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The Performance and Limitations of ε-Stealthy Attacks
on Higher Order Systems
Enoch Kung, Subhrakanti Dey, and Ling Shi

Abstract—In a cyber-physical system, security problems
are of vital importance as the failure of such system can
have catastrophic effects. Detection methods can be em-
ployed to sense the existence of an attack. In a previous
study of an attack on the controller while avoiding detection
in scalar systems under a certain control assumption, the
notion of ε-stealthiness was introduced and the strength of
ε-stealthy attacks was fully characterized. We generalize to
the vector system and prove the cases in which we show
that the limitations of ε-stealthy attack do not extend, in
the sense that ε-stealthy can inflict damage of arbitrary
magnitude to a vector system.

Index Terms—Cyber-physical systems, detection, secu-
rity.

I. INTRODUCTION

In a wireless cyber-physical system (CPS), remote estimation plays
a vital role in approximating the system state. However, this set up is
open to many forms of potential cyber or physical attacks. Therefore,
it is essential for one to devise an accurate estimation method as well
as study the effects of attack on a given system. This note will be about
the latter.

The security of a CPS is and will continue to be a central topic of
study. Communication, transportation, and utility networks are just a
few examples of vital systems to modern society. Wireless communi-
cation increases the scale of the CPS cheaply but exposes the system
to unconventional problems. The compromising of security such as the
case of the Maroochy Water Breach [5] and the SQL Slammer worm
attack on the nuclear plant [6] emphasizes the importance to study CPS
security.

In a typical control system, a plant, sensor and estimator re-
quire constant communication, while exposed to natural or malignant
sources of corruption. Attackers choose the form and the placement
of the attack based on their own ability and purpose. For example, a
denial-of-service attack [7] simply prevents a packet of information
from successfully transmitting, decreasing the estimation quality. An
attacker may also replace the transmitted packet with malicious infor-
mation [4] further leading the system astray. Therefore, methods of
defense must be developed to ensure an acceptable degree of system
performance.

One line of defense is to detect the presence of an attack. A detection
policy is a protocol in which an estimator decides whether the received
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data is corrupted. For instance, with a false data injection attack with
multiple sensors, a sensor network can verify the validity of one
sensor’s data by its neighboring sensors [2], [3]. Detection imposes on
the attacker a tradeoff; it must maximize its attack but remain invisible.

In [1], a scalar control system under a control assumption is consid-
ered in which an attacker may alter the control input constructed by
the estimator. The authors then introduced the notion of ε-stealthiness;
the attacker remains undetected if the corrupted output does not differ
from a reference exceeding ε under KL divergence. Under such a
detection, the paper provides an ε-stealthy attack which maximizes the
average error covariance. Because it is much more practical to study
vector systems, a worthwhile task is to explore these results in a system
of higher dimensions and study if, and the extent to which, these results
carry over.

In this work, we consider the control system in [1] in a multivariate
setting, where an attacker may launch an ε-stealthy attack. Two scenar-
ios are analyzed. One is when the state and output variables are equal
in length and the other is when the state vector is longer than the output
vector. In these two cases, the effect of ε-stealthy attacks are different.
The tradeoff between the magnitude of damage inflicted to the system
and the stealthiness of such attack is only evident in the former case,
but not the latter. The main contributions are as follows:

1) In the former scenario, we will provide an upper bound to
the average covariance achievable by an ε-stealthy attack. An
ε-stealthy attack is constructed that achieves our upper bound.
Along the way, the relationship between this upper bound and
the system parameters, which was not evident in the scalar case,
is made explicit.

2) In the latter case, we construct a stealthy attack which is ca-
pable of setting the average covariance to be arbitrarily large,
thereby proving that there exists no upper bound to the average
covariance similar to the one in the previous case.

The note is organized as follows. In Section II, the problem will be
formulated after a brief summary of the concepts in [1]. Section III
presents the main results, along with their proofs. A numerical simu-
lation of the results is given in Section IV. The conclusion is given in
the end.

Notations: Throughout this note, Rm×n represents the set of m×
n real matrices. Let X ′ be the transpose of X and N (μ,Σ) a Gaussian
distribution with mean μ and covariance Σ. Denote the set of n× n
symmetric matrices by Sn, the set of positive semi-definite matrices
by Sn

+, and the set of positive definite matrices by Sn
++. Suppose X ∈

Sn
++, then X1/2 is the positive definite square root of X . Define also

the function δ(x) to be the greater solution to the equation δ(x) =
2x+ 1 + log δ(x).

II. PRELIMINARIES

A. Kalman Filter

Consider the system

xk+1 =Axk +Buk + wk

yk =Cxk + vk
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where A,B∈R
n×n, xk, uk, wk ∈ R

n, C ∈ R
m×n, and yk, vk ∈ R

m.
The noise variables wk, vk are independent and follow the distribu-
tions N (0, Q) and N (0, R), respectively. The initial state x0 is a
zero-mean Gaussian variable that is independent of wk and vk . It
is assumed that (A,C) is observable and (A,Q1/2) is controllable.
These parameters are known to both the estimator and the attacker.

The matrix B is assumed, similar to [1], to be invertible. Further-
more, for simplicity, B can be considered to be I . This does not hinder
the results, and will only slightly affect the form of the constructed
attack in Theorem III.3.ii and in Theorem III.4.

The problem of estimating the state xk given the output vector yk is
solved by the Kalman filter. The Kalman filter is a set of equations from
which an estimate x̂k can be obtained such that the error covariance
between x̂k and xk is minimized; this estimate is named the minimum
mean-squared error (MMSE) estimate. Writing

x̂k =E[xk|y1, . . . , yk]
Pk =E [(xk − x̂k)(xk − x̂k)

′|y1, . . . , yk]

the Kalman filter are as follows:

x̂k+1 =Ax̂k +Kk(yk −CAx̂k) + uk

Pk+1|k =APkA
′ +Q

Kk+1 =Pk+1|kC
′[CPk+1|kC

′ +R]
−1

Pk+1 =(I −KkC)Pk+1|k

where Kk is the Kalman gain.
By the observability and controllability conditions mentioned, the

terms {Kk} and {Pk} converges exponentially to a steady-state
Kalman gain K and error covariance P , respectively. Hence, we may
assume steady-state has been achieved. The steady-state covariance P
is positive semi-definite solution to g ◦ h(X) = X , where

g(X) =X −XC′[CXC′ +R]
−1

CX

h(X) =AXA′ +Q

and K = h(P )C′[Ch(P )C′ +R]−1.

B. Attack Model

We employ a model in which the attacker corrupts the control vector
by altering it arbitrarily. Denote by Ik to be the attacker’s information
set at time k. The set Ik must satisfy:

1) uk ∈ Ik for all k;
2) Ik ⊂ Ik+1;
3) Ik is independent of all noise {vi}∞1 and {wi}∞1 .

The system dynamics can be written as

x̃k+1 =Ax̃k + ũk +wk

ỹk =Cx̃k + vk (1)

assuming C is full rank, and the estimation equation is

x̂k+1 = Ax̂k +Kzk + uk. (2)

The term zk = yk − Cx̂k ∼ N (0, CPC′ +R) is the innovation. In
absence of an attack, this estimation is the MMSE estimate. However,
since the plant is now influenced by the corrupted control, the estima-
tion is no longer optimal.

The sub-optimal estimator leads to a higher estimation error, and it
is the objective of the attack to maximize this error, which is quantified
by the performance metric

J = lim sup
k→∞

1

k

k∑
i=1

trP̃i

where P̃i = E[(x̃k − x̂k)(x̃k − x̂k)
′]. This metric is the average error

covariance over an infinite time horizon.

C. Stealth Model

We will give a brief outline of ε-stealthiness as described in [1]. The
estimator, not knowing the presence nor the style of attack performed
upon it, may establish a detection policy based on the output vectors
{yi}k1 to raise alarms when there is evidence of an attacker’s presence.

At time k, the estimator obtains the outputs {y1, . . . , yk}, which it
uses to perform a hypothesis test on the two hypotheses

H0 : Attack does not exist

H1 : Attack exists.

Writing

Pk(H1|H0) = pFA
k (False Alarm)

Pk(H1|H1) = pDk (Detection)

the definition of ε-stealthiness is introduced in the following.
Definition II.1 (ε-Stealthiness) [1]: For 0 < δ < 1, an attack is

ε-stealthy if for any detector that satisfies 0 < 1− pDk ≤ δ

lim sup
k→∞

− 1

k
log

(
pFA
k

)
≤ ε.

It is proven in the paper that this is equivalent to the following
condition.

Definition II.2: A sequence of attacks {uk} is ε-stealthy for the
resulting innovations {z̃k1}

lim sup
k→∞

1

k
D

(
z̃k1‖zk1

)
≤ ε

where D(z̃k1 ‖zk1 ) is the KL divergence between z̃k1 and zk1 , i.e.,

D
(
z̃k1‖zk1

)
=

∞∫
−∞

log
fz̃

(
zk1

)
fz

(
zk1

)fz̃ (
zk1

)
dzk1 .

The KL divergence describes the “difference” between two distri-
butions. Here, the ε parameter acts as a degree of tolerance for the
difference between the z̃k1 , which is the innovation corrupted by attack,
and zk1 , which is the innovation if not under attack. Hence the attacker
avoids being detected if its attack can retain this difference under ε.

D. Problem Setup

Given the system (1) and estimator (2), the goal is to find the max-
imum of J that can be afflicted on the system by an ε-stealthy attack.
This question is answered for the scalar case m = n = 1 in [1], where
an upper bound to J is calculated and a stealthy attack is constructed
that reaches this bound.

In this note, we continue to look at the optimization

maxJ = max
u∞
1

lim
k→∞

1

k

k∑
i=1

trP̃i where {u∞
1 } is ε− stealthy

It will be shown, however, that higher order systems are not as tame
and similar results do not always hold. In particular, if m < n, the
ε-stealthy criterion does not limit the power of the attack, in the sense
that there exists an ε-stealthy attack that can make J arbitrarily large.
The answer provided in [1] can be extended nicely only for the case
where m = n.
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III. RESULTS

As oppose to the scalar case, the vector system can be divided
into two cases: m = n and m < n. The case in which m > n is in
fact a subcase of m = n. The former case is solved by providing an
upper bound of J and the optimal ε-stealthy attack that reaches the
bound. For the latter case, we will prove that the attacker can design an
ε-stealthy attack of arbitrary power.

A. m = n

We begin the analysis by defining several terms

P̃i =E [(x̃i − x̂i)(x̃i − x̂i)
′] , Θ̃i = CP̃iC

′ +R

Σ =CPC′ +R, Dk =
1

k
D

(
z̃k1‖zk1

)
Ui =E[ũi − ui].

Remark: Θ̃i is not the covariance of the distribution of z̃i because
Θ̃i = E[z̃iz̃

′
i] and it is not assumed that the mean of z̃i is 0, unlike the

Kalman innovation zi.
An attack is stealthy if the innovation it produces, {z̃k1}, satisfies

lim
k→∞

1

k
D

(
z̃k1‖zk1

)
= lim

k→∞
Dk ≤ ε.

The term Dk can be expanded, after considerable calculation, to be

Dk = − 1

k
h

(
z̃k1

)
+

1

2
log ((2π)n|Σ|) + 1

2k

k∑
i=1

tr Σ−1Θ̃i. (3)

Here, h(z̃k1 ) is the differential entropy of z̃k1 . We may then obtain the
inequality

1

2k

k∑
i=1

tr Σ−1Θ̃i =Dk +
1

k
h

(
z̃k1

)
− 1

2
log ((2π)n|Σ|)

≤Dk +
1

k

k∑
i=1

h(z̃i)−
1

2
log ((2π)n|Σ|)

≤Dk +
1

2k

k∑
i=1

log
[
(2πe)n|Σ̃i|

]

− 1

2k

k∑
i=1

log ((2π)n|Σ|)

=Dk +
n

2
+

1

2
log

(
k∏

i=1

|Σ−1Σ̃i|
) 1

k

≤Dk +
n

2
+

1

2
log

(
k∏

i=1

|Σ−1Θ̃i|
) 1

k

.

The final inequality is justified as follows. By the equation E[(x−
μ)(x− μ)′] = E[xx′]− μμ′, the covariance of z̃i is Σ̃i = Θ̃i −
CUiU ′

iC
′. Since CUiU ′

iC
′ is positive semidefinite, the inequality

Θ̃i ≥ Σ̃i holds. Furthermore, both Θ̃i and Σ̃i are positive definite,
hence |Θ̃i| ≥ |Σ̃i|. The inequality follows by the fact that log is an
increasing function. The others are results of the subadditivity of
differential entropy and the maximum entropy theorem [1].

It is a known fact that the eigenvalues of Σ−1Θ̃i are equiv-
alent to those of Σ−(1/2)Θ̃iΣ

−(1/2). Denote the eigenvalues of
Σ−(1/2)Θ̃iΣ

−(1/2) by λij. Translating the above inequality using
these eigenvalues, we have

1

2k

∑
i,j

λij ≤ Dk +
n

2
+

1

2k

∑
i,j

log λij. (4)

The following two lemmas are useful tools in the proof of the the
main result.

Lemma III.1: If {λij} satisfies the equality of (4), then there exists
{εij} such that

λij = δ(εij) and
1

k

∑
i,j

εij = Dk.

Proof: If equality of (4) holds, then it is not possible for all i, j
to satisfy

1

2
λij >

Dk

n
+

1

2
+

1

2
log λij.

Without losing generality, assume that

1

2
λ11 ≤ Dk

n
+

1

2
+

1

2
log λ11.

Since it is also known that

1

2
λ11 ≥ 1

2
+

1

2
log λ11

there must exist ε11 ∈ [0, Dk/n] such that

1

2
λ11 = ε11 +

1

2
+

1

2
log λ11

that is,λ11=δ(ε11). This can be subtracted from both sides of (4) to get

1

2k

∑
(i,j) �=(1,1)

λij=(Dk − ε11)+

(
n

2
− 1

2k

)
+

1

2k

∑
(i,j) �=(1,1)

log λij.

Repeat the same reasoning to obtain subsequent values of εij such that
λij=δ(εij). Plugging this back to (4) so that equality is satisfied, then

Dk +
n

2
+

1

2k

∑
i,j

log λij =
1

2k

∑
i,j

λij =
1

2k

∑
i,j

δ(εij)

=
1

2k

∑
i,j

[2εij + 1 + log δ(εij)]

=
1

2k

∑
i,j

[2εij + 1 + log λij].

Canceling terms on both sides results in

kDk =
∑
i,j

εij.

�
Lemma III.2: Let X = (xij) ∈ Sn

++ with its eigenvalues s1 ≥
· · · ≥ sn ≥ 0 and Y ∈ Sn with eigenvalues y1 ≥ · · · ≥ yn. Then

tr(XY ) ≤ s1y1 + · · ·+ snyn.

Proof: By the symmetry of Y , there exists orthogonal Q such
that Y = QȲ Q′, where Ȳ = diag (y1, . . . , yn). Then tr(XY ) =
tr(Q′XQȲ ). Since Q′XQ is positive semi-definite, it can be as-
sumed without loss of generality that Y is already diagonal.

Suppose xk for k = 1, . . . , n are the diagonal elements of X in
decreasing order. By the rearrangement inequality

tr(XY ) = x11y1 + · · ·+ xnnyn ≤ x1y1 + · · ·+ xnyn.

Furthermore, as X is symmetric, by the Schur-Horn Theorem [9],
the eigenvalues of X majorizes its diagonal, that is

r∑
j=1

xj ≤
r∑

j=1

sj , r = 1, 2, . . . , n.
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Then

tr(XY ) ≤x1y1 + · · ·+ xnyn

= yn

(
i∑

j=1

xj

)
+

n−1∑
i=1

(yi − yi+1)

(
i∑

j=1

xj

)

≤ yn

(
i∑

j=1

sj

)
+

n−1∑
i=1

(yi − yi+1)

(
i∑

j=1

sj

)

= s1y1 + · · ·+ snyn.

This lemma shows that the maximization of tr(XY ) rests solely on
properly selecting eigenvalues. �

The following theorem is the main result of this section.
Theorem III.3: Suppose m = n and C is invertible, its inverse

denoted by E. Then

i)

J = lim
k→∞

1

k

k∑
i=1

trP̃i ≤ trP +
n∑

j=1

sj
(
δ∗j (ε)− 1

)
.

where sj are the eigenvalues of Σ1/2E′EΣ1/2 with s1 ≥ · · · ≥
sn and δ∗j (ε) are defined by

sj
s1

=
1− 1

δ∗j

1− 1
δ∗1

and 2ε =

n∑
j=1

δ∗j − log δ∗j − 1.

ii) There exists an attack ũ∞
1 that the resulting P̃i achieves the

upper bound.

Proof of I: The proof of the theorem will be carried out in the
following way as we aim to bound trP̃i. Suppose that it is possible for
the bounding of trP̃i to be transformed to the bounding of tr(XY ),
where X ∈ Sn

++ is fixed by the system, and Y ∈ Sn is free to design
under constraint. Then the upper bound is dependent solely on the
eigenvalues of X and an appropriately selected eigenvalue of Y by the
second lemma. The first lemma then reveals the set of eigenvalues we
can choose from. From this set of eigenvalues, Lagrange multipliers
will be carried out to find the optimal eigenvalues that yields the
desired bound.

To transform the maximization problem, we notice that

trP̃i = trP + tr
(
E(Θ̃i − Σ)E′

)
= trP + tr

(
Σ

1
2 E′EΣ

1
2

(
Σ− 1

2 Θ̃iΣ
− 1

2 − I
))

. (5)

The first term is constant, hence we want to bound the second term.
The matrix Σ1/2E′EΣ1/2 ∈ Sn

++ and Σ−(1/2)Θ̃iΣ
−(1/2) − I ∈ Sn,

hence Lemma III.2. can be applied. The former term is fixed by system
parameters, whereas the second term includes Θ̃i, which is determined
by the attacker.

If we represent their eigenvalues as {sj} and {Λ̃j
i}, respectively,

listed in decreasing order, the lemma yields

tr
(
Σ

1
2E′EΣ

1
2

(
Σ− 1

2 Θ̃iΣ
− 1

2 − I
))

≤ Λ̃1
i s1 + · · ·+ Λ̃n

i sn. (6)

The remaining task is to maximize (6) through a correct selection of
{Λ̃j

i} while satisfying (4), i.e.,

−n

2
− 1

2k

∑
i,j

log
[(

Λ̃j
i + 1

)]
+

1

2

1

k

∑
i,j

[
1 + Λ̃j

i

]
≤ Dk. (7)

The expression on the left side is an increasing function for positive
Λ̃j

i , meaning that if the inequality is strict, one may increase any Λ̃j
i ,

which in turn increases (6). In other words, the optimal choice of Λ̃j∗
i

must satisfy equality of (7), paving the way for us to use Lemma III.1.
The lemma guarantees the existence of εij such that

1 + Λ̃j
i = δ(εij) and

1

k

∑
i,j

εij = Dk.

With these new terms, the maximization of (6) becomes

max
∑
i,j

sj (δ(εij)− 1) subject to
1

k

∑
i,j

εij = Dk. (8)

Recall that δ(x) solves δ(x) = 2x+ 1 + log δ(x), so the constraint
can be rephrased as

1

2k

∑
i,j

δ(εij)− 1− log δ(εij) = Dk

and instead of using εij as our variables, we can take δ(εij) to be the
variables. Naturally, Lagrange multipliers can be employed to solve
for optimal values δ∗(εij). Solving

∇
∑
i,j

sj (δ(εij)− 1) = η∇
(
1

2

∑
i,j

δ(εij)− 1− log δ(εij)

)

gives us the equation

(s1, . . . , sn) = η

(
1

2

[
1− 1

δ(ε11)

]
, . . . ,

1

2

[
1− 1

δ(εkn)

])
.

Thus the optimal values δ∗(εij) must satisfy the equations

sj
s1

=
1− 1

δ∗(εij)

1− 1
δ∗(ε11)

for all i, j

2Dk =

n∑
j=1

δ∗(εij)− log δ∗(εij)− 1

Note that these optimal values δ∗(εij) are dependent on Dk and j but
not on i, hence they can be denoted by δ∗j (Dk).

This results in the upper bound of (5)

trP̃i = trP+tr
(
Q′

iΣ
1
2E′EΣ

1
2QiΛ̃i

)
≤trP+

n∑
j=1

sj
(
δ∗j (Dk)−1

)

which immediately leads to

J = lim
k→∞

1

k

k∑
i=1

trP̃i

≤ lim
k→∞

1

k

k∑
i=1

[
trP +

n∑
j=1

sj
(
δ∗j (Dk)− 1

)]

= lim
k→∞

trP +
n∑

j=1

sj
(
δ∗j (Dk)− 1

)

= trP +
n∑

j=1

sj

(
δ∗j ( lim

k→∞
Dk)− 1

)

≤ trP +
n∑

j=1

sj
(
δ∗j (ε)− 1

)
.

�
Clearly, this proof extends the results from [1] because in the scalar

case, the eigenvalue of Σ1/2E′EΣ1/2 equals σ2
z/c

2 and δ∗j (ε) is
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simply δ(ε). Then, given that σ2
z = c2P + r

trP + s1
(
δ∗j (ε)− 1

)
=P +

σ2
z

c2
(δ(ε)− 1)

= δ(ε)P +
(δ(ε)− 1) r

c2
.

This is the result of [1].
Proof of II: In this proof, we first propose an attack. Then we

verify that it indeed reaches the upper bound stated in Theorem III.3.
and is ε-stealthy.

Define Q to be the matrix that diagonalizes Σ1/2E′EΣ1/2, i.e.,

Q′Σ
1
2 E′EΣ

1
2Q = S = diag (s1, . . . , sn).

Also, let {ζk} be a sequence of Gaussian random variables of
distribution N (0, EΣ1/2QΛQ′Σ1/2E′), where Λ = diag (δ∗1(ε)−
1, . . . , δ∗n(ε)− 1). Define an attack by

ũk = uk − (A−KC)ζk−1 + ζk (9)

with ζ1 = 0. To facilitate the verification of this construction’s validity,
define an intermediate process xs

k defined by

xs
k+1 = Axs

k +K (yk − Cxs
k) + ũk

with xs
1 = 0. This yields the MMSE estimate of the state xk, in

particular, E[(xs
k − xk)(x

s
k − xk)

�] = P . If ek = x̂k − xs
k, we have

z̃k = yk −Cx̂k = (yk −Cxs
k)−Cek

ek+1 =(A−KC)ek + (A−KC)ζk−1 − ζk. (10)

Given e1 = 0, the solution to the second recursion is ek = −ζk−1.
It can now be verified that

tr P̃i =E

[
(x̂i − xs

i )
� (x̂i − xs

i )
]
+E

[
(xs

i−xi)
� (xs

i−xi)
]

+ 2E
[
(x̂i − xs

i )
� (xs

i − xi)
]

= trP + tr E
[
eke

�
k

]
= trP + trSΛ

= trP +

n∑
j=1

sj
(
δ∗j (ε)− 1

)

and consequently

J = lim
k→∞

tr P̃i = trP +
n∑

j=1

sj
(
δ∗j (ε)− 1

)

which is our stated upper bound.
It remains to show that this attack is ε-stealthy. By (10), it is imme-

diate that z̃i ∼ N (0,Σ1/2[I +QΛQ′]Σ1/2). Since Σ̃i = Σ1/2[I +
QΛQ′]Σ1/2, a quick calculation shows

tr(Σ−1Σ̃i) = tr(I +Λ) =
n∑

j=1

δ∗j (ε)

|Σ−1Σ̃i| = |I +Λ| =
n∏

j=1

δ∗j (ε).

Plugging this into(3), noting that the differential entropy (1/k)h(z̃k1 ) =

(1/2) log(2πe)n(
∏k

i=1 |Σ̃i|)
1/k

if z̃k1 is Gaussian, we have

− n

2
− 1

2
log

(
k∏

i=1

|Σ−1Σ̃i|
) 1

k

+
1

2k

k∑
i=1

trΣ−1Σ̃i

= −n

2
− 1

2

n∑
j=1

log δ∗j (ε) +
1

2

n∑
j=1

δ∗j (ε) = ε.

If B is a general invertible matrix, then (9) would be rewritten as

Bũk = Buk − (A −KC)ζk−1 + ζk.

The attack would take the form

ũk = uk −B−1(A−KC)ζk−1 +B−1ζk.

�
Finally to settle the case n < m, suppose C ∈ R

m×n and full rank.
Intuitively, if C is one-to-one, then all of the information in the state
variable should roughly be encoded into the output, hence should not
be any different from the case when C is square. In detail, there exists
an invertible matrix row operation C̄ ∈ R

m×m such that

C = C̄

[
I

0

]

which when substituted into the system equations renders

yk = Cxk + vk = C̄

[
xk

0

]
+ vk.

Since C̄ is a square, full rank matrix, the results obtained in this section
extends to this scenario.

B. m < n

In this section, it will be shown that the detection employed by the
estimator is not effective in a vector system against ε-stealthy attacks
in the sense that there exist an ε-stealthy attack that can arbitrarily
increase J .

Theorem III.4: Let m < n and assume that C is full rank. There
exists an attack ũ∞

1 such that from its produced error covariance {P̃i},
the performance metric J can be arbitrarily large.

Proof: Note that by the surjectivity of C, there exists an
invertible matrix C̄ such that C = [I 0]C̄ . Suppose we find a Σ̃
satisfying (4), then writing

C̄P̃iC̄
′ =

[
P̄ 1
i P̄ 2

i

P̄ 3
i P̄ 4

i

]
(11)

will result in the equality

CP̃iC
′ = P̄ 1

i = Σ̃−R.

This means that the other submatrices are degrees of freedom which
may cause J to diverge. For example, choose P̄ 2

i = P̄ 3
i = 0 and P̄ 4

i =
αI for some α. Then

tr

([
P̄ 1
i 0
0 αI

])
= tr C̄P̃iC̄

′

= tr P̃iC̄
′C̄

which by the inequality trAB ≤ tr(A)tr(B) for positive definite
matrices A,B [8]

tr P̃i ≥
tr

([
P̄ 1
i 0
0 αI

])
tr C̄′C̄

. (12)

With P̄ 1
i and C̄′C̄ being constant for a fixed ε and C, it is straight-

forward to see that the selection of α can arbitrarily increase the term
lim
k→∞

(1/k)
∑k

i=1 trP̃i.

With this strategy in mind, let ζk ∼ N (0, Z), where Z satisfies

C̄ZC̄′ =

[(
δ
(

ε
n

)
− 1

)
Σ 0

0 βI

]
.
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Fig. 1. J1: upper bound; J2: εij = ε/n; J3: εij = 2jε/n(n+ 1); J4: εij is
random.

As with the proof of Theorem III.3., define the attack

ũk = uk − (A−KC)ζk−1 + ζk

or if B 
= I

ũk = uk −B−1(A−KC)ζk−1 +B−1ζk.

It can now be verified that

tr P̃i = tr E
[
eke

�
k

]
+ tr P

≥ 1

tr C̄′C̄

[
tr

(
δ
( ε

n

)
−1

)
Σ+ (n−m)β

]
+ tr P. (13)

Since β can be arbitrarily large, so can limk→∞(1/k)
∑k

i=1 trP̃i.
The final requirement is to prove that this attack is ε-stealthy. By

(10), it follows that z̃k ∼ N (0, δ(ε/n)Σ), that is, Σ̃i = δ(ε/n)Σ. So

1

k
D

(
z̃k1‖zk1

)
=

n

2
δ
( ε

n

)
− n

2
− n

2
log δ

( ε

n

)
=

n

2

(
2
ε

n

)
= ε.

Hence our constructed attack ũk is ε-stealthy. �

IV. NUMERICAL RESULTS

The two results will be illustrated by numerical examples. It can
be seen that when m = n, no other average covariances obtained
from stealthy attacks can exceed the stated bound. As for the second
result, the average covariance resulting from the proposed attack in the
previous section is shown to increase indefinitely with β.

For Fig. 1, we used

A =

[
1 1
0 1

]
, C =

[
3 4
1 1

]

Q =R =

[
0.6 0
0 0.3

]
, ε = 0.1.

The dependent variable is the term (1/k)
∑k

i=1 trP̃i, which conve-
niently can be denoted by J(k). Aside from the upper bound, the
other average covariances are obtained by choosing {εij} satisfying
the constraint

lim
k→∞

1

k

∑
i,j

εij = ε.

J2 is obtained by taking εij to be constant; J3 is obtained by letting
εi1 = 2ε/(n(n+1)) and εi2 = 2εi1, εi3 = 3εi1, . . . , εin = nεi1; J4 is

Fig. 2. Average covariance described in part B dependent on β.

obtained by randomly selecting εij such that the constraint is satisfied.
As k → ∞, J1 is the highest.

The reason that J4 is greater than J1 for smaller values of k is that
the optimal values {δ∗j } for the optimization problem (8) when Dk = ε
is not the optimal values for other choices of Dk. Therefore, it is pos-
sible that the optimal values for a certain Dk 
= ε can achieve a higher
average covariance at time k than {δ∗j }. However, the assumption that
Dk tends to ε as k increases implies that J4(k) must sink below our
upper bound as k → ∞ which is evident in this example.

For m < n, the parameters are

A =

[
1 1
0 1

]
, C =

[
3 4

]
Q =

[
0.6 0
0 0.3

]
, R = 0.6, ε = 0.1.

Then by the proposed attack in the previous section, taking

Z = C̄−1

[(
δ
(

ε
n

)
− 1

)
Σ 0

0 βI

]
(C̄′)

−1

we acquire

lim
k→∞

1

k

∑
i

P̃i = trZ + trP

which can be denoted by J(β). By simple observation, this value
increases linearly by β; this is shown in the Fig. 2.

V. CONCLUSION AND FUTURE WORK

In the framework of ε-stealthiness, we aim to study the estimation
performance under a stealthy attack. In this work, we specify in higher
dimensions the situation where results carry from [1] and when they
do not hold. In the vector case, one can see the interplay between
system parameters with greater clarity. The results further shows that
in the more practical setting, with short output vectors and long state
vectors, the ε-stealthiness detection method is ineffective in preventing
an attack.

The next step naturally is to consider the defence against ε-stealthiness
when m < n. The objective of the controller would be to expose
the attacker, if present, by maximizing the KL divergence, while the
attacker attempts the opposite. In this respect, the problem can be
formulated as a two-person infinite horizon dynamic game between
the controller and the attacker. This and other defence mechanisms are
beyond the scope of this note and will be investigated in future work.
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