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 Statistical Practice

 A Statistical Analysis of the Fairness of Alternative Handicapping
 Systems in Ten-Pin Bowling

 Sarah Keogh and Donal O'Neill

 Using data on approximately 1040 games of bowling, we
 examine the fairness of alternative handicapping systems in ten
 pin bowling. The objective of a handicap system is to allow
 less-skilled bowlers to compete against more skilled opponents
 on a level playing field. We show that the current systems used
 in many leagues do not achieve this objective and we propose a
 new optimal system which equalizes the playing field across all
 potential match-ups.

 KEY WORDS: Handicap systems; Log-normality.

 1. INTRODUCTION

 Many sports adopt a handicap scoring system in determin
 ing the competition winner. In sports such as golf, polo, and
 bowling, players compete under similar conditions and their
 recorded scores are then adjusted up or down once the game has
 been completed. In other sports, such as chess and horse racing,
 handicapping involves altering the conditions under which the
 game is carried out. Despite differences in the nature of hand
 icapping, the stated objective of adopting such a system is to
 level the playing field so that weaker players find it worthwhile
 to take part in tournaments.

 Formally, the U.S. Bowling Congress (USBC) defines a hand
 icap league as follows:

 A handicap league is one in which a handicap is added to a
 bowler's score to place bowlers and teams with varying de
 grees of skill on as equitable a basis as possible for scheduled
 competition. (USBC 2011 )

 The Council of National Golf unions, the association charged
 with determining the handicap scores for golfers in Britain and
 Ireland, is more explicit in stating that
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 A golf handicap allows players of all levels of golfing ability
 to compete against each other on a fair and equal basis.
 (National Congress of Golfing Unions)

 Use of the term equal implies that the purpose of these hand
 icap systems is to equalize the probability of victory across
 ability levels. It is this feature of the handicap system that we
 examine in the context of ten-pin bowling.

 There have been some studies of handicap systems in other
 sports, for example, golf (Bingham and Swartz 2000; McHale
 2010; Lackritz 2011). However, there has been very little em
 pirical analysis of bowling handicaps. Chen and Swartz (1994)
 carried out a statistical analysis of five-pin bowling, a vari
 ant of bowling that is played only in Canada. However, the
 scoring and equipment in this version of the game differ sig
 nificantly from the more popular ten-pin bowling version. In
 a recent article, McCarthy (2011) conducted a statistical anal
 ysis of ten-pin bowling. However, his analysis is restricted to
 elite bowlers on the Professional Bowlers Association National

 Tour, where handicaps are not applied. In this article, we use
 data from a recreational bowling league to examine the fair
 ness of alternative handicap systems. Section 2 briefly describes
 the game of bowling. Section 3 discusses our data and Section
 4 provides a statistical analysis of these bowling scores. Sec
 tion 5 evaluates the fairness of alternative handicap systems and

 proposes an "optimal" alternative to the systems currently in
 operation.

 2. TEN-PIN BOWLING

 Ten-pin bowling is a competitive sport in which a bowler
 rolls a bowling ball down a lane with the aim of knocking
 down as many of the 10 pins as possible. A game consists of
 10 frames, with frames 1-9 consisting of a maximum of two
 deliveries and frame 10 a maximum of three deliveries. If a

 bowler knocks down all 10 pins using two balls in a frame,
 then a spare is awarded. If all 10 pins are knocked down with
 the first ball, a strike is awarded. A spare (strike) is worth
 10 points, plus the points received from the next one (two) ball(s)
 rolled. A bowler who bowls a spare (strike) in the 10th frame
 is awarded one (two) extra ball(s), which allow the awarding
 of bonus points. A bowler's score is the sum of points over the
 10 frames.
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 Table 1. Summary of raw bowling scores
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 Games Standard Games

 bowled Average deviation Player bowled Average

 51  170  24  13  45  156

 51  199  27  14  33  216

 38  183  22  15  54  161

 41  155  27  16  54  169

 34  192  28  17  54  181

 10  179  30  18  54  154

 54  220  25  19  54  208

 54  194  24  20  54  210

 54  189  28  21  33  215

 54  194  22  22  23  208

 54  177  28  23  29  205

 54  176  29

 To test the overall hypothesis that the scores are normally dis
 tributed across all players, we combine the 23 individual tests
 using two combination methods; Fisher's method (Fisher 1970)
 and Liptak's method (Won et al. 2009; Chen and Nadarajah
 2011). Both the SF and SK tests reject the null hypothesis that
 the distribution of scores is normally distributed for all players
 at the 1% significance level using either combination method.

 4.2 Transformed Scores

 Having rejected normality of the raw scores, we consider
 whether there exists a transformation of the raw scores that

 is well represented by a normal distribution. In particular, we
 consider Box-Cox transformations of the raw scores (Box and

 Cox 1964; Spitzer 1982). We obtain a maximum likelihood
 estimate of the Box-Cox parameter, A., equal to —0.148 with
 a standard error of 0.199. Since we cannot reject X = 0 (the
 log-transformation) at a 5% significance level, we adopt this
 transformation throughout the remainder of the article.

 Again, we test for normality using both the SF and the SK
 tests. With the SF test, individual normality of the transformed
 scores is rejected for only 2 of the 23 players at the 5% signif
 icance level. Furthermore, the combined tests fail to reject the
 null-hypothesis of normality across all players at conventional
 significance levels; the ^-values are 0.068 and 0.14 for Fisher's
 and Liptak's method, respectively. For the SK test, individual
 normality is also rejected for only two of the players at the
 5% significance level yet, somewhat surprisingly, the combined
 tests reject normality across all players at the 5% significance
 level. However, this latter result is largely driven by player 10.
 When this one player is omitted from the analysis, the p-value
 for Fisher's combined test increases from 0.017 to 0.0481.

 When looking at the outcome of games between players of
 different ability levels, it will simplify calculations if we can
 assume that the variance of transformed bowling scores does
 not depend on a player's ability. To test this, we ran a linear
 regression of the variance of transformed scores against av
 erage scores. The slope coefficient from this regression was
 —0.002 with a standard error of 0.012. Thus, for the remainder
 of this article, we assume a constant variance of transformed
 bowling scores across players.

 5. HANDICAPPING

 In bowling leagues, the range of abilities can be wide. As a re
 sult, leagues often adopt handicap systems to make tournaments
 more competitive. At present, there are a variety of systems used
 in Ireland. Under a handicap system, the final score of a player
 with average ability m,- (determined over previous games played
 by the player) is adjusted by adding a bonus to their raw score.
 The bonus is given by w(P — m,), where w is a weighting factor
 and P is a scratch score. The most common weighting factor is
 0.8, though weighting factors as low as 0.66 are used. Although
 the scratch score used to calculate the handicap affects the num
 ber of pins added to a player's score, the choice of scratch score
 will not affect the probability of victory provided the scores of
 both players are adjusted under the handicap. Typical scratch
 scores are 220 or 200.

 3. DATASET

 Our data are obtained from an adult bowling league in Dublin,
 Ireland. The league consisted of 10 teams, each team contain
 ing two players plus a possible replacement. The teams com
 peted against each other over 18 weeks, with each team member
 scheduled to play three games on any given night. Over the du
 ration of the league, we obtained individual bowling scores for
 23 bowlers and 1036 games. Summary statistics are given in
 Table 1.

 Many of the procedures used in our analysis depend on the
 randomness of the underlying samples. To examine the possi
 bility that a player's current score is affected by their scores in
 earlier games, we compute the autocorrelations in scores across
 games for each individual at varying time lags. The estimated au
 tocorrelations provide very little evidence of dependence across
 games, with only 3 out of the 138 estimated autocorrelations
 being statistically significantly different from zero at the 5% sig
 nificance level. To test if the score of the opposing team had an
 impact on your team's performance, we estimated the correla
 tion between a team's own score and their opponent's score. In
 only one case can we reject the null-hypothesis at the 5% sig
 nificance level, while a combined 5% significance test fails to
 reject the null-hypothesis of no correlation across all teams. The
 lack of correlation in individual scores over time and between an

 individual's score and an opponent's score supports the assump
 tions of randomness and independence adopted in the remainder
 of our article.

 4. ANALYSIS

 To evaluate the fairness of alternative handicap systems, we
 first establish the distribution of bowling scores across games.
 Since the final score in a game of bowling is the sum of the
 scores obtained over a number of frames, it seems reasonable to

 consider the normal distribution as an initial approximation to
 the distribution of raw bowling scores.

 4.1 Raw Scores

 We test for normality of raw bowling scores using two for
 mal tests; the Shapiro-Francia (SF) test (Shapiro and Fran
 cia 1972; Royston 1983) and the skewness-kurtosis (SK) test
 (D'Agostino, Belanger, and D'Agostino 1990; Royston 1991).
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 Clearly, the higher the weighting factor the more generous the
 system is. Under a system with w = 0.8 and P = 220, a player
 with an average of 120 would be credited with an extra 80 pins.
 Reducing w to 0.66 would result in this player receiving only an
 additional 66 pins. With w = 0.8 and P = 220, a bowler with
 an average of 160 would have to beat a lower ability opponent,
 with an average say of 120, by more than 32 points to win the
 game. Increasing the weighting factor to w — 1 would increase
 the required margin of victory to 40 points.

 More generally, consider a game between two players with
 ability levels mx and my, respectively. For exposition, we as
 sumem, < mx and refer to player y as the underdog and playerx
 as the favorite. To establish the probability that the favorite wins,

 we need to determine Pv(X > Y + h), where h = w(mx — my).
 Letting f(x, y ) denote the joint distribution of X and Y, we can
 write this probability as

 Pr(X > Y + w(mx — my))
 f>x—w(mx—my) /»oo px

 Jw(mx—my) JO
 f(x, y)dydx. (1)

 If we further assume that X and Y are independent, together

 ith Z = ln(x) ~ N(ux, cr2), W — ln(y) ~ N(uy, a2), where
 2

 = ln(wj) — y, j — x, y, we can derive /(x, y) as

 2 a2n
 , 2"1

 x exp
 (ln(x) — In (mx) + Y^j + (ln(y) - In (m^, ) + y )

 2a2

 1

 xy'

 (2)

 The required probability can then be determined using either
 numerical methods or Monte Carlo sampling techniques. In
 our calculations, we use the pooled variance across all players,
 ô2 = 0.01957, as our estimate of a2. We choose seven values
 of m,, ranging from 100 to 220 in intervals of 20, and calculate
 the probability of the favorite winning for each of the 21 unique
 ability match ups.

 5.1 Evaluating the Current System

 The first three entries in Table 2 give the probabilities of
 the favorite winning across each match-up using the raw un
 adjusted scores (first entry in each cell), adjusted scores using
 w = 0.66 (second entry in each cell), and adjusted scores using
 w = 0.8 (third entry in each cell). Looking first at the prob
 abilities based on raw scores we see that, even with modest

 differences in ability, the probability of the favorite winning is

 consistently over 0.75 and can quickly rise to above 0.90. We
 also see that the probability of victory depends on the ability
 levels of the players involved, and not just the difference in their

 abilities. For instance, the probability of a player with ability
 level 160 defeating a player with ability level 120 is 0.93; how
 ever, it is only 0.85 when the players' abilities are 220 and 180.
 This nonlinearity follows from the log-normality of the underly

 ing data and as a result one must be careful when extrapolating
 findings based on one part of the distribution (e.g., those based

 Table 2. The simulated probabilities of the favorite winning in head
 to-head bowling matches between players of different ability levels.
 The probabilities are estimated using Equations (1) and (2) provided in

 the text with &£ = 0.01957. The results are reported for five handicap
 systems; from top to bottom these correspond to w = 0; w = 0.66; w =
 0.8; w = 0.98 (optimal weight); w = 1

 Ability  120  140  160  180  200  220

 0.82  0.96  0.99  1.00  1.00  1.00

 0.62  0.71  0.78  0.83  0.87  0.89

 100  0.57  0.62  0.67  0.70  0.73  0.76

 0.50  0.50  0.51  0.51  0.51  0.51

 0.49  0.49  0.49  0.48  0.48  0.48

 0.78  0.93  0.98  1.00  1.00

 0.60  0.68  0.75  0.80  0.84

 120  0.56  0.61  0.65  0.68  0.71

 0.50  0.50  0.50  0.51  0.51

 0.50  0.49  0.49  0.49  0.48

 0.75  0.90  0.96  0.99

 0.59  0.66  0.72  0.77

 140  0.55  0.59  0.63  0.66

 0.50  0.50  0.50  0.51

 0.50  0.49  0.49  0.49

 0.72  0.87  0.95

 0.58  0.65  0.70

 160  0.55  0.58  0.62

 0.50  0.50  0.50

 0.50  0.49  0.49

 0.70  0.85

 0.57  0.63

 180  0.54  0.58

 0.50  0.50

 0.50  0.49

 0.69

 0.56

 200 0.54

 0.50

 0.50

 on scores by professional bowlers) to other parts of the distribu
 tion (e.g., the performance of players in recreational leagues).
 With log-normality, the outcome probability depends on the ra
 tio of ability levels rather than the difference. Therefore, the
 probability of a player with ability level 160 defeating a player
 with ability level 120, is equal to the probability of a player with
 ability level 220 defeating a player with ability 165.
 The strong tendency of high-ability bowlers to win when raw
 scores are used motivates the use of handicap systems. The sec
 ond and third entries in each cell give the probability of the fa
 vorite winning using a handicap system with w =0.66 and w =
 0.8, respectively. As expected, the adjustments reduce the fa
 vorite's advantage. However, the playing field remains far from
 level. The probability of a player with ability level 180 beat
 ing a player with ability level 100 is 0.83 when w = 0.66 and
 0.70 when w = 0.8. Discussions with league organizers suggest
 that this has been a feature of Irish bowling leagues in practice,
 with the same players and teams filling the top places every year.
 Therefore, the next section, we consider what adjustments to the

 handicap system, if any, can produce fairer outcomes. However,

 The American Statistician, November 2012, Vol. 66, No. 4 211
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 before we do that, we first examine the fit of our theoretical
 predictions to the outcomes observed in practice.

 Our estimated probabilities are based on our assumptions of
 independence, a constant variance, and log-normality. To as
 sess the validity of these assumptions, we compare the theoret
 ical probabilities to the actual outcomes in the bowling league
 under analysis. To do this, we use the fact that in addition to the
 individual scores bowled each night we also know the average
 score of each player in the 20 games bowled prior to the com
 mencement of the league. It is this average, along with the
 scratch score and weighting factor, that determine the score
 adjustment under a given handicap system. At the start of
 the league, we know, for instance, that player 7 had an average
 score of 220 and player 15 had an average score of 160. Since this

 was a team league, these players never competed directly against
 each other. Nevertheless, both players bowled in all 54 games,
 with their games taking place on the same evenings, at the same
 time, and in the same bowling alley. One way to check the accu
 racy of our predictions is to compare the scores recorded by both
 of these players in games played at the same time as if they were
 competing against each other. We can then determine the victor
 in each of these 54 games and compare the observed probabil
 ities with our theoretical predictions. Using the raw scores, we
 find that the high-ability player would have emerged victorious
 in 53 of the 54 games. This gives an estimated probability of
 victory for the high-ability player equal to 0.98, which is close
 to our predicted estimate of 0.95. We then repeat the analysis
 this time adjusting scores using a scratch score of 220 and a
 weighting factor of 0.8 (similar to what is actually used in the
 league). With these adjusted scores, the number of games won
 by the favorite falls to 35, giving a probability of victory equal
 to 0.648. This observed probability is once again very close to

 our theoretical probability of 0.621. Our estimated probabilities,
 therefore, seem to fit the observed probabilities very well.

 5.2 Improving the Current System

 We now examine what changes, if any, to the handicap system

 would produce more equitable outcomes. As noted earlier, the
 key feature of a handicap system in determining the probability
 of victory is the weighting factor. To examine which weighting
 system produces the most equitable outcomes, we consider a
 scaled goodness-of-fit statistic based on the 21 comparisons in
 Table 2:

 where Pk(w) is the derived probability of the favorite winning
 in match-up k and E^ is the probability of success on a level
 playing field. Since we are considering head-to-head games,
 Ek = 0.5. The goodness-of-fit statistic, therefore, measures the
 deviation of the observed distribution from a Bernoulli distri

 bution with equal probabilities and depends on the handicap
 system through its dependence on w. By choosing w to min
 imize X1 't is possible to determine the handicap system that
 produces the fairest outcomes across all potential match-ups.
 Figure 1 plots the value of x2(w) against w. From this, we see
 that the handicap system that produces the fairest outcomes uses
 a weighting factor w = 0.98. The fourth entry in each cell of
 Table 2 gives the probabilities of the favorite winning across
 each possible match-up using the optimal weight. The probabil
 ity of the favorite winning is almost exactly 0.5 in all 21 unique
 match-ups considered. Thus, despite the nonlinearities evident
 in the distribution of bowling scores it is possible to achieve

 (3)

 .65 .7 .75 .8 .85 .9 .95 .98 1 1.05 1.1

 Handicap Weighting Factor (w)

 Figure 1. Measure of fairness across alternative handicap systems.
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 fair outcomes across all games with this simple linear handicap
 system.

 To compare the distribution of victories generated by alterna
 tive handicap systems to a Bernoulli distribution with parameter

 p = 0.5, we use the test statistic X2(w) = 2n YllLi ^"o s°'5) ,
 where n is the number of games used to estimate Pkiw). This
 test statistic approximates to a chi-squared distribution with
 df = 21. To estimate /\(u>), we simulated n games for each of
 the 21 pairings in our analysis using the distribution given in
 (2) for various values of w. With n = 1000, we obtain a value
 for X2(0.8) equal to 1628 which is far in excess of the 5% crit
 ical value of 32.67. In contrast, a similar exercise carried out
 using the optimal weight w = 0.98 provided a X2(0.98) equal
 to 1.84. Further analysis revealed that we would reject the null
 hypothesis of equality at the 5% significance level for any w
 less than 0.965 but fail to reject at this significance level for w
 € [0.965, 1], It is interesting to note that this latter range includes

 the 100% weighting ( w = 1). This is the weight recommended
 by the USBC (2011). The probabilities of the favorite winning
 using the USBC weight are given in the final entry in each cell of
 Table 2. As expected, the USBC weight produces a more level
 playing field than the system currently used in many leagues
 (w = 0.8), though by definition this weight cannot level the
 playing field to the same extent as our proposed optimal system.
 Moreover, under the USBC scheme, the odds of victory shifts
 in favor of the less-skilled player. Some authors (McHale 2010)
 argue that such a system distorts incentives. In particular, league
 organizers are wary that such a scenario would encourage better
 players to "sandbag;" this is a situation where players bowl be
 low their ability level for a period to obtain bigger handicaps for
 upcoming tournaments. An illustration of the problems that can
 arise from such behavior is provided by a January 2012 High
 Court lawsuit filed in Ireland. In the lawsuit, the Golfing Union
 of Ireland (GUI) were sued for € 10 million by a member whose
 handicap was reduced following suspicion of "sandbagging."
 The player sued the GUI for defamation, claiming that the de
 cision to adjust his handicap was tantamount to being branded
 a cheat. Although the lawsuit was unsuccessful, the GUI face
 legal costs estimated at between €150,000 and €160,000. Our
 proposed optimal weighting scheme not only produces fairer
 outcomes than the USBC scheme but also maintains a small

 incentive for players to improve skills levels.
 Finally, the framework we have developed allows league or

 ganizers to judge the tradeoff between fairness and incentives
 when choosing an appropriate handicap system. Some league
 organizers might be willing to sacrifice some fairness in return
 for greater incentives for skill-development. In this instance, or
 ganizers might consider a weighting factor slightly less than the
 optimal. For example, with a weighting factor w = 0.95, the es
 timated probabilities of the favorite winning range from 0.50 to

 0.55 across the match-ups we consider. Although this weighting
 scheme falls a little short of the optimal level of fairness, orga
 nizers may nevertheless be willing to accept this small loss in
 fairness in return for the greater incentives for skill-development
 that follow.

 6. CONCLUSIONS

 Handicap scoring systems are used in many bowling leagues
 with the explicit purpose of allowing all players to compete on a
 level playing field. This article examines the distribution of ten
 pin bowling scores and uses the findings to examine the fairness
 of alternative handicapped scoring systems. We show that many
 of the current systems still leave large biases in favor of high
 ability players. Using a 100% weighting factor produces a more
 level playing field but goes too far in the sense that players have
 no incentive to improve their skill level. We derive an optimal
 weighting factor equal to 0.98 and show that this system allows
 lower ability players to compete across all match-ups yet still
 provides some incentives for players to improve their game.

 [Received November 2011. Revised August 2012.]
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