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Smart environments rely on sensor data to provide necessary business intelligence in order to
support decision-making. An efficient decision support model in such a context requires that sensor
data are provided correctly and timely. Given the dynamicity of sensor environment, the diversity of
their features and of user requirements, finding appropriate sensors having the required capabilities
or replacing faulty ones constitutes a challenging task. Efficiently describing and organizing sensors
in smart environments is essential to deliver a rapid adaptation to errors and availability of data.
In this paper, we present an approach for organizing and indexing sensor services based on their
capabilities. We introduce a feature-oriented capability model that puts forward the functional
aspects of carried actions and model them as resource description framework (RDF) properties
rather than focusing on the change in the state of the world. Using this model for describing sensor
capabilities, we apply Formal Concept Analysis for organizing and indexing sensor services. We
have experimented and evaluated our approach in the Digital Enterprise Research Institute, which
has been retrofitted with various sensors to monitor temperature, motion, light and consumption of

power within a building.
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1. INTRODUCTION

With their decreasing costs and increasing capabilities,
sensors are playing a key role in emerging cyber-physical
information systems especially smart environments. Indeed,
such environments rely on sensor data to provide necessary
business intelligence to support decision-making. A possible
use case can be a smart building within an energy
management application to control the supply and demand
of energy.

The main source of information used for running a decision
support model relies mainly on sensors deployed within a
smart building. An efficient decision support model in such
a context requires that sensor data be provided correctly
and timely. However, accidents may occur at any time. For
example, a sensor may become not responsive or a source
of errors. In these cases, the decision support model should

provide suggestions to observe another source of data. This
can be made easy if sensors are properly described and
organized. Creating explicit links between sensors helps to
discover similar ones and, consequently, facilitate balancing
observations from one sensor to the other.

Given the dynamicity of a sensor environment, the diversity
of their features and of user requirements, finding appropriate
sensors having the required capabilities or replacing faulty
ones constitutes a challenging task especially in medium- and
large-scale areas. Efficiently describing and organizing sensors
in smart environments is essential to deliver a rapid adaptation
to errors and availability of data.

In this paper, we present an approach for organizing and
indexing sensor services based on their capabilities. We
describe sensor capabilities based on our capability model [1]
which we adapt for the focus of this paper.
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Current approaches for modelling capabilities (either as part
of semantic services or semantic business processes), focus on
the change made by the action to the state of the world. Our
capability model focuses rather on the aspects of interest to the
users and targeted applications, which characterize the carried
action. These aspects are formally defined as resource descrip-
tion framework (RDF) properties in domain-specific ontolo-
gies. They relate to domain-specific functional dimensions of
the carried action. User and targeted application requirements
are often expressed based on these features of interest.

Based on our feature-based capability model, we apply
Formal Concept Analysis [2] (FCA for short) for organizing
and indexing sensor services based on their capabilities. FCA is
a well-known mathematical classification tool used in various
domains that allows organizing objects described via a set of
attributes into a Concept Lattice.

The proposed approach has been experimented on in the
Digital Enterprise Research Institute (DERI). The building
has been retrofitted with energy sensors to monitor the
consumption of power within the building. A building-specific
aspect of the dataspace has been presented in [3] with a sensor
network-based situation awareness scenario presented in [4].
An event processing technique is applied to process this real-
time sensor information to support the energy management
applications [5]. However, it has been observed that when a
particular sensor is not working properly, there is a limited
support to decision-making, data mining and knowledge
discovery. Indeed, the identification of critical and meaningful
patterns highly depends on the reliability of the data provided.

To build an efficient energy management system in such a
context, the main challenge we are dealing with in this paper
is how to efficiently organize and index sensors based on their
capabilities.

The remainder of the paper is organized as follows. Section 2
presents related work to capability modelling and discovery.
Section 3 introduces our capability model and shows how we
use it to define sensor service capabilities. Section 4 revisits the
theoretical foundations of FCA and shows how we apply it to
organize and index sensors based on their capabilities into tree
like structure called “sensor capability lattice”. It also shows
how we can exploit this sensor capability lattice to discover
sensors and implications between sensor attributes. Section 5
reports on the evaluation of our work. First, we introduce, in
Section 5.1, Linked Energy Intelligence (LEI) dataspace which
constitutes our use case for organizing sensor capabilities using
FCA. Then we detail, in Section 5.2, two experimentations for
verifying the applicability of our approach. Finally, Section 6
draws a conclusion and outlines future work.

2. RELATED WORK

The work proposed in this paper is related to two main
research areas: capability modelling and capability discovery.
On the one hand, we reviewed related work to web services

capability modelling as it constitutes a first pillar to our
contribution; on the other hand, we reviewed related work to
service capability discovery as it is highly related to service
organization/indexing.

2.1. Capability modelling

A capability denotes what an action does either in terms of real
world effects or returned information [6]. In the literature, we
can distinguish three families of approaches that tackled the
problem of capability modelling either directly or indirectly.

The first family includes Semantic Web Services models
(WSMOs [7] and OWL-S [8]) which model capabilities as
Input, Output, Preconditions and Effects (IOPE paradigm). A
capability is expressed by the state of the world before the Web
service is executed and the state of the world after successful
Web service provision [9]. Such state of the world changes are
expressed in terms of axioms. Modelling capabilities as such
do not feature in an explicit and easily accessible way domain
features. Extracting and managing domain attributes requires
some reasoning which can be time consuming and difficult to
manage by end-users.

The second family of related efforts concerns semantic
annotations of invocation interfaces (SA-WSDL [10] and
SA-REST [11]). While these approaches do not directly
target capability modelling, they attempt to provide alternative
solutions to top-down semantic approaches (WSMO [7] and
OWL-S [8]) by starting from existing descriptions such as
WSDL [12] and annotate them with semantic information. For
example, the SAWSDL specification indicates a possible use of
the interface annotation for categorization [13] that might help
in introducing a natural language indication of the action being
done by the proposed service. However, these approaches
define a semantic description of syntactic interaction interfaces
rather than concrete capabilities.

The third family includes frame-based approaches for
modelling capabilities. Oaks et al. [14] give a comprehensive
overview of related approaches and propose a model for
describing service capabilities as such. The proposed model
distinguishes in particular the corresponding action verb and
informational attributes (called roles in the paper [14]) in
addition to the classical IOPE. While this model makes
a step beyond the classical IOPE paradigm, the semantics
of capabilities remain defined via the IOPE paradigm and
therefore has the same issues as the first family of approaches
described above.

All of the previously discussed approaches describe
capabilities without featuring functional domain properties.
A capability is highly coupled with its implementation (i.e.
invocation interface) or related to the description of another
concept (i.e. services). We strongly support the idea of
considering the capability as an independent concept that
describes what a programme, a business process, a service, etc.
does from a functional perspective. A capability should not be

Section C: Computational Intelligence, Machine Learning and Data Analytics
The Computer Journal, Vol. 58 No. 3, 2015

D
ow

nloaded from
 https://academ

ic.oup.com
/com

jnl/article-abstract/58/3/356/2962974 by M
aynooth U

niversity user on 12 August 2019



358 W. Derguech et al.

limited only to a single label or an action verb but also should
consider a proper description of domain-dependent functional
properties forming a standalone entity.

2.2. Indexing and discovery of service capabilities

The primary purpose of explicit modelling of service
capabilities is discovery and selection. Several approaches
have been proposed for service discovery and similarity-based
selection. In this section, we reviewed relevant contributions
towards this issue.

Similarity-based service discovery has been studied exten-
sively for various kinds of services. In [15], multiple evidences
are considered to evaluate the similarity of service operations
and inputs/outputs based on clustered concepts extracted from
WSDL documents. To make this approach more user-friendly,
another abstraction layer that uses natural language process-
ing is needed to translate user requests into formally specified
search requests.

In [16], a hybrid matchmaking approach is proposed for
discovering OWL-S services. Among the hybrid filters used
in [16], the subsumed-by and nearest-neighbour filter leverage
different Information Retrieval (IR) similarity metrics. In
[17, 18], a replacement degree is computed for two service
protocols based on how their sub-protocols can replace each
other in the context of mediated service interactions. Compared
with the above approaches, we are more focused on providing
an easy way for the users to specify their requirements to find a
replacement for an unsatisfiable sensor capability by specifying
the set of required attributes (i.e. sensor properties).

We have previously provided approaches that describe and
discover service capabilities using attribute-featured service
descriptions [19, 20]. In these approaches, we construct
an indexing structure based on extension and specification
relations. Then we apply heuristic search algorithms to retrieve
the closest services to user requests. In the current work, we
propose to use FCA as we find it more appropriate for avoiding
heuristic search as the indexing structure (i.e. FCA concept
lattice) is uniformly created. A search algorithm requires only
to navigate the FCA lattice.

3. MODELLING SENSOR CAPABILITIES

3.1. Capability model

Different from existing approaches, which focus on the
change of the state of the world made by an action, we
propose a semantic frame-based model which rather focuses
on and features aspects of interest (to the users and targeted
applications) of the carried action. In the following, we present
our capability model [1] adapted to the focus of this paper. We
first briefly introduce our model and then show how we use it
to describe sensor capabilities.

We model a capability as a category (of functionalities)
enriched by (zero or many) functional or non-functional

features (see the concept of property entry below). These
features refine the given category (which corresponds to an
abstract capability) by giving more details about aspects of
interest of the corresponding action.

More formally, in our model both search requests and
service capabilities are defined as a set of property
entries. A property entry is a couple (property,
value) where property is a domain-specific functional feature
or a domain-independent non-functional property. Both
property and value refer to ontological terms shared by service
descriptions and search requests.

A property entry (P, v) is specified with respect to
a property declaration defined in a shared ontology.
A property declaration, d = (P, V, R), defines (i) a
property P as a relevant functional or non-functional feature
of the capabilities of a given domain, (ii) V the most general
value (super class) that property entries defined according to
d can have and (iii) a relation R that tells when a value v1 is
more specific than a value v2 with respect to the meaning of
the property P .

A specific property that is present in all capability
descriptions is hasActionCategory whose value denotes
the category of the capability defined in a domain-specific
ontology.

We ground our capability model on RDF-S/RDF. We define
the class PropertyDeclaration as a subproperty of
(RDF-S:subPropertyOf ) the RDF class RDF:Property. We
model property declarations as RDF properties, instances of the
class PropertyDeclaration. Property entries are defined
as RDF predicates referring to the corresponding declarations.

3.2. Sensor capability models

The sensor capability model extends our capability model as
follows. Listing 2 gives a snippet in N3 format of our RDF
Sensor Capability Ontology (SCO) which is also illustrated
graphically in Fig. 1. First, we define the superclass of all
sensor capabilities SensingCapability as a subclass of
the concept Capability (Listing 2, line 10). As all sensors
are supposed to provide data about a phenomenon they are
observing, we define the action category sensing and assign it
as the value of the property hasActionCategory (Listing
2, line 12–14).

The second step consists of defining features of interest
of sensor capabilities. As presented above, these features are
specified as property declarations. We distinguish between
valued and non-valued features. Non-valued features are
features that are either present/fulfilled or not such as
hasStorageOption. The range of such properties is
boolean. We define the following property declarations (see
Fig. 1).

(i) sco:isActive (line 18) is defined as a property that has a
boolean value. It reports if the sensor is active.
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FIGURE 1. Sensor capability ontology.

(ii) sco:hasStorageOption (line 22) is defined as a property
that has a boolean value. It reports if the sensor has any
storage option. This property can be modified to report
on the size of the storage capacity that the sensor has.

(iii) sco:isAccessible (line 26) is defined as a property
that has a boolean value. It reports if the sensor is
accessible. That helps to take decisions to physically
move and check the status of the sensor or read directly
from its digital display if it has one.

(iv) sco:hasDigitalDisplay (line 30) is defined as a property
that has a boolean value. It reports if the sensor has a
digital display that a user can read from.

(v) sco:hasPhenomenonObserved (line 34) is defined as
a property that has a string value. It reports on the
phenomenon that the sensor is observing. A listing of
possible values is defined as a Datatype (line 39).

A sensor capability is created as an instance of (rdf:type)
sco:SensingCapability with concrete values of its predefined
properties. Listing 1 presents an example of a temperature
sensor capability :TemperatureSensorCapability123 reporting
that it is an active and accessible temperature sensor with a
digital display and it does not have a storage option.

� �
1 @prefix sco: <http://.../sensor_capability_ontology#>.
2

3 :TemperatureSensorCapability123 a sco:SensingCapability;
4 sco:isActive "true"^^xsd:boolean ;
5 sco:hasStorageOption "false"^^xsd:boolean ;
6 sco:isAccessible "true"^^xsd:boolean ;
7 sco:hasDigitalDisplay "true"^^xsd:boolean ;
8 sco:hasPhenomenonObserved "Temperature"^^sco:

PhenomenonObserved.
� �

Listing 1. Snippet of a temperature sensor capability.

Compared with existing approaches, our capability model
presents several advantages. Mainly, it explicitly cap-
tures domain-specific functional properties that describe and
characterize the carried action according to the aspects of inter-
est to end-users and targeted applications. Indeed, these prop-
erties are defined in domain-specific ontologies with respect
to specific engineering tasks. Moreover, our domain-specific

capability models are easily extensible. If a new property is
required for describing a particular sensor aspect/characteristic,
we simply need to define it as a cap:PropertyDeclaration and
define its domain and range. Finally, our feature-based model
enables new techniques for indexing and discovering services
as detailed in the following.

The main research problem we are dealing with in this paper
is the organization of sensor capabilities in order to facilitate
their discovery. We have previously proposed other approaches
that use a heuristic search for discovering capabilities from an
indexing structure created based on the analysis of the property
values [19, 20]. In this paper, we propose another approach
which is also build on top of our feature-based model and uses
FCA to construct an indexing structure that organizes sensor
capabilities. We use this structure for the purpose of discovery.

� �
1 @prefix sco: <http://vocab.deri.ie/sco#>.
2 @prefix cap: <http://vocab.deri.ie/cap#>.
3 @prefix av: <http://vocab.deri.ie/av#> .
4 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
5 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
6 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
7 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
8 @prefix owl: <http://www.w3.org/2002/07/owl#>.
9

10 sco:SensingCapability rdfs:subClassOf cap:Capability .
11

12 sco:sensing a av:ActionCategory ;
13 rdfs:comment "Measuring a physical quantity and converts it into a signal

which can be read by an observer."^^xsd:string ;
14 skos:prefLabel "Sensing"^^xsd:string .
15

16 sco:SensingCapability cap:hasActionCategory sco:sensing
17

18 sco:isActive a cap:PropertyDeclaration;
19 rdfs:domain sco:SensingCapability;
20 rdfs:range xsd:boolean.
21

22 sco:hasStorageOption a cap:PropertyDeclaration;
23 rdfs:domain sco:SensingCapability;
24 rdfs:range xsd:boolean.
25

26 sco:isAccessible a cap:PropertyDeclaration;
27 rdfs:domain sco:SensingCapability;
28 rdfs:range xsd:boolean.
29

30 sco:hasDigitalDisplay a cap:PropertyDeclaration;
31 rdfs:domain sco:SensingCapability;
32 rdfs:range xsd:boolean.
33

34 sco:hasPhenomenonObserved a cap:PropertyDeclaration;
35 rdfs:label "hasPhenomenonObserved";
36 rdfs:domain sco:SensingCapability;
37 rdfs:range sco:PhenomenonObserved.
38

39 sco:PhenomenonObserved a rdfs:Datatype;
40 rdfs:comment "An observed phenomenon can be light,

motion temperature, etc." ;
41 owl:onDatatype xsd:string;
42 owl:withRestrictions ("Light"^^xsd:string "Motion"^^xsd:

string "Temperature"^^xsd:string "Energy"^^xsd:
string).

� �
Listing 2. Snippet of SCO: sensor capability ontology.

4. FCA FOR ORGANIZING SENSOR CAPABILITIES

The approach that we adopt in this work consists of using FCA
[2] for better organizing a repository of capabilities in order to
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make their discovery more efficient. We define in this paper
the theoretical foundations of FCA while applying it on sensor
capabilities. We use FCA in Section 4.1 for creating a concept
lattice, a structure that allows for indexing sensor capabilities.
Then in Section 4.2, we discuss how a discovery mechanism
can be implemented using this concept lattice.

4.1. Creating the concept lattice

FCA is a technique that has evolved from mathematical
lattice theory and has been used for data analysis across
several domains. Examples of domains include organizing
web search results into concepts based on common topics,
gene expression data analysis, IR, understanding and analysis
of source codes, etc. [21]. It represents a powerful tool for
identifying meaningful relationships within a set of objects
that share common attributes. It provides as well a theoretical
model to build from a formal context (see Definition 1) a
partially ordered structure called a concept lattice.

Definition 1 (Formal Context). A formal context FC is a
triplet 〈X, Y, R〉, where X and Y are non-empty sets and
R ⊆ X ∗ Y is a binary relation between X and Y .

For a formal context FC, elements x ∈ X are referred to as
objects and elements y ∈ Y are called attributes. 〈x, y〉 ∈ R
denotes that the object x has the attribute y.

In our work, the formal context is actually defined via the set
of sensors that we have as well as their respective descriptions.
We will use Table 1 (called cross-table) as a running example
which describes the relationship between the objects (i.e.
Sensors 1–5 represented by the table rows: X = {Sensor 1,
Sensor 2, Sensor 3, Sensor 4, Sensor 5}) and their descriptions
(i.e. attributes represented by the table columns: Y = {Active,
Storage Option, Digital Display, Accessible}, and Table 1). We
consider in this example four attributes:

(i) Active that indicates if the sensor is in operation;
(ii) Storage Option that indicates if the sensor has the

possibility to store data on it;
(iii) Digital Display that indicates if the sensor is equipped

by a digital display for displaying the data; and
(iv) Accessible that indicates if the sensor is located in an

accessible area.

Another fundamental concept in FCA is the Formal
Concept. This concept is defined in Definition 2.

Definition 2 (Formal Concept). A formal concept in
〈X, Y, R〉 is a pair 〈E, I 〉 of E ⊆ X (called extent) and I ⊆ Y
(called intent) such that Att(E) = I and Obj(I ) = E.

Att(E) is an operator that assigns subsets of X to subsets
of Y, such that Att(E) is the set of all attributes shared by all
objects from E. Obj(I ) is an operator that assigns subsets of
Y to subsets of X, such that Obj(I ) is the set of all objects
sharing all the attributes from I .

TABLE 1. Data table with binary attributes.

Active Storage option Digital display Accessible

Sensor 1 X X X X
Sensor 2 X X X
Sensor 3 X X X
Sensor 4 X X X
Sensor 5 X

From Definition 2, we can conclude that a concept C =
〈E, I 〉 is created by getting objects from E sharing the same
attributes from I . For example, the shaded rectangle in Table 1
represents a formal concept 〈E1, I1〉 = 〈{Sensor 1, Sensor 2,
Sensor 3, Sensor 4}, {Digital Display, Accessible}〉 because
Att(E1) = {Digital Display, Accessible} and Obj(I1) =
{Sensor 1, Sensor 2, Sensor 3, Sensor 4}.

From a formal context FC = 〈X, Y, I 〉, we can deduce
a set of formal concepts that can be ordered with respect to
a subconcept ordering. Definition 3 formally introduces the
subconcept ordering.

Definition 3 (Subconcept Ordering). Having two formal
concepts 〈E1, I1〉 and 〈E2, I2〉 from FC = 〈X, Y, R〉,
〈E1, I1〉 ≤ 〈E2, I2〉 ⇐⇒ E1 ⊆ E2 (⇐⇒ I2 ⊆ I1).

Let us consider the following formal concepts from the
example of Table 1:

〈E1, I1〉 = 〈{Sensor 1, Sensor 2, Sensor 3, Sensor 4},
{Digital Display, Accessible}〉
〈E2, I2〉 = 〈{Sensor 1, Sensor 2, Sensor 4}, {Digital
Display, Accessible}〉,
〈E3, I3〉 = 〈{Sensor 1, Sensor 2}, {Active, Digital Display,
Accessible}〉,
〈E4, I4〉 = 〈{Sensor 1, Sensor 2, Sensor 5}, {Active}〉.
Then
〈E3, I3〉 ≤ 〈E1, I1〉, 〈E3, I3〉 ≤ 〈E2, I2〉,
〈E3, I3〉 ≤ 〈E4, I4〉 and 〈E2, I2〉 ≤ 〈E1, I1〉.
The set of ordered formal concepts derived from a formal

context is called a concept lattice, which is another important
notion in FCA. A concept lattice can be represented into a
graph such as the one depicted in Fig. 2.1 In this figure,
the concept extent near the bottom of the lattice contains
only Sensor 1 since the corresponding intent is related to the
biggest number of attributes. The top concept contains all
the sensors and its intent corresponds to no attribute. This
makes the concept less interesting as it allows for all possible
combinations of attributes.

So far, we considered binary attributes (i.e. either the object
has or not that attribute). However, in real settings when

1All concept lattices in this paper are created using Conexp.
[http://conexp.sourceforge.net/].
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FIGURE 2. Concept lattice of the example of Table 1.

TABLE 2. Data table with a multi-valued attribute.

Storage Digital Phenomenon
Active option display Accessible observed

Sensor 1 X X X X Energy
Sensor 2 X X X Energy
Sensor 3 X X X Light
Sensor 4 X X X Temperature
Sensor 5 X Motion

describing capabilities, there are also multi-valued attributes.
Consider Table 2, this table contains an additional attribute
Observed Phenomenon. This attribute reports whether the
sensor is an Energy consumption sensor, Light detection
sensor, Temperature sensor or a Motion sensor. In this case,
we need to transform this multi-valued attribute into a binary
attribute.

For the usage of FCA, transforming and preprocessing the
data displayed in Table 2 is needed. One of the possible ways
consists in using scaling method. Scaling is a transformation
method that converts a multi-valued attribute into a context.
Table 32 represents the transformation of the multi-valued
attribute Phenomenon Observed into a context.

After the application of FCA on converted tables, the
resulted lattice is depicted in Fig. 3.

This concept lattice is our indexing structure; it allows
organizing sensor capabilities in a tree. This structure can serve
for the discovery of sensors as described in the following
subsection.

2Please note that PO stands for Phenomenon Observed.

TABLE 3. Data table with a scaled multi-valued attribute.

PO: Energy PO: Light PO: Temperature PO: Motion

Sensor 1 X
Sensor 2 X
Sensor 3 X
Sensor 4 X
Sensor 5 X

FIGURE 3. Concept lattice of the example of Table 2.

4.2. Concept lattice for sensor and knowledge discovery

In the following, we show the usefulness of using FCA for
indexing sensor descriptions via two scenarios. The first is
the discovery of sensors and the second is the discovery of
implications between sensor attributes.

We propose Algorithm 1 for the discovery of sensors
satisfying a set of attributes. It takes as input the concept
Lattice and a set of attributes representing the query. Suppose
that our input Lattice is the one depicted in Fig. 4 and the input
attributes are ‘PO:Energy’, ‘Digital Display’ and ‘Storage
Option’. In the following, we explain how Algorithm 1
operates:

(1) Lines 2–6: finding the set of formal concepts with
an intent that contains the input attributes. The result
of this step, as shown in Fig. 4, is the set of formal
concepts FC1, FC2 and FC3.

(2) Line 7: finding the Highest Common Subconcept of the
concepts identified in the first step. In Fig. 4, this can be
determined by following the lines down from FC1, FC2
and FC3 and stop where they meet. The result is FC4.

(3) Lines 8–16: collecting the set of potential candidates of
the query. Every object in the formal concept identified
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FIGURE 4. Discovering sensors with same attributes.

in Step 2 as well as all its subconcepts down to the
bottom of the lattice are potential candidates for the
input query. In Fig. 4, starting from FC4, ‘Sensor 1’
is the only result for our input query as there are no
subconcepts of FC4 with a non-empty extent.

Algorithm 1 Sensor discovery algorithm.
1: function Discover(Lattice, Attributes)
2: Concepts← null
3: for (Attribute ∈ Attributes) do
4: Concepts.add(Lattice.
5: findConceptWithAttribute(Attribute) )
6: end for

7: Concept← FindHCSubC(Lattice,Concepts)

8: SubConcepts← Concept.getSubConcepts()
9: Sensors← null

10: while SubConcepts.si ze() �= 0 do
11: OneConcept← SubConcepts.getConcept()
12: Sensors.addAll(OneConcept.getObjects())
13: SubConcepts.addAll(
14: OneConcept.getSubConcepts())
15: SubConcepts.remove(Concept)
16: end while
17: return Sensors
18: end function

The proposed algorithm relies mainly on the explicit
relations between formal concepts. This is useful to discover
sensors that share similar attributes. For example, if one of

FIGURE 5. Implication: every sensor that has a ‘Storage Option’ is
‘Accessible’ and has a ‘Digital Display’.

the motion sensors M is not active anymore, it is possible to
use one of the other motion sensors in its equivalence class or
discovering sensors that share its attributes (i.e. attributes of
the sensor M) by using them as input for Algorithm 1.

In the context of replacement of a sensor, this method
reduces the change time3 considerably to simply parsing the
lattice until reaching the required equivalence class and select
one of its sensors rather than performing a full search over the
set of all the available sensors.

This also helps avoid having empty results. In fact, during
the navigation of the concept lattice, if the user cannot find
the equivalence class that satisfies his request, he can adapt it
according to the visited nodes of the lattice. This allows the
user to relax his query by reducing the attributes he initially
identified in his request.

The other advantage of using FCA is the presence of the
explicit subconcept relationship between equivalence classes.
This allows to discover additional knowledge among the
objects’ attributes that are analysed (i.e. sensor attributes).
Indeed, as depicted in Fig. 5, we can discover implications such
as: every sensor that has a ‘Storage Option’ is also ‘Accessible’
and has a ‘Digital Display’. In other words: ‘Storage Option’
implies ‘Accessible’ and ‘Digital Display’.

To conclude, it is important to note that the use of FCA
permits to create a concept lattice uniformly. In other words, we
always create the same structure with the same input objects.
This has the advantage of creating a deterministic discovery
algorithm, as there is no need to use any heuristic for parsing
this indexing structure. In this paper, we are focusing mainly on
the creation of the concept lattice and we study its applicability

3Change time: the required time for selecting a replacement sensor for the
disabled one.
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in our domain: i.e. indexing a set of sensor capabilities. The
development and implementation of a complete discovery
algorithm is part of our future work. We have used FCA in real
settings for organizing sensor capabilities and our experimental
settings are described in detail in Section 5.

5. EXPERIMENTATION

In our experimentation, we developed multiple modules for
creating a concept lattice starting from an RDF description of
sensor services. The workflow as well as the data exchanged
between the various modules is shown in Fig. 6.

The first developed tool is the RDF parser. It is a Java
application that uses Apache Jena Framework, a Java RDF
and Semantic Web library. This module takes as input an RDF
file and produces a text file containing a formal context as a
table with multi-valued attributes. This module is still under
development as we intend to support getting data from an
RDF store and not simply an RDF file. It is custom-made
for this application; it can manipulate only sensor descriptions
that follow the vocabularies introduced previously. The second
module of our prototype is another Java application that
performs the scaling operation described in Section 4. It starts
by checking all the attributes that are not boolean (see Listing
2 for an example) and then it considers each of its values as a
separate attribute and assigns a boolean value (i.e. true) to the
corresponding objects. The output of this module is a textual
file compatible with the Conexp tool format [22] that we use in
the following step.

The third step in our work consists of creating the concept
lattice with one of the following options: (i) Using Conexp
[22] for the creation and visualization of the concept lattice. (ii)
Using Colibri-Java [23] for the creation and the analysis of the
resulting concept lattices. We use the first option for applying

FIGURE 6. Creating a concept lattice from RDF descriptions of
sensor services.

our approach in a real-world scenario that will be described
in detail in Section 5.1 and the second option for carrying out
further statistical analysis on the use of FCA in our domain
application in Section 5.2.

5.1. Use case application

We illustrate in this section a use case scenario using a set of
real-world sensors deployed within the LEI dataspace. LEI is
an ecosystem where energy-related data are made available
and interlinked to support decision-making and ultimately
energy consumption friendly behaviour [5]. Such data are
provided by real-time data sources such as sensors as well as
relatively static background knowledge such as building plan
and occupancy. The LEI dataspace has been realized in the
DERI.

DERI is a premier research institute with ∼130 research
students and staff with a worldwide reputation in its area.
It is based in a dedicated building with 2190 m2 of space,
comprising 22 unit offices, 160 open plan workspaces, 1
large 80-seat conference room with audio-visual and video
conferencing facilities, 4 meeting rooms, 3 kitchens, 1 air-
conditioned data centre with a backup generator, 1 sensor
network laboratory, a 30-person café, and Ireland’s National
Museum of Computing History.

There are various sources of power consumption in DERI
such as Heating, Ventilation and Air Conditioning systems,
lights and electronic devices. The building provides first-class
technical infrastructure to its researchers.

The DERI building has been retrofitted with energy sensors
to monitor the consumption of power within the building.
In total, there are over 50 fixed energy-consumption sensors
covering office space, café, data centre, kitchens, conference
and meeting rooms, computing museum along with over
20 mobile sensors for devices, light and heater energy
consumption as well as light, temperature and motion detection
sensors. A building-specific aspect of the dataspace has
been presented in [3] with a sensor network-based situation
awareness scenario presented in [4]. For this work, we ended
up with a total number of 78 sensors.

These sensors are described via a set of attributes:

(i) Active: This attribute reports whether the sensor is in
operation.

(ii) Observed Phenomenon: we have four observed phe-
nomena which are ‘energy and power consumption’,
‘motion’, ‘light’ and ‘temperature’. This attribute is a
multi-valued attribute that needs to be scaled using the
transformation previously given in Table 3.

(iii) Protocol: This attribute indicates the protocol used by
the sensor. We have in our selection of sensors two
possible protocols: UDP used by electricity and power
consumption sensors and CoAP used by other sensors.
This is a multi-valued attribute that has to be scaled.
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(iv) Electricity Phases: This attribute reports on the electri-
city phases used by the sensor; we have in our use case
two options: 3-phase and 1-phase sensors. Again, this
is a multi-valued attribute that has to be scaled.

(v) Location: even though this attribute is not an intrinsic
property of the sensor, we have used it because it is
important information that is required for processing
the data provided by the sensor. This is also a multi-
valued attribute that enumerates the locations of the
sensors, e.g. first floor: west wing, ground floor:
canteen, etc. that need to be scaled.

As previously mentioned, the advantage of our capability
model is that we can easily extend the domain ontology to
add more attributes. The current use case requires additional
attributes: Protocol, Elasticity Phases and Location that are
added to the domain ontology shown previously in Listing 2.
Current changes to this domain ontology are shown in Listing
3. In this listing, we use geo as a namespace for referring to an
existing RDF vocabulary for representing information about
spatially located things, using WGS84 as a reference datum
[24]. It is also possible to customize further this attribute, for
example, to the rooms vocabulary [25] if locations of sensors
are limited to predefined rooms.

� �
1 @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>.
2

3 sco:hasProtocol a cap:PropertyDeclaration;
4 rdfs:domain sco:SensingCapability;
5 rdfs:range sco:Protocol.
6

7 sco:Protocol a rdfs:Datatype;
8 rdfs:comment "A protocol can be either COAP or UDP" ;
9 owl:onDatatype xsd:string;

10 owl:withRestrictions ("UDP"^^xsd:string "COAP"^^xsd:string).
11

12 sco:hasElasticityPhases a cap:PropertyDeclaration;
13 rdfs:domain sco:SensingCapability;
14 rdfs:range sco:ElasticityPhases.
15

16 sco:ElasticityPhases a rdfs:Datatype;
17 rdfs:comment "Elasticity Phases considered are 3−phase or 1−phase" ;
18 owl:onDatatype xsd:string;
19 owl:withRestrictions ("3−phases"^^xsd:string "1−phase"^^xsd:string).
20

21 sco:hasLocation cap:PropertyDeclaration;
22 rdfs:domain sco:SensingCapability;
23 rdfs:range geo:SpatialThing.
� �

Listing 3. Snippet of SCO with the required extensions for our Use
Case.

All the sensor capabilities were automatically generated
from an Excel file containing the original descriptions that
were manually checked. Manually checking RDF descriptions
was possible as the number of sensors used was not huge. We
have not carried out any evaluation of our RDF parser, because
it is custom-made for our dataset and conceptual model. The
correctness of the algorithm we applied for the RDF parser

is out of the scope of this paper; however, the data has been
manually verified after parsing and scaling.

The resulting concept lattice from Conexp [22] is
depicted in Fig. 7. The top concept in this lattice repre-
sents the set of all active sensors 〈{Sensor 1, Sensor 2, . . . ,

Sensor 78}, {Active}〉. This formal concept contains in its
extent all the sensors of our dataset because they are all
active. We can see in this concept lattice several formal con-
cepts that represent the set of motion sensors 〈{Sensor 61,

. . . , Sensor 66}, {OP: Motion}〉, the formal concept for temper-
ature sensors 〈{Sensor 67, . . . , Sensor 72}, {OP:Temperature}〉
and the light sensors 〈{Sensor 73, . . . , Sensor 78},
{OP: Light}〉. These three formal concepts are all sub-
concepts of the concept 〈{Sensor 61, . . . , Sensor 78}, {1st
Floor: East Wing}〉. This helps to deduce that all motion, tem-
perature and light sensors are in the same location, i.e. First
Floor:East Wing.

5.2. Evaluation

To evaluate the applicability of our approach in highly dynamic
environments, we carried out two experiments highlighting
mainly the efficiency of using FCA in terms of the number of
concepts created in a concept lattice given a formal context
and the time required to build it. Throughout this evaluation,
we reused an existing implementation of FCA in Java, namely
Colibri-Java [23]. Colibri-Java is a library that offers the
required tools from the preparation of the context to the
creation of a concept lattice that has been experienced in [26].

Experiment 1: Context size vs. Lattice size The object of this
first experiment is to analyse the size of the generated concept
lattice with respect to its original formal context and find out
the limits of using FCA in our domain application.

During this experiment, we wanted to verify the correlation
between the context size and the corresponding lattice size. We
randomly created multiple sets of sensor capabilities. For each
set we generated its corresponding concept lattice. In terms
of attributes, we considered a total number of 16 attributes
for describing each sensor capability with three different
coverage ratios ranging from 0 to 60, 50 or 30% (i.e. each
sensor capability has between [0,10], [0,8] or [0,5] attributes,
respectively).

Figure 8 shows the results of our evaluation. On the
horizontal axis, we present the size of the original formal
context that goes from 0 to 970 objects and on the vertical
axis, we present the size of the corresponding concept lattice.
From this figure, we can clearly note that concept lattices grow
considerably in size with respect to their context. This leads
us to the conclusion that if we want to consider applying our
approach in an environment with a big number of sensors, it
would not be very easy for an end-user to visualize the different
concept classes generated. On the same figure, we can also
note the impact of the coverage ratio. We can see that the
concept lattice gets larger when large contexts have bigger
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FIGURE 7. Concept lattice of the LEI-DERI use case.

FIGURE 8. Context size vs. lattice size vs. maximum coverage ratio
(max CR).

coverage ratio. This means that when describing sensors, we
have to avoid over-describing them and carefully choose the
most discriminating attributes.

Experiment 2: Lattice size vs. Construction Time The object
of this second experiment is to measure the required time for
creating a concept lattice with respect to its size in order to
verify the applicability of our approach at a large-scale (big
number of sensor capabilities) and dynamic environments.

Please note that, for these experiments, we ignored the
required time for creating a context starting from the RDF
descriptions of sensor capabilities. It focuses only on the
computation time required for the creation and parsing of a
concept lattice. In other words, in these experiments, we focus
on the third step of the diagram depicted in Fig. 6.

We randomly created multiple sets of sensor capabilities
with a fixed coverage ratio of the attributes between 0 and 50%
(each object has between 0 and 8 out of a total of 16 attributes).
For each set, we generated its corresponding concept lattice
and measured the required construction time.

Figure 9 shows the results of our evaluation. On the
horizontal axis, we present the size of the concept lattice
and on the vertical axis, we present the required time for its
construction. From this figure, we can clearly note that the
required construction time grows exponentially depending on
the size of the concept lattice. However, for a concept lattice
with over 5000 concepts, the construction time is still <200 ms.
This time can be considered acceptable in small- or medium-
sized buildings where decision-making can be postponed until
the data have been updated within a few seconds. Nevertheless,
in highly sensitive environments, even a few milliseconds can
have a huge impact.

The focus of our work is on applying our approach in
environments similar to DERI where the number of concepts
does not exceed 1000. In such settings, as we can see from
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FIGURE 9. Lattice size [0–5000] vs. Construction time in
milliseconds.

FIGURE 10. Lattice size [0–1000] vs. Construction time in
milliseconds.

Fig. 10, the maximum construction time can reach only 25 ms.
Even though the main criticism towards our approach is the
fact of reconstructing the concept lattice for any change in the
environment (e.g. a new sensor, change in a sensor attribute,
etc.), we can consider that this remains acceptable with such
low construction time.

6. CONCLUSION

We propose in our work to model capabilities as attribute-
featured entities where each attribute reports on a particular
characteristic of the described action. Our conceptual model is
flexible enough to consider even non-functional attributes to
include, for instance, quality of service attributes. We applied
this approach for modelling sensor capabilities, from a real-
world dataspace, featuring both functional and non-functional

attributes. On top of these sensor descriptions, we used FCA
for indexing these sensors. The resulting indexing structure is
called concept lattice that can serve for several use cases, for
example, the discovery of a replacement sensor. Using FCA in
such a use case is recommended only if the number of objects
(i.e. sensors) is not very big. Actually, this constitutes the major
disadvantage of our approach. However, as seen in Section 5.2,
this approach remains efficient while applied on a set of sensor
services in a medium-sized building such as DERI.

Our experiments show that reconstruction of the entire
concept lattice while managing 5000 sensors does not exceed a
few milliseconds. This allows us to conclude that when dealing
with dynamic environments, our system should reconstruct
the entire concept lattice either regularly or when a change
in the environment has been detected. This method can be
efficient but it is very costly and could not be very useful in
highly dynamic environments when several sensors could be
added and removed frequently or where the values of attributes
might change after a short period. Actually, as part of our
future work, we plan to provide the required algorithms for
updating this indexing structure (i.e. removing or adding a
sensor description) in order to deal with dynamic changes in
the environment.

The current version of our work supports only literal
attribute values (e.g. boolean, integer, float and string).
However, our conceptual model supports other complex
attribute types [1] such as conditional values, enumeration
values, dynamic values, etc. To resolve this issue, we can
simply transform any attribute type into boolean without
considering its actual value. This method can be useful
for a rapid construction of the concept lattice and spends
less effort in the scaling operation, but we can lose in
terms of expressiveness of the concept lattice. Our future
work includes also investigating other scaling operations for
covering complex attribute types.
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