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Abstract

This paper studies a closed loop linear control system over a lossy communication link. A sensor computes a state estimate of the observed
discrete-time linear dynamical system and sends it (in the form of packetized transmission) to the controller in the receiver block over a
randomly time-varying (fading) packet dropping link. The receiver sends an ACK/NACK packet to the transmitter over an acknowledgement
channel which might also be prone to packet loss. It is assumed that the energy used in packet transmission depletes a battery of limited
capacity at the sensor, but is also replenished by an energy harvester which has access to a source of everlasting but random harvested
energy. Under an assumption of finite-state Markov chain models of the energy harvesting and the fading channel gain processes, the
objective is to design an optimal energy allocation policy at the transmitter and an optimal control policy at the receiver so that an average
infinite horizon linear quadratic Gaussian (LQG) control cost is minimized. It is shown that in the case of perfect channel feedback a
separation principle holds, the optimal LQG controller is linear and the optimal energy allocation policy at the transmitter can be obtained
via solving the Bellman dynamic programming equation. A Q-learning algorithm is used to approximate the optimal energy allocation
policy in case the system parameters (such as the transition probabilities of the underlying Markov chains) are unknown. Numerical
simulation examples are used to illustrate the relative performance of the proposed algorithms and various other heuristic algorithms. It
is seen that the dynamic programming based policies outperform the simple heuristic policies, especially at higher battery capacities.
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1 Introduction

Wireless sensors are used in many areas such as envi-
ronmental data gathering Akyildiz et al. (2002), industrial
process monitoring Gungor & Hancke (2009), mobile robots
and autonomous vehicles Chong & Kumar (2003), and for
monitoring of smart electricity grids Gungor et al. (2010).
Sensors are often located in remote places and cannot be
connected to reliable power sources. Thus, they are often
powered by batteries and can only use a limited amount of
energy for sensing, processing and communicating informa-
tion. When using wireless communication and battery pow-
ered devices, the communication links are unreliable and
information might be lost in a random manner. It is there-
fore an important task to study the effects of such unre-
liable communication channels on filtering and control. A
line of research in this area started with Sinopoli, Schen-
ato, Franceschetti, Poolla, Jordan & Sastry (2004), studying
a Kalman filter relying on measurements, that are received
from the sensor via a packet dropping channel. It is shown
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that the resulting Kalman filter and its error covariance ma-
trix are time-varying and stochastic. The mean state covari-
ance can be guaranteed to be bounded if the probability of
receiving a packet is above a certain lower bound. These re-
sults were further extended to derive conditions on the packet
arrival rate to guarantee stability in Liu & Goldsmith (2004),
Xu & Hespanha (2005), Schenato et al. (2007), Huang &
Dey (2007), Epstein et al. (2008), Schenato (2008), Mo &
Sinopoli (2008), Quevedo et al. (2012).

Other researchers studied the performance of the Kalman
filter, that is minimizing the expected estimation error, in-
stead of only ensuring its stability, see Quevedo et al. (2010),
Shi et al. (2011).

The impact of packet dropping links was also studied
for the closed loop control problem in a large number of
works. Sinopoli, Schenato, Franceschetti, Poolla & Sastry
(2004) studied a closed loop control system with a linear
Gaussian quadratic optimal controller and showed that the
separation principle holds in the presence of data losses be-
tween the sensor and the receiver Kalman filter when the
sensor receives perfect channel feedback and there exists a
critical arrival probability below which the resulting opti-
mal controller fails to stabilize the system. Sinopoli et al.
(2005c) extended these results by assuming that the control
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signal also is transmitted via an unreliable communication
channel. If the arrival of the control packet is acknowledged
without error at the receiving actuator, the separation prin-
ciple holds and the optimal LQG control is linear. However,
if no such channel feedback exists, the separation princi-
ple does not hold and the resulting optimal controller is in
general nonlinear, Sinopoli et al. (2005a), apart from some
special cases, Sinopoli et al. (2005b).

Energy harvesting using solar panels, wind mills or other
devices might help to reduce the limitations of limited bat-
tery capacities. The harvested energy can be used for data
transmission or be stored for future use. Due to the unreli-
able nature of most renewable energy sources, allocating the
available energy in an optimal fashion is a challenging task.

Sharma et al. (2010) studied throughput optimal and
mean delay optimal energy allocation policies in a single
sensor node. The optimal energy allocation policies to max-
imize the mutual information of a wireless link were derived
in Ho & Zhang (2012) under either causal or non-causal side
information at the transmitters. Yang et al. (2012) investi-
gated an optimal packet scheduling problem for a single-
user energy harvesting wireless communication system and
developed optimal off-line scheduling policies given non-
causal information. Optimal off-line transmission policies
with batteries with limited capacities are investigated in Tu-
tuncuoglu & Yener (2012), where a finite horizon throughput
maximization and the related problem of minimization of
the transmission completion time are studied. These results
are further generalized in Ozel et al. (2011), considering fad-
ing channels and optimal online policies. Nourian, Leong
& Dey (2014) studied estimation of a dynamical system
with a packet dropping link under energy harvesting con-
straints and derived transmission energy allocation policies,
that minimize the expected error covariance in the presence
of perfect or imperfect channel feedback. A smart sensor,
which can decide at each time step to either send a quantized
version of its local state estimate or its local innovation via
a packet dropping link, was considered in Nourian, Leong,
Dey & Quevedo (2014).

This paper extends Nourian, Leong & Dey (2014) to the
case of a closed loop control system with a packet dropping
link between the sensor and the controller at the receiver,
and a packet dropping acknowledgement channel. We study
the optimal energy allocation policy at the transmitter and
the optimal control design at the receiver such that an av-
erage infinite-time horizon LQG control cost is minimized.
The “smart” sensor estimates the state of the linear dynam-
ical system and transmits the current estimate (as opposed
to the measurements, Nourian, Leong & Dey (2014)) to the
receiver unit via a packet dropping link. This transmission
strategy is chosen based on Gupta et al. (2007), where it
was shown that it is optimal to send estimates, in contrast to
sending measurements, over packet dropping links. The re-
ceiver sends an acknowledgement to the transmitter. In con-
trast to Sinopoli, Schenato, Franceschetti, Poolla & Sastry
(2004), Sinopoli et al. (2005c,a,b) where no restriction is
placed on the sensor transmission energy, the transmitter at
the sensor is equipped with a battery with finite capacity and
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Figure 1. Scheme of system model when transmitter sends esti-
mates

an energy harvester. Hence, the transmitter can choose how
much energy should be used to transmit the current state
estimate, which is limited by the available energy at the bat-
tery, which fluctuates randomly due to the stochastic nature
of harvested energy. It is assumed that the time varying fad-
ing channel gain and the harvested energy amounts are de-
scribed by finite-state Markov chains. Hence, the probability
of dropping the packet depends on the transmission energy
and the current channel gain and is, therefore, time varying
(in contrast to Sinopoli, Schenato, Franceschetti, Poolla &
Sastry (2004), Sinopoli et al. (2005c,a,b)). The transmitter
is required to find a tradeoff amongst spending energy to
transmit the current state estimate, storing energy for future
transmissions, and reducing energy overflow due to a finite
battery capacity. If the acknowledgement channel is perfect,
the separation principle holds and the optimal controller is
linear. The optimal energy allocation policy is obtained solv-
ing a average cost optimality Bellman equation. In case the
acknowledgement channel is erroneous, the separation prin-
ciple does not hold, leading to a coupling between the con-
troller and energy allocation policy in general. For this case,
a simple suboptimal policy with a linear controller and a
suboptimal transmission energy allocation policy minimiz-
ing an average expected sum of the trace of an estimated re-
ceiver state estimation error covariance matrix is proposed.
Both cases are also studied numerically and compared to
other strategies.

Section 2 describes the system model and problem for-
mulation. The cases of perfect or imperfect channel feed-
back are considered in Section 3 or Section 4, respectively.
Section 5 describes the Q learning algorithm and two sub-
optimal heuristic energy allocation policies and all policies
are compared via numerical studies in Section 6, followed
by concluding remarks in Section 7.

2 System Model

This section describes the general structure of the sys-
tem. Sections 3 and 4 describe the two different cases of
perfect and imperfect channel feedback in more detail. A
scheme of the system model can be found in Figure 1.
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2.1 Plant Model and Sensor

The plant is modeled as a simple linear system with state
xk ∈ Rn at time slot k, process noise wk ∈ Rn, and a control
input uk ∈ Rp:

xk+1 = Axk + Buk + wk. (1)

The process noise is assumed to be i.i.d. Gaussian noise with
zero mean and covariance M = E{wkwT

k
} ≥ 0, where E{x}

denotes the expected value of x. The initial state x0 is also
Gaussian with mean x̄0, and covariance P̄0. We assume that

(A, B) and (A,M
1
2 ) are controllable.

The sensor produces a noisy measurement of the state
yk = Cxk + vk where (A,C) is assumed to be observable,
yk ∈ Rq, and vk ∈ Rq is i.i.d. Gaussian noise (independent of
x0 and wk) with zero mean and covariance N = E{vkvT

k
} > 0.

2.2 State Estimator at the Transmitter

The sensor is assumed to be smart with computational
capability, and forwards a state estimate to the remote esti-
mator/controller. The sensor measurements are used at the
transmitter to estimate the current state based on the infor-
mation set Ik := {x̂0,yl,γ̂l−1 : 1 ≤ l ≤ k}, where γ̂l is the
channel feedback acknowledgment, which will be discussed
in detail in Section 2.5. The estimate is given by

x̂k :=x̂k|k = E {xk |Ik}
=x̂k|k−1 + Kk(yk −Cx̂k|k−1) (2)

x̂k+1|k =E {xk+1|Ik} = Ax̂k|k + Bûk (3)

where ûk is the estimated control input which depends on
whether the latest channel feedback signal (explained in de-
tail below) has been received or not. The matrix Kk should
be chosen such that it minimizes the error covariance matrix
of the state estimation error. Details of the case of perfect
and imperfect channel feedback are discussed in Sections 3
and 4.

2.3 Energy Harvester and Battery Dynamics

The transmitter has a rechargeable battery and an energy
harvester, that can gather energy from the environment. The
amount of energy available to be harvested, denoted by Hk,
is unpredictable and is described as a stationary first-order
homogeneous Markov chain, Ho et al. (2010). The energy
used for computational purposes at the transmitter is as-
sumed to be negligible compared to the transmission energy,
such as if the receiver is a long distance away. The amount
of energy in the battery Bk evolves according to

Bk+1 = min{Bk − Ek + Hk+1; B̄} (4)

with 0 ≤ B0 ≤ B̄ and where B̄ is the battery capacity, and
Ek is the energy used for transmission during the k-th slot.

2.4 Forward Communication Channel

A wireless communication channel is used to transmit
the estimate x̂k to the controller/actuator unit, referred to as
Rx block. The channel is a packet dropping link such that the

estimate is either exactly received (for γk = 1) or completely
lost due to corrupted data or substantial delay (for γk = 0),
where γk is the Bernoulli random variable modeling the
packet loss process. The received signal is zk = γk x̂k. The
probability of successfully transmitting the packet is

P{γk = 1|gk,Ek} := h(gkEk) (5)

where P{x|y} is the probability of x conditioned on y and
gk is the time-varying wireless fading channel gain. h :
[0,∞] → [0,1] is monotonically increasing and continuous.
We assume that the fading channel gain {gk} is a first-order
stationary homogeneous finite-state Markov chain where the
channel gains remain constant over each fading block and
vary in a Markovian fashion from block to block. Finite-
state Markov models for fading channels are quite common
in both wireless communications and information theoretic
literature - see Sadeghi et al. (2008) for a survey in this
regard. We also assume that the fading channel is indepen-
dent of the energy harvesting process Hk, and known to the
transmitter. The knowledge of the channel at the transmit-
ter can be achieved by the receiver sending a pilot signal
at the beginning of each slot for the transmitter to estimate
the channel. The estimated channel is used as an estimate
for the sensor to receiver channel also based on channel
reciprocity assumption, which is valid for schemes such as
time-division-duplex (TDD). Based on the current channel
gain gk, and the battery level Bk, the transmitter finds an op-
timal energy allocation policy {Ek}∗ to minimize a suitable
infinite horizon control cost.

2.5 Erroneous Channel Feedback

After receiving zk from the transmitter, the receiver sends
an acknowledgment (ACK/NACK) to the transmitter. The
acknowledgement is sent via a packet dropping ACK/NACK
channel such that the received acknowledgement is

γ̂k =

{

γk if βk = 1

2 otherwise
(6)

where βk is another Bernoulli random variable indicating if
the ACK/NACK packet has been received and the probability
of receiving the ACK/NACK packet is

P{βk = 1} = η ∈ [0,1]. (7)

In case no ACK/NACK is received, the transmitter receives
γ̂k = 2 indicating that the ACK/NACK packet was dropped.

2.6 Estimator/Controller and Actuator in the Rx block

The controller in the receiver block has access to the
information set Ic

k
:= {x̂c

0
,zl, γl : 1 ≤ l ≤ k}. As the estimates

from the transmitter Kalman filter are sometimes dropped,

the state estimate at the Rx block, x̂c
k
= E

{

xk |Ic
k

}

, is

x̂c
k := γk x̂k + (1 − γk)

(

Ax̂c
k−1 + Buk−1

)

. (8)

3



It can easily be shown that this state estimate at the receiver
is optimal given the information set Ic

k
. The task of the

controller is to design an optimal control sequence {uk} based
on Ic

k
to minimize the average control cost. It is assumed

that the link between the Rx block and the plant is lossless.

2.7 Optimal Transmission Energy and Controller Design

The aim is to find the stationary optimal transmission
energy allocation policy {E}∗ and the optimal control policy
{u}∗, that jointly minimize the average LQG control cost

J({u}, {E},x̄0, P̄0) = lim
T→∞

1

T

T−1
∑

k=0

E

{

xT
k Wxk + uT

k Uuk

}

= lim
T→∞

1

T

T−1
∑

k=0

E

{

E

{

xT
k Wxk + uT

k Uuk

∣

∣

∣Ic
k

}}

(9)

where (A,W
1
2 ) is assumed to be observable. Section 3 shows,

that if the ACK/NACK channel is perfect, the separation
principle holds and the design of the optimal control input
uk and the optimal transmission energy Ek can be separated.
However, in the case of imperfect channel feedback, the
optimal choices of uk and Ek depend on each other, as shown
in Section 4, due to the absence of a separation principle.

Remark 1 The joint optimization of the transmission en-
ergy allocation and the control policy can be done at the Rx
block if the battery level is known, and consequently the op-
timal energy allocation policy can be fed back to the trans-
mitter. However, this is difficult as this information needs to
be included in the transmitted packet, which may be lost.
Therefore, the Tx block designs the optimal energy alloca-
tion policy whereas the Rx block designs the optimal control
policy. It will be seen below that in the case of perfect chan-
nel feedback, the transmitter can design the optimal energy
allocation policy based on the combined state information
(gk, Bk). This is a consequence of the separation principle.
In the case of imperfect channel feedback, the design of the
energy allocation policy at the Tx block is suboptimal.

3 Perfect Acknoweledgements

In case the channel feedback link is perfect, the control of
the closed loop system follows well known principles. After
clarifying the dynamics of the error covariance matrices at
the estimator and the controller, it will be shown that the
separation principle holds. This is followed by a stability
proof given a sufficiently low property of dropping packets
in the forward communication channel.

3.1 Error Covariance Matrices

The Tx block calculates an estimate of the system state
via a Kalman filter based on the information set Ik :=
{x̂0,yl,γl−1 : 1 ≤ l ≤ k}. The estimate, (3), is transmitted via
the packet dropping link to the receiver. Since it is assumed
that the acknowledgements are received without faults, the
estimator has perfect knowledge of the used state estimate at
the controller, i.e., x̂c

k
since in case of γk = 1, x̂c

k
= x̂k, while

in case γk = 0, x̂c
k

is known to be updated by the prediction

step x̂c
k
= Ax̂c

k−1
+ Buk−1. Since the control law uk is a func-

tion of x̂c
k

(see (15) below) and assumed to be known, the
transmitter has perfect knowledge of the receiver estimate
x̂c

k
, and consequently the applied control input, uk,∀k ≥ 0,

such that ûk = uk by virtue of an inductive logic. The cor-
responding Kalman filter error covariance matrices at the
transmitter are

Pk|k =E
{

(xk − x̂k|k)(xk − x̂k|k)T|Ik

}

, (10)

Pk+1 :=Pk+1|k = E

{

(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)T|Ik

}

. (11)

With ek|k = xk− x̂k|k and ek+1|k = xk+1− x̂k+1|k = Aek|k+wk, this

yields Pk+1 = E

{

(Aek|k + wk)(Aek|k + wk)T
}

= APk|kAT + M.

Further, choosing Kk = Pk|k−1CT
(

CPk|k−1CT + N
)−1

leads to the minimal error covariance matrix after
updating the estimate in the standard form Pk|k =

Pk−1 − Pk−1CT
(

CPk−1CT + N
)−1

CPk−1. The initial covari-

ance matrix is P0 = P̄0. We assume that the Kalman filter
at the transmitter has been running long enough to reach a
steady state 1 such that the error covariance matrix at the
transmitter is given by limk→∞ Pk|k = P∞. Since the current
state estimate is dropped with a probability of 1−h(gkEk), it
is intermittently unavailable at the Rx block and is replaced
by (8). Thus, the corresponding estimation error covariance

matrix at the Rx block, Pc
k

:= E

{

(xk − x̂c
k
)(xk − x̂c

k
)T|Ic

k

}

, is

Pc
k = γkP∞ + (1 − γk)

(

APc
k−1AT + M

)

with Pc
0 := P̄0. (12)

3.2 Separation Principle and Optimal Controller

It will be shown in this section that the traditional sepa-
ration principle, i.e, the separation of estimation and control
design holds under the assumption of perfect ACK/NACK
feedback. Note that in the context of networked control sys-
tems with packet losses on both the sensor-estimator and
controller-actuator links but with transmission of measure-
ments, it was shown that the separation principle holds when
the transmitter has full knowledge of the control signals ap-
plied to the plant Schenato et al. (2007), and the optimal
control law is linear. In our setting, transmission of state
estimates is considered and packet loss is only present in
the forward link. However, as the estimator needs to know
the control applied to the plant, the assumption of perfect
ACK/NACK feedback is necessary and it is shown below
that under this assumption, the same separation principle
holds. What follows as a consequence is also the separation
of the design of the stationary optimal transmission energy
allocation policy at the transmitter and the optimal control
policy at the receiver, that jointly minimize the control cost

1 Note that in this paper we investigate the optimization of the
infinite-time horizon case of a long term average of an LQG
control cost. Even if the system is set up when the Kalman filter
is not in the steady state, transients towards the equilibrium state
do not contribute to the average over the infinite time horizon, see
Bertsekas (1995).
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(9). Essentially, the LQG control cost can be minimized by
first choosing u∗

k
, the optimal controller, which is a linear

function of x̂c
k
. It can be shown that minimizing the control

cost is then equivalent to minimizing the long term aver-
age of the estimation error covariance matrix with respect
to the energy allocation policy at the transmitter. The analy-
sis largely follows a similar result in Schenato et al. (2007),
and we only present a sketch of the most important details
for the sake of completeness.

First, define a finite horizon version of the control cost

(9) as follows: JT = E

{

xT
T

WxT +
∑T−1

k=0

(

xT
k
Wxk + uT

k
Uuk

)}

.

Then a fixed sequence of energy allocation {E}T−1
0 =

{E0, E1, . . . , ET−1} and consider minimization of the
above cost only with respect to the control sequence
{u}T−1

0 = {u0, u1, . . . , uT−1}. One can then present the fol-
lowing lemma:

Lemma 2 The value function VT

(

Ic
T

)

:= E

{

xT
T

WxT

∣

∣

∣Ic
T

}

,

Vk

(

Ic
k

)

:= minuk
E

{

xT
k
Wxk + uT

k
Uuk + Vk+1(Ic

k+1
)
∣

∣

∣Ic
k

}

for

the system (1) with the information set Ic
k
, k = T − 1, . . . , 1,

can be written as Vk

(

Ic
k

)

= E

{

xT
k
S kxk

∣

∣

∣Ic
k

}

+ ck for k =

T, . . . ,0 where S k and ck can be calculated recursively ac-
cording to

S k =ATS k+1A +W − ATS k+1B
(

BTS k+1B + U
)−1

BTS k+1A

(13)

ck = trace
((

ATS k+1A +W − S k

)

Pc
k

)

+ trace (S k+1M)

+E
{

ck+1| Ic
k

}

(14)

with S T = W and cT = 0. Further,

uk = −
(

BTS k+1B + U
)

BTS k+1Ax̂c
k = Lk x̂c

k. (15)

PROOF. The proof follows along similar lines as in (Schen-
ato et al. 2007, Lem 5.1): The claim is true for k = N. When

evaluating Vk

(

Ic
k

)

for k ≤ N − 1 and using results in Schen-

ato et al. (2007) it can be shown that Vk

(

Ic
k

)

does not de-

pend on Ek. Hence, it suffices to minimize with respect to

uk while keeping Ek fixed. Solving
∂Vk(Ic

k)
∂uk

= 0 yields the

optimal control input (15), which together with (Schenato
et al. 2007, Lem 4.1(b)), (13) and (14) proves the results. �

The above result can be applied repeatedly to obtain
from dynamic programming theory that the optimal cost J∗

T

is given by min{E}T−1
0
= V0

(

Ic
0

)

which is (similar to Schenato

et al. (2007))

J∗T = min
{E}T−1

0

















x̄T
0 P̄0 x̄0 + tr(S 0P̄0) +

T−1
∑

k=0

tr(S k+1M)

+

T−1
∑

k=0

tr
(

(ATS k+1A +W − Ak)E
(

Pc
k

))

















(16)

Hence, calculating the optimal control input at the
Rx block, and the optimal energy allocation at the Tx
block can be done separately. The infinite horizon cost (9)
can now be considered by taking the limit of the above
equations as T → ∞, provided the cost is bounded. A
sufficient condition for boundedness is provided in Sec-

tion 3.3 below. Since (A,B) is controllable and (A,W
1
2 )

is observable, the optimal controller for the infinite hori-

zon case has gain L = L∞ = −
(

BTS∞B + U
)−1

BTS∞A

where S∞ is the solution of the standard ARE S∞ =

ATS∞A + W − ATS∞B
(

BTS∞B + U
)−1

BTS∞A, see Sinop-

oli, Schenato, Franceschetti, Poolla & Sastry (2004) for
further details.

3.3 Stability

Recall that we aim to find the stationary optimal trans-
mission energy allocation policy {E}∗ (if it exists) and the
optimal control policy {u}∗, that jointly minimise the infinite-
horizon average LQG control cost (9). Since the separation
principle holds as shown above, it follows from (16) that the
stochastic control problem to determine {Ek}∗ is given by

min
Ek :k≥1

lim sup
T→∞

1

T

T−1
∑

k=0

E

{

tr
(

Pc
k

)}

. (17)

This is a stochastic control problem based on a Markov
Decision Process (MDP) Bertsekas (1995), with state space
S = {Pc

k
,gk,Hk,Bk} and action space A = {Ek}. Stability of

the process with an unstable open loop can be guaranteed if
the packet dropping probability is sufficiently low:

Theorem 3 Assume the error covariance matrix at the con-
troller Pc

k
in (12). If there exists a ξ ∈ [0,1) such that

sup
g,H

∫

gk

∫

Hk

(

1 − h
(

gk min
{

Hk,B̄
}))

× P (gk |gk−1 = g)

×P (Hk |Hk−1 = H) dgkdHk ≤ ξ/‖A‖2 (18)

for all k ≥ 0, then there exists a policy {Ek} such that for
some scalars α,β > 0 the norm of Pc

k
is satisfies for all k ≥ 0

E

{∥

∥

∥Pc
k

∥

∥

∥

}

≤ αξk + β. (19)

PROOF. The proof is based on (Quevedo et al. 2013, Thm
1) showing that a sufficient condition for exponential stabil-
ity in the sense of (19) is supg,H P (γk = 0|gk−1 = g,Hk−1 = H) ≤
ξ

‖A‖2 for some ξ ∈ [0,1). Since it is assumed that both the

channel gains {gk} and the harvested energies {Hk} are
described by mutually independent stationary first-order
homogeneous Markov chains, the exponential stability con-

dition yields (18) with min
{

Hk,B̄
}

= Ek for some ξ ∈ [0,1).

Assume all the harvested energy at each time step is used.
Hence, E0 = B0 and Ek = min{Hk; B̄} for k ≥ 1. Then (18)
is a sufficient condition to guarantee (19). �

Remark 4 Condition (18) describes, that if one uses all
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the energy in the battery for data packet transmission at

each step, i.e., Ek = min
{

Hk,B̄
}

, a sufficiently low value of

the resulting average probability of the packet being lost,
i.e., 1 − h(gkEk) averaged over the conditional probability
distributions of the Markov channel gain gk and the Markov
harvested energy process Hk, can guarantee stabilizability of
the possibly unstable system (1). If this condition is satisfied

for the suboptimal energy allocation policy Ek = min
{

Hk,B̄
}

,

then Theorem 3 shows that an optimal energy allocation
exists, such that the norm of the expected error covariance
matrix is bounded.

3.4 Optimal Energy Allocation Policy

Note that even though the channel and harvested energy
state spaces are finite-discrete by assumption, the error co-
variance matrix Pc

k
belongs to a general Borel space, and

so does the energy allocation Ek. Existence of solutions to
average cost MDP problems with general (Borel) state and
action spaces is not straightforward and requires various as-
sumptions on the cost function, state and action spaces, and
the transition probabilities of the MDP to be satisfied. Be-
low, we first state the main result in Theorem 5, followed by
the assumptions required for this result to hold and how they
are satisfied in the short proof sketch. Assume the channel
gain, harvested energy, battery level and energy consump-
tion at time k are denoted g = gk, H = Hk, B = Bk, and
E = Ek, respectively, and the corresponding channel gain,
harvested energy and battery level at time k + 1 are denoted
g̃ = gk+1, H̃ = Hk+1 and B̃ = Bk+1, respectively. The follow-
ing theorem states that the stationary optimal energy alloca-
tion policy is given by:

Theorem 5 The optimal cost of the infinite-time horizon
stochastic control problem (17) is given by ρ, which is
the unique solution of the average-cost Bellman optimality
equation

ρ + V(Pc,g,H,B) = min
E∈[0,B]

E
{

tr
(

Pc)

+V
(

P̃c,g̃,H̃,B̃
∣

∣

∣ Pc,g,H,B,E
)}

(20)

where V is the relative value function, and ρ is independent
of the initial conditions P0, g0, H0, B0.

PROOF. The proof follows similar steps as the proof of
(Nourian, Leong & Dey 2014, Thm 4.2). Here we only pro-
vide a brief sketch due to space constraints. Essentially, one
needs to first show the existence to the solution of average
cost optimality inequality (see Equation (A.8) in Nourian,
Leong & Dey (2014)), by verifying two conditions [W]
and [B] from Schäl (1993). Condition [W] essentially re-
quires that the state space is locally compact, the action
space is compact and the state to action function is upper
semi-continuous, and transition probabilities of the MDP are
weakly continuous, and finally, the cost function tr (Pc) is
lower semi-continuous. Due to the finite state Markov chain
modelling of the harvested energy and the fading channel
processes, and the energy allocation being limited by the
maximum battery capacity, all of these conditions can be

verified for our problem. Condition [B] of Schäl (1993) is
trickier and essentially it requires the finiteness of a rela-
tive value function of a corresponding discounted cost MDP
problem. It can be also shown that this condition holds in
our case, similar to the arguments used in Nourian, Leong &
Dey (2014). This guarantees the existence of a solution to the
average cost optimality inequality. To show equality, as de-
manded by (20), one requires a further equicontinuity prop-
erty of the optimal cost for the related discounted cost MDP
with respect to the state, as shown in the proof of Proposi-
tion 3.2 in Huang & Dey (2006). Finally, the assumptions
on Sections 5.4 and 5.5 of Hernández-Lerma & Lasserre
(1996) can be then verified to conclude the existence of a
solution to the average cost optimality equation (20). �

The stationary optimal solution to the stochastic control
problem (17) is hence

E∗(Pc, g,H, B) = argmin
E∈[0,B]

E

{

tr
(

Pc) + V
(

P̃c,g̃,H̃,B̃
∣

∣

∣ Pc,g,H,E
)}

(21)
with (4) and V is the solution to the Bellman equation (20).

Remark 6 In the setup described in the current paper, the
packet loss process γk is described by a Bernoulli process,
independent of any other random processes such as the pro-
cess and measurement noise and the initial state, fading
channel or harvested energy processes. The choice of the
optimal energy allocation E∗

k
does not also depend on the

measurements {yk}, or the receiver/transmitter estimates. In
particular, optimal values of Ek are found by minimizing the
long-term average of the trace of the estimation error co-
variance at the receiver. Thus, the optimal energy allocation
E∗

k
is adapted to the current receiver error covariance Pc

k
,

and the current fading channel gain and battery state at the
sensor, which are known at the transmitter. Due to the perfect
ACK/NACK feedback scenario, the receiver error covariance
is also known at the transmitter. Thus separation principle
holds. Note however that this is in contrast with many event-
triggering schemes Astrom & Bernhardsson (2002), Sijs &
Lazar (2012), Molin & Hirche (2014), where the decision to
transmit data may depend on the state, or the estimate (or
estimation error) or the measurement at the transmitter, and
this makes the received signal a nonlinear function of the
state/measurement, leading to non-optimality of the Kalman
filter and non-existence of the separation principle.

4 Imperfect Acknowledgements

4.1 Assumed State Estimate

Similar to the case of perfect channel feedback in Sec-
tion 3, the state estimate at the Rx block is given by (8).
The estimate at the Tx block depends on the estimated in-
put signal ûk, which substitutes the unknown input signal
uk = Lx̂c

k
.The control input is estimated by the transmitter

using the estimate of the state estimate available at the con-
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troller ûk = Lx̂ce
k

with

x̂ce
k =(1 − βk)

(

h(gkEk)x̂k + (1 − h(gkEk))(Ax̂ce
k−1 + Bûk−1)

)

+ βk

(

γk x̂k + (1 − γk)(Ax̂ce
k−1 + Bûk−1)

)

. (22)

In case an acknowledgment was received, the information of
the acknowledgment is used. Otherwise the estimate used at
the controller is estimated using the packet dropping prob-
ability of the forward channel. Hence, the estimation er-
ror ek+1|k = Aek|k + BLee

k
+ wk now depends on the error

ee
k

:= x̂c
k
− x̂ce

k
. Due to this, ek+1|k and the remaining error

signals ec
k

:= xk − x̂c
k

and êce
k

:= xk − x̂ce
k

are coupled.

Remark 7 In order to calculate the assumed estimate x̂ce
k

,
other suboptimal policies based on additional information
such as the current measurement can be used. The approach
here (based solely on the drop-out probability) is simple to
implement but suboptimal. Alternative suboptimal schemes
in a slightly different context can be found in Dey et al.
(2015). Further, the choice of uk = Lx̂c

k
is also suboptimal

(see below), but allows a simple and straight forward im-
plementation.

4.2 Error Covariance Matrices and Kalman Filter

Defining Pe
k

:= E

{

ee
k

(

ee
k

)T
}

it follows

Pk+1 =APk|kAT + M + BLPe
kLTBT

+ BLE
{

ee
k

(

ek|k
)T

}

AT + AE

{

ek|k
(

ee
k

)T
}

LTBT. (23)

Note that Pk+1 depends on the controller matrix L and Pe
k

and the cross-correlation matrix E

{

ee
k

(

ek|k
)T

}

. Below we de-

rive some approximate expressions for Pe
k

and the cross-

correlation matrix P̃corr
k
= E

{

ee
k

(

ek|k
)T

}

, and show that they

can be asymptotically neglected if the packet loss probabil-
ity for the ACK/NACK channel, P{βk = 0} = (1 − η) ≈ 0.

To this end, we use (8) and (22), and ûk−1 = Lx̂ce
k−1

to
first derive that when βk = 1, ee

k
= (1 − γk)(A + BL)ee

k−1
.

Similarly, when βk = 0, we have

ee
k = (γk − λk)x̂k + (A + BL)

[

(1 − γk)x̂c
k−1 − (1 − λk)x̂ce

k−1

]

where we have used for simplicity, λk = P{γk = 1|gk,Ek} :=
h(gkEk). This allows us to write (after some algebra)

Pe
k = η(1 − λk)(A + BL)Pe

k−1(A + BL)T + (1 − η)

×
[

λk(1 − λk)2
E

(

x̂k + (A + BL)x̂ce
k−1

) (

x̂k + (A + BL)x̂ce
k−1

)T

+(1 − λk)E(−λk x̂k + (A + BL)(x̂c
k − (1 − λk)x̂ce

k−1)

× (−λk x̂k + (A + BL)(x̂c
k − (1 − λk)x̂ce

k−1)T
]

(24)

It is obvious that the second term on the right hand side
following the multiplication factor (1 − η) is difficult to
compute explicitly. Under the assumption that (1 − η) ≈ 0,
we can approximate the above equation as Pe

k
= η(1 −

λk)(A + BL)Pe
k−1

(A + BL)T, and since (A,B) is controllable
with (A + BL) stable, it automatically follows that Pe

k
→ 0

as k → ∞.

Now, using the state-space model (1), (2) and (3), we
can also write

ek|k = (I − K∞C)(Aek−1|k−1 + BLee
k−1) − K∞vk + wk

where K∞ is the steady state Kalman prediction gain at the
transmitter. Again, using the approximation ee

k
≈ (1−γk)(A+

BL)ee
k−1

, we can obtain the following approximation for the

cross-correlation matrix P̃corr
k
= E

{

ee
k

(

ek|k
)T

}

:

P̃corr
k = (1 − λk)(A + BL)

[

Pe
k−1LTBT(I − K∞C)T

+P̃corr
k−1 AT(I − K∞C)T

]

≈ (1 − λk)(A + BL)P̃corr
k−1 [(I − K∞C)A]T, k → ∞

where the last line follows since Pe
k
→ 0 as k → ∞. Since

(A,C) is also observable, we know from Kalman filteirng
theory that the standard Kalman prediction error and hence
the standard Kalman filtering error for the state space sys-
tem observed at the transmitter becomes zero-mean asymp-
totically. This implies that (I − K∞C)A must also be stable.
Therefore, it follows directly from the last line of the above
equation that P̃corr

k
→ 0 as k → ∞, since both (A + BL) and

(I − K∞C)A are stable matrices. Thus, asymptotically, from
(23), Pk+1 is approximated by P̃k+1 = AP̃k|kAT + M.

Following similar steps as in the perfect channel feed-

back case leads to P̃k|k = P̃k−1−P̃k−1CT
(

CP̃k−1CT + N
)−1

CP̃k−1.

Hence, due to these simplifications, it follows that P̃k|k also
approaches P∞ as in the perfect channel feedback case.
However, whereas Pk|k describes the true error covariance
matrix at the transmitter in the perfect channel feedback
case, P̃k|k in the imperfect channel feedback case is merely
an approximation of the true, unknown Pk|k. It can further
be shown that the error covariance matrix Pc

k
in the case

of imperfect channel feedback can be approximated by

P̃c
k
= γkP∞ + (1 − γk)

(

APc
k−1

AT + M
)

and Pce
k

is approxi-

mated by

P̃ce
k = (βkγk + (1 − βk)h(gkEk)) P∞ (25)

+ (βk(1 − γk) + (1 − βk)(1 − h(gkEk)))
(

AP̃ce
k−1AT + M

)

Note that this simplification is achieved by ignoring the term
BLPe

k−1
LTBT and a variety of mixed terms containing ee

k−1
,

ece
k−1

and ek|k. Hence, the approximation might differ signif-
icantly from the true Pce

k
, but allows simple calculations.

4.3 Suboptimal Controller Design and Energy Allocation

Note that in case of imperfect acknowledgements the
separation principle does not hold since the estimate and the
estimation error covariance matrix in (23) and the error co-
variance matrix of the assumed controller error Pce

k
depend

on the controller matrix L. Hence, it is not optimal to de-
sign the estimator, the LQR controller and the energy allo-
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cation policy separately as done in Section 3, and the opti-
mal control is in general nonlinear. However, assuming that
the probability of dropping the acknowledgement is small, a
suboptimal linear controller uk = Lx̂c

k
(using L = L∞ for the

perfect channel feedback case) can still be used. A simple,
suboptimal energy allocation policy at the transmitter can
be realized using the look-up table created for the perfect
channel feedback case. Since the error covariance matrix at
the receiver is not perfectly known at the transmitter, the
optimal energy allocation from the look-up table for setting
Pc

k
= Pce

k
is used. Numerical results in Section 6 show that

the suboptimal policy performs well compared to the perfect
channel feedback case.

5 Suboptimal Energy Allocation Policies

5.1 Q-Learning

The Bellman equation (20) cannot be used if some of the
system parameters are not known, such as, for instance, the
transition probabilities of the Markov chains generating the
channel gains or the energy harvesting process. Hence, find-
ing algorithms, which do not rely on the complete knowl-
edge of the system, is an important task. Assume that the
state space is discrete or can be discretized. Since the fading
channel gains and harvested energy are independent Markov
chains, the Q-Bellman equation yields

Q∗(Pc,g,H,B,E) = E
{

tr
(

Pc)}+ (26)
∑

g̃,H̃,B̃

P(g̃|g)P(H̃|H)P(B̃|B,H,E) min
Ẽ∈A(B̃)

Q∗(P̃c,g̃,H̃,B̃,Ẽ)

where A(B̃) is the set of all feasible choices of Ẽ given B̃.
(26) can be solved using the stochastic approximation based
Q-learning algorithm, Sutton & Barto (1998), Prabuchan-
dran et al. (2013). Assuming that the probabilities P(g̃|g),
P(H̃|H) and P(B̃|B,H,E) are unknown, it is

Q0(Pc,g,H,B,E) = 0 ∀Pc,g,H.B and E ∈ A(B), (27)

Qk+1(Pc,g,H,B,E) = Qk(Pc,g,H,B,E)+ γ(k) (28)

·
(

E
{

tr
(

Pc)} + min
Ẽ∈A(B̃)

Qk(P̃c,g̃,H̃,B̃,Ẽ) − Qk(Pc,g,H,B,E)

)

for all k ≥ 0, where {P̃c,g̃,H̃,B̃,Ẽ} is the next state, and
{Pc,g,H,B,E} is the previous state at which E ∈ A(B) is

E =

{

argminE∈A(B) Qk(Pc,g,H,B,E) w/ prob. 1 − ǫ
chosen randomly ∈ A(B) w/ prob. ǫ

(29)

The algorithm in (28) converges to the optimal Q values if
the step sizes γ(k) satisfies

∑

k γ(k) = ∞ and
∑

k γ
2(k) < ∞,

and the convergence is guaranteed for all ǫ > 0, Sutton &
Barto (1998), Prabuchandran et al. (2013).

5.2 Heuristic policies

It is desirable to find suboptimal policies, that require less
computational effort than solving (20). One very simple sub-

optimal policy is a “greedy policy” which sets Ek = Bk,∀k. A
second simple heuristic policy is the “inverted channel pol-
icy”. Assume the required transmission energy such that the
expected drop-out probability of the communication channel
with channel gain gk is equal to a desired probability γ̄, is
denoted by Eγ̄(γ̄,gk). Then, the inverted channel energy allo-
cation policy follows the simple rule Ek = min{Bk,Eγ̄(γ̄,gk)}.
6 Numerical Examples

Example 1: A scalar system with parameters A = 1.1,
B = 1, C = 1, M = 1, N = 1 and Px0

= 1 is consid-
ered. It is assumed that the sensor uses a binary phase shift
keying (BPSK) transmission scheme, Proakis (2001), with
b = 4 bits per packet. Hence, P{γk = 1|gk,Ek} = h(gkEk) =
(

∫

√
gk Ek

−∞
1√
2π

e−t2/2dt

)b

. The battery capacity is varied between

1mW and 5mW. The fading channel gain and harvested
energy are given by independent 3-level discrete Markov
chains with values {0,0.5,1} and {0,1,2}, respectively, and the
transition probability matrix for both processes is taken to
be the same T = [0.2, 0.3, 0.5; 0.3, 0.4, 0.3; 0.1, 0.2, 0.7].

Eight scenarios have been simulated. In the first three
scenarios, the optimal solution is obtained using dynamic
programming to solve the Bellman optimality equation.
Sending measurements vs. sending estimates and perfect
vs. imperfect channel feedback with η = 0.8, is considered.
In the scenarios 4,5 and 6 the Q-learning algorithm is used
and the current state estimate is sent via the communication
channel. The learning horizon is increased from 104 (QL1)
to 106 (QL2) and to 108 (QL3). Scenarios 7 and 8 consider
the two heuristic policies described in Section 5.2. In sce-
nario 7, the greedy policy is used whereas in scenario 8 the
inverted channel policy with γ̄ = 0.7 is used. The average
control cost J for all scenarios (for 106 time steps) is shown
in Fig. 2. It can be observed that for dynamic program-
ming (DP) and Q-learning J decreases from 0.7 − 0.77 to
0.4−0.42 for DP and from 1.08 to 0.49 for QL3 if the battery
level increases from 1mWh to 5mWh. As expected, sending
measurements leads to a slightly worse performance (that
is, J ≈ 0.42 − 0.77 for different battery limuts) compared
to sending the state estimate (J ≈ 0.4− 0.7). When sending
state estimates, J for the scenario with η = 0.8 differs at
most 10% from the scenario with perfect channel feedback.
When the learning horizon of the Q-learning algorithm in-
creases, J also decreases by up to 30% comparing QL1 and
QL3 but lies at best still 15% above J obtained by using
dynamic programming. The two heuristic policies perform
much better than the Q-learning algorithm for B̄ = 1mWh,
that is J = 0.71 and J = 0.77 vs. J = 1.08 but for the
heuristics J stays constant at 0.5 when B̄ lies between 2 and
5mWh. A small increase in the average control cost with
increasing B̄ for the case of QL1 can be attributed to numer-
ical inaccuracies due to insufficient number of discretization
levels for the receiver error covariance values. This can be
rectified by using larger number of discretization levels and
averaging over increased number of independent simulation
runs, but at the cost of increased computational time.

Example 2: The system dynamics are chosen as in Ex-
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Figure 2. Example 1: J vs. B̄,‘mes’ = send measurements, ‘est’
= send estimates, ‘PF’ = perfect channel feedback, ‘IF’ = imper-
fect channel feedback, ‘QL’ = Q-learning horizon, ‘GP’ = greedy
policy, ‘IC’ = inverted channel policy

ample 1 but setting A = 1.25 such that the critical packet ar-
rival rate to guarantee stability for perfect channel feedback
is 0.36. The values of the channel gains are chosen as multi-
ples of {0,1,2} to vary the average forward packet arrival rate.
Fig. 3 shows the simulation results for using the lookup ta-
ble obtained from dynamic programming (‘DP’) and for the
constant energy allocation policy (‘CE’) Ek = min{Bk,H̄},
where H̄ is the average harvested energy. In both cases, it can
be observed that when the average channel gain is decreased
such that the average forward packet arrival rate decreases
below the critical rate h̄ = 0.36, the average control cost
increases to values of J above 4 and grows without bound
as h̄ approaches 0. Further, the average control cost slightly
increases when lowering η from 0.9 to 0.5 for both energy
allocation policies. Using the energy allocation lookup table
calculated for the perfect channel feedback case in case of
imperfect channel feedback case, yields acceptable simula-
tion results. Despite the solution being suboptimal, it out-
performs simple heuristic policies.

7 Conclusions

We studied a linear control system with a packet drop-
ping link between the smart sensor and the controller. Since
the link is a time-varying fading channel, the probability of
receiving the current state estimate is time-varying. The re-
ceiver at the controller sends an ACK/NACK packet to the
transmitter to acknowledge the arrival of the packet. The ac-
knowledgement channel is assumed to be prone to losses.
The transmitter at the sensor is equipped with a finite battery
and an energy harvester. The objective is to design a jointly
optimal sensor transmission energy allocation and optimal
control policy to minimize an infinite-horizon LQG control
cost.

When assuming perfect channel feedback, the separa-
tion principle holds. Hence, the Kalman filters at the sen-
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Figure 3. Example 2: J vs. h̄; ‘DP’ = energy allocation according
to solution of dynamic programming, ‘CE’ = constant energy
allocation policy

sor and a linear controller are optimal, and the transmission
energy allocation policy can be obtained by standard dy-
namic programming techniques for solving the average-cost
optimality equation. In case the acknowledgement channel
is imperfect, the separation principle no longer holds. This
implies that the optimal estimator and controller might no
longer be linear. Yet, numerical studies revealed that when
adjusting the estimator, controller and energy allocation pol-
icy obtained for the case of perfect channel feedback, the
average control cost only increase slightly in case of imper-
fect channel feedback.

In case certain underlying system parameters such as the
transition probabilities of the associated Markov chains are
unknown, we employ Q-learning based suboptimal energy
allocation algorithms. We also proposed two simple heuris-
tic energy allocation algorithms. All algorithms are com-
pared by numerical studies illustrating that the optimal en-
ergy allocation policy obtained by dynamic programming
outperforms several suboptimal policies.

References

Akyildiz, I., Su, W., Sankarasubramaniam, Y. & Cayirci, E.
(2002), ‘A survey on sensor networks’, IEEE Commun.
Mag. 40(8), 102–114.

Astrom, K. & Bernhardsson, B. (2002), Comparison of rie-
mann and lebesgue sampling for first order stochastic sys-
tems, in ‘Proc. 41st IEEE Conf. on Decision and Control’,
pp. 2011–2016.

Bertsekas, D. (1995), Dynamic Programming and Optimal
Control, Vol. 1, Athena Scientific.

Chong, C.-Y. & Kumar, S. (2003), ‘Sensor networks:
Evolution, opportunities and challenges’, Proc. IEEE
91(8), 1247–1256.

Dey, S., Chiuso, A. & Schenato, L. (2015), Linear encoder-
decoder-controller design over channels with packet loss
and quantization noise, in ‘ECC’.

Epstein, M., Shi, L., Tiwari, A. & Murray, R. (2008), ‘Prob-

9



abilistic performance of state estimation across a lossy
network’, Automatica 44(12), 3046–3053.

Gungor, V. & Hancke, G. (2009), ‘Industrial wireless sensor
networks: Challengesm design, principles and technical
approaches’, IEEE Trans. Ind. Electron. 56(10), 4258–
4265.

Gungor, V., Lu, B. & Hancke, G. (2010), ‘Opportunities
and challenges of wireless sensor networks in smart grid’,
IEEE Trans. Ind. Electron. 57(10), 3557–3564.

Gupta, V., Hassibi, B. & Murray, R. (2007), ‘Optimal LQG
control across packet-dropping links’, System and Control
Letters 56(6), 439–446.

Hernández-Lerma, O. & Lasserre, J. B. (1996), Discrete-
Time Markov Control Processes: Basic Optimality Crite-
ria, Springer-Verlag, New York.

Ho, C., Khoa, P. & Ming, P. (2010), Markovian models for
harvested energy in wireless communications, in ‘IEEE
Intern. Conf. Comm. Systems’, pp. 311–315.

Ho, C. & Zhang, R. (2012), ‘Optimal energy allocation
for wireless communications with energy harvesting con-
straints’, IEEE Trans. Signal Process. 60(9), 4808–4818.

Huang, M. & Dey, S. (2006), ‘Dynamic quantizer design
for hidden Markov state estimation via multiple sensors
with fusion center feedback’, IEEE Trans. Signal Process.
54(8), 2887–2896.

Huang, M. & Dey, S. (2007), ‘Stability of Kalman filtering
with Markovian packet losses’, Automatica 43(4), 698–
607.

Liu, X. & Goldsmith, A. (2004), Kalman filtering with par-
tial observation losses, in ‘CDC’, pp. 4180–4186.

Mo, Y. & Sinopoli, B. (2008), A characterization of the crit-
ical value for Kalman filtering with intermittent observa-
tions, in ‘CDC’, pp. 2692–2216.

Molin, A. & Hirche, S. (2014), ‘On the optimality of cer-
tainty equivalence for event-triggered control systems’,
58(2), 470–474.

Nourian, M., Leong, A. & Dey, S. (2014), ‘Optimal energy
allocation for Kalman filtering over packet dropping links
with imperfect acknowledgments and energy harvesting
constraints’, IEEE Trans. Autom. Control 59(8), 2128–
2143.

Nourian, M., Leong, A., Dey, S. & Quevedo, D. (2014), ‘An
optimal transmission strategy for kalman filtering over
packet dropping links with imperfect acknowledgements’,
IEEE Trans. Control Netw. Syst. 1(3), 259–271.

Ozel, O., Tutuncuoglu, K., Yang, J., Ulukus, S. & Yener,
A. (2011), ‘Transmission with energy harvesting nodes in
fading wireless channels: Optimal policies’, IEEE J IEEE
J. Sel. Areas Commun. 29(8), 1732–1743.

Prabuchandran, K. J., Meena, S. & Bhatnagar, S. (2013), ‘Q-
learning based energy management policies for a single
sensor node with finite buffer’, IEEE Wireless Commun.
Let. 2(1), 82–85.

Proakis, J. (2001), Digital Communications, 4th edn, New
York: McGraw-Hill.

Quevedo, D., Ahlén, A. & Johansson, K. (2013), ‘State esti-
mation over sensor networks with correlated wireless fad-
ing channels’, IEEE Trans. Autom. Control 58(3), 581–
593.

Quevedo, D., Ahlén, A., Leong, A. & Dey, S. (2012), ‘On
Kalman filtering over fading wireless channels with con-
trolled transmission powers’, Automatica 48(7), 1306–
1316.

Quevedo, D., Ahlén, A. & Østergaard, J. (2010), ‘Energy
efficient state estimation with wireless sensors through the
use of predictive power control and coding’, IEEE Trans.
Signal Processing 58(9), 4811–4823.

Sadeghi, P., Kennedy, R., Rapajic, P. & Shams, R. (2008),
‘Finite-state markov modeling of fading channels - a sur-
vey of principles and applications’, IEEE Signal Process-
ing Magazine 25(5), 57–80.

Schäl, M. (1993), ‘Average optimality in dynamic program-
ming with general state space’, Mathematics of Opera-
tional Research 18(1), 163–172.

Schenato, L. (2008), ‘Optimal estimation in networked con-
trol systems subject to random delay and packet drop’,
IEEE Trans. Autom. Control 53(5), 1311–1317.

Schenato, L., Sinopoli, B., Franceschetti, M., Poolla, K. &
Sastry, S. (2007), ‘Foundations of control and estimation
over lossy networks’, Proc. IEEE 95(1), 163–187.

Sharma, V., Mukherji, U., Joseph, V. & Gupta, S. (2010),
‘Optimal energy managment policies for energy harvest-
ing sensor nodes’, IEEE Trans. Wireless Commun. 9(4).

Shi, L., Cheng, P. & Chen, J. (2011), ‘Sensor data scheduling
for optimal state estimation with communication energy
constraints’, Automatica 47(8), 1693–1698.

Sijs, J. & Lazar, M. (2012), ‘Event based state estimation
with time synchronous updates’, IEEE Transactions on
Automatic Control 57(10), 2650–2655.

Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K.,
Jordan, M. & Sastry, S. (2004), ‘Kalman filtering with
intermittent observations’, IEEE Trans. Autom. Control
49(9), 1453–1464.

Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K.
& Sastry, S. (2004), Time varying optimal control with
packet losses, in ‘CDC’, pp. 1938–1943.

Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K. &
Sastry, S. (2005a), LQG control with missing observation
and control packets, in ‘IFAC World Congress’.

Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K. &
Sastry, S. (2005b), An LQG optimal linear controller for
control systems with packet losses, in ‘CDC’, pp. 458–
463.

Sinopoli, B., Schenato, L., Franceschetti, M., Poolla, K. &
Sastry, S. (2005c), Optimal control with unreliable com-
munication: the TCP case, in ‘ACC’, pp. 3354–3359.

Sutton, R. & Barto, A. (1998), Reinforcement learning: An
introduction, Cambridge Univ Press.

Tutuncuoglu, K. & Yener, A. (2012), ‘Optimum transmis-
sion policies for battery limited energy harvesting nodes’,
IEEE Trans. Wireless Commun. 11(3), 1180–1189.

Xu, Y. & Hespanha, J. (2005), Estimation under uncontrolled
and controlled communications in networked control sys-
tems, in ‘CDC’, pp. 842–847.

Yang, J., Ozel, O. & Ulukus, S. (2012), ‘Broadcasting
with an energy harvesting rechargeable transmitter’, IEEE
Trans. Wireless Commun. 11(2), 571–583.

10


