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SINR-Based DoS Attack on Remote State
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Abstract—We consider remote state estimation of cyberphysi-
cal systems under signal-to-interference-plus-noise ratio-based
denial-of-service attacks. A sensor sends its local estimate to a
remote estimator through a wireless network that may suffer inter-
ference from an attacker. Both the sensor and the attacker have
energy constraints. We first study an associated two-player game
when multiple power levels are available. Then, we build a Markov
game framework to model the interactive decision-making process
based on the current state and information collected from previous
time steps. To solve the associated optimality (Bellman) equations,
a modified Nash Q-learning algorithm is applied to obtain the op-
timal solutions. Numerical examples and simulations are provided
to demonstrate our results.

Index Terms—Cyberphysical systems, game theory, remote
state estimation, security, wireless sensors.

I. INTRODUCTION

CYBERPHYSICAL systems (CPS) have attracted consid-
erable interest from both academic and industrial com-

munities in the past few years. With the integration of sensing,
control, communication, and computation, a wide application
spectrum of CPSs are found, such as smart grid, intelligent
transportation, and environmental monitoring [1]. Wireless sen-
sors are key components in CPS and have advantages, such
as low cost, easy installation, and self-power [2], [3], when
compared with traditional wired sensors. However, due to the
use of wireless networks, wireless sensors are more vulnerable
to cybersecurity threats than wired sensors. In addition, the
increasing penetration of CPS to safety-critical infrastructures
of the society increases the risks and severities of such attacks.
Therefore, the security issue is of fundamental importance to
ensure the safe operation of CPS.

Two possible types of attacks on CPS are commonly in-
vestigated in the literature: deception (integrity) attacks and
denial-of-service (DoS) attacks [4], corresponding to the two
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traditional security goals integrity and availability, respectively.
Typically, the integrity attacks require comprehensive infor-
mation about the system and modifications of the data. Such
information is not needed for DoS attacks, making them a more
reachable (and likely) alternative for the adversary. Different
from most traditional computer systems where DoS attacks
cannot cause serious damage, some critical systems in CPS,
which rely on real-time operation, may become unstable and
even be damaged under DoS attacks [4]. Due to the dynamic
nature of CPS, when the attacker and defender choose actions,
they should take consideration of the actions that their opponent
may take. Therefore, instead of a static analysis focusing on
only one side of the security issues [5], a more comprehen-
sive game-theoretic framework to model the interactive action
making process between both sides is needed [6], [7]. Previous
approaches to studying DoS attacks in CPS using game theory
can be found in [8]–[11].

In many existing works, such as [5], [9], [12], the DoS attack
is modelled as a binary process considering sending or not for
the sensor and blocking or not for the attacker. To elaborate
on the interactive process, we extend the model to a SINR-
based network where both the sensor and the attacker can
choose their actions with multiple energy levels. The proposed
problem formulation also addresses the power control issue for
wireless sensors which are usually expected to work for a long
time without replacements of the onboard batteries (e.g., due
to widespread sensors and a possibly dangerous environment
[1]). Therefore, the sensors face a tradeoff between consum-
ing more energy to increase link reliability thereby ensuring
accurate remote estimation performance, and consuming less
energy to meet energy constraints. The attackers face a similar
situation: they may also have limited resources but want to
worsen the system performance as much as possible. In this
paper, we aim to study the transmission power strategy for the
sensor and the interference power strategy for the attacker, and
their equilibrium under a game-theoretic framework. The main
contributions of this paper are summarized as follows.

1) SINR-based Power Control: We study the interactions
between the transmission power of the sensor and the
interference power of the DoS attacker through an SINR-
based network model.

2) Estimation Quality-based Objectives: In our work, we
study the behaviors of the sensor and the attacker with
an integrated objective combining the communication
cost and estimation error covariance, rather than studying
these two important components separately.
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Fig. 1. Communication network is jammed by a malicious attacker.

3) Markov Game Framework: In addition to studying
an extension of the problem in [13], we also consider
the scenario where both sides make online interactive
decisions through a Markov game framework. To solve
the associated optimality (Bellman) equations, a modified
Nash Q-learning algorithm is proposed and applied.

The remainder of this paper is organized as follows. Section II
presents the system framework and states the main problem
of interest. Section III considers an extension of the problem
in [13] where multiple power levels are available. Section IV
sets up the framework for the Markov game and provides a
modified Nash Q-learning algorithm to obtain the optimal solu-
tions. Numerical examples and simulations are demonstrated in
Section V. Section VI provides some concluding remarks.

Notations: Z denotes the set of all integers and N the positive
integers. R is the set of real numbers. Rn is the n-dimensional
Euclidean space. Sn+ (and Sn++) is the set of n by n positive
semidefinite matrices (and positive definite matrices). When
X∈Sn+ (and Sn++), we write X � 0 (and X > 0). X � Y if
X−Y ∈Sn+. The curled inequality symbols � and � (and their
strict forms� and≺) are used to denote generalized component-
wise inequalities between vectors: for vectors a = [a1, a2, . . . ,
an]

′, b = [b1, b2, . . . , bn]
′, we write a � b if ai � bi, for

i=1, 2, . . . , n. 1 denotes a vector with all entries one. Tr(·) is
the trace of a matrix. The superscript ′ stands for transposition.
For functions g, h with appropriate domains, g ◦ h(x) stands for

the function composition g(h(x)), and hn(x)
Δ
= h(hn−1(x)),

where n ∈ N and with h0(x)
Δ
= x. δij is the Dirac delta

function, that is, δij is equal to 1 when i = j, and 0 otherwise.
The notation P[·] refers to probability and E[·] to expectation.

II. PROBLEM SETUP

Consider a general discrete-time linear time-invariant (LTI)
process of the form

xk+1 = Axk + wk, yk = Cxk + vk (1)

where k ∈ N, xk ∈ R
nx is the process state vector at time k,

yk ∈ Rny is the measurement taken by the sensor, wk ∈ Rnx

and vk ∈ Rny are zero-mean i.i.d. Gaussian noises with
E[wkw

′
j ] = δkjQ(Q�0), E[vkvj ′]=δkjR(R>0), E[wkvj

′]=
0 ∀ j, k ∈ N. The initial state x0 is a zero-mean Gaussian
random vector uncorrelated with wk and vk with covariance
Π0 � 0. The pair (A,C) is assumed to be observable and
(A,Q1/2) is controllable.

A. Local State Estimation

Our interest lies in the security of remote state estimation as
depicted in Fig. 1. We consider the so-called “smart sensor”

as described in [14], which first locally estimates the state xk

based on all measurements it has collected up to time k and
then transmits its local estimate to the remote estimator.

Denote x̂s
k and P s

k as the sensor’s local minimum mean-
squared error (MMSE) estimate of the state xk and the corre-
sponding error covariance

x̂s
k =E[xk|y1, y2, . . . , yk] (2)

P̂ s
k =E

[
(xk − x̂s

k) (xk − x̂s
k)

′ |y1, y2, . . . , yk
]

(3)

which can be calculated by a standard Kalman filter.
Define the Lyapunov and Riccati operators h, g̃ : Sn+ →

Sn+ for notational ease as h(X)
Δ
= AXA′ +Q, g̃(X)

Δ
= X −

XC ′[CXC ′ +R]−1CX .
As the estimation error covariance of the Kalman filter

converges to a unique value from any initial condition ([15]),
without loss of generality, we assume that the Kalman filter at
the sensor side has entered the steady state and we simplify our
subsequent discussion by setting

P s
k = P , k � 1 (4)

whereP is the steady-state error covariance given by the unique
positive semidefinite solution of g̃ ◦ h(X) = X (see [15]).

B. Communication Model With SINR

After obtaining x̂s
k, the sensor will transmit it as a data packet

to the remote estimator. Due to fading and interference, random
data drops will occur. To model this situation, assume that the
communication between the sensor and the remote estimator
is over an Additive White Gaussian Noise (AWGN) network
using Quadrature Amplitude Modulation (QAM). Then the
relationship between the symbol error rate (SER) and signal to
noise ratio (SNR) is revealed by digital communication theory
as the following (similar to [16], [17]):

SER = 2Q(
√
αSNR), Q(x)

Δ
=

1√
2π

∞∫
x

exp(−η2/2)dη (5)

and α > 0 is a parameter.
In the presence of a DoS interference attacker, the SNR

for the communication network [18] can be rewritten as
SINR = (pk/(ωk + σ2)), where pk is the transmission power
used by the sensor at time step k, σ2 is the additive white
Gaussian noise power, and ωk is the interference power from
the attacker.

We shall assume that the remote estimator can detect symbol
errors via cyclic redundancy check (CRC) (see [18]). Thus, the
transmission of x̂s

k between the sensor and the remote estimator
can be characterized by a binary random process {γk}, k ∈ N

γk =

{
1, if x̂s

k arrives error-free at time k

0, otherwise (regarded as dropout).
(6)

Based on (5) and the preceding discussion, we have

λk
Δ
= P[γk = 1] = 1− 2Q

(√
α

pk
ωk + σ2

)
. (7)
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Note that the SINR not only depends on the transmission
power used by the sensor, but is also affected by the interference
power from the DoS attacker. Different SINRs lead to different
dropout rates and remote estimation performance as we shall
see next.

C. Remote State Estimation

Denote x̂k and Pk as the remote estimator’s own MMSE
state estimate and the corresponding error covariance based
on all sensor data packets received up to time step k. They
can be calculated based on the results in [16] and [19] via the
following procedure: once the sensor’s local estimate arrives,
the estimator synchronizes x̂k with that of the sensor, that is,
with x̂s

k; otherwise, the remote estimator just predicts x̂k based
on its previous estimate using the system model (1). The remote
state estimate x̂k thus obeys the recursion

x̂k =

{
x̂s
k, if γk = 1

Ax̂k−1, if γk = 0.
(8)

The corresponding state estimation error covariancePk satisfies

Pk =

{
P , if γk = 1

h(Pk−1), if γk = 0.
(9)

Note that due to the recursion of the dynamics in (9), Pk

can only take value in the infinitely countable set {P, h(P ),
h2(P ), . . .}. We assume that the remote estimator will send
ACKs to the sensor to indicate whether it has received the
data packet successfully or not [17] at time k. This enables the
sensor to compute Pk−1 using (9).

The objective of the sensor is to design the transmission
strategy to help the remote estimator obtain accurate state
estimation. On the contrary, the attacker aims to deteriorate
the remote estimation performance. When both sides have no
access to the information of the real-time process, they can only
design their strategies offline before the process starts, that is,
independent of the state of the process. We will investigate this
situation in Section III using a Markov chain model. On the
other hand, when the online information is available, both the
sensor and the attacker will make decisions based on the current
state and information collected from previous time steps. This
motivates us to consider situations where both sides make
interactive decisions through a two-player Markov decision
process in Section IV.

III. FINITE TIME-HORIZON: OFFLINE GAME FRAMEWORK

In this section, we consider a scenario similar to our previous
work [13], where the sensor and the attacker design their
strategies offline before the process starts, that is, independent
of the state of the process. Different from [13] where the DoS
attack is modelled as a binary process considering sending or
not for the sensor and blocking or not for the attacker, we
elaborate the interactive process by extending the model to a
SINR-based network where both the sensor and the attacker can
choose their actions with multiple energy levels.

A. Energy Constraints

We assume that both players are subject to the following
energy constraints (the case without energy constraints is trivial
as they will simply use the maximum power all the time):

T∑
k=1

pk =P (10)

T∑
k=1

ωk =W (11)

whereP ,W ∈ R+ ∪ 0. Note that the strategy sets for both sides
are continuous and closed.

For convenience, denote the strategies of the sensor and
attacker, respectively, as

p = {p1, p2, . . . , pT } (12)
w = {ω1, ω2, . . . , ωT }. (13)

To analyze the optimal actions that the sensor and attacker
can take under energy constraints, we first derive the expression
for the objective function for both sides, which needs the
following Markov chain model.

B. Markov Chain Model

The following definition is similar to [13].
Definition 3.1: Within the time-horizon T , if at time k, the

state error covariance at the remote estimator Pk = hi−1(P ),
for some i = 1, 2, . . . , T + 1, then the state of the remote esti-

mator is denoted as Sk
Δ
= zi,k. The state set for time k is defined

as Zk = {Sk|Sk = zi,k, 1 � i � T + 1}, k = 1, 2, . . . , T . As-
sume that P0 = P , that is, Z0 = {z1,0} is the initialization state
set before the process begins. �

The transition matrix of the Markov chain {Sk}, k =
1, 2, . . . , T from state set Zk−1 to Zk then can be defined as

Tk(i1, i2) = P [zi2,k|zi1,k−1] . (14)

If the sensor data packet arrives at the remote estimator, that is,
ifγk = 1, then we havePk = P . Based on (14) and (7), this gives
Tk(i1,1)=P[z1,k|zi1,k−1]=P[Pk=P |zi1,k−1]=P[γk=1]=λk.

On the other hand, if the packet is dropped, then Pk =
h(Pk−1), and we have Tk(i1, i1 + 1) = P[zi1+1,k|zi1,k−1] =
P[Pk = h(Pk−1)|zi1,k−1] = P[γk = 0] = 1− λk .

Other entries of Tk are 0, since the corresponding state
transitions are not possible. This gives

Tk=

⎡
⎢⎢⎢⎣
λk 1− λk

λk 1− λk

...
. . .

λk 1− λk

⎤
⎥⎥⎥⎦
(T+1)×(T+1)

where the missing entries are 0.
Define πi,k as the probability of state zi,k occurring at time k,

that is

πi,k = P[Sk = zi,k] (15)

then we can construct the probability matrix Π = [πi,k](T+1)×T

based on the derivation in [13].
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Once we have the probability matrix Π, the computation
issue is significantly alleviated and we can easily obtain
the closed-form expected error covariance for each time slot
E[Pk|p,w] =

∑T+1
i=1 πi,kh

i−1(P ).
The objective of the sensor is to minimize the trace of the

expected average state estimation error covariance, i.e.,

J(p,w) =

T∑
k=1

Tr {E[Pk]} =

T∑
k=1

T+1∑
i=1

πi,kh
i−1(P ) (16)

while the one of the attacker is to maximize it, under the
energy constraints (10) and (11), respectively. Therefore, both
sides constitute a two-player zero-sum game [7]. Denote
h = [P , h(P ), h2(P ), . . . , hT (P )]′, then (16) can be rewritten
as J(p,w) = h′Π1.

C. Equilibrium Analysis

From the perspective of the sensor, the sensor first assumes
that the attacker adopts the strategy that maximizes the ob-
jective function and then makes its own decision, that is,
the optimal action for the sensor is obtained by solving the
following problem:

Problem 3.2: [The sensor’s perspective]

min
p

max
w

J(p,w)

s.t. p � 0, w � 0, 1′p = P , 1′w = W .

�
Solving Problem 3.2 is equivalent to solving two optimiza-

tion problems under these constraints, which is well studied
in the literature such as [9], [13], [20], and [21]. Denote the
optimal value of Problem 3.2 as J�

s and the associated optimal
optimizers as p�

s and w�
s .

Similarly, when considering the game from the perspective
of the attacker, we just need to change the order of operations
min and max in the objective function of Problem 3.2 with the
same constraints.

Problem 3.3: [The attacker’s perspective]

max
w

min
p

J(p,w)

s.t. p � 0, w � 0, 1′p = P , 1′w = W .

�
We also have notations J�

a , p�
a, and w�

a similar to the
ones for the sensor. These two formulations from two per-
spectives are equivalent and, thus, the solutions make sense
if and only if the two-player zero sum game admits a Nash
equilibrium (NE) [22], [23]. Given the existence of an NE, we
have maxw minp J(p,w) = minp maxw J(p,w), and J�

s =
J�
a ,p

�
s = p�

a,w
�
s = w�

a.
However, with continuous pure strategy sets, the set of mixed

strategies is in the form of probability space over an infinite-
dimensional set which is typically impossible to solve and im-
plement in practice. This is the reason why we only investigate
the existence of pure strategy Nash equilibrium, which depends
on the following results [24].

Theorem 3.4: Consider a game with player index i, action
sets Ai = {ai}, and objective functions u(ai, a−i), if for each
player i:

1) Ai is compact and convex;
2) u(ai, a−i) is continuous in a−i;
3) u(ai, a−i) is continuous and concave in ai;

then the game has a pure-strategy Nash equilibrium. �
Unfortunately, the objective function J(p,w) is not concave,

which means the game between the sensor and the attacker may
not have a pure-strategy Nash equilibrium when they move
simultaneously. Therefore, these two objective functions will
lead to different solutions due to the well-known inequality [23]
maxx miny f(x, y) � miny maxx f(x, y) and we have J�

s �
J�
a ,p

�
s �= p�

a,w
�
s �= w�

a.
The difference between the optimal value and solutions

is due to the advantage of assuming one player acts after
predicting the opponent’s strategy, that is, the sensor and the
attacker move in a sequential order under a Stackelberg game
framework, which is well studied in [20], [21], and [25]. Similar
to the existing works, we summarize the aforementioned results
in the following theorem.

Theorem 3.5: Consider the jamming game between the sen-
sor and the attacker with continuous strategy sets:

1) the game has a mixed strategy Nash equilibrium in the form
of probability space over an infinite-dimensional set;

2) the game does not always have a pure-strategy Nash
equilibrium when both sides move simultaneously;

3) when the sensor moves after the attacker, the optimal
strategy for the attacker w� is given by w�

a, while the one
for the sensor p� is given by

min
p

J (p,w�
a)

s.t. p � 0, 1′p = P

which is equal to p�
a (by definition) and the optimal value

of the objective function for both sides is J(p�
a,w

�
a)=J�

a ;
4) when the attacker moves after the sensor, similarly we

have the optimal strategy for the sensor p� given by p�
s

while the one for the attacker w� is given by

min
w

J (p�
s,w)

s.t. w � 0, 1′w = W

which is w�
s (by definition) and the optimal value of the

objective function for both sides is J(p�
s,w

�
s) = J�

s . �
Remark 3.6: Note that when the sensor moves first, we have

the objective function as J(p�
a,w

�
a) = J�

s . On the other hand,
when the attacker moves first, we have the objective function
J(p�

s,w
�
s) = J�

a . As discussed before, we have J�
s � J�

a , that
is, the sensor can benefit from moving later, and so does the
attacker. �

The discussions in this section mainly focus on offline sce-
narios, that is, the problem formulation represents the situa-
tion when the capabilities of both sides are limited and have
no access to the information of the real-time process, where
they can only design their strategies before the process starts,
independent of the state of the process. However, when the
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capabilities of both sides enable them to obtain additional
information of the process, they can make decisions based on
the current state and information collected from previous time
steps. In such a situation, the framework in this section is not
suitable anymore. Furthermore, in practice, most applications
are designed for long-time running. These facts motivate us to
further consider the scenario where both sides make interactive
decisions through a two-player Markov decision process over
an infinite time horizon.

IV. INFINITE TIME-HORIZON: MARKOV

GAME FRAMEWORK

When the capabilities of both sides enable them to obtain
further information of the process (for example, when the sen-
sor can receive the ACKs from the remote estimator indicating
whether it has received the data packet successfully or not [17]
at time k, the sensor can compute Pk−1 using (9). The attacker
can also eavesdrop the ACKs sent from the remote estimator
to the sensor so that it can infer the state of the process), they
can make decisions based on the current state and information
collected from previous time steps. Since both sides also have
dynamical information of their opponent by ACKs or other
information, static analysis will be insufficient. In this section,
we will set up the Markov game framework dealing with the
dynamic jamming game to deal with such an interactive process
over an infinite time horizon.

A. Preliminaries

To quantify the estimation quality over an infinite time-
horizon, different from the last section and [13], we introduce
a cost function J which quantifies the trace of the discounted
sum of the expected state estimation error covariances as

J =

+∞∑
k=1

βkTr {E[Pk]} (17)

where β ∈ [0, 1) is the discount factor. The objective of the
sensor is to help the remote estimator to obtain accurate state es-
timates x̂k. To be more specific, the sensor seeks to minimize J .
On the other hand, the attacker tries to maximize the cost.

Both sides are subject to energy constraints, and the total
energy constraints as in (10) and (11) are not suitable for
the infinite-time horizon scenario. Instead, similar to [26], we
take the energy consumption into consideration when we design
the objective functions of the attacker and propose a more
general one

JA
Δ
=

+∞∑
k=1

βk [Tr {E[Pk]}+ δspk − δaωk] (18)

where δs, δa � 0 are weighting parameters, that is, the attacker
aims to maximize the state estimation error covariance and
minimizes its energy consumption. In addition, more energy re-
sources consumed by the sensor are always preferred for the at-
tacker. In contrast, the sensor has an opposite objective function

JS
Δ
= −JA =

+∞∑
k=1

βk [−Tr {E[Pk]} − δspk + δaωk] . (19)

Thus, the sensor and the attacker involved in a two-player
zero-sum game and the goals of both sides are the same: to
maximize their respective objective functions.

In contrast to the offline design studied in the previous
section, in the current situation, both sides take actions based
on the information and process state at that time step, that is,
they pursue an online design. To start, we first investigate the
optimal strategy for the sensor when no attacker exists, and then
extend our discussion to include both parties.

B. Optimal Strategy for the Sensor Without the Attacker

When no attacker exists (ωk = 0), the objective function of
the sensor in (19) can be modified with δa = 0 as

JS =

+∞∑
k=1

βk [−Tr {E[Pk]} − δspk] . (20)

Denote Pk−1 as the state of the process at time step k, which
can take values in the state set S = {P , h(P ), h2(P ), . . .}.
Then, the reward for the sensor at time step k can be written as

rk(Pk−1, pk) = β (−Tr {E[Pk]} − δspk) (21)

where, based on (7) and (9), E[Pk]=[1−2Q(
√
α(pk/σ2))]P+

2Q(
√
α(pk/σ2))h(Pk−1).

Therefore, at each time step k, based on the process state
Pk−1, the sensor chooses action pk = pk(Pk−1) and obtains
the reward rk(Pk−1, pk) and moves to the next time step.
Based on (7) and (9), suppose that the state at time step k
is Pk−1 = hi(P ), i ∈ N, then the state at time k + 1, Pk, can
only take two values P with probability 1− 2Q(

√
α(pk/σ2))

and h(Pk−1) with probability 2Q(
√
α(pk/σ2)). Then the state

transition probability is given by

tk(Pk|Pk−1, pk)
Δ
=

⎧⎪⎨
⎪⎩
1− 2Q

(√
α pk

σ2

)
, if Pk=P

2Q
(√

α pk

σ2

)
, if Pk=h(Pk−1)

0, otherwise.

(22)

Note that since the reward function and transition probability
function are stationary (time-invariant), we can replace rk(Pk−1,
pk) and tk(Pk|Pk−1, pk) with r(Pk−1, pk), t(Pk|Pk−1, pk),
respectively.

Define the transmission strategy of the sensor as πs =
{pk(Pk−1)}, then the objective function JS is the expected sum
of discounted one-stage rewards rk under the strategy πs with
initial state s∈S, that is, JS(s, πs)=

∑+∞
k=1 β

kE[rk(Pk−1, pk)],
and the optimal value J�

S(s) is J�
S(s) = argmaxπs

JS(s, πs).
Given the framework discussed before, which can be re-

garded as a Markov decision process, the optimal value of
the objective function J�

S satisfies the following optimality
(Bellman) equation [27]:

J�
S(s) = max

pk

{
r(s, pk) + β

[
t(P |s, pk)J�

S(P )

+ t (h(s)|s, pk)J�
S (h(s))]} (23)

where s is the initial state taking values in S={P , h(P ), h2(P ),
. . .}. Consequently, the optimal transmission strategy for the
sensor is given by p�k(Pk−1) = argmaxpk

{r(Pk−1, pk) +
β[t(P |Pk−1, pk)J

�
S(P ) + t(h(Pk−1)|Pk−1, pk)J

�
S(h(Pk−1))]}.
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Solving (23) is challenging in practice due to the complicated
calculation of J�

S(s). There exist some well-known approaches
to solve the problem, for example, value iteration and policy
iteration [27]. These work well but require knowledge of the
transition function and the reward for all states in the environ-
ment. However, the sensor and attacker may not have access
to such information or carry out the computation. Therefore,
to deal with the limitation of information or the computation
issues, we obtain the optimal value through the approach of
model-free reinforcement learning [28]–[30] as follows.

First, based on the right-hand side of (23), we can defineQ(s,
pk)=r(s, pk) + β[t(P |s, pk)J�

S(P ) + t(h(s)|s, pk)J�
S(h(s))],

where Q(s, pk) represents the total discount reward with
transmission power pk and initial state s. Therefore, if we have
the values of Q(s, pk), then we can make an optimal decision
simply based on

J�
S(s) = max

pk

Q(s, pk)

p�k(s) = argmax
pk

Q(s, pk). (24)

Now the problem becomes calculating Q(s, pk). We first
initialize the values of Q(s, pk) for all s ∈ S and transmission
powers pk with arbitrary values. Then, at each time step k with
state s, we choose an action pk based on (24), receive the corre-
sponding reward rk(s, pk) based on (21), move to another state
s′ randomly based on (9), and continue to the next time step. Af-
ter each recursion, we update the corresponding Q-value based
on the following equation (other Q-values remain the same):

Qk+1(s, pk) = (1 − αk)Qk(s, pk)

+ αk

[
rk(s, pk) + βmax

p′
k

Qk (s
′, p′k)

]
(25)

where αk ∈ [0, 1) is the learning rate to be designed.
Remark 4.1: In this algorithm, the sensor can learn the opti-

mal policy in an online pattern with a combination of learning
and action. Clearly, a tradeoff between learning and action
arises: on one hand, the learning can update the knowledge of
the sensor about the process and the optimal policy to improve
the performance; on the other hand, the random trials in the
beginning will take time and affect the performance. Therefore,
the idea of the Q-learning algorithm is to try different actions to
update the knowledge when little information is available in the
early time steps, and when the sensor has sufficient information
about the process later, less emphasis is placed on the learning
process. As a result, the learning rate needs to be designed to
decay over the entire time horizon in order for the algorithm to
converge to the optimal value Q(s, pk) [28], [29]. This aspect
will be illustrated in the simulation part. �

Remark 4.2: As in practice, the transmission power cannot
grow infinitely, and we set limitations on the power which the

sensor can choose: pk ∈ As
Δ
= [0, p]. As stated in [31], in power

control architectures for cellular networks or other wireless
networks, sending coarsely quantized power rather than actual
power values is frequently used. To facilitate the algorithm, we
discretize the power usage with L levels when we apply the
Q-learning algorithm. WhenL is large, we can ignore the differ-
ence between the theoretical solution and the numerical one. �

Remark 4.3: Note that the state set is countable infinite.
However, the occurrence probability of hi(p) is close to zero
when i becomes sufficiently large. Therefore, for convenience,
we can define a final state with hK(p) representing all of the
states hi(p) with i � K , where K is a design parameter. �

The convergence rate of Q-learning for the discounted MDP
is given by the following result.

Remark 4.4: Assume that the learning rate αk takes the form
of reciprocal of the times of the occurrence of the state-action
pair visited, the following relations hold asymptotically and with
probability one |Qk+1(s, pk)−Q�(s, pk)| � (C0/k

C1(1−β)),
and |Qk+1(s,pk)−Q�(s,pk)|�C0

√
log log k/k, where C0>0

is a certain constant and C1 is the maximal sampling probability
of the state-action pair to minimal one ratio.

Proof: The main idea for proving this result is to compare
Qk+1(s, pk) with a constructed simpler process which replaces
Qk+1 with Q� in the updating process. The details are similar
to [32] and we omit here. �

By adopting this so-called Q-learning algorithm in (25),
the sensor can learn the optimal transmission power strategy
for the infinite time horizon in the case without the existence
of the attacker based on the above discussion. The detailed
convergence conditions will be provided in Theorem 4.6 in the
following subsection.

C. Markov Sensor-Attacker Game Framework

After setting up the MDP framework for the sensor, we now
consider the scenario with both the sensor and the attacker.
At each time step k during the decision-making process, both
the sensor and the attacker take actions and receive the reward
(the corresponding state estimation error covariance and energy
consumption at k), then move to the next stage modeled as a
random process as described in (9).

To be more specific, the elements of this two-player Markov
game are summarized as follows.

• Player: the sensor and the attacker.
• State: same as the case without the attacker, the state at

time k is defined as Pk−1 ∈ S = {P, h(P ), h2(P ), . . .}.
We assume that the attacker can eavesdrop the ACKs sent
from the remote estimator to the sensor so that it can infer
the state of the process (otherwise, the attacker is similar
to the offline game).

• Action: The action of the sensor is its transmission power
pk ∈ As = [0, p]. Similarly, the action of the attacker is

the interference power ωk ∈ Aa
Δ
= [0, ω].

• Transition Probability: similar to (22), define the state
transition probability as tk(Pk|Pk−1, pk, ωk)⎧⎪⎪⎨
⎪⎪⎩
1− 2Q

(√
α pk

ωk+σ2

)
, if Pk = P

2 Q
(√

α pk

ωk+σ2

)
, if Pk = h(Pk−1)

0, otherwise.

(26)

• Payoff : The one-stage reward function for the sensor is
defined as

rk(Pk−1, pk, ωk)
Δ
= −Tr {E[Pk]} − δspk + δaωk (27)
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and the reward function for the attacker is the opposite.
The total discounted rewards for the for the sensor and
for the attacker are JS and JA defined in (19) and (18),
respectively.

Note that as the transition probability and the reward are
stationary and independent of the time index, we can also write
them as t(Pk|Pk−1, pk, ωk) and r(Pk−1, pk, ωk), respectively.

As we can see from before, the rewards and the state
transition probability for the sensor not only depend on the
sensor’s own action pk, but also on the action ωk taken by the
attacker, and vice-versa. To deal with such cases, the tools and
frameworks developed in [13] with one-stage games, or single
player’s MDP discussed in Section IV-B are not sufficient. This
motivates us to consider the Markov game framework [30],
which is a generalization from a one-stage game or MDP to
multiple-stage stochastic games.

Similar to the MDP and one-stage game, denote the strategy
of the sensor and the attacker as πs = pk(Pk−1) and πa =
ωk(Pk−1), respectively. The objective function of the sensor
with initial state s ∈ S under πs and πa are denoted as (the
one for the attacker JA is simply the opposite) JS(s, πs, πa) =∑+∞

k=1 β
kE[rk(Pk−1, pk, ωk)].

Different from the optimal J�
S under the MDP framework

in the last part where the rewards only depend on the action
taken by the sensor, in this two-player game, the player can
adopt a Nash equilibrium strategy defined below, which has
been proved in [29] as the best the player can do in the game.

Definition 4.5: In a two-player sensor-attacker stochastic
game, a Nash equilibrium is a pair of strategies (π�

s , π
�
a) such

that for all states s ∈ S: J�
S(s)

Δ
=JS(s, π

�
s , π

�
a)�JS(s, πs, π

�
a),

∀πs, and J�
A(s)

Δ
= JA(s, π

�
s , π

�
a) � JA(s, π

�
s , πa), ∀πa. �

To obtain the Nash equilibrium for this game, similar to the
single-player Q-learning algorithm, we define the Q-value for
the sensor in the Markov game as Q(s, pk, ωk) = r(s, pk, ωk) +
β[t(P |s, pk, ωk)J

�
S(P ) + t(h(s)|s, pk, ωk)J

�
S(h(s))], where

Q(s, pk, ωk) represents the total discount reward with trans-
mission power pk, interference power ωk, and initial state s.
Then, the optimal value J�

S(s) can be solved by calculating the
Nash equilibrium of the two-player Markov game with reward
Q(s, pk, ωk).

When the sensor and the attacker have opposite objectives
and rewards, which constitute a two-player zero-sum game as
in our case, the calculation of the Nash equilibrium turns out to
be a min-max problem as in [29], i.e.,

J�
S(s) = max

πs

min
πa

∑
pk,ωk

Q(s, pk, ωk)πs(pk)πa(ωk) (28)

where the transmission strategy πs ∈ PD(As). PD(As) rep-
resents the set of probability distributions over the set As, and
πs(pk) is the probability of choosing the action pk in strategy
πs. For the attacker, we have similar notations.

Now as before, the problem becomes calculating the value
of Q(s, pk, ωk). However, one cannot apply the Q-learning
directly for each side independently without considering the
action of its opponent as it may not work well when the
opponent chooses a complex strategy, and the learning value

may not converge. Therefore, we need a generalized version of
the Q-learning for two-player game to overcome the limitation
of the standard Q-learning. We first initialize the values of
Q(s, pk, ωk) for all s ∈ S, transmission powers pk and inter-
ference power ωk with arbitrary values. Then, at each time step
k with state s, we choose an action pk and ωk based on (30),
receive the corresponding reward rk(s, pk, ωk) based on (27),
move to another state s′ randomly based on (9), and continue
to the next time step. After each recursion, we update the
corresponding Q-value based on the following equation (other
Q-values remain the same):

Qk+1(s, pk, ωk) = (1− αk)Qk(s, pk, ωk)

+ αk [r(s, pk, ωk) + β Nash Qk(s
′)] (29)

where

Nash Qk(s
′)

Δ
= max

πs

min
πa

∑
pk,ωk

Qk(s, pk, ωk)πs(pk)πa(ωk).

(30)

The convergence of the sequence (29) to the optimal values
requires the following result.

Theorem 4.6: The Nash Q-learning sequence described in
(29) will converge to the optimal value provided the following
two conditions satisfied:

1) Every state s ∈ S and action a ∈ As are visited infinitely
often and the player only updates the Q-value correspond-
ing to current state and actions.

2) The learning rate αk satisfies αk ∈ [0, 1),
∑+∞

k=0 αk =
+∞, and

∑+∞
k=0 α

2
k < +∞. �

The proof of Theorem 4.6 is similar to the one in [29].
Note that these two conditions can be satisfied based on the
discussions in Remark 4.1, 4.2, and 4.3. We will also illustrate
how to implement them in the following simulation part.

Remark 4.7: As far as we know, the convergence rate of the
general Nash Q-learning algorithm has not been investigated
comprehensively in existing literature due to the uncertainty in
the calculation of Nash equilibrium. However, in the case of
zero-sum games, the convergence rate can be analyzed similarly
to the Q-learning algorithm stated in Theorem 4.4. �

Remark 4.8: Note that typical methods for solving the
Markov game require each side to have the knowledge of the
information stated in the beginning of this subsection, that
is, the system parameters, the state transition probability, and
the closed-form expression for the total reward function JA
or JS . However, though, we can calculate the state transition
probability as in (26), the Q-learning method just requires
the knowledge of system parameters and does not need such
channel knowledge, such as the state transition probability,
which provides a more practical way to solve the Markov game
when the information is limited. Due to the wide adoption
of real-time wireless communication between each part, the
attacker and the operator will update their knowledge and adjust
their strategies correspondingly. In these applications, the huge
amount of channel information and the complex system model
motivate us to consider the model-free reinforcement learning
methods, such as Q-learning, to deal with these issues. �
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Now we aim to investigate the stability of the process under
such Markov games between the sensor and the attacker at equi-
librium, in terms of the average state estimation error covariance
over an infinite time horizon (or, equivalently, the asymptotic
state estimation error covariance). Based on the recursion of Pk

in (9) in the stationary state, we have lim supT→∞(1/T )
∑T

k=1

Tr (E [Pk]) = lim supk→∞ Tr (E [Pk]) =
∑+∞

i=0 πi Tr(h
i (P )),∑+∞

i=0 πi = 1, where πi
Δ
= P [Pk = hi(P )] = (

∏i−1
j=0 (1−

εj))εi, i > 0, and εi
Δ
= P[γk = 1|s = hi(P )] = 1−

2Q(
√
α(p�k(s=hi(P ))/ω�

k(s=hi(P ))+σ2). Note that since

there is a final state with hK(p) representing all of the states
hi(p) with i � K during the learning process, we only need to
calculate ε0 up to εK and εi = εK for i > K .

Based on the properties of the Lyapunov operator h(X) =
AXA′ +Q (e.g., [15]), a sufficient condition for the stability
of the estimation process is given by

min
i=0,1,...,K

εi=1−2Q

(√
α

p�k
(
s=hi(P )

)
ω�
k

(
s=hi(P )

)
+σ2

)
>

1

ρ(A)2
(31)

where ρ(A) is the spectral radius of A. Note that since the
packet arrival rate is the same for hi(P ) when i ≥ K (the
transmission power strategies are the same for them), in (31),
we only need to investigate up to K different arrival rates and
require the minimal one to satisfy the condition.

Remark 4.9: Finding a weaker sufficient or necessary and
sufficient conditions for the estimation process may be difficult
since we do not know the optimal policies a priori and we can-
not check this condition beforehand. This nontrivial problem
is left as an important future direction of extension of our cur-
rent work. �

Remark 4.10: As suggested by (31), when the attacker is
quite powerful in terms of a dominant energy budget, which can
be interpreted as a small energy weight σa (note that σa=0 rep-
resents unlimited energy for the attacker), in addition to affect
the estimation performance of the sensor, it may even jeopardize
the stability of the system and cause severe consequences in
many safety-critical CPS infrastructures. We provide a simula-
tion example in the following section to illustrate this point. �

V. NUMERICAL EXAMPLE

In this section, we provide numerical examples to illustrate
our results in different situations.

Consider the example with parameters of the system and
the wireless network, where A = 1.2, C = 0.7, Q = R = 0.8,
steady-state error covariance P = 0.9245, network noise σ2 =
1, and network parameter α = 3. Now we apply the Q-learning
algorithm in the infinite time-horizon Markov game. Suppose
that δs = δa = 1, the discount factor β = 0.96, the learning
rate αk = 10/[15 + count (s, pk, ωk)] (based on Remark 4.1),
where count (s, pk, ωk) is the times of the occurrence of the
pair (s, pk, ωk). By designing the decay rate this way, it is easy
to show that this rate satisfies the conditions in Theorem 4.6.
As a consequence, the less visited state and action pairs will
have more emphasis on the new learning knowledge (based on

Fig. 2. Learning process for the optimal strategy of the sensor for state P (the
first 50 time steps).

TABLE I
CONVERGED Q-VALUES FOR THE SENSOR

Remark 4.1). The recursion in (9) with a nonzero drop rate
will also guarantee the visiting of every state and action in the
simulations.

A. Q-Learning Without the Attacker

When the attacker does not exist, assume that p = 5
with L = 6, that is, the power levels for the sensor are in
the set {0, 1, 2, . . . , 5}. Define K = 8, then the state set is
{P, h(P ), h2(P ), . . . , h6(P ), h7(P )(and above)}. The learn-
ing process for the optimal strategy of the sensor is demon-
strated in Fig. 2. (Only the first 50 time steps of the state P are
shown for conciseness.) The initial value of all Q0(s, pk) are
set to 0s and at each time step k, the corresponding Q-value is
updated as (25) (other Q-values remain the same).

After 100 000 time steps iteration in Monte Carlo simula-
tions, the Q-values converge to the optimal value as shown in
Table I. The boldface value indicated the optimal Q-value J�

S(s)
for each state, therefore, the optimal strategy for the sensor
is to use power level 0, 1, 1, 2, 5, 5, 5, 5 for the state
P, h(P ), . . . , h6(P ), h7(P )(and above), respectively. The so-
lution supports the intuition that when the error covariance at
the remote estimator is relatively small, the sensor can use
less energy for transmission. Otherwise, the sensor will choose
a large energy level to increase the packet arrival rate and,
therefore, improve estimation performance.
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Fig. 3. Strategy learning process in state P for the sensor and the attacker
(first 15 time steps). (a) Strategy learning process for the sensor in state P (first
15 time steps). (b) Strategy learning process for the attacker in state P (first
15 time steps).

Remark 5.1: As stated before, Q(s, pk) represents the total
discounted reward with transmission power pk and initial state s.
From Table I, we can see that when the initial state becomes
large, which means the initial guess of the state is less accurate,
the corresponding reward under the same action is reduced.
This supports the intuition that the estimation performance is
better with better initial estimation. �

B. Nash Q-Learning With the Attacker

When the attacker is involved in the game, both sides may
adopt mixed strategies, that is, choose different actions based
on different probabilities as in (28). Assume that p = ω =
3 with L = 4 and K = 4, that is, the power levels for the
sensor and the attacker are both {0, 1, 2, 3} and the state
set is {P , h(P ), h2(P ), h3(P ), h4(P )(and above)}. Since the
Q-values of Qk(s, pk, ωk) have high dimension, to simplify
the demonstration, we only show the learning process of the
second state P as an example. As shown in Fig. 3(a) and (b), the
sensor and the attacker adopt mixed strategy in the beginning,
but the optimal strategy may be in the form of pure strategy: for
example, the optimal strategy for the sensor when the state is
P , is to choose the power level pk = 1 with probability 1 as
shown in Fig. 4(b). As an illustration to Remark 4.10, Fig. 5
shows that when the attacker is quite powerful in terms of a
dominant energy budget with σa = 0.01, the state estimation
process diverges exponentially fast.

Fig. 4. Long-term learning process in state P for the sensor. (a) Q-values in
state P for all 4 × 4 power-level combinations. (b) Convergence of strategy for
the sensor in state P .

Fig. 5. Divergence of the state estimation process against a powerful (dominant
energy budget) attacker.

VI. CONCLUSION

In this paper, we considered the associated games of remote
state estimation in CPS using wireless links under SINR-based
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DoS attacks. The two-player game when multiple power levels
are available was first studied. Then, we built a Markov game
framework to model the interactive decision-making process
between the sensor and the attacker based on the current
state of the process and information collected from previous
time steps. To solve the corresponding optimality (Bellman)
equations, we applied a modified Nash Q-learning algorithm.
Numerical examples and simulations were provided to demon-
strate our results.

REFERENCES

[1] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138–162,
Jan. 2007.

[2] V. C. Gungor and G. P. Hancke, “Industrial wireless sensor networks:
Challenges, design principles, and technical approaches,” IEEE Trans.
Ind. Electron., vol. 56, no. 10, pp. 4258–4265, Oct. 2009.

[3] Y. Zhang, S. He, and J. Chen, “Data gathering optimization by dynamic
sensing and routing in rechargeable sensor networks,” IEEE/ACM Trans.
Netw., vol. 24, no. 3, pp. 1632–1646, Jun. 2016.

[4] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control: Towards sur-
vivable cyber-physical systems,” in Proc. IEEE 28th Int. Conf. Distrib.
Comput. Syst. Workshops, 2008, pp. 495–500.

[5] H. Zhang, P. Cheng, L. Shi, and J. Chen, “Optimal DoS attack schedul-
ing in wireless networked control system,” IEEE Trans. Control Syst.
Technol., vol. 24, no. 3, pp. 843–852, May 2016.
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