.55; H, 4.35; N, 6.36%. IR (cm\(^{-1}\)): \(\nu_{\text{OH}}\) 3036, \(\nu_{\text{Ceq}(\text{lac})}\) 1707, \(\nu_{\text{asym}(\text{OCO})}\) 1617, 1656, \(\nu_{\text{sym}(\text{OCO})}\) 1395, 1426, \(\nu_{\text{sym}(\text{COC})}\) 1277. \(\mu_{\text{eff}}\): 1.86 B.M. Soluble in: DMSO, alcohols, hot water. UV–Vis (DMSO): \(\lambda_{270}\ \text{nm} \ \epsilon = 68,300 \ \text{M}^{-1} \ \text{cm}^{-1}\), \(\lambda_{335}\ \text{nm} \ \epsilon = 13,300 \ \text{M}^{-1} \ \text{cm}^{-1}\). UV–Vis (Nujol): \(\lambda = 803\ \text{nm}\). Crystals suitable for X-ray diffraction studies were obtained by redissolving the solid in a 1:1 methanol:water mixture and allowing the solution to stand for several days.

2.3.6. \([\text{Cu(4-MeCdoa)(phen)}_2] \cdot 7\text{H}_2\text{O}\) (8)

This green compound was synthesised by the same method as that employed for (7) using 4-MecdoaH2. Yield: 0.286 g (48%); Anal. Calc. for C38H41.60CuN4O16.80 C38H52CuN4O21.7H2O: C, 53.55; H, 4.35; N, 6.36%. IR (cm\(^{-1}\)): \(\nu_{\text{OH}}\) 3411, \(\nu_{\text{Ceq}(\text{lac})}\) 1712, \(\nu_{\text{asym}(\text{OCO})}\) 1617, 1565, \(\nu_{\text{sym}(\text{OCO})}\) 1331, 1277. \(\mu_{\text{eff}}\): 1.91 B.M.; Soluble in: DMSO, alcohols, hot water. UV–Vis (DMSO): \(\lambda_{290}\ \text{nm} \ \epsilon = 54,208 \ \text{M}^{-1} \ \text{cm}^{-1}\), \(\lambda_{342}\ \text{nm} \ \epsilon = 14,776 \ \text{M}^{-1} \ \text{cm}^{-1}\), \(\lambda_{742}\ \text{nm} \ \epsilon = 67.2 \ \text{M}^{-1} \ \text{cm}^{-1}\). UV–Vis (Nujol): \(\lambda = 820\ \text{nm}\). Crystals suitable for X-ray diffraction studies were obtained by redissolving the solid in a 1:1 methanol:water mixture and allowing the solution to stand for several days.

2.4. X-ray crystallography

Single crystals of 7 and 8 were analysed at 150 K using a Nonius Kappa CCD diffractometer equipped with graphite monochromated Mo K\(\alpha\) radiation. Details of the data collections, solutions and refinements are given in Table 1. Both structures were solved using SHELXS-97 [34] and refined using full-matrix least-squares in SHELXL-97 [35]. Convergence was uneventful, with the following points of note. The asymmetric unit of 7 consists of one copper complex molecule and 8.8 water molecules. Hydrogens were located for all full water molecules (O10, O11, O12, O13, O14, O16) and for the partial water based on O15 (75% occupancy). These solvent hydrogens were refined at a distance of 0.89 Å from the relevant parent atoms. The remaining water hydrogen atoms could not be readily located, even by considering a difference Fourier electron density map computed on low Bragg angle data, and hence they were omitted from the refinement. In addition to one

<table>
<thead>
<tr>
<th>Complex</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C37H36CuN4O14</td>
<td>C38H41.60CuN4O16.80</td>
</tr>
<tr>
<td>Formula weight</td>
<td>874.68</td>
<td>964.38</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>150(2)</td>
<td>150(2)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P(\bar{1})</td>
<td>P(\bar{1})</td>
</tr>
<tr>
<td>(a) (Å)</td>
<td>10.9390(3)</td>
<td>11.0260(2)</td>
</tr>
<tr>
<td>(b) (Å)</td>
<td>11.5730(3)</td>
<td>13.4450(3)</td>
</tr>
<tr>
<td>(c) (Å)</td>
<td>15.9080(4)</td>
<td>16.0120(4)</td>
</tr>
<tr>
<td>Volume (Å(^3))</td>
<td>1916.51(9)</td>
<td>2108.62(8)</td>
</tr>
<tr>
<td>(Z)</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated, Mg/m(^3))</td>
<td>1.516</td>
<td>1.450</td>
</tr>
<tr>
<td>Absorption coefficient (mm(^-1))</td>
<td>0.653</td>
<td>0.580</td>
</tr>
<tr>
<td>(\not) (000)</td>
<td>9.10</td>
<td>10.10</td>
</tr>
<tr>
<td>Crystal size (mm)</td>
<td>0.35 × 0.25 × 0.10</td>
<td>0.25 × 0.20 × 0.10</td>
</tr>
<tr>
<td>Theta range (°)</td>
<td>3.57–27.43</td>
<td>4.17–27.45</td>
</tr>
<tr>
<td>Index ranges</td>
<td>–14 ≤ (h) ≤ 13; –14 ≤ (k) ≤ 14; –19 ≤ (l) ≤ 20</td>
<td>–14 ≤ (h) ≤ 14; –16 ≤ (k) ≤ 17; –20 ≤ (l) ≤ 20</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>33,659</td>
<td>41,143</td>
</tr>
<tr>
<td>Independent reflections [(R_{int})]</td>
<td>8615 [0.0695]</td>
<td>10038 [0.0526]</td>
</tr>
<tr>
<td>Reflections observed</td>
<td>6312</td>
<td>7296</td>
</tr>
<tr>
<td>Data Completeness</td>
<td>0.987</td>
<td>0.993</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
<td>None</td>
</tr>
<tr>
<td>Maximum and minimum transmission</td>
<td>0.9544</td>
<td>0.870</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on (F^2)</td>
<td>Full-matrix least-squares on (F^2)</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>8615/15/607</td>
<td>10038/39/683</td>
</tr>
<tr>
<td>Goodness-of-fit on (F^2)</td>
<td>1.081</td>
<td>1.075</td>
</tr>
<tr>
<td>Final (R) indices ((</td>
<td>F</td>
<td>> 2\sigma(F)))</td>
</tr>
<tr>
<td>(R) indices (all data)</td>
<td>(R^1 = 0.0942 \ wR^2 = 0.1535)</td>
<td>(R^1 = 0.0783 \ wR^2 = 0.1385)</td>
</tr>
<tr>
<td>Largest difference in peak and hole (eÅ(^-3))</td>
<td>1.136 and –0.816</td>
<td>0.594 and –0.503</td>
</tr>
</tbody>
</table>
molecule of the copper complex, the asymmetric unit in 8 was seen to also contain 13 full occupancy waters. The solvent hydrogens were universally located and refined in a similar manner to those in 7.

Crystalllographic data for 7 and 8 have been deposited with the Cambridge Crystallographic Data Centre as supplementary publications CCDC 622270 and 622271, respectively. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [fax (+44) 1223 336033, e-mail: deposit@ccdc.cam.ac.uk].

2.5. Antimicrobial studies

2.5.1. Assessment of antibacterial activity

All bacterial isolates were obtained clinically: *S. aureus* (urinary tract infection), methicillin resistant *S. aureus* (wound infection), *Staphylococcus simulans* (facial skin), *Micrococcus luteus* (facial skin), *Escherichia coli* (gastro-intestinal tract), *Bacillus oleronius* (facial skin), *Patonea agglumerans* (facial skin).

Bacterial strains were grown overnight in nutrient broth medium at 30 °C and 200 rpm in an orbital incubator. The absorbance of these cultures was measured at 660 nm and cultures were diluted to an optical density of 0.1. The cell absorbance of these cultures was never more than 1%. Plates were incubated as above, so that the final concentration of DMSO in the cell suspension was 0.1%. Plates were incubated at 30 °C for 24 h and the optical density was measured spectrophotometrically (Dynex Technology) at 450 nm.

2.5.2. Antifungal susceptibility testing

C. albicans ATCC 10231 (obtained from the American Type Culture Collection, MD, USA) was maintained on YEPD agar [2% (w/v) glucose (Sigma–Aldrich Chemical Co Ltd., Dublin, Ireland), 2% (w/v) bactopeptone (Difco Laboratories, Detroit, USA), 1% (w/v) yeast extract (Oxoid Ltd., Basingstoke, England), 2% (w/v) agar] plates and sub-cultured every 6–8 weeks and stored at 4 °C. Fresh cultures were grown at 30 °C in YEPD broth (as above but without agar). All cultures were grown to the stationary phase (approximately 1 × 10^8 cells/ml) overnight in 50 ml Antibiotic Medium 3 (Oxoid Ltd.) broth at 30 °C and 200 rpm.

Antifungal susceptibility testing was performed using broth microdilution assays according to the National Committee for Clinical Laboratory standards (Document M27-A2) protocol with slight modifications. The M27-A2 method was altered by substituting antibiotic medium 3 for RPMI 1640 medium. Using this method MIC_{80} values were determined spectrophotometrically at 405 nm by comparing the turbidity of growth in each well. MIC_{80} is defined as the lowest concentration of drug that inhibits fungal growth by 80% relative to the control.

2.5.3. Measurement of oxygen uptake

The respiration rate of yeast cells was determined using a Clark-type oxygen electrode (Techno, Rank Brothers Ltd., Cambridge, UK). This electrode consists of a platinum cathode and silver anode. Both the cathode and anode were immersed in a potassium chloride buffer and are separated from the test solution by a Teflon membrane. A disc of lens tissue with a hole in the middle was placed over the anode and cathode, in order to leave the cathode uncovered. The lens tissue had previously been immersed in 0.5 M potassium chloride. Following this, a Teflon membrane was placed over the electrode and the test chamber was placed on top of the electrode and screwed to place. This chamber was maintained at 30 °C by circulating water around the walls of the chamber.

Prior to the determination of respiration rates, the electrode was calibrated using sodium dithionate, thus allowing determination of 100% and 0% oxygen levels. Yeast cells in the late exponential phase (10 h), were grown in the presence of test agent, using a concentration equivalent to half the MIC_{80} at 30 °C, and in an orbital incubator (Cerromat R). Yeast cells at a density of 1 × 10^8 cells were harvested and washed in PBS and then resuspended in 0.025 M phosphate buffer, pH 7.2. Phosphate buffer (0.025 M) was prepared following the addition of 72 ml of 0.05 M disodium hydrogen phosphate, and 28 ml of 0.05 M sodium dihydrogen phosphate, to a final volume of 100 ml in distilled water. Oxygen consumption was determined following the addition of 100 µl of cell sample into the oxygen electrode sample chamber, which previously contained 1.9 ml of phosphate buffer. The rate of oxygen consumption was measured for 30 s, with data recorded using a strip chart recorder. Oxygen consumption was calculated using the following formulae, and was expressed as µM of oxygen consumed/10^8 cells. Oxygen consumption = number of units travelled/span (100% level – 0% level) × 468.75 µM.

2.5.4. Cytochrome analysis

Test agent was added to yeast cells and incubated for 10 h. Cells with a density of 2 × 10^10 cells/ml were harvested by centrifugation at 3000g for 5 min, and washed twice with PBS. The cells were divided into two equal volumes, one half was oxidised by suspending in 0.2% (w/v) sodium hypochlorite solution followed by harvesting using centrifugation, and subsequently resuspended in 50% (v/v) glycerol. The second half of the sample was resuspended in 50% (v/v) glycerol and reduced by adding a few crystals of sodium-dithionate. Differential spectra of reduced and oxidised cytochrome were immediately recorded using a double beam UV–Vis spectrophotometer at 500–650 nm (Cary IE Varian).

2.5.5. Sterol extraction

Yeast cells were grown in the presence of half the MIC_{80} concentration of test agent in antibiotic medium 3 at 30 °C in an orbital incubator (Cerromat R), until cells reached the late exponential phase (ca. 10 h). Cells at a density of
2 × 10^9 cells/ml were harvested and washed with PBS. Cells were resuspended in 1.5 ml of a solution containing 20% (w/v) potassium hydroxide and 60% (v/v) ethanol, and placed in a shaking water bath at 90 °C for 1.5–2 h. Hep-tane was added to this solution and it was then vortexed for 10 s. The upper layer containing sterols was removed according to the method of Arthington-Skaggs et al. [36].

2.5.6. Analysis of yeast sterols
Sterol analysis was determined by using double beam UV–Vis spectrophotometer (Cary IE Varian) over the wavelength range of 240–320 nm. An ergosterol standard curve was constructed (0.25–100 µg/ml). In addition, sterol concentration was also determined using a gas chromatograph.

3. Results and discussion

3.1. Chemical synthesis and characterisation

The dicarboxylate coumarin ligands 1 and 2 were prepared by etherification of the precursor dihydroxycoumarins followed by acid hydrolysis (Scheme 1). The Cu(II) and Mn(II) dicarboxylate complexes 3–6 were prepared by simple ligand anion exchange reactions by refluxing the appropriate dicarboxylate ligand with dicopper(II) tetraacetate dihydrate or manganese(II) chloride tetrahydrate in water (Scheme 2). These dicarboxylate complexes were insoluble in water and all common solvents (except DMSO) suggesting they may be polymeric in nature, and repeated attempts to recrystallise them failed. Elemental analyses indicated a metal to ligand ratio of 1:1 and with either two or three water molecules in the formulation.

The Cu(II) dicarboxylate/phen complexes 7 and 8 were obtained by refluxing the respective coumarin-6,7-dioxyacetic acid with phen and dicopper(II) tetraacetate dihydrate in ethanol:water (4:1). These phen complexes were soluble in hot water, alcohols and DMSO. The microanalytical data reported shows loss of water molecules from the crystal lattice of both complexes over time. Attempts to prepare the Mn(II) analogues were unsuccessful.

The IR νasym(OCO) and νsym(OCO) stretching frequencies and the Δν(OCO) values for the metal complexes (3–8) are listed in Table 2. The spectra of complexes 3–6 were very similar and all had a Δν(OCO) > 200 cm⁻¹, a value normally considered to indicate unidentate carboxylate coordination [37]. These data are also consistent with those previously reported for Mn(II) and Cu(II) complexes of benzene-1,2-dioxyacetic acid (bdoaH₂) [38]. Ethereal (COC) asymmetric and symmetric vibrational frequencies for complexes 3–8 (Table 2) are also similar to those published for benzene-1,2-dioxyacetate complexes [39–41]. The X-ray structures of bdoa²⁻ complexes indicated an octahedral geometry about the metal centre, with the bdoa²⁻ ligand coordinated in a quadridentate fashion via a carboxylate oxygen from each of the acid functions and from the two ethereal oxygen atoms [38]. However, while a similar structure for complexes 3–6 could be possible, the general insolubility of complexes 3–6 suggests that there may also be intermolecular interactions between individual monomeric units (possibly via a carboxylate oxygen and/or the lactone carbonyl oxygen) leading to polymeric structures. Indeed, it is also possible that the quadridentate binding environment about the metal centre could be generated from carboxylate groups of alternating dioxyacetic acid ligands. The IR spectra of the complexes 3–6 also contain bands between 840 and 820 cm⁻¹, which are not present in the free ligands, which are characteristic of coordinated water [42]. The UV–Vis spectra of complexes 3 and 4, recorded in DMSO solution as well as in the solid state as a Nujol mull show approximately similar shapes and positions of the absorption bands, indicating no appreciable change in the geometry of these complexes in solution. The room temperature magnetic moment (μeff) values of complexes 3–6 (calculated by assuming a monomeric formulation) are in agreement with those expected of simple mononuclear complexes in which there are no metal–metal interactions.

The IR spectra of the phen-containing complexes 7 and 8 were similar to each other and showed distinct bands for the phen ligands at 1426, 850 and 723 cm⁻¹. For these two complexes there were two separate sets of νasym(OCO) and νsym(OCO) vibrations. One set of values, with Δν(OCO) > 200 cm⁻¹, was indicative of unidentate coordination to the Cu(II) centre. Two additional bands at ca. 1426 and 1565 cm⁻¹, were assigned to νasym(OCO) and νsym(OCO) vibrations of the uncoordinated carboxylate group [43].

The UV–Vis spectra of 7 and 8, recorded in DMSO solution and as a Nujol mull do show appreciable
differences, indicating a change in stereochemistry about the copper centre on dissolution [44].

3.2. Crystal structure analysis

The X-ray crystal structures of the Cu(II) complexes 7 and 8 are shown in Figs. 2 and 3, respectively, with pertinent bond lengths and angles listed in Tables 3 and 4, respectively. The packing diagram for 7 is shown in Fig. 4. There is extensive hydrogen bonding in both structures, involving available acceptors in the copper complexes and the lattice waters.

Complex 7 has an approximate trigonal bipyramidal geometry ($\tau = 0.663$) [45] with the metal coordinated by two chelating phens and one oxygen (O1) of a carboxylate function on the meridional trigonal plane (O1, N2, N4). The acid group coordinated to the metal centre is the one attached to the pendant ethereal arm 6-position of the
coumarin ligand. Cu–N bond lengths range from 1.984(3) to 2.123(3) Å and are similar to those reported for other Cu–N bonds with \(N,N'\)-donor ligands [46]. The copper to oxygen bond length is 2.076(2) Å which is also similar to other unidentate copper(II) carboxylate bond lengths [47]. The bond angles of the meridian atoms illustrate deviation from ideal trigonal bipyramidal geometry; O1–Cu–N2 = 102.54(10)°, N4–Cu–N2 = 120.03(10)° and O1–Cu–N4 = 137.39(10)°. The axial groups are close to perpendicular relative to the meridian plane, with N3–Cu–O1 = 90.56(10)°; N1–Cu–N4 = 95.72(11)°; N3–Cu–N1 = 177.19(11)°. There are also 8.8 water molecules per copper centre. The second acid function of the diacid is uncoordinated and deprotonated. The lactone oxygen of the coumarin, the ethereal oxygens of the dioxyacetic acid groups, the deprotonated uncoordinated carboxylate group attached to position 7 on the coumarin and the lattice waters are involved in an extensive network of hydrogen bonding (Fig. 4). Aryl stacking between the coordinated phen groups affords added stability and rigidity in the solid state.
The fused benzene rings of the coumarins may also be engaged in aryl stacking. The structure of 7 is similar to that reported for bis(2,2'-bipyridine)p-(phenylenedioxy)diacetatocopper(II) tetrahydrate [48].

The X-ray crystal structure of 8 (Fig. 3) is very similar to 7, with the Cu(II) center in a distorted trigonal bipyramidal environment ($\tau = 0.633$) with two chelating phen ligands. The 4-methylcoumarin-6,7-dioxyacetic in 8 acid has also got one unidentate coordinated pendant carboxylate arm (position-6) but unlike complex 7 it is coordinated through the opposite oxygen of the carboxylate group.

3.3. Antibacterial screening

Manganese(II) and copper(II) dicarboxylates and their phen adducts have previously been shown to have antifungal activity against *C. albicans* [49–52]. The metal-free ligands (1, 2), the metal complexes (3–8) and the simple salts Cu(ClO$_4$)$_2$·6H$_2$O and Mn(ClO$_4$)$_2$·6H$_2$O were screened for their antimicrobial activity (Table 5). The growth inhibition results are expressed as MIC$_{80}$ values (minimum inhibitory concentration (μM) required to inhibit 80% of the growth of the microbe).

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Selected bond lengths (Å) and angles (°) for [Cu(Cdoa)(phen)$_2$]·8.8H$_2$O (7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)–N(3)</td>
<td>1.984(3)</td>
</tr>
<tr>
<td>Cu(1)–O(1)</td>
<td>2.076(2)</td>
</tr>
<tr>
<td>Cu(1)–N(2)</td>
<td>2.123(3)</td>
</tr>
<tr>
<td>N(3)–Cu(1)–N(1)</td>
<td>177.19(11)</td>
</tr>
<tr>
<td>N(1)–Cu(1)–O(1)</td>
<td>92.12(10)</td>
</tr>
<tr>
<td>N(1)–Cu(1)–N(4)</td>
<td>95.72(11)</td>
</tr>
<tr>
<td>N(3)–Cu(1)–N(2)</td>
<td>99.19(12)</td>
</tr>
<tr>
<td>O(1)–Cu(1)–N(2)</td>
<td>102.54(10)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4</th>
<th>Selected bond lengths (Å) and angles (°) for [Cu(4-MecCdoa)(phen)$_2$]·13H$_2$O (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu(1)–N(1)</td>
<td>1.995(2)</td>
</tr>
<tr>
<td>Cu(1)–O(1)</td>
<td>2.065(2)</td>
</tr>
<tr>
<td>Cu(1)–N(3)</td>
<td>2.144(2)</td>
</tr>
<tr>
<td>N(1)–Cu(1)–N(4)</td>
<td>176.06(10)</td>
</tr>
<tr>
<td>N(4)–Cu(1)–O(1)</td>
<td>91.66(9)</td>
</tr>
<tr>
<td>N(4)–Cu(1)–N(2)</td>
<td>99.39(9)</td>
</tr>
<tr>
<td>N(1)–Cu(1)–N(3)</td>
<td>95.67(9)</td>
</tr>
<tr>
<td>O(1)–Cu(1)–N(3)</td>
<td>102.97(8)</td>
</tr>
</tbody>
</table>

Fig. 4. Packing diagram for [Cu(cdoa)(phen)$_2$]·8.8H$_2$O (7).
The water-soluble metal-free dicarboxylate ligands 1 and 2 showed a similar and wide range of antibacterial activity (MIC80 values ranging from 93 to 294 μM). However, the water-insoluble Cu(II) and Mn(II) dicarboxylate complexes 3–6 and the water–soluble Cu(II) and Mn(II) simple salts were inactive against all of the organisms. These data indicate that decreasing the ligand solubility (via complex formation) lowers the bioavailability of the dicarboxylates.

Complexes 7 and 8 had significantly greater antimicrobial activity than both the metal-free dicarboxylic acids and phen, in particular against the clinically important MRSA and E. coli bacteria (Table 5). Complexation with phen or bipyridine has been used to enhance the antimicrobial activity of several metal ions, including copper [53–56]. Moreover, the phen ligand has been shown previously to act as a potential anti-tumour agent [57] and that anti-tumour activity can be increased on forming water-soluble copper complexes [58]. In addition, copper complexes containing phen are of considerable interest in nucleic acids chemistry, following the discovery of the ‘chemical nuclease’ activity of bis(phen)copper(I) complexes [59] and more recently that of a copper(II) complex of a phen-derived ligand [60]. A similar pattern is noted here in that the antibacterial activity of metal-free phen is considerably enhanced by the formation of Cu(II) complexes. Surprisingly, 7 was universally more active than the methylated analogue 8, implying that the methyl group in the 4-position was having a deactivating effect. Overall, the activity of 7, particularly against the clinically important MRSA and P. agglomerans (MIC80 = 12.1 and 12.6 μM, respectively), was considerably greater than the activity of phen, the coumarin ligand or the copper salt suggesting that it may well have therapeutic potential.

3.4. Antifungal activity

Against C. albicans metal-free phen and the phen-containing Cu(II) complexes 7 and 8 had significantly lower MIC80 values than the metal-free ligands 1 and 2 (Table 5). The values for 7 and 8 were comparable to those of the commercial antifungal agent ketoconazole (25 μM/ml) [33] but interestingly were not as active as the metal-free phen. Thus, unlike the antibacterial studies, whereby formation of a Cu(II) phen complex enhances the antibacterial activity of the phen ligand, the anti-Candida activity is reduced upon complex formation. Given our previous mechanistic studies on Cu(II)–phen complexes [18], some preliminary mode of antifungal action studies on 7 and 8 were undertaken.

3.4.1. Respiration rates

Previous studies have shown that fungal respiration is affected when cells are exposed to metal-based drugs [18,61,62]. Stationary phase Candida cells were exposed to 7 and 8 for 10 h and then oxygen-uptake measurements were made (Fig. 5). The complexes show a modest

![Fig. 5. Oxygen consumption of C. albicans. Fungal cells were treated with the complexes 7 and 8 at half of their MIC80 concentrations for 10 h. Bars indicate ±SEM. Control cells are those grown with no added complex.](image-url)
reduction in O₂ consumption, in comparison to the control. An earlier study by our group has shown that metal-free phen induces a modest increase in oxygen uptake [18].

3.4.2. Cytochrome analysis
Cytochromes are an important component of the mitochondrial electron transfer chain. Previous work has indicated that impairment of cytochrome synthesis and/or function leads to a reduction in respiration rates in Candida cells following exposure to metal-based drugs [18,63]. The spectroscopic cytochrome profile of control cells indicates the presence of cytochromes aa₃ (602 nm), b (564 nm) and c (550–554 nm) (Fig. 6). However, their spectroscopic profiles were altered when cells were exposed to 7 and 8. In particular, the cytochrome aa₃ peak was greatly reduced in yeast cells treated with 8. Disruption of the mitochondrial cytochrome content of a cell has the potential to reduce its respiratory efficacy. Again a previous study had shown that metal-free phen retards the synthesis of cytochromes b and c [18].

3.4.3. Ergosterol content
Fungal cells require oxygen in order to synthesise the membrane sterol ergosterol. Thus, either a reduction in respiratory efficiency or an inability to respirate leads to reduced levels of ergosterol [63]. Reduction in the ergosterol content in C. albicans has been identified previously as a mechanism for increased growth in the presence of the potent anti-fungal drug amphotericin B [63,64]. The requirement for a functional mitochondrion in ergosterol biosynthesis is well established and arises from the provision of NADPH for squalene dimerisation [63]. The relative ergosterol contents of drug-treated and control cells were determined (Fig. 7). C. albicans cells exposed to complexes 7 and 8 showed diminished levels of ergosterol, with complex 7 inflicting the most deleterious effect. As sterol synthesis is dependent upon a fully functional cellular respiratory system the decrease in ergosterol levels observed with these drugs indicate a disabled mitochondria.

4. Conclusions
Two new coumarin-6,7-dioxyacetic acid ligands were prepared and each complexed to a Mn(II) and Cu(II) centre. Mixed-ligand dicarboxylate/phen complexs of Cu(II) were also isolated. The most active complexes, [Cu(cdoa)(phen)₂]·8H₂O (7) and [Cu(4-Mecdoa)(phen)₂]·13H₂O (8) displayed significant broad spectrum antimicrobial activity with particularly good activity against MRSA, E. coli and P. agglumerans.

It has previously been shown that N-donor derivatives of the dicarboxylate complexes of a range of metals are more effective antifungal agents than the simple dicarboxylate complexes and possess significantly different modes of action to the state-of-the-art prescription drugs [53,60,18] and the results presented here show a similar trend. When administered to C. albicans 7 and 8 inhibited respiration, reduced the levels of ergosterol in the membrane and altered cytochrome content. These results suggest that the antifungal effect of these complexes is mediated through the disruption of mitochondrial function, which is different to the mode of action of the conventional azole and polyene drugs.

In light of their antimicrobial activities and their distinct antifungal mode of action, 7 and 8 may find application as novel drugs for the treatment of microbial infections, and they may also be employed in conjunction with existing drugs for the treatment of infections demonstrating resistance to conventional agents.
Acknowledgements

This research was supported by the Technological Sector Research Programme, Strand III (2002–2005), under the European Social Fund Operational Programme for Industrial Development. The research was carried out by the Pharma Research and Development Team located at the Institutes of Technology, Tallaght & Dublin, and the National University of Ireland, Maynooth, Co. Kildare, Ireland.

References